Hard Core Predicates:
How to encrypt?

Debdeep Mukhopadhyay
lIT Kharagpur

Recap

« A encryption scheme is secured if for
every probabilistic adversary A carrying
out some specified kind of attack and for
every polynomial p(.), there exists an
integer N s.t. the probability that A
succeeds in this attack is less than 1/p(n)
for every n>N




Hard Core Predicates

If f :{0,1}" —{0,1}", and bijective, a poly(n)
computable B :{0,1}" —{0,1} is (t,&) — hp for
f if for every A with running time < t(n),

Pr, [A(FQ)=B(¥)] < %+ e (n)

One-way functions and Trapdoors

» They are class of functions which are easy
to compute in one direction (poynomial
time), but hard to invert (cannot be
inverted in polynomial time)

» But can be easily inverted with a secret
information, called the trap-door
information.




Example with RSA

* y=x® mod(pq) [Easy to compute]

« Giveny, e and N=pq, we do not know
efficient techniques to compute x.

« But if we have a trap-door
d=e' mod(p-1)(g-1)
it becomes easy to compute x and hence
invert the function.

Hard Core Predicate of trapdoor
permutations

(G, F, 1) is a family of trapdoor permutations,

G chooses (k, t,)

F (., k) is bijective

I(.,t,,k) is inverse of F(., k)

st, G,F,I can be done in poly(n) time and inverting
F without t, is hard.




HP for trap-door permutations

If (G,F,I) isafamily of trapdoor permutations,
then polynomial time one bit output B(X, k) is a
hard-core predicate if for every A running in
time < t(n),

P e [AFOK K KIZBOCKI] < -+ 2(0)

Goldreich-Levin Theorem

* If there is a family of trapdoor
permutations, then there is a family with a

hard core predicate.




Encrypting abit b

Given (G,F,l),t, and a hardcore predicate B
Key Generation: G

— Return (k,t,)

Encryption: E(b,t,)

— Pick random X € {0,1}"

— Return F(X,k),b®B(X,k)

Decryption: D((z,c),k,t,)

- X=l(z,t,)

— Return c® B(X,k)

The Encryption is Ml secure

1
Pl s m[AF (X, K),b® B(X, k), k) =b] < E+ e(n)

Xe{0,13"
bef0,1}

Suppose this encryption is not (t, &) — Ml secure.

Consider algorithm A'(y,k)
Proof: Pick random c {0,1}
Return ¢ ® A(y,c,k)
Thus,
Per{o,qﬂ[Al(F(X ,k), k) =B(X, k)]
=Pry 1 yecm[AF (X, k), k) = B(X, k) ®c]

Xe{013"
ce{0,1}




Example for RSA

* B(X,(N,e))=X mod 2 is a hp for RSA

—that is given (N,e), X® mod N it is hard to
guess X mod 2 with a non-negligibly large
probability than 2

* Encrypt b€{0,1} with RSA
— Pick X €{0,1}"
— Compute, X mod N, XOR(b,Xmod 2)

How to encrypt longer strings?

+ Given (G,F,l),t, and a hardcore predicate B

» Key Generation: G
— Return (k,t,)
* Encryption: Eg(m,k), m€{0,1}
fori=1ton
— Pick random X € {0,1}"
— Return F (X, k), m[i]® B(X,k)
» Decryption: D((z,c),k.t,)
- X=l(z,t)
— fori=1ton
Return d[i]® B(X, k)




Proof of Ml secured

For every m, m' for every A running in time < t(n)
PrlA(Eg, (M, k), k) =1]-Pr[A(E;,, (m',k),k) =1] < 2¢
If we contradict this supposition, we have
JA,m,m’'s.t.

PrlA(Eg,, (M, k),k) =1]-Pr[A(E,, (m' k),k) =1] > 2¢

Contd.

Consider the following hybrid construction:
PrTAE(M[IDE(M[2])...E(m[n]))=1]=p,
PrTA(E(MT1])E(m[2])...E(m[n]))=1]=p,

PrIAEMIL)EMT2])...m[ilm[i+1]...E(m[n]))=1]=p,
PrIA(E(mTIDE(M2])...m'[i]m [i+1]...E(m[n]))=1]=p..,

PrIAE(MTLDE(m[2])...E(mn-1)E(m[n]))=1]=p,,
PrIA(E(m[1])E(m[2])...E(m'[n-1]E(m'n]))=1]=p,




Contd.

