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* We have seen the construction of PRG
(pseudo-random generators) being
constructed from any one-way functions.

* Now we shall consider a related concept:
— Pseudo-random functions
— instead of strings we consider functions

* |t does not make much sense to call a
fixed function pseudo-random.




So, we have keyed functions.

A keyed function F:{0,1}'x{0,1}'>{0,1}
The first input is called the key.

The key is chosen randomly and then
fixed, resulting in a single argument
function, F,: {0,1}>{0,1}

Assume that the functions are length

preserving, meaning that the inputs, output
and key are all of the same size.

Pseudo-random functions

No polynomial time adversary should be
able to distinguish whether it is interacting
with F, (for a randomly chosen k) or f
(where f is chosen at random from the set
of all functions mapping n bit strings to n
bit strings).




e The former is chosen from a distribution over at
most 2" distinct functions.

e The later is from 2"? functions.

» Despite this, the behavior of the functions must
look the same to a PPT adversary.

Formally

Let F :{0,1} x{0,1} —{0,1} be an efficient length
preserving, keyed function. F is said to be pseudo-random
function if for all probabilistic polynomial time distinguisher
D, there exists negligible function &(n):

IPr[D%Y (n)=1]-Pr[D" (n)=1]| < &(n)

where k is chosen uniformly at random and f is chosen
uniformly at random from the set of functions mapping

n-bit strings to n-bit strings.




Encryption with a PRF
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Some finer points

« If x and X’ differ, outputs of F,(x) and F,(x")
should not be correlated.

 Distinguisher D is not given the key:

— it is meaningless to talk about pseudorandomness
once the key is given.

— one can compute y'=F,(0")
— then query the oracle at O"
— if the oracle is for F,, always y=y’

— if the oracle is for random f, y=y’ with a probability of
2. thus we have a distinguisher.




Security against CPA

« Defn: A (adversary) should not be able to
distinguish the encryptions of two arbitrary
messages.

CPA Ind Exp

Experiment: Privi; (n)

1. A key is generated by running Gen(n)
2. Adversary A is given n and oracle access to Enc, (.),
and outputs a pair of messages m,, m, of the same length.
3. Arandom bit b €{0,1} is chosen, and a ciphertext c=Enc, (m,)
is computed and given to A as a challenge. We call ¢ the challenge
ciphertext.
4. Adversary A continues to have oracle access to Enc, (.) and outputs
a bit b".
5. Output of the experiment is 1, if b'=b, and 0 otherwise.

A succeeds when Privi’(n) =1




Definition of Indistinguishable
under CPA

Any encryption scheme IT=(Gen,Enc,Dec) has indistinguishable
encryptions under CPA (called CPA-secure) is for all
PPT adversary A, there exists a negligible &(n) st.,

Pr[Privyy (n) =1] < %4— &(n)

where the probabilities are taken over the random coins
used by A, as well as the random coins used in the experiment.

CPA secured encryption

» the scheme has to be probabilistic:
— consider a deterministic encryption:
ENCy(m)=F,(m)
— Given c=ENC,(m,) it is possible to ask for

ENC,(m,) and ENC,(m,) and see for a match.
Accordingly b is discovered easily.

— thus the scheme is not CPA secured.




A CPA secure encryption scheme
from any PRF

Let F be a PRF. Define an encryption as follows:

1. Gen: on input n (security parameter), choose k «{0,1}"
uniformly at random as the key.

2. Enc: on input a key k €{0,1}" and a message m €{0,1}",
choose r «—{0,1}" uniformly at random and output the
ciphertext:

c=<rF (r)y@m>
3.Dec: On input a key k and a ciphertext <r,s>:
m=F (r)®s

Theorem

If F is a pseudorandom function, then the above construction

is a fixed length symmetric key scheme for messages of length n
that has indistinguishable encryptions under a chosen plaintext
attack.




Proof

» Follows a general principle.

* Prove that the system is secured when a
truly random function is used.

* Next prove that if the system was insecure
when the pseudorandom function was
used, then we can make a distinguisher
against the PRF.

Proof

Let IT1=(Gen, Enc, Dec) be an encryption scheme that
is exactly the same as I[T1=(Gen,Enc,Dec), except that
a true random function f is used in place of F,.

Thus Gen(n) chooses a random function f «— Func,

and Enc just like Enc except that f is used instead of F,.




Claim: For every adversary A that makes at most q(n) queries
to its encryption oracle:
1 L a@)
on
Proof: Each time a message m is encrypted arandom r «<{0,1}"
is chosen and the ciphertext is {r,m ®f(r)}
Let r, be the random string used when generating the challenge
ciphertext c=<r_, f(r,)®m >.
Define, Repeat as the event that r, is used by the encryption oracle
to answer at least one of A's queries.

]q()

PrPrivis (n) =1] <

Clearly, Pr[Repeat] <

Also, Pr[Privi7(n) = 1|Repeat]——
< PrPriv,72 (n) =1] = Pr[Privi 2 (n) =1A Re peat]+Pr[Pr|vCPA(n) 1A Repeat]

L am)

< Pr[Repeat]+Pr[Priv,"7 (n) =1 Repeat] = o

Construct a Distinguisher for the
PRF

Let Pr{Privi’2 (n) =1] == + g(n)

If £ is not negligible then the difference between this is also
non-negigible. Such a gap will enable us to distinguish the PRF
from a true random function.




