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• We have seen the construction of PRG 
(pseudo-random generators) being 
constructed from any one-way functions.

• Now we shall consider a related concept:
– Pseudo-random functions 
– instead of strings we consider functions

• It does not make much sense to call a 
fixed function pseudo-random.
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• So, we have keyed functions.
• A keyed function F:{0,1}*x{0,1}* {0,1}*

• The first input is called the key.
• The key is chosen randomly and then 

fixed, resulting in a single argument 
function, Fk: {0,1}* {0,1}*

• Assume that the functions are length 
preserving, meaning that the inputs, output 
and key are all of the same size.

Pseudo-random functions

• No polynomial time adversary should be 
able to distinguish whether it is interacting 
with Fk (for a randomly chosen k) or f 
(where f is chosen at random from the set 
of all functions mapping n bit strings to n 
bit strings).
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• The former is chosen from a distribution over at 
most 2n distinct functions.

• The later is from        functions.
• Despite this, the behavior of the functions must 

look the same to a PPT adversary.

22
nn

Formally
* * *Let :{0,1} {0,1} {0,1}  be an efficient length 

preserving, keyed function. F is said to be pseudo-random 
function if for all probabilistic polynomial time distinguisher 
D, there exists negligible f

F × →

kF (.) f(.)

unction (n):
|Pr[D (n)=1]-Pr[D (n)=1]|  (n) 
where k is chosen uniformly at  random and f is chosen 
uniformly at random from the set of functions mapping 
n-bit strings to n-bit strings.

ε

ε≤
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Encryption with a PRF

Fresh Random string r

Pseudorandm

Function

Pad

xorplaintext ciphertext

Some finer points

• If x and x’ differ, outputs of Fk(x) and Fk(x’) 
should not be correlated.

• Distinguisher D is not given the key: 
– it is meaningless to talk about pseudorandomness

once the key is given.
– one can compute y’=Fk(0n)
– then query the oracle at 0n

– if the oracle is for Fk, always y=y’
– if the oracle is for random f, y=y’ with a probability of 

2-n. thus we have a distinguisher.
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Security against CPA

• Defn: A (adversary) should not be able to 
distinguish the encryptions of two arbitrary 
messages.

CPA Ind Exp
CPA
A,

k

0 1

Experiment: Priv ( )
1. A key is generated by running Gen(n)
2. Adversary A is given n and oracle access to Enc (.),
and outputs a pair of messages m ,  of the same length. 
3. A random bit b {0,1} 

n

m

Π

∈ k

k

is chosen, and a ciphertext c=Enc ( )
 is computed and given to A as a challenge. We call c the challenge 
ciphertext. 
4. Adversary A continues to have oracle access to Enc (.) and outputs 
a bit b'.
5. 

bm

A,

Output of the experiment is 1, if b'=b, and 0 otherwise.

A succeeds when Priv ( ) 1CPA nΠ =
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Definition of Indistinguishable 
under CPA

A,

Any encryption scheme =(Gen,Enc,Dec) has indistinguishable 
encryptions under CPA (called CPA-secure) is for all 
PPT adversary A, there exists a negligible (n) st.,

1         Pr[Priv ( ) 1] (n
2

CPA n

ε

εΠ

Π

= ≤ + )

where the probabilities are taken over the random coins 
used by A, as well as the random coins used in the experiment.

CPA secured encryption

• the scheme has to be probabilistic:
– consider a deterministic encryption: 

ENCk(m)=Fk(m)
– Given c=ENCk(mb) it is possible to ask for 

ENCk(m0) and ENCk(m1) and see for a match. 
Accordingly b is discovered easily.

– thus the scheme is not CPA secured.



