
Public Key Encryption Algorithms and the

Random Oracle

SUSHANT MOHAN DEWAL

17th April 2009

Some schemes such as El-Gamal are both provable secure and efficient
at the same time ,for these schemes we require a construction known as
Random Oracle.

El-Gamal

c =< gy, hy,m >, h = gx,y is random, m is the message,x is the secret
Enc : < remodN,m⊕G(r) >
we run an IND-CPA exp on it
Pr[M ′]=Pr[m.gz = m′]=Pr[m = g−z.m′]
Case 1 :when function is random, [gy, gz .mb]
Case 2 :when z is replaced by xy, [gy, gxy.mb]
for Case 2(assuming ε(n) non-negligible :
PrA,π [Enc(pk,mi) = i)] = 1/2 + ε(n)
hence PrA,π′ [Enc(pk,m1) = 1)] - PrA,π [Enc(pk,m1) = 1)] ≤ β
but as per Decisional Diffie-Hellman assumption β is negligible.
|1/2 − 1/2 − ε(n)| ≤ β
so contradiction, Hence El-Gamal is secure

1

Random Oracle For convenience, a random oracle R is a map from {0, 1}∗
to {0, 1}∞ chosen by selecting each bit of R(x) uniformly and inde-
pendently, for every x.

Here by infinity we mean that it is ”sufficiently large”.
A random oracle can be seen as a large book of random numbers, on any
input x to the oracle the oracle returns a random number written on that
page of the book,for same x the same number is returned but for different
x random numbers are returned.

Random Oracle Model : A popular methodology for designing a cryp-
tographic protocol consists of the following two steps :

1. Design an ideal system in which all parties (including the adversary)
have oracle access to a truly random function, and proves the security
of this ideal system.

2. one replaces the random oracle by a ”good cryptographic hashing func-
tion” (such as MD5 or SHA),providing all parties (including the ad-
versary)with succinct description of this function.

here instantiating the oracle with h(hash function) is only heuristic whose
success we trust from experience
thus, one obtains an implementation of the ideal system in a world where
random oracles do not exist.

2

Concrete Scheme

Consider a RSA based scheme,

• public key : [N,e]

• secret key : d

Enc : <[remodN,m⊕H(r)]>
where m∈ {0, 1}l(n)

it is to be proved that this encryption scheme is secure under IND-CPA;

Proof Technique

We will show that if Adversary A is able to break the Scheme using Random
Oracle, than it can be used to break the std. cryptographic assumption of
trapdoor function. For this we create a reduction that may choose values
for the output of Random Oracle and return it to A- (programmability)
also this reduction sees all the queries that A makes to the Random Oracle.
Note: here PRG/PRP cannot be used ∵ r has to be random, in case of RSA
if information about r say LSB leaks then it is no more random and hence
PRG/PRP cannot be used.

Construction

Assumptions :

1. RSA is hard to invert.

2. H is modeled as Random oracle.

3. all queries made to oracle are distinct.

Let A be PPT, ε(n)=Pr[Pubeav
A,π(n)=1]

The Experiment Pubeav
A,π(n) is defined as:

1. A random function H is chosen.

2. Generate < N,e,d >.

3. A(adversary) is given pk =< N, e > and may query H(.). A outputs
m0,m1← {0, 1}l(n)

3

4. A random bit b← {0,1}and a random r← Z∗
n are chosen. A is given

the cipher text <[remodN,mb⊕H(r)]>. the adversary can still query
H(.).

5. Finally, A outputs b
′
. Pubeav

A,π returns 1, if b = b
′
, else 0 is returned

4

Proof for Encryption

the proof is by contradiction
suppose we have an adversary A = (A0, A1) which is successful against
our encryption scheme .Now we create a master algorithm M(f,d,y) such
that (f, f−1, d) ← G(1k); r ← d(1k); y ← f(r) , M is successful against our
scheme
so,

E(x) = {y ← f(r)}||{(f, f−1, d)← G(1k)}⊕ : r ← d(1k)

5

1. A0 simulates the oracle in natural way and samples (m0,m1)← AG
0 (E)

if ever A0 asks G an r such that f(r) = y, then M outputs r and halts,
otherwise A0 terminates after some polynomial number of queries and
and M chooses α← y||s for s← {0, 1}|m0 |.