So, from our contradiction we have:
po - pn >2¢

n-1
Or!Z(pi —Pia) > 2¢
i=0

or,3i: (p, = Puy) > =
n
i,e
PHAE(MLDEM2])...mi]m[i+1]...E(m[n]))=1]
PHAE(MTLDEMT2])...m il i+1]...E(m[n]))=1] > 278

Contd.

Consider algorithm A'(c,k)
Compute, ¢, = E(m'[0])

¢, = E(ni)

C... = E(m[i +2])
¢, = E(m[n])
Return A(c,,...,C,,C,C, ,,...,C,)




contd.

Pr[A'(c,k) =1]-Pr[A'(—c,k) =1]
=Pr[A(c,...,¢;,C,C.,,...,C,)]-Pr[A(c,...,C;,—C,C,.;,..-,C,)]
2¢&
> R
n
This contradicts the fact that one bit encryption was

MI secure.

A Hard Core Predicate for any one-
way function

Let (G,F,I) be a family of trap-door permutations.
Consider (G,F,I') , which is also a family of trap-door
permutations.

I'((z,r),t,)=1(z,t,),r and

F'((x,r),k) =< F(x,k),r >

Then B(x,r) =Y_ x.r, mod 2

is a hard core predicate for (G',F',I").




Proof

* Let us drop the variables k and t, for
simplicity. The proof is unchanged with
them.

Assume that there is a polynomial time
algorithm A, that always correctly
computes B(x,r) given F’(x)=(F(x),r)

— we shall show that easy to compute x from

f(x). This contradicts our assumption that F is
one-way.

Details

* Let A be a PPT algorithm which computes the value of B(x,r) from

F’(x,r)=F(x),r

Pr o [ACF(X).1) =B(x,")] =1

* Now we shall frame an experiment A’, which invokes A for

i=1,2,...,n.

» The arguments being passed to A are x and g,

— e,denotes a string with the it" bit 1 and rest 0.
— Since, A computes the term B(x,e;)=x; with probability 1, the entire x is
retrieved by A’ by executing A n number of times.

— Note that the run time of A’ is also polynomial in n and also has a
probability of 1.

10



But that is not all!

« The G-L Theorem says that the probability
of computing B(x,r) from F’(X,r)=(F(x),r)
should be greater than %2 by a negligible
quantity
— So, assuming a probability of 1 is a weak

case.

— Slightly more involved case (and more closer
to the proof) will be if the probability is
significantly greater than %a.

Why the previous proofs does not
work?

* |t may be that A never succeeds in
computing B(x,r) correctly when r=e,

* The algorithm A’ has no means of
understanding that A has succeeded or
not?

— So, what does A’ do in this case to increase

his chance?
* (repeat the experiment of A)
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Two important observations

B(x,r)®B(x,r®e)=B(x,e)=x

» note that A is invoked with random inputs.

* There is no way to understand when A gives a
correct answer. So, run A multiple times and
take the majority.

» A preliminary step would be to prove that for
many Xx’s, the probability that A answers both the
predicate queries correctly is very high.

Claim 1

If, Pr

creqony LACF(X), 1) = B(x,r)] 2 %+g(n).

Then there exists a set S, <{0,1}" of size at least

@2”, where for every x e S, :

0]

I:)rr<—{0,1}” [A(F(X), I’) = B(X, I’)] > Z+ g

12



Proof
Define, s(x) =Pr, 5 [A(F(X),r) =B(x,r)]
s( ) on

We have to show that |S, |> —

Pr. [A(F (x),r) =B(x,r)]
=Pr [A(F(x),r)=B(x,r)|xe S JPr[xeS,]
+Pr, [A(F(x),r) =B(x,r) | xe S,IPr,[x ¢ S,]
<Pr[xeS 1+Pr, [A(F(x),r)=B(x,r)[xeS,]
s Pr[xeS 1=Pr [A(F(x),r)=B(x,r)]

—Pr, JA(F(x),r)=B(x,r) | xeS,]
6(n)) e(n)

i.e.Pr[xes, ]>j+e(n)( +

Thus, S, must be of size at least (because

e
2

x is uniformly distributed in {0,1}")

Claim 2

I, Pr,, oy [ACF00,1) = B(x, r)]2%+g(n).