Distinguisher D:
D is given input n and oracle 0:{0,1}" —{0,1}".
D answers the queries made by A in the CPA IND EXP.
1. Run A(n). Whenever A queries its encryption oracle on
a message m, answer this query in the following way:

a) Choose r «<—{0,1}" uniformly at random.

b) Query O(r) and obtain response s'

¢) Return to A the ciphertext <r,s'® m>
2. When A outputs m,,m, €{0,1}", choose a random
bit b «—{0,1}.

a) Choose r «<—{0,1}" uniformly at random.

b) Query O(r) and obtain response s'

c) Return to A the ciphertext <r,s'®m,>
3. Continue answering A's queries as above. When A outputs
abitb', D outputs 1 if b=b"and 0 otherwise.

1. If D's oracle is a PRF, then the view of A when run as a sub-routine

by D is distributed identically to the view of A in experiment Priv™: (n).

Thus, Pr[D™(n) =1] = Pr[Priv} (n) =1].

2.1f D's oracle is a random function, then the view of A when run as a sub-routine
by D is distributed identically to the view of A in experiment Prive™2 (n).

Thus, Pr[Df (n) =1] = Pr[Priv¢™ (n) =1]. |

Thus, Pr[D"(n)=1]-Pr[D"(n) =1] > &(n) _%,

which is non-negligible if £(n) is so.
This violates the PRF property of the F,.
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Modes of Encryption

» Electronic Code Book (ECB)

ml m2 m3
FK FK FK
¢ G2 C3

Deterministic encryption
and thus cannot be CPA-
secure.

Cipher Block Chaining (CBC)

m;

m,

m;

Fy

Parallelization
not possible.

\

Cy

C;

o

A random IV (initial vector) of size n bits is chosen

Probabilistic and if F is a pseudo-random permutation then CBC is

CPA-secure.
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Output Feedback Mode (OFB)
N I

Fx Fx Fx

1 I3
1 + 2 +
\% c
c, c, 3

If F is a Pseudorandom function then this is secure against CPA.
Note that F need not be a permutation.
Parallelism not possible.

But pre-processing of the key stream can lead to extremely fast operations.

Counter Mode

ctr
ctr+1 ctr+2 ctr+3
FK FK FK
) ) g
! ! !
ctr
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Theorem

If F is a pseudo-random function, then randomized counter
mode has indistinguishable encryptions under a chosen-plaintext
attack (CPA).

Proof Idea

First consider that a truly random function, f, is used.

Let ctr* denote the initial value ctr, when the challenge ciphertext

is generated in the experiment Priv®®,

For the i" block of the message, thus ctr*+i was used to generate f(ctr*+i).
Now, if ctr*+i was never accessed before, then the key stream is random

and like a one time pad. Thus the adversary has no advantage in deciding
whether m, or m; was the corresponding plaintext for the challenge ciphertext.
So, we have to find what is the probability that ctr*+i was actually "matches"
with one of the queries of the adversary A.

13



Proof Idea

The adversary A makes g(n) queries. The starting IV value for the
ith query is denoted by ctr;,. Let each message be of block-length,
a().

We divide the entire scenario into two mutually exclusive cases:
1. There do not exist any i, j, j' for which ctr*+j=ctr, + j".

Here: Pr{Priviy =1]= %

2. There exists i,j,J' for which ctr*+j=ctr, +j".
In this case, A can easily determine f(ctr*+j)=f(ctr, +j') and thus
compute m;. Thus he can predict whether m, or m, was encrypted.
Let Overlap; denote the even that the sequence ctr, +1,...,ctr, +q(n) overlaps
the sequence ctr*+1,...,ctr*+q(n).
Consider, ctr*+1,...,ctr*+q(n)

ctr, +1,...,ctr, + q(n)
Overlap, occurs when ctr;, +1 < ctr*+q(n) and

when ctr, +q(n) > ctr*+1

This happens when: ctr*+1-q(n) < ctr, < ctr*+q(n)-1

Proof

We define the event Overlap, as when Overlap, occurs for any i,
q(n)

that is: Pr[Overlap] < Z Pr[Overlap;]

i=1

2
Now, Pr[Overlap;] = % = Pr[Overlap] < _2q2(£1) ,

Pr{Prive™ =1] < Pr[Overlap]+ Pr[PrivS =1| Overlap]

2q(n)* 1
The next step is to reason that if the random function is replaced by
the pseudo-random function, and the scheme is not CPA-secure, then
we can frame a PPT algorithm D, which is able to distinguish the
function F, from a random function f. This proof is left as an exercise.
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Block length and security

Interestingly, we see that it is not only the key
length but the block length also which decides
the security.

Consider a block length of 64 bits.

The adversary’s success probability in the CPA
sense is thus around %2 +q2/2%3. Thus if we have
around 230 guesses, then we have a practical

attack! (only 1 GB queries and storage required).

So, we need to increase the block length.
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