
Public Key Encryption Algorithm and the
Random Oracle

Divya Kumar Kala (05CS3021) & Varun Sharma (05CS1030)

April 15, 2009

1 Introduction

Cryptographic theory has provided a potentially invaluable notion for cryp-
tographic practice: the idea of provable security. Unfortunately, theoretical
work often gains provable security only at the cost of effciency. Schemes like
standard RSA are efficient but not provably secured. There are schemes who
are provably secured but are not efficient. However, there are encryption
schemes, for eg. El Gamal encryption, which are efficient and secured at
the same time. There is a need to construct more encryption schemes which
are provably secure, but also efficient.One of the approach use is through
Random Oracles.

2 Random Oracle

A Random Oracle is a theoretical black box that responds to every query
with a (truly) random response chosen uniformly from its output domain,
except that for any specific query, it responds the same way every time it
receives that query i.e a random oracle is a mathematical function mapping
every possible query to a random response from its output domain.

2.1 Random Oracle Model

The Random Oracle Model (ROM) was first formalised by Bellare and Rog-
away. In the random oracle model, one assumes that some hash function is
replaced by a publicly accessible random function (the random oracle). This
means that the adversary cannot compute the result of the hash function by
himself, he must query the random oracle. The random oracle model has

1

been used to prove the security of numerous cryptosystems, and it has lead
to simple and efficient designs that are widely used in practice. However, a
proof in the random oracle model is not fully satisfactory, because such a
proof does not imply that the scheme will remain secure when the random
oracle is replaced by a concrete hash function (such as SHA-1). However,
using a scheme that is proved in the Random Oracle model is better than
no proof. However if at the slight cost of efficiency, we have a cryptosystem
with a proof in the standard model (like that of the ElGamal encryption),
then that is preferred.

2.1.1 Random Oracle Methodology

The Random Oracle Model, a popular methodology for designing crypto-
graphic protocols consists of the following two steps. One first designs an
ideal system in which all parties (including the adversary) have oracle ac-
cess to a truly random function, and proves the security of this ideal system.
Next, one replaces the random oracle by a good cryptographic hashing func-
tion (such as MD5 or SHA), providing all parties (including the adversary)
with the succinct description of this function. Thus, one obtains an imple-
mentation of the ideal system in a “real-world” where random oracles do not
exist.

2.1.2 Proof Technique

We assume that if an adversary A, has not queried for some point x, then
H(x) is completely random. We then try and construct a reduction, showing
that if A is able to break the encryption scheme using the Random Oracle,
then it can be used to break our standard cryptographic assumption. The
reduction may choose value for the output of the Random Oracle and return
to A. Also, it knows all the queries made to the Random Oracle.

2.1.3 Example

Consider a RSA based scheme,
- public key: [N, e]
- secret key: d
- Plaintext: m ∈ {0, 1}l(n)

- Enc: < [remodN,m⊕H(r)] >

If the RSA problem is hard and H is modeled as a Random Oracle, the
construction has IND secured encryptions under CPA. Let A be a PPT,
we define:

2

ε(n) = Pr[PubKeav
A,Π(n) = 1]

where PubKeav
A,Π(n) is defined as follows

1. A random function H is chosen.
2. Generate < N, e, d >. A is given pk =< N, e > and may query H(.).
Eventually A outputs two messages, m0,m1 ← {0, 1}l(n)

3. A random bit b ← {0, 1} and a random r ← Z∗ are chosen. A is given the
ciphertext, < [remodN,H(r)⊕mb] > . The adversary can still query H(.).
4. Finally, A outputs b′. PubKeav

A,Π(n) returns 1, if b = b′. Else 0 is returned.

We Define Query to be the event that at any point A queries r to the RO
(where r is the value used to generate the challenge, c).

Pr[success] = Pr[success ∧Query] + Pr[success ∧Query]
≤ Pr[sucess|Query] + Pr[Query]

Claim 1: Pr[success|Query] ≤ 1/2
Claim 2: Pr[Query] is negligible

Claim 1 follows from the fact that if A does not query for r, then H(r)
is random, and so A has no way to understand whether m0 or m1 was en-
crypted.

For Claim 2
1. Construct a reduction D, which takes as input c1 = remodN and has to
output r (i.e break RSA).
2. It generates randomly c2 ∈ {0, 1}l(n) and sends to A.
3. A makes some queries to H, ri.D observes the queries and checks if
re
i modN = c1.Whenever there is a match, thus RSA is broken. So, the

Pr[Query] must be negligible,under the standard RSA assumption.