2. Then M simulates AG
1 (E,m0,m1, α), watching the oracle queries that

A1 makes to see if there is any oracle query r for which f(r) =
y(.i.e. instead of feeding A1 cipher text, it is asked f(r)||s where
s← {0, 1}|m0|). If there is M outputs r.

So, A0 outputs m0,m1 and A1 distinguishes between m0,m1

now define query as an event that at any point A = (A0, A1) queries r to
the RO (where r is the value used to generate the challenge, c).
∴

Pr[success] = Pr[success ∧Query] + Pr[success ∧Query]

< Pr[success |Query] + Pr[Query]

As G(r) is random, if A does not query for r then

Pr[success|Query] ≤ 1
2

construct a reduction D, which takes as input c1 = re mod N and has to
output r
This D randomly generates c2 ∈ {0, 1}l(n) and sends to A. A makes some
queries to G(.). D observes the queries and check if re

i modn =c1. If a match
occur then RSA is broken and our assumption becomes invalid
∴ Pr[Query] must be negligible.

Now define Ak as an event that A1 asks query r = f−1(y)

1
2

+ ε(n) = Pr[A succeeds|Ak].Pr[Ak] + Pr[A succeeds|Ak].Pr[Ak]
1
2

+ ε(n) ≤ Pr[Ak] + Pr[A succeeds|Ak]
1
2

+ ε(n) ≤ Pr[Ak] +
1
2

∴ Pr[Ak] must be non-negligible, and M succeeds non-negligibly often in
inverting f, which is not possible as per the concept of Trapdoor function.
so, we arrive at a contradiction.
Hence, E(x) = f(r)||G(x)⊕ x is a polynomially secure scheme against CPA

6

E(x) = f(r)||G(x)⊕ x||H(rx) is Secure against CCA
suppose we have an adversary A = (A0, A1) which is successful against
our encryption scheme .Now we create a master algorithm M(f,d,y) such
that (f, f−1, d) ← G(1k); r ← d(1k); y ← f(r) , M is successful against our
scheme
so,

E(x) = {y ← f(r)}||{(f, f−1, d)← G(1k)}⊕ : r ← d(1k)||H(rx)

7

1. A0 simulates the 3 oracle namely G,H,Dg,h in natural way and sam-
ples (m0,m1) ← AG

0 (E) if ever A0 asks G an r such that f(r) = y,
then M outputs r and halts,otherwise A0 returns a random string of
the appropriate length, if ever A0 asks H an rx such that f(r) = y,
then M outputs r and halts,otherwise A0 returns a random string
of the appropriate length, if ever A0 asks DG,H a a||w||b such as
a = f(r), w = G(r)⊕ u (i.e it asks f(r)||G(r)⊕ u||b)when A0 commu-
nicated with G,H for some query of r, ru then M outputs u ,otherwise
M returns Invalid

2. Then M simulates AG
1 (E,m0,m1, α),where α = y||w||b for w← {0, 1}|m0 |, b←

{0, 1}k, watching the oracle queries that A1 makes to see if there is
any oracle query r for which f(r) = y(.i.e. instead of feeding A1 cipher
text, it is asked f(r)||b where b← {0, 1}|m0 |). If there is M outputs r.

So, A0 outputs m0,m1 and A1 distinguishes between m0,m1

Proof for Encryption

the proof is by contradiction
Consider a successful adversary A = (A0, A1) with the Pr[Success] > 1/2+ ε
Define Ak : Event that A makes an oracle call at G(r) or H(ru)
Define Lk : Event that DG,H is asked query for a||w||b, where

b = H(f−1(a)||w ⊕G(f−1(a))

note : decryption algo. is never asked query at the cipher text
∴

1/2+ε < Pr[A succeeds|Lk].Pr[Lk]+Pr[A succeeds|¬Lk∧Ak].Pr[¬Lk∧Ak]
+ Pr[A succeeds|¬Lk ∧ ¬Ak].Pr[¬Lk ∧ ¬Ak]

it is obvious that Pr[A succeeds |Lk ∧Ak] = 1/2
if Lk is the total no. of queries then Pr[Lk] ≤ n(k).2−k

∴
1/2 + ε < Pr[Lk] + Pr[Ak] + 1/2
ε < n(k).2−k + Pr[Ak]
∴ Pr[Ak] > ε− n(k).2−k

hence contradiction and the scheme is secure..

8