Then there exists a set S, <{0,1}" of size at least

ﬂ2”, where for every x e S, and every i it holds

that:

I on [ACF(X),1) =B(x, 1) A A(F(X),r ©¢) = B(x,r ®¢)]

1
=>—+¢&(n
2()
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Proof

We know forxe S, :

Pr o [A(F(X),1) # B(X, r)]< 1 «9(2“)

Fixing any i, if r is uniformly dlstrlbuted S0,
isr®e,. So,
1 &(n)

2
We wish to upper-bound the probablllty that at

least one of the two predicates are wrongly computed.
From the theory of probability, this is atmost:
1 e(n), ,1 &), 1
S+ (=——F)==—¢(n
( : )+( ) 5 &(n)
So, A is correct on both the queries with probability

Pr oy [A(F(X),1) # B(X, rG—)e)]<

at least %4— g(n).

The strategy of A’

Fori=1,...,n

1. Choose a random r «<—{0,1}" and guess that the
value x. = A(y,r)® A(y,r®e,).

2. Repeat this procedure for a large number of cases,
(only the number of trials has to be polynomial in n)
and return the majority as the correct guess.




Can this proof be extended to the
general case?

Since it involves two computations of B(),

the error probability is doubled.

for the actual proof (and even when the
error probability is exactly V4 this will not
help in inverting F with a significant prob)
Instead, we guess one B and compute the
other.

m=poly(n) and set I=log,(m+1)

Can this proof be extended to the
general case?

Choose | strings uniformly and independently
in {0,1}" and denote them by s,,...,s,.

Then guess B(x,s,),...,B(x,s;) and call them
O4,-.-,0).

Probability that all of them are correct is
1/2'=1/poly(n)
Fix J as a subset of {1,...,I} and define r’ =@ s’

It may be shown that the r'’s are pairwise
independent and uniformly distributed in {0,1}"
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Can this proof be extended to the

* Note that:
B(x,r’) =

general case?

B(x,®,.,5")=®,_,B(x,5)

« So, our guess for B(x,r) is p’ =9, 0’

A’s experiment: ‘

The Actual Proof

1. Generate and independently set
s,...s' €{0,1}" and ¢*,...,c' €{0,1}
2. For every non-empty
subset of J, J < {1,...,I} computes a string,
r'=®,,s’ andabitp’ =@, 0’
3. For every i €{1,..,n} and every non-empty
subset of J, J < {1,...,1} computes,
' =p’ ®A(y,r' +e)
4. Forevery ie{l,..,n} itsets z to be the
majority of the z” values.
5. ltoutputs z =z,...z,
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Analysis

« Next, we show that if for all j€{1,...,I}, 0'’s are
equal to B(x,s/), then:

2’ =B(x,r’)® A(F(x),r’ @e')

has a majority equal to x; for all i€{1,...,n}

Claim

Forevery x e S, and every 1<i<n,
Pr{|{J :B(x,r’)® A(F(X),r’ ®@e') = x}|> %(2' -]

>1-i

2n

17



Proof

For every J define a 0-1 r.v M’ which equals 1,
iff B(x,r’)® A(F(X),r’ ®e')=B(x,e') = x
= M’ =1iff A(F(X),r’ @e')=B(x,r’ @e)
Thus, M’ =1 with probability at least

£(n)

—+— asxes,.

2 2

Note that B(x,r’)@® A(F(X),r’ @e') = x
iff M’ =1 for majority of j's, je J.

Thus, Pr[Y" M’ < %] g
J

Chebyshev’s Inequality

Let Xbearvand o >0

= Pl X —E(X) ]2 5] < 21X)

18



Py M <Z1<Pl T M -G+ EmEe Zm)

Note, E(D MJ):(%JF@)m
P M < <Pl M -G+ X S

< m/4 _ 1
~ (e(n)/2)’m*  g(n)’m

Let, m :ﬂw we have:
g(n)
m 1
Pr M'<—]<—
[ZJ: 2:I 2n
m 1
PIY M >—1>1-—
[ZJ: 2] 2n
This completes the proof of the claim.

Thus the probability that A" is wrong for a

particular value of i is at most Zi
n

(it occurs when "M, < % m).
J

Thus, the probability that A' returns a wrong result

. 1 1
for at least one value of i is atmost —n==.

2n 2
Thus the probability that it is correct for all the i values is
at least 1.
2

Reminder, this was under the assumption that the | guesses were

all correct probability of which is 27,

Hence if xe S, A'inverts F(x) with a probability of

1po1 1 1 1

27 2m+1 2 2n
&(n)*

aHL

Also, we know Pr,[x e Sn]:%n)
Thus, the probabilty that A" is able to invert F(x)
1 en_1 1
2n_ 4 2 420p(n)’ +p(n)
&(n)?
which is a contradiction to the assumption that F(x)

is a one-way function.

is at least 1