3 Preliminaries

NOTATION, {0, 1}n denotes the space of finite binary strings and {0, 1}infty

denotes the space of infnite ones. Strings are finite unless we say otherwise.
We denote by a||b, or just ab, the string which is the concatenation of strings
a and b. The empty string is denoted . A polynomial time algorithm is one
which runs in time polynomial in its first argument. PPT stands for ” prob-
abilistic, polynomial time.”A function ε(k) is negligible if for every c there
exists a kc such that ε(k) ≤ k−c for every k ≥ kc . A function is said to be

3

non-negligible if it is not negligible. We’ll use the notation ”k−ω(1) ” to mean
the class negligible functions or a particular anonymous function in this class.

Notation for probabilistic algorithms, spaces and experiments follows. If A is
a probabilistic algorithm then, for any inputs x, y, the notation A(x, y,)
refers to the probability space which to the string assigns the probability that
A, on input x, y, ,outputs σ . If S is a probability space we denote its sup-
port (the set of elements of positive probability) by [S] . If S is a probability
space then x ← S denotes the algorithm which assigns to x an element
randomly selected according to S . In the case that S consists of only one
element e we might also write x ← e. For probability spaces S, T,, the
notation Pr[x ← S; y ← T ; : p(x, y,)] denotes the probability that the
predicate p(x, y,) is true after the (ordered) execution of the algorithms
x ← S, y ← T , etc. Let f be a function. We extend this notation to de-
fine also probability spaces and algorithms via experiments. For example
{x ← S; y ← T ; : f(x, y,)} denotes the probability space which to the
string σ assigns the probability Pr[x ← S; y ← T ; : σ = f(x, y,)] And

< a, b, : x ← S; y ← T ; : f(a, b,, x, y,) >

denotes the algorithm which on inputs a, b, runs the sequence of experi-
ments x ← S, y ← T,, and outputs f(a, b,, x, y,).

ORACLES , For convenience, a random oracle R is a map from {0, 1}∗ to
{0, 1}∞ chosen by selecting each bit of R(x) uniformly and independently,
for every x. Of course no actual protocol uses an infinitely long output, this
just saves us from having to say how long ”sufficiently long” is. We denote
by 2∞ the set of all random oracles.
The letter ”R” will denote the ”generic” random oracle, while G : {0, 1}∗ ←
{0, 1}∞ will denote a random generator and H : {0, 1}∗ ← {0, 1}k a random
hash function. Whenever there are multiple oracles mentioned, all of these
are independently selected. Via all sorts of natural encodings, a single ran-
dom oracle R can be used to provide as many independent random oracles
as one wants.As usual the oracles provided to an algorithm are indicated
by superscripts. Sometimes the oracle is understood and omitted from the
notation.

Trapdoor Permutations. A trapdoor permutation generator is a PPT algo-
rithm G∗ which on input 1k outputs (the encoding of) a triple of algorithms
(f, f−1, d). The rest two are deterministic and the last is probabilistic. We
require that [d(1k)] be a subset of {0, 1}k and that f, f−1 be permutations
on [d(1k)] which are inverses of one another. We require that there exist a

4

polynomial p such that f, f−1 and d are computable in time p(k), and that
for all nonuniform polynomial time adversaries M ,

ε(k) = Pr[(f, f−1, d) ← G∗(1k); x ← d(1k); y ← f(x) : M(f, d, y) = x

is negligible. RSA 38 is a good example of trapdoor permutation. Call a trap-
door permutation generator G∗ uniform if for all k and all (f, f−1, d) ∈ [G(1k)]
it is the case that d is the uniform distribution on {0; 1}k.

Encryption. We extend the notion of public key encryption to the random
oracle model.The scheme is specified by a PPT generator G which takes a
security parameter 1k and outputs a pair of probabilistic algorithms (E, D)
which are called the encryption and decryption algorithms respectively and
which run in time bounded by G′s time complexity. A user U runs G to
get (E, D) and makes the former public while keeping the latter secret. To
encrypt message x anyone can compute y ← ER(x) and send it to U ; to de-
crypt ciphertext y user U computes x ← DR(y). We require DR(ER(x)) = x
for all x and assume for simplicity that DR(y) = 0 if y is not the encryption
under ER of any string x.

4 Security in the Random Oracle Model

Definition. We adapt the notion of polynomial security to the random oracle
model. A CP-adversary (chosen-plaintext adversary) A is a pair of nonuni-
form polynomial time algorithms (F ; A1), each with access to an oracle. For
an encryption scheme G to be secure in the random oracle model we require
that for any CP-adversary A = (F,A1),

Pr[R ← 2∞; (E, D) ← G(1k); (m0,m1) ← FR(E); b ← {0, 1};
α ← ER(mb) : AR

1 (E,m0,m1, α) = b] ≤ 1
2

+ k−ω(1).

Note that the oracle used to encrypt and decrypt is given to the adversary
who tries to distinguish the encryption of strings m0 and m1, so, for example,
a hash H(x) with H derived from R could most certainly not appear in the
secure encryption of a string x.