7

A CPA secure encryption scheme 
from any PRF

n

Let F be a PRF. Define an encryption as follows:
1. Gen: on input n (security parameter), choose k {0,1}
uniformly at random as the key.
2. Enc: on input a key k {0,1}  and a message m {0,1} ,  
choose r

n n

←

∈ ∈

← n

k

k

{0,1}  uniformly at random and output the 
ciphertext:
                        c=<r,F ( )
3.Dec: On input a key k and a ciphertext <r,s>:
                   m=F ( )

r m

r s

⊕ >

⊕

Theorem

If F is a pseudorandom function, then the above construction 
is a fixed length symmetric key scheme for messages of length n 
that has indistinguishable encryptions under a chosen plaintext 
attack.
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Proof

• Follows a general principle.
• Prove that the system is secured when a 

truly random function is used.
• Next prove that if the system was insecure 

when the pseudorandom function was 
used, then we can make a distinguisher 
against the PRF.

Proof

k

n

Let =(Gen, , ) be an encryption scheme that 
is exactly the same as =(Gen,Enc,Dec), except that 
a true random function f is used in place of F .

Thus Gen( ) chooses a random function f Func  

and 

Enc Dec

n

E

Π
Π

←

k just like Enc except that f is used instead of F .nc
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CPA
A,

n

:  For every adversary A that makes at most q(n) queries 
to its encryption oracle:

1 ( )                     Pr[Priv ( ) 1]
2 2

Proof: Each time a message m is encrypted a random r {0,1}
is ch

n

Claim

q nnΠ = ≤ +

←

c

c

c

osen and the ciphertext is {r,m f(r)}
Let r  be the random string used when generating the challenge 
ciphertext c=<r , ( ) .
Define, Repeat as the event that r  is used by the encryption oracle 
to an

cf r m

⊕

⊕ >

n

CPA
A,

CPA CPA CPA
A, A, A,

CPA
A,

swer at least one of A's queries. 
q(n)Clearly, Pr[Repeat]
2

1Also, Pr[Priv ( ) 1| Repeat] .
2

Pr[Priv ( ) 1] Pr[Priv ( ) 1 Re peat]+Pr[Priv ( ) 1 Re peat]

Pr[Repeat]+Pr[Priv ( ) 1

n

n n n

n

Π

Π Π Π

Π

≤

= =

∴ = = = ∧ = ∧

≤ = n

1 q(n)| Repeat]
2 2

= +

Construct a Distinguisher for the 
PRF

CPA
A,

1Let Pr[Priv ( ) 1] ( )
2

If  is not negligible then the difference between this is also 
non-negigible. Such a gap will enable us to distinguish the PRF 
from a true random function. 

n nε

ε

Π
= = +
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n

Distinguisher D:
D is given input n and oracle O:{0,1} {0,1} . 
D answers the queries made by A in the CPA IND EXP.
1. Run A(n). Whenever A queries its encryption oracle on 
a message m, answer this quer

n→

n

n
0 1

y in the following way:
     a) Choose r {0,1}  uniformly at random.
     b) Query O(r) and obtain response s'
     c) Return to A the ciphertext <r,s' m>
2. When A outputs m ,m {0,1} , choose a random 
b

←

⊕

∈

n

b

it b {0,1}.
     a) Choose r {0,1}  uniformly at random.
     b) Query O(r) and obtain response s'
     c) Return to A the ciphertext <r,s' m >
3. Continue answering A's queries as above. When A outputs 
a

←

←

⊕

 bit b', D outputs 1 if b=b' and 0 otherwise.

k

CPA
A,

F CPA
A,

1. If D's oracle is a PRF, then the view of A when run as a sub-routine 
by D is distributed identically to the view of A in experiment Priv ( ).

Thus, Pr[D ( ) 1] Pr[Priv ( ) 1].
2.If D's ora

n

n n
Π

Π= = =

k

CPA
A,

f CPA
A,

F

cle is a random function, then the view of A when run as a sub-routine 
by D is distributed identically to the view of A in experiment Priv ( ).

Thus, Pr[D ( ) 1] Pr[Priv ( ) 1].

 Thus,  Pr[D

n

n n
Π

Π
= = =

f
n

k

q(n)( ) 1] Pr[D ( ) 1] ( ) , 
2

which is non-negligible if (n) is so. 
This violates the PRF property of the F .  

n n nε

ε

= − = ≥ −
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Modes of Encryption

• Electronic Code Book (ECB)

FK FK FK

m1 m2 m3

c1 c2 c3

Deterministic encryption 
and thus cannot be CPA-
secure.

