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Hard Core Predicates:
How to encrypt?

Debdeep Mukhopadhyay
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Recap

• A encryption scheme is secured if for 
every probabilistic adversary A carrying 
out some specified kind of attack and for 
every polynomial p(.), there exists an 
integer N s.t. the probability that A 
succeeds in this attack is less than 1/p(n) 
for every n>N
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Hard Core Predicates

If :{0,1} {0,1} ,  and bijective, a poly(n) 
computable :{0,1} {0,1} is ( , )  for 

 if for every A with running time  t(n),
1Pr [A(f(X))=B(X)] + (n) 
2
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One-way functions and Trapdoors

• They are class of functions which are easy 
to compute in one direction (poynomial
time), but hard to invert (cannot be 
inverted in polynomial time)

• But can be easily inverted with a secret 
information, called the trap-door 
information.
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Example with RSA

• y=xe mod(pq) [Easy to compute]
• Given y, e and N=pq, we do not know 

efficient techniques to compute x.
• But if we have a trap-door                              

d=e-1 mod(p-1)(q-1)
it becomes easy to compute x and hence 
invert the function.

Hard Core Predicate of trapdoor 
permutations 

k

 

( , , ) is a family of trapdoor permutations, 
G chooses (k, t )

(., ) is bijective
(., , ) is inverse of (., )
,  G,F,I can be done in poly(n) time and inverting 

F without is hard. 
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HP for trap-door permutations

( , ) ( )

 ( , , ) is a family of trapdoor permutations, 
then polynomial time one bit output ( , ) is a 
hard-core predicate if for every A running in 
time  t(n),

1  Pr [A(F(X,k),k)=B(X,k)] + (n)  
2kk t G n

If G F I
B X k

ε∈

≤

≤

Goldreich-Levin Theorem

• If there is a family of trapdoor 
permutations, then there is a family with a 
hard core predicate.
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Encrypting a bit b
• Given (G,F,I),tk and a hardcore predicate B
• Key Generation: G

– Return (k,tk)
• Encryption: E(b,tk)

– Pick random X Є {0,1}n

– Return
• Decryption: D((z,c),k,tk)

– X=I(z,tk)
– Return  

( , ), ( , )F X k b B X k⊕

( , )c B X k⊕

The Encryption is MI secure
( , ) ( )

{0,1}
{0,1}

1Pr [ ( ( , ), ( , ), ) ] ( )
2k

n
k t G n

X
b

A F X k b B X k k b nε∈
∈
∈

⊕ = ≤ +

( , ) ( )
{0,1}

{0,1}

{0,1}

Suppose this encryption is not ( , )  secure. 
1Pr [ ( ( , ), ( , ), ) ] ( )
2

Consider algorithm A'(y,k)
      Pick random c {0,1}
      Return c A(y,c,k)
Thus, 
Pr [

k
n

n

k t G n
X
b

X

t MI

A F X k b B X k k b n

A

ε

ε∈
∈
∈

∈

−

⊕ = > +
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⊕

( , ) ( )
{0,1}

{0,1}

( , ) ( )
{0,1}

{0,1}

'( ( , ), ) ( , )]

Pr [ ( ( , ), , ) ( , ) ]

1Pr [ ( ( , ), ( , ), ) ] ( )
2
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∈
∈
∈

∈
∈
∈

=

= = ⊕
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Proof:
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Example for RSA

• B(X,(N,e))=X mod 2 is a hp for RSA
– that is given (N,e), Xe mod N it is hard to 

guess X mod 2 with a non-negligibly large 
probability than ½

• Encrypt bЄ{0,1} with RSA
– Pick X Є{0,1}n

– Compute, Xe mod N, XOR(b,Xmod 2)  

How to encrypt longer strings?
• Given (G,F,I),tk and a hardcore predicate B
• Key Generation: G

– Return (k,tk)

• Encryption: EGM(m,k), mЄ{0,1}
for i=1 to n
– Pick random X Є {0,1}n

– Return 

• Decryption: D((z,c),k,tk)
– X=I(z,tk)
– for i=1 to n

Return 

( , ), [ ] ( , )F X k m i B X k⊕

[ ] ( , )d i B X k⊕
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Proof of MI secured

For every m, m' for every A running in time t(n)
Pr[ ( ( , ), ) 1] Pr[ ( ( ', ), ) 1] 2
If we contradict this supposition, we have 

, , 's.t.
Pr[ ( ( , ), ) 1] Pr[ ( ( ', ), ) 1] 2

GM GM

GM GM

A E m k k A E m k k

A m m
A E m k k A E m k k

ε

ε

≤
= − = ≤

∃
= − = >

Contd.