Encryption By E(x) = f(r)||G(r) ⊕ x .To specify our encryption scheme,
let G∗ be a trapdoor permutation generator and let G : {0, 1}∗ → {0, 1}∞ be
a random generator. On input 1k our generator G runs G∗ to get (f, f−1, d)
. It sets EG to the following algorithm:

EG ←< x : r ← d(1k) : f(r)||G(r)⊕ x >

5

where G(r) ⊕ x denotes the XOR of the first |x| bits of G(r) with x. Of
course the decryption function is then DG(ys) = s⊕G(f−1(y)) .

4.1 Theorem : The E(x) = T (r)||G(r)⊕ x Scheme Is Se-
cure Against Chosen Plaintext attack in the Ran-
dom Oracle model for trapdoor T.

We will prove this by contradiction. Suppose this is not true. That is we have
an adversary A = (A0, A1) with significant advantage .A is used to generate
the plaintexts m0 and m1. A1 is then handed the challenge c, which is the
ciphertext corresponding to a randomly chosen message.Both A0 and A1 can
make queries to the random oracle G. Using these algorithms we intend to
invert T , the trap-door function without knowing the trap-door.
If A0 asks a query for r (used to generate the challenge), return r (thus we
have inverted the trap-door). Else A0 terminates,and A1 starts.
Instead of feeding A1 the challenge ciphertext, it is asked T (r)||z where
z = {0, 1}|x| is a random string. It is checked whether A1 makes a query
at r, by checking if T (r) = y.
Define Ak : Event that A1 asks a query at r. If it does not then it has no
advantage in guessing which plaintext was encrypted.

1/2 + ε < Pr[Asucceeds|Ak]Pr[Ak] + Pr[Asucceeds|Ak]Pr[Ak].
< Pr[Ak] + 1/2

Thus Pr[Ak] > ε Thus we can invert the trapdoor T with significant proba-
bility,thus we arrive at a contradiction.

4.2 Theorem : The E(x) = f(r)||G(r)⊕ x||H(rx) Scheme
Is Secure Against Chosen Ciphertext attack.

Let A = (F, A1) be an RS-adversary that succeeds with probability 1
2

+ ε(k)
for some non negligible function ε(k). We construct an algorithm M(f, d, y)
that computes f−1(y) non-negligibly often, where (f, f−1, d) ← G∗(1k); r ←
d(1k); y ← d(r). Algorithm M begins by running F (E) where E is de-
fined from f as specified by our scheme. F takes three oracles, namely,
G,HandDG,H , whose queries are answered by F as follows. If a query r to
G satisfies f(r) = y then M outputs r and halts; else it returns a random

6

string of the appropriate length. If a query rx to H satisfies f(r) = y then
M outputs r and halts; else it returns a random string of the appropriate
length.To answer query a||w||b to DG,H , algorithm M sees if it has already
asked some query r of G and ru of H, where a = f(r) and w = G(r)⊕u, and
if so returns u; else it returns invalid.If M completes the running of F (E)
then it obtains an output (m0,m1). Now M runs A1(E,m0,m1, α) where
α = y||w||b for w ← {0, 1}|m0| and b = {0, 1}k. Once again, M must simulate
the behavior of queries to G,H, andDG,H . This is done exactly as before,
when F was being run by M .
To see that this construction works, first consider the ”real” environment of
A running with its oracles. Let Ak denote the event that a||w||b ← F (E),
for some a, w, andb, and A made some oracle call of G(r)orH(ru), where
f(r) = a.Let Lk denote the event that A1 asks DG,H some query a||w||b
where b = H(f−1(a)||w ⊕G(f−1(a))), but A1 never asked its H − oracle for
the image of f−1(a)||w ⊕ G(f−1(a)). Let n(k) denote the total number of
oracle queries made. It is easy to verify that Pr[Lk] ≤ n(k)2−k. It is also
easy to see that

Pr[Asucceeds|Lk ∧ Ak] = 1
2
.

Thus 1
2

+ ε(k) = Pr[Asucceeds] is bounded above by
Pr[Asucceeds|Lk]Pr[Lk] + Pr[Asucceeds|Lk ∧ Ak]Pr[Lk ∧ Ak] +

Pr[Asucceeds|Lk ∧ Ak]Pr[Lk ∧ Ak]

which is at most n(k)2−k + Pr[Ak] + 1
2
. And so

Pr[Ak] ≥ ε(k)− n(k)2−k.

Now, returning to the simulation of A by M , note that M fails to behave
like A with probability bounded by Pr[Lk], and so

Pr[Minvertsfaty] ≥ ε(k)− n(k)2−k+1

which is still non negligible. This completes the proof.

7

