
Ciphertext indistinguishability
Ciphertext indistinguishability is an important security property of many encryption schemes.
Intuitively, if a cryptosystem possesses the property of indistinguishability, then an adversary
will be unable to distinguish pairs of ciphertexts based on the message they encrypt. The
property of indistinguishability under chosen plaintext attack is considered a basic require-
ment for most provably secure public key cryptosystems, though some schemes also provide
indistinguishability under chosen ciphertext attack and adaptive chosen ciphertext attack.
Indistinguishability under chosen plaintext attack is equivalent to the property of semantic
security, and many cryptographic proofs use these definitions interchangeably.

A cryptosystem is considered ”secure in terms of indistinguishability” if no adversary A,
given an encryption of a message randomly chosen from a two-element message space deter-
mined by the adversary, can identify the message choice with probability significantly better
than that of random guessing (1/2). If any adversary can succeed in distinguishing the
chosen ciphertext with a probability significantly greater than 1/2, then this adversary is
considered to have an ”advantage” in distinguishing the ciphertext, and the scheme is ”not”
considered secure in terms of indistinguishability. This definition encompasses the notion
that in a secure scheme, the adversary should glean no information from seeing a ciphertext.
Therefore, the adversary should be able to do no better than if it guessed randomly.

Formal definitions

Security in terms of indistinguishability has many definitions, depending on assumptions
made about the capabilities of the attacker. It is normally presented as a game, where the
cryptosystem is considered secure if no adversary can win the game with significantly greater
probability than an adversary who must guess randomly. The most common definitions used
in cryptography are indistinguishability under chosen plaintext attack (abbreviated IND-
CPA), indistinguishability under (non-adaptive) chosen ciphertext attack (IND-CCA),
and indistinguishability under adaptive chosen ciphertext attack (IND-CCA2). Security
under either of the latter definition implies security under the previous ones: a scheme which
is IND-CCA secure is also IND-CPA secure, and a scheme which is IND-CCA2 secure is
both IND-CCA and IND-CPA secure. Thus, IND-CCA2 is the strongest of the these three
definitions of security.

Indistinguishability under chosen-plaintext attack (IND-CPA)

For a probabilistic asymmetric key encryption algorithm, indistinguishability under chosen
plaintext attack (IND-CPA) is defined by the following game between an adversary and a
challenger. For schemes based on computational security, the adversary is modeled by a
probabilistic polynomial time Turing machine, meaning that it must complete the game and
output a ”guess” within a polynomial number of time steps. In this definition E(PK, ”M”)
represents the encryption of a message ”M” under the key ”PK”:

# The challenger generates a key pair ”PK”, ”SK” based on some security parameter ”k”
(e.g., a key size in bits), and publishes ”PK” to the adversary. The challenger retains ”SK”.
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# The adversary may perform any number of encryptions or other operations.
# Eventually, the adversary submits two distinct chosen plaintexts M 0, M 1 to the chal-

lenger.
# The challenger selects a bit ”b” in {0, 1} uniformly at random, and sends the ”challenge”

ciphertext ”C” = E(PK, M b) back to the adversary.
# The adversary is free to perform any number of additional computations or encryptions.

Finally, it outputs a guess for the value of ”b”.
A cryptosystem is indistinguishable under chosen plaintext attack if every probabilistic

polynomial time adversary has only a negligible ”advantage” over random guessing. An
adversary is said to have a negligible ”advantage” if it wins the above game with probability
(1/2) + epsilon(k), where epsilon(k) is a negligible function in the security parameter ”k”,
that is for every (nonzero) polynomial function poly() there exists k 0 such that
|epsilon(k)| <|1/poly(k)| for all k >k 0.

Although the adversary knows M 0, M 1 and PK, the probabilistic nature of E means that
the encryption of M b will be only one of many valid ciphertexts, and therefore encrypting
M 0, M 1 and comparing the resulting ciphertexts with the challenge ciphertext does not
afford any advantage to the adversary.

While the above definition is specific to an asymmetric key cryptosystem, it can be adapted
to the symmetric case by replacing the public key encryption function with an ”encryption
oracle”, which retains the secret encryption key and encrypts arbitrary ciphertexts at the
adversary’s request.

Indistinguishability under chosen ciphertext attack/adaptive chosen
ciphertext attack (IND-CCA, IND-CCA2)

Indistinguishability under non-adaptive and adaptive Chosen Ciphertext Attack (IND-CCA,
IND-CCA2) uses a definition similar to that of IND-CPA. However, in addition to the public
key (or encryption oracle, in the symmetric case), the adversary is given access to a ”de-
cryption oracle” which decrypts arbitrary ciphertexts at the adversary’s request, returning
the plaintext. In the non-adaptive definition, the adversary is allowed to query this oracle
only up until it receives the challenge ciphertext. In the adaptive definition, the adversary
may continue to query the decryption oracle even after it has received a challenge ciphertext,
with the caveat that it may not pass the challenge ciphertext for decryption (otherwise, the
definition would be trivial).