0

1

i

Consider the following hybrid construction:
Pr[A(E(m[1])E(m[2])...E(m[n]))=1]=p
Pr[A(E(m'[1])E(m[2])...E(m[n]))=1]=p
...
Pr[A(E(m'[1])E(m'[2])...m'[i]m[i+1]...E(m[n]))=1]=p
Pr[A(E(m'[1])E(m'[2])...m'[i] i+1

n-1

n

m'[i+1]...E(m[n]))=1]=p
...
Pr[A(E(m'[1])E(m[2])...E(m'[n-1])E(m[n]))=1]=p
Pr[A(E(m[1])E(m[2])...E(m'[n-1]E(m'[n]))=1]=p
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Contd.

0
1

1
0

1

So, from our contradiction we have:
2

, ( ) 2

2, : ( )

,
Pr[A(E(m'[1])E(m'[2])...m'[i]m[i+1]...E(m[n]))=1]

2-Pr[A(E(m'[1])E(m'[2])...m'[i]m'[i+1]...E(m[n]))=1]

n
n

i i
i

i i

p p

or p p

or i p p
n

i e

n

ε
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ε
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∑

Contd.

1

2

1 2

Consider algorithm A'(c,k)
Compute, ( '[0])
                    ...
                 ( '[ ])
              ( [ 2])
                    ...
                ( [ ])
Return ( ,..., , , ,

i

i

n

i i

c E m

c E m i
c E m i

c E m n
A c c c c

+

+

=

=
= +

=
..., )nc
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contd.

1 1 1 1

Pr[ '( , ) 1] Pr[ '( , ) 1]
Pr[ ( ,..., , , ,..., )] Pr[ ( ,..., , , ,..., )]
2

This contradicts the fact that one bit encryption was 
 secure.

i i n i i n

A c k A c k
A c c c c c A c c c c c

n

MI

ε
+ +

= − ¬ =
= − ¬

>

A Hard Core Predicate for any one-
way function

Let (G,F,I) be a family of trap-door permutations. 
Consider (G,F',I') , which is also a family of trap-door 
permutations. 

'(( , ), ) ( , ),  and 
'(( , ), ) ( , ),

Then ( , ) .  mod 2

is a

k k

i i
i

I z r t I z t r
F x r k F x k r

B x r x r

=
=< >

=∑
 hard core predicate for (G',F',I').
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Proof 

• Let us drop the variables k and tk for 
simplicity. The proof is unchanged with 
them.

• Assume that there is a polynomial time 
algorithm A, that always correctly 
computes B(x,r) given F’(x)=(F(x),r)
– we shall show that easy to compute x from 

f(x). This contradicts our assumption that F is 
one-way.

Details
• Let A be a PPT algorithm which computes the value of B(x,r) from 

F’(x,r)=F(x),r

• Now we shall frame an experiment A’, which invokes A for 
i=1,2,…,n.

• The arguments being passed to A are x and ei
– ei denotes a string with the ith bit 1 and rest 0.
– Since, A computes the term B(x,ei)=xi with probability 1, the entire x is 

retrieved by A’ by executing A n number of times.
– Note that the run time of A’ is also polynomial in n and also has a 

probability of 1.

nx,r {0,1}
Pr [ ( ( ), ) ( , )] 1A F x r B x r

←
= =
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But that is not all!

• The G-L Theorem says that the probability 
of computing B(x,r) from F’(X,r)=(F(x),r) 
should be greater than ½ by a negligible 
quantity
– So, assuming a probability of 1 is a weak 

case.
– Slightly more involved case (and more closer 

to the proof) will be if the probability is 
significantly greater than ¾.     

Why the previous proofs does not 
work?

• It may be that A never succeeds in 
computing B(x,r) correctly when r=ei

• The algorithm A’ has no means of 
understanding that A has succeeded or  
not?
– So, what does A’ do in this case to increase 

his chance? 
• (repeat the experiment of A)
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Two important observations

• note that A is invoked with random inputs.
• There is no way to understand when A gives a 

correct answer. So, run A multiple times and 
take the majority.

• A preliminary step would be to prove that for 
many x’s, the probability that A answers both the 
predicate queries correctly is very high.

