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Notions 

• To organize the definitions of secure 
encryptions

• Classified depending on:
– security goals:

• Indistinguishability (GM)
• Non-malleability (DDN)

– attack models: 
• Chosen Plain Text (CPA)
• Non-adaptive Chosen Ciphertext (CCA1)
• Adaptive Chosen Ciphertext (CCA2)
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Relations 

• One can mix and match the goals 
(IND,NM) and the attack models (CPA, 
CCA1, CCA2)
– thus there are 6 notions of security

• IND-X: IND-CPA, IND-CCA1, IND-CCA2
• NM-X: NM-CPA, NM-CCA1, NM-CCA2

Non-malleability

• Danny Dolev, Cynthia Dwork and Moni
Naor, “Non-malleable Cryptography”, Siam 
J of Computing, 2000.
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Motivation

• Consider a bidding scheme.
• Company A gives a bit of say Rs 10,000.
• It communicates to the arbiter by using a 

Public Key Infrastructure (PKI), E(10000)
• Another company B, should not able to 

compute a bid value say E(x), st. x<10000 
more likely than when B does not have a 
knowledge of E(10000).

Other Motivations

• For key agreement protocols like 
Kerberos, after the mutual key KAB is 
agreed there is an exchange of nonces, N.

• One party sends to the other EKAB(N) and 
expects EKAB(N-1).
– the assumption being that without KAB it is 

not feasible to compute N-1 (or any f(N)) with 
a probability better than without having the 
knowledge of the ciphertext of N with KAB).
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Informally

• Informally, given the CT it is no easier to 
generate a different CT, so that the 
corresponding PTs are related, than it is 
do with out the ciphertext.

Indistinguishability

• A public key scheme (E,D,G) is (t,q,ε)-
secure in the IND-X sense if for all pairs of 
different messages of the same length, 
and for every adversary A that runs in time 
t and makes at most q queries to oracle O:
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CCA1 vs CCA2

• Imagine all the algorithms A=(A1,A2), both of 
which are also polytime algorithms in n. 

• A1 generates a message pair and encrypts one 
of them and gives it to A2 as a challenge.

• A2 has to be successful against the challenge, 
depending on the goal:
– IND: It has to tell message 0/1 which has been 

encryptes.
– NM: It has to return a ciphertext whose corresponding 

message is related to the plaintext encrypted. 

Inter-relation

• IND-CCA2=>IND-CCA1=>IND-CPA≡SS
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Non-Malleability

• A public-key scheme (E,D,G) is (t,q,ε)-secure in 
the NM-X sense if for all  message distributions 
M, and all relations R:MxM {0,1}, and for every 
adversary A that runs in time t, and makes at 
most q queries to oracle O, there exists another 
adversary A’ that runs in time poly(t), st:
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Relation NM-X=>IND-X

• If a public-key scheme is (t,q,ε)-secure in 
NM-X sense, then it is (t,q,2ε)-secure in 
IND-X sense. 

• Contradict that the scheme is (t,q,2ε)-
secure in IND-X sense. 

• Show that the scheme is also not (t,q,ε)-
secure in NM-X sense.



7

O
0 1

( , ) 1 ( , ) 0

Let us assume that the scheme is not IND-X secure.
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Suppose, we have (E,D,G) which satisfies IND-CPA. 
Consider, '( ) 0 || ( )

Thus, ' ( || ) ( ) 

(E',D',G) is also an IND-CPA scheme.
It may be shown that (E',D'G) is not IND-NM.
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mally, the IND-NM adversary is provided 
with 0||y and is asked to produce another 
ciphertext, whose corresponding plaintext is related 
to the original plaintext. 
With probability 1, the adversary can 

k

make the first bit 1 and 
obtain 1|| ,  whose corresponding plaintext is the the same as 
that corresponding to the challenge. 
Thus adversary A(p , ' ( )) outputs 1||y, where y=E ( ).
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Another Separation

3

2
:  E(m)=x (mod  n)||s||x.s m

If the RSA function is a one-way function, 
then E(x) is a IND-CPA scheme.
But, this is clearly not an IND-CCA2 scheme. 
Why? 

IND CPA IND CCA
Consider

− ≠> −

⊕

Equivalence of NM-CCA2 and 
IND-CCA2

• We have proved NM-CCA2=>IND-CCA2

• We have to prove that IND-CCA2=>NM-
CCA2

• We shall assume there is an adversary in 
the NM-CCA2 sense. We shall construct 
an adversary in the IND-CCA2 sense. 
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Suppose there is an (t,q, ) adversary in the NM-CCA2 
sense against the scheme E . 

That is there exists a message distribution M and a 
relation :  {0,1} such that for all simulators 
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Proof (contd.)
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For IND-CCA2 we have an adversary B st. 
Pr [ ( , ( )) 0] Pr [ ( , ( )) 0] ( )

Pr [ ( , ( )) 0] Pr [ ( , ( ( , ( ))))]

                                    

k k k k k k

k k k k k k i k

O O
p s k p p s k p

O
p s k p p s s k p

B p E m B p E m n

B p E m R m D A p E m

ε= − = ≤

= =

( , ) 0 1

( , ) 0 ( , ) 0 0

1          + Pr [not ( , ( ( , ( ))))
2

1                                             =p'+ (1 ')
2

Pr [ ( , ( )) 0] Pr [ ( , ( ( , ( ))))]

                          

k k k i k

k k k k k k i k

p s s k p

O
p s k p p s s k p

R m D A p E m

p

B p E m R m D A p E m

−

= =

( , ) 0 0

O

1                     + Pr [not ( , ( ( , ( ))))
2

1                                             =p+ (1 )
2

1 1 1Thus, Adv[B ( )] p+ (1 ) p'+ (1 ') ( ') ( )
2 2 2

This completes the proof.
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