# The challenger generates a key pair ”PK”, ”SK” based on some security parameter ”k”
(e.g., a key size in bits), and publishes ”PK” to the adversary. The challenger retains ”SK”.

# The adversary may perform any number of encryptions, calls to the decryption oracle
based on arbitrary ciphertexts, or other operations.

# Eventually, the adversary submits two distinct chosen plaintexts M 0, M 1 to the chal-
lenger.

# The challenger selects a bit ”b” ε {0, 1} uniformly at random, and sends the ”challenge”
ciphertext ”C” = E(PK, M b) back to the adversary.

# The adversary is free to perform any number of additional computations or encryptions.
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# In the ”non-adaptive” case (IND-CCA), the adversary may ”not” make further calls to
the decryption oracle.

# In the ”adaptive” case (IND-CCA2), the adversary may make further calls to the de-
cryption oracle, but may not submit the challenge ciphertext ”C”.

# Finally, the adversary outputs a guess for the value of ”b”. A scheme is IND-CCA/IND-
CCA2 secure if no adversary has a non-negligible advantage in winning the above game.

Non-malleability
Malleability is the property of some cryptographic algorithm . An encryption algorithm is
malleable if it is possible for an adversary to transform a cipher-text into another ciphertext
which decrypts to a related plaintext .That is given an encryption of a plaintext m, it is
possible to generate another ciphertext which decrypts to f(m), for a known function f,
without necessarily knowing or learning m.

Malleability is often an undesirable property in a general-purpose cryptosystem, since it
allows an attacker to modify the contents of a message. For example, suppose that a bank
uses a stream cipher to hide its financial information, and a user sends an encrypted message
containing, say, ”TRANSFER Rs.1000 TO ACCOUNT 199.” If an attacker can modify the
message on the wire, and can guess the format of the unencrypted message, the attacker
could be able to change the amount of the transaction, or the recipient of the funds, e.g.
”TRANSFER Rs1000 TO ACCOUNT 227.”

Non-malleability is that given the ciphertext it is impossible to generate a different cipher-
text so that the respective plane texts are related .

Motivation to follow non-malleability in cyptographir algorithm :

A well-established, albeit implicit, notion of non-malleability is existential unforgeability of
signature schemes ;. Informally, a signature scheme is existentially unforgeable if, given
access to ((m1; S(m1)); : : : ; (mk; S(mk)), where S(mi) denotes a signature on message
mi, the adversary cannot construct a single valid (m; S(m)) pair for any new message m -
even a nonsense message or a function of m1; : : : ; mk. Thus, existential unforgeability for
signature schemes is the ”moral equivalent” of non-malleability for cryptography.

Non-malleability is also important in private-key cryptography. Many common protocols,
such as Kerberos or the Andrew Secure Handshake, use private key encryption as a sort of
authentication mechanism: parties A and B share a key KAB. A sends to B the encryption
of a nonce N under KAB, and the protocol requires B to respond with the encryption under
KAB of f (N ), where f is some simple function such as f (x) = x \Gamma The unproved
and unstated assumption is that seeing KAB(N ) doesn’t help an imposter falsely claiming
to be B to compute KAB(f (N )). As we shall see, this is precisely the guarantee provided
by non-malleability.
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Some Mathematical Deduction :

• A public-key scheme (E,D,G) is (t,q,ε)-secure in the NM-X sense if for all message distri-
butions M, and all relations R:MxM 0,1, and for every

adversary A that runs in time t, and makes at most q queries to oracle O, there exists
another adversary A’ that runs in time poly(t), such that

Pr( pk , sk ),m [ R (m, Dsk ( AO ( pk , E pk (m)))] – Pr( pk , sk ), m [ R (m, Dsk ( A
’( pk )))] ≤ ε ( n)

where the oracle is:
{ -, if IND-CPA

O = {
{ Dsk , if IND-CCA

and the adversary cannot query the decryption oracle at E pk (m)
• If a public-key scheme is (t,q,ε)-secure in NM-X sense, then it is (t,q,2ε)- secure in

IND-X sense.
• Contradict that the scheme is (t,q,2ε)- secure in IND-X sense.
• Show that the scheme is also not (t,q,ε)- secure in NM-X sense.
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