( , ) ( , ) ( , )i i iB x r B x r e B x e x⊕ ⊕ = =

Claim 1

n

, {0,1}

n

r {0,1}

3If, Pr [ ( ( ), ) ( , )] ( ).
4

Then there exists a set S {0,1}  of size at least 
( ) 2 ,  where for every :
2

3 ( )Pr [ ( ( ), ) ( , )]
4 2

nx r

n

n
n

A F x r B x r n

n x S

nA F x r B x r

ε

ε

ε

←

←

= ≥ +

⊆

∈

= ≥ +
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Proof
{0,1}

,

,

,

,

Define, ( ) Pr [ ( ( ), ) ( , )]

( )We have to show that | | 2
2

Pr [ ( ( ), ) ( , )]
Pr [ ( ( ), ) ( , ) | ]Pr [ ]
Pr [ ( ( ), ) ( , ) | ]Pr [ ]
Pr [ ] Pr [ ( ( ), )

r

n
n

x r

x r n x n

x r n x n

x n x r

s x A F x r B x r

nS

A F x r B x r
A F x r B x r x S x S
A F x r B x r x S x S

x S A F x r B

ε
←= =

≥

=

= = ∈ ∈

+ = ∉ ∉

≤ ∈ + =

,

,

n
n 

( , ) | ]
Pr [ ] Pr [ ( ( ), ) ( , )]
Pr [ ( ( ), ) ( , ) | ]    

3 3 (n) (n)i.e. P r [ ] + (n)-( + )=
4 4 2 2

(n)Thus, S  must be of size at least  2 (because 
2

x is uniformly distributed in {

n

x n x r

x r n

x n

x r x S
x S A F x r B x r
A F x r B x r x S

x S

∉

∴ ∈ ≥ =

− = ∉

∈ ∈
∈ ≥ ∈

∈

n0,1} ) 

Claim 2

, {0,1}

n

{0,1}

3If, Pr [ ( ( ), ) ( , )] ( ).
4

Then there exists a set S {0,1}  of size at least 
( ) 2 ,  where for every  and every  it holds 
2

that:
Pr [ ( ( ), ) ( , ) ( ( ), ) ( , )

n

n

x r

n

n
n

i ir

A F x r B x r n

n x S i

A F x r B x r A F x r e B x r e

ε

ε

←

←

= ≥ +

⊆

∈

= ∧ ⊕ = ⊕ ]

1 ( )
2

nε≥ +
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Proof

n

n

r {0,1}

r {0,1}

We know for :
1 ( )Pr [ ( ( ), ) ( , )]
4 2

Fixing any i, if r is uniformly distributed so, 
is . So, 

1 ( )Pr [ ( ( ), ) ( , )]
4 2

We wish to upper-bound the probability that a

n

i

i

x S
nA F x r B x r

r e
nA F x r B x r e

ε

ε

←

←

∈

≠ < −

⊕

≠ ⊕ < −

t 
least one of the two predicates are wrongly computed.
From the theory of probability, this is atmost:

1 ( ) 1 ( ) 1( ) ( ) ( )
4 2 4 2 2

So, A is correct on both the queries with probability 
1at least (
2

n n n

n

ε ε ε

ε

− + − = −

+ ).

The strategy of A’

n

For i=1,...,n
1. Choose a random r {0,1}  and guess that the 
value ( , ) ( , ).
2. Repeat this procedure for a large number of cases, 
(only the number of trials has to be polynomial in )
and ret

i ix A y r A y r e

n

←
= ⊕ ⊕

urn the majority as the correct guess.
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Can this proof be extended to the 
general case?

• Since it involves two computations of B(), 
the error probability is doubled.

• for the actual proof (and even when the 
error probability is exactly ¼ this will not 
help in inverting F with a significant prob)

• Instead, we guess one B and compute the 
other.

• m=poly(n) and set l=log2(m+1)

Can this proof be extended to the 
general case?

• Choose l strings uniformly and independently 
in {0,1}n and denote them by s1,…,sl.

• Then guess B(x,s1),…,B(x,sl) and call them 
σ1,…,σl. 

• Probability that all of them are correct is 
1/2l=1/poly(n)

• Fix J as a subset of {1,…,l} and define               
It may be shown that the rJ’s are pairwise
independent and uniformly distributed in {0,1}n

 J j
j Jr s∈= ⊕
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Can this proof be extended to the 
general case?

