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1 Semantic Security

The notion of semantic security was first put forward by Goldwasser and Mi-
cali in 1982. It is a widely-used definition for security in an asymmetric key
encryption algorithm. For a cryptosystem to be semantically secure, it must
be infeasible for a computationally-bounded adversary to derive significant
information about a message (plaintext) when given only its ciphertext and
the corresponding public encryption key. Semantic security considers only
the case of a ”passive” attacker.

Definition:
For every distriution X over {0, 1}n, for every partial information h :

{0, 1}n → {0, 1}n, for every interesting information f : {0, 1}n → {0, 1}∗, for
every attacking algorithm A running in time t′ ≤ t(n), [t(n) is a polynomial
in n], there exits a simulating algorithm S such that:

Pr
m← X
(pk, Sk)← G(n)

[A(E(m, pk), pk, h(m)) = f(m)] ≤ Pr(m←X)[S(h(m)) = f(m)]+ε(n)

Here ε(n) is a negligile quantity which depends upon n. For example ε(n)
may be 1

p(n) .
Semantic security tries to attempt ideal security. In simple language,

it says that in spite of oserving the ciphertext, attacker obtains no extra
interesting oservation than the case when he has not seen the ciphertext.

2 Message Indistinguishability

For every two messages m0, m1 ∈ {0, 1}n and for every attacking algorithm
A that runs in time ≤ t(n)

Pr
i ∈ {0, 1}
(pk, Sk)← G(n)

[A(E(mi, pk), pk) = i] ≤ 1
2

+ ε(n)
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3 Equivalence of SS and MI

Goldwasser and Micali demonstrated that Semantic Security (SS) is equiv-
alent to the property of message Indistinguishability (MI). This equivalence
allowed for security proofs of practical cryptosystems, and consequently the
indistinguishability definition is used more commonly than the original def-
inition of semantic security.

3.1 SS ⇒ MI

If X = {m0, m1}, f : f(m0) = 0, f(m1) = 1, h() : empty output string,
from SS, for every adversary A there is a simulator S, such that

Pr
m← X
(pk, Sk)← G(n)

[A(E(m, pk), pk) = i] ≤ Prm←X [S() = i] + ε(n)

Now since the simulator receives no information: Pr[S() = i] = 1
2 , regardless

of S.
Thus,

Pr
i ∈ {0, 1}
(pk, Sk)← G(n)

[A(E(mi, pk), pk) = i] ≤ 1
2

+ ε(n)

Now, for every m0, m1 ∈ {0, 1}n, for every algorithm A that runs in time
≤ t(n), for every a ∈ {0, 1}∗,

Pr(pk,Sk)∈G(n)[A(E(m1, pk), pk) = a]−Pr(pk,Sk)∈G(n)[A(E(m0, pk), pk) = a] ≤ 2 ∈ (n)

Let’s call above equation as (∗). Then we can say that,

(t,∈)−MI ⇒ (∗) ≡∼ (t,∈)−MI

Define A′(c, p) =
{

1, if A(c, p) = a
0, otherwise.

So, Pr
i ∈ {0, 1}
(pk, Sk)← G(n)

[A′(E(mi, pk), pk) = i]

=
1
2
Pr(pk,Sk)←G(n)[A

′(E(m0, pk), pk) = 0] +
1
2
Pr(pk,Sk)←G(n)[A

′(E(m1, pk), pk) = 1]

=
1
2

(1− Pr(pk,Sk)←G(n)[A(E(m0, pk), pk) = a]) +
1
2
Pr(pk,Sk)←G(n)[A(E(m1, pk), pk) = a]

=
1
2

+
1
2
Pr(pk,Sk)←G(n)[A(E(m1, pk), pk) = a]− Pr(pk,Sk)←G(n)[A(E(m0, pk), pk) = a]

>
1
2

+ ∈ (n)⇒ (t,∈)−MI is violated.
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3.2 MI ⇒ SS

Let’s assume that (We will prove it later)

(t, ε)−MI ⇒ (t′, 2ε)− SS

then,
∼ (t′, 2ε)− SS ⇒∼ (t, ε)−MI

Now define S(z), where z is some information on m and (pk, Sk) ∈ G(n) has
been selected randomly, returns A(E(0, pk), pk, Z).

∼ (t′, 2ε)− SS

⇒ Pr
m← X
(pk, Sk)← G(n)

[A(E(m, pk), pk, h(m)) = f(m)] > Pr(m←X)[S(h(m)) = f(m)] + 2ε(n)

or, Pr
m← X
(pk, Sk)← G(n)

[A(E(m, pk), pk, h(m)) = f(m)]

> Pr
m← X
(pk, Sk)← G(n)

[A(E(0, pk), pk, h(m)) = f(m)] + 2ε(n)

or,
∑
m

Pr[X = m](Pr(pk,Sk)←G(n)[A(E(X, pk), pk, h(X)) = f(X)]

−Pr(pk,Sk)←G(n)[A(E(0, pk), pk, h(X)) = f(X)]) > 2ε(n)
⇒ ∃m′ ∈ X, st.(Pr(pk,Sk)←G(n)[A(E(m′, pk), pk, h(m′)) = f(m′)]
−Pr(pk,Sk)←G(n)[A(E(0, pk), pk, h(m′)) = f(m′)]) > 2ε(n)

⇒ as there exist a pair of message for which (∗) does not hold.
⇒ (t,∈)−MIdoes not hold.
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