

Partial-Size Key Ciphers

- Actual ciphers cannot use full size keys, as the size is large.
- Block ciphers are substitution ciphers (and not transpositions). Why?
- Consider DES, with 64 bit block cipher.
 - Size of full key= ceil($\log_2(2^{64}!)$) $\approx 2^{70}$
 - Much large compared to 56 bits which is actually used.

Components of a Modern Block Cipher

- Most important components:
 - PBox: It is a key-less fixed transposition cipher
 - SBox: It is a key-less fixed substitution cipher
- They are used to provide:
 - Diffusion: it hides the relationship between the ciphertext and the plaintext
 - Confusion: it hides the relationship between the ciphertext and the key

Ι	Diffu	isi	or	n (P)	В	802	xe	S			
• Straight B	Boxes											
Example 24x24 Box	01	15	02	13	06	17	03	19	09	04	21	11
	14	05	12	16	18	07	24	10	23	08	22	20
• Expansion	n Boxe	S										
Example 12x24 Box	01	03	02	01	06	17	03	07	09	04	09	11
	02	05	12	04	06	07	12	10	11	08	10	08
• Compress	ion Bo	oxes	5									
	01	15	02	13	06	17	03	19	09	04	21	11

Non-linear SBox

 $y_{1} = a_{11}x_{1} \oplus a_{12}x_{2} \oplus \dots \oplus a_{1n}x_{n}$ $y_{2} = a_{21}x_{1} \oplus a_{22}x_{2} \oplus \dots \oplus a_{2n}x_{n}$ \dots $y_{m} = a_{m1}x_{1} \oplus a_{m2}x_{2} \oplus \dots \oplus a_{mn}x_{n}$

In a non-linear S-Box, each of the elements cannot be expressed as above.

Eg.

 $y_1 = x_1 x_3 \oplus x_2, y_2 = x_1 x_2 \oplus x_3$

D. Mukhopadhyay Crypto & Network Security IIT Kharagpur

Practical Ciphers

- Large data blocks
- More S-Boxes
- More rounds
- These help to improve the diffusion and confusion in the cipher.

D. Mukhopadhyay Crypto & Network Security IIT Kharagpur

Non-Feistel Ciphers

- Composed of only invertible components.
- Input to round function consists of key and the output of previous round
- These functions are obtained by the repeated application of Substitution (invertible SBoxes) and Permutation.
- Thus they are called Substitution Permutation Networks (SPN).

- C. E. Shannon, *Communication Theory of* Secrecy Systems. Bell Systems Technical Journal, 28(1949), 656-715
- B. A Forouzan, Cryptography & Network Security, Tata Mc Graw Hills, Chapter 5
- Douglas Stinson, Cryptography Theory and Practice, 2nd Edition, Chapman & Hall/CRC

- Designs of Modern Block Ciphers:
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)

Data Encryption Standard

- DES developed in 1970's
- Based on IBM Lucifer cipher
- U.S. government standard
- DES development was controversial
 - NSA was secretly involved
 - Design process not open
 - Key length was reduced
 - Subtle changes to Lucifer algorithm

Properties of the S-Box

- There are several properties
- We highlight some:
 - The rows are permutations
 - The inputs are a non-linear combination of the inputs
 - Change one bit of the input, and half of the output bits change (Avalanche Effect)
 - Each output bit is dependent on all the input bits

DES Subkey

- For rounds 1, 2, 9 and 16 the shift r_i is 1, and in all other rounds r_i is 2
- Bits 8,17,21,24 of LK omitted each round
- Bits 6,9,14,25 of RK omitted each round
- Compression permutation yields 48 bit subkey K_i from 56 bits of LK and RK
- Key schedule generates subkey

- An initial perm P before round 1
- Halves are swapped after last round
- A final permutation (inverse of P) is applied to (R₁₆,L₁₆) to yield ciphertext
- None of these serve any security purpose

Further Reading

- C. E. Shannon, *Communication Theory of Secrecy Systems*. Bell Systems Technical Journal, 28(1949), 656-715
- B. A Forouzan, Cryptography & Network Security, Tata Mc Graw Hills, Chapter 5
- Douglas Stinson, Cryptography Theory and Practice, 2nd Edition, Chapman & Hall/CRC

• Linear Cryptanalysis of SPN ciphers

D. Mukhopadhyay Crypto & Network Security IIT Kharagpur