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Debdeep Mukhopadhyay
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Objectives

Understand the definition of Perfect 
Secrecy
Prove that a given crypto-sytem is 
perfectly secured
One Time Pad

Entropy and its computation
Ideal Ciphers
Equivocation of Keys
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Unconditional Security

Concerns the security of cryptosystems 
when the adversary has unbounded 
computational power, that is has infinite 
resources.
Cipher-text only Attack: Attack the cipher 
using the cipher texts only.
When is a cipher is unconditionally 
secured? 

A priori and A posteriori Probabilities
The plain-text has a probability 
distribution
pP(x): A priori probability of a plain text
The key also has a probability 
distribution
pK(K): A priori probability of the key. 
The cipher text is generated by applying 
the encryption function. Thus y=eK(x) is 
the cipher text.
Note, that the plain text and the key are 
independent distributions.
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Attacker wants to compute a 
posteriori probability of plain text

The probability distributions