Cipher Block Chaining (CBC)

FK

+

FK

+

FK

+

m1 m2 m3

c1 c2 c3IV

A random IV (initial vector) of size n bits is chosen 

Probabilistic and if F is a pseudo-random permutation then CBC is 
CPA-secure. 

Parallelization 
not possible.
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Output Feedback Mode (OFB)

FK

+

FK

+

FK

+m1 m2
m3

c1 c2
c3IV

If F is a Pseudorandom function then this is secure against CPA.

Note that F need not be a permutation.

Parallelism not possible.

But pre-processing of the key stream can lead to extremely fast operations.

Counter Mode

+m1

FK

ctr+1

+m2

FK

ctr+2

+m3

FK

ctr+3
ctr

ctr
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Theorem

If F is a pseudo-random function, then randomized counter 
mode has indistinguishable encryptions under a chosen-plaintext 
attack (CPA). 

Proof Idea

cpa

th 

First consider that a truly random function, f, is used. 
Let ctr* denote the initial value ctr, when the challenge ciphertext 
is generated in the experiment Priv .
For the i block of the message, t

0

hus ctr*+i was used to generate f(ctr*+i).
Now, if ctr*+i was never accessed before, then the key stream is random 
and like a one time pad. Thus the adversary has no advantage in deciding 
whether m  or 1 m  was the corresponding plaintext for the challenge ciphertext. 
So, we have to find what is the probability that ctr*+i was actually "matches" 
with one of the queries of the adversary A.
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Proof Idea
i

The adversary A makes q(n) queries. The starting IV value for the 
ith query is denoted by ctr . Let each message be of block-length, 
q(n). 
We divide the entire scenario into two mutually exclusive cas

i

CPA
A,

i

i

es:
1. There do not exist any i, j, j' for which ctr*+j=ctr '.

1: Pr[Priv 1] .
2

2. There exists i,j,j' for which ctr*+j=ctr +j'. 
In this case, A can easily determine f(ctr*+j)=f(ctr +j') and t

j

Here Π

+

= =

j 0 1

i i i

hus 
compute m . Thus he can predict whether m  or m  was encrypted. 

Let Overlap  denote the even that the sequence ctr +1,...,ctr +q(n) overlaps
the sequence ctr*+1,...,ctr*+q(n).
Consider, ctr*+1,...,c

i

 i

i

tr*+q(n)
               ctr 1,..., ( )

occurs when ctr 1 ctr*+q(n) and 
                          when ( ) ctr*+1
This happens when: ctr*+1-q(n) ctr ctr*+q(n)-1

i

i

i

ctr q n
Overlap

ctr q n

+ +
+ ≤
+ ≥

≤ ≤

Proof
i

( )

i
1

2

i

CPA CPA
A, A,

We define the event Overlap, as when Overlap  occurs for any i, 

that is: Pr[Overlap] Pr[Overlap ] 

2 ( ) 1 2 ( )Now, Pr[Overlap ] Pr[Overlap] .
2 2

Pr[Pr iv 1] Pr[ ] Pr[Pr iv 1|

q n

i

n n

q n q n

Overlap

=

Π Π

≤

−
= ⇒ ≤

= ≤ + =

∑

2

]

2 ( ) 1                         =
2 2

The next step is to reason that if the random function is replaced by 
the pseudo-random function, and the scheme is not CPA-secure, then 
we can frame a PPT

n

Overlap

q n
+

k

 algorithm D, which is able to distinguish the 
function F  from a random function f. This proof is left as an exercise. 
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Block length and security

• Interestingly, we see that it is not only the key 
length but the block length also which decides 
the security.

• Consider a block length of 64 bits. 
• The adversary’s success probability in the CPA 

sense is thus around ½ +q2/263. Thus if we have 
around 230 guesses, then we have a practical 
attack! (only 1 GB queries and storage required).

• So, we need to increase the block length.


