

- A keyed function F:{0,1}^{*}x{0,1}^{*}→{0,1}^{*}
- The first input is called the key.
- The key is chosen randomly and then fixed, resulting in a single argument function, F_k: {0,1}^{*}→{0,1}^{*}
- Assume that the functions are length preserving, meaning that the inputs, output and key are all of the same size.

Security against CPA

 Defn: A (adversary) should not be able to distinguish the encryptions of two arbitrary messages.

Experiment: Priv^{CPA}_{A,II} (*n*) A key is generated by running Gen(n) A dversary A is given n and oracle access to Enc_k(.), and outputs a pair of messages m₀, m₁ of the same length. A random bit b ∈ {0,1} is chosen, and a ciphertext c=Enc_k(m_b) is computed and given to A as a challenge. We call c the challenge ciphertext. A dversary A continues to have oracle access to Enc_k(.) and outputs a bit b'. Output of the experiment is 1, if b'=b, and 0 otherwise.

Definition of Indistinguishable under CPA

Any encryption scheme Π =(Gen,Enc,Dec) has indistinguishable encryptions under CPA (called CPA-secure) is for all PPT adversary A, there exists a negligible $\varepsilon(n)$ st.,

$$\Pr[\operatorname{Priv}_{A,\Pi}^{CPA}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

where the probabilities are taken over the random coins used by A, as well as the random coins used in the experiment.

A CPA secure encryption scheme from any PRF

Let F be a PRF. Define an encryption as follows:

1. Gen: on input n (security parameter), choose $k \leftarrow \{0,1\}^n$

uniformly at random as the key.

2. Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$,

choose $r \leftarrow \{0,1\}^n$ uniformly at random and output the ciphertext:

 $c = < r, F_k(r) \oplus m >$

3.Dec: On input a key k and a ciphertext <r,s>:

 $m=F_k(r)\oplus s$

Proof Follows a general principle. Prove that the system is secured when a truly random function is used. Next prove that if the system was insecure when the pseudorandom function was used, then we can make a distinguisher against the PRF.

 $\begin{aligned} Claim: & \text{For every adversary A that makes at most } q(n) \text{ queries} \\ & \text{to its encryption oracle:} \\ & \Pr[\operatorname{Priv}_{A,\Pi}^{\operatorname{CPA}}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n} \end{aligned}$ $\begin{aligned} & \text{Proof: Each time a message m is encrypted a random } r \leftarrow \{0,1\}^n \\ & \text{is chosen and the ciphertext is } \{r,m \oplus f(r)\} \end{aligned}$ $\begin{aligned} & \text{Let } r_c \text{ be the random string used when generating the challenge} \\ & \text{ciphertext } c = \langle r_c, f(r_c) \oplus m \rangle. \end{aligned}$ $\begin{aligned} & \text{Define, Repeat as the event that } r_c \text{ is used by the encryption oracle} \\ & \text{to answer at least one of A's queries.} \end{aligned}$ $\begin{aligned} & \text{Clearly, } \Pr[\operatorname{Repeat}] \leq \frac{q(n)}{2^n} \\ & \text{Also, } \Pr[\operatorname{Priv}_{A,\overline{\Pi}}^{\operatorname{CPA}}(n) = 1 | \overline{\operatorname{Repeat}}] = \frac{1}{2}. \\ & \therefore \Pr[\operatorname{Priv}_{A,\overline{\Pi}}^{\operatorname{CPA}}(n) = 1] = \Pr[\operatorname{Priv}_{A,\overline{\Pi}}^{\operatorname{CPA}}(n) = 1 \wedge \operatorname{Re peat}] + \Pr[\operatorname{Priv}_{A,\overline{\Pi}}^{\operatorname{CPA}}(n) = 1 \wedge \overline{\operatorname{Re peat}}] \\ & \leq \Pr[\operatorname{Repeat}] + \Pr[\operatorname{Priv}_{A,\overline{\Pi}}^{\operatorname{CPA}}(n) = 1 | \overline{\operatorname{Repeat}}] = \frac{1}{2} + \frac{q(n)}{2^n} \end{aligned}$

Construct a Distinguisher for the PRF

Let $\Pr[\operatorname{Priv}_{A,\widetilde{\Pi}}^{CPA}(n) = 1] = \frac{1}{2} + \varepsilon(n)$

If ε is not negligible then the difference between this is also non-negigible. Such a gap will enable us to distinguish the PRF from a true random function.

1. If D's oracle is a PRF, then the view of A when run as a sub-routine by D is distributed identically to the view of A in experiment $\operatorname{Priv}_{A,\Pi}^{CPA}(n)$. Thus, $\Pr[D^{F_k}(n) = 1] = \Pr[\operatorname{Priv}_{A,\Pi}^{CPA}(n) = 1]$. 2.If D's oracle is a random function, then the view of A when run as a sub-routine by D is distributed identically to the view of A in experiment $\operatorname{Priv}_{A,\Pi}^{CPA}(n)$. Thus, $\Pr[D^{f}(n) = 1] = \Pr[\operatorname{Priv}_{A,\Pi}^{CPA}(n) = 1]$. Thus, $\Pr[D^{F_k}(n) = 1] - \Pr[D^{f}(n) = 1] \ge \varepsilon(n) - \frac{q(n)}{2^n}$, which is non-negligible if $\varepsilon(n)$ is so. This violates the PRF property of the F_k .

Theorem

If F is a pseudo-random function, then randomized counter mode has indistinguishable encryptions under a chosen-plaintext attack (CPA).

Proof Idea

First consider that a truly random function, f, is used.

Let ctr* denote the initial value ctr, when the challenge ciphertext

is generated in the experiment Priv^{cpa}.

For the ith block of the message, thus ctr^*+i was used to generate $f(ctr^*+i)$. Now, if ctr^*+i was never accessed before, then the key stream is random and like a one time pad. Thus the adversary has no advantage in deciding whether m_0 or m_1 was the corresponding plaintext for the challenge ciphertext. So, we have to find what is the probability that ctr^*+i was actually "matches" with one of the queries of the adversary A.

Block length and security

- Interestingly, we see that it is not only the key length but the block length also which decides the security.
- Consider a block length of 64 bits.
- The adversary's success probability in the CPA sense is thus around ½ +q²/2⁶³. Thus if we have around 2³⁰ guesses, then we have a practical attack! (only 1 GB queries and storage required).
- So, we need to increase the block length.