• Note that: 

• So, our guess for B(x,rJ) is J j
j Jρ σ∈= ⊕

( , ) ( , ) ( , )J j j
j J j JB x r B x s B x s∈ ∈= ⊕ = ⊕

The Actual Proof

1 n 1

1. Generate and independently set 
,..., {0,1}  and ,..., {0,1}

2. For  every non-empty 
subset of J, J {1,...,l} computes a string, 

 and a bit 
3. For every i {1,..,n} and every

l l

J j J j
j J j J

s s

r s

σ σ

ρ σ∈ ∈

∈ ∈

⊆

= ⊕ = ⊕

∈

1

non-empty 
subset of J, J {1,...,l} computes, 
     ( , )
4. For every  i {1,..,n} it sets  to be the 

majority of the   values.
5. It outputs ...

J J J
i i

i
J
i

n

z A y r e
z

z
z z z

ρ

⊆

= ⊕ +
∈

=

A’s experiment:
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Analysis

• Next, we show that if for all jЄ{1,…,l}, σj’s are 
equal to B(x,sj), then:  

has a majority equal to xi for all iЄ{1,…,n}

( , ) ( ( ), )J J J i
iz B x r A F x r e= ⊕ ⊕

Claim
For every  and every 1 i n, 

1Pr[|{ : ( , ) ( ( ), ) } | (2 1)]
2

1                                                                   >1-
2n

n

J J i l
i

x S

J B x r A F X r e x

∈ ≤ ≤

⊕ ⊕ = > −
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Proof
J

J

For every  define a 0-1 r.v M  which equals 1, 
iff ( , ) ( ( ), ) ( , )

1 iff ( ( ), ) ( , )
Thus, M 1 with probability at least 
1 ( ) ,as .
2 2
Note that ( , ) ( ( ),

J J i i
i

J J i J i

n

J J

J
B x r A F X r e B x e x

M A F X r e B x r e

n x S

B x r A F X r

ε

⊕ ⊕ = =

⇒ = ⊕ = ⊕

=

+ ∈

⊕ ⊕
J

J

J

)

iff M 1 for majority of j's, j J.

Thus, Pr[ M ] ?
2

i
ie x

m

=

= ∈

≤ =∑

Chebyshev’s Inequality

2

Let X be a r.v and 0
( )Pr[| ( ) | ] Var XX E X

δ

δ
δ

>

⇒ − ≥ ≤
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J

J

J

J

J

J

J

J

2 2 2

1 ( ) ( )Pr[ M ] Pr[| ( ) | ]
2 2 2 2

1 ( )Note, E( M )=( )
2 2

1 ( ) 1 ( )( M ) ( )( )
2 2 2 2 4

1 ( ) ( ) Pr[ M ] Pr[| ( ) | ]
2 2 2 2

m/4 1                         =
( ( ) / 2) ( )

2Let, 

J

J

J

J

m n nM m m

n m

n n mVar m

m n nM m m

n m n m
nm

ε ε

ε

ε ε

ε ε

ε ε

ε

≤ ≤ − + ≥

+

= + − <

≤ ≤ − + ≥

≤

=

∑ ∑

∑

∑

∑ ∑

2

J

J

J

J

, we have:
( )

1   Pr[ M ]
2 2

1   Pr[ M ] 1
2 2

This completes the proof of the claim.    

n
m

n
m

n

≤ ≤

∴ > ≥ −

∑

∑

J
J

Thus the probability that A' is wrong for a 
1particular value of i is at most 

2n
1(it occurs when M  m).
2

Thus, the probability that A' returns a wrong result 
1for at least one value of i is atmost 

2

≤∑

-

1 .
2

Thus the probability that it is correct for all the i values is 
1at least .
2

Reminder, this was under the assumption that the  guesses were 
all correct probability of which is 2 .
Hence if ,

l

n

n
n

l

x S

=

∈

-

2

x

3

2

 A' inverts F(x) with a probability of
1 1 1 1 1.2 = 22 2 1 2 +1

( )
( )Also, we know Pr [ ]=
2

Thus, the probabilty that A' is able to invert F(x) 
1 1 ( ) 1 1is at least  =22 2 4 2 ( ) ( )+1

( )
which is

l

n

nm
n

nx S

n
n np n p n
n

ε
ε

ε

ε

=
+

∈

+

 a contradiction to the assumption that F(x) 
is a one-way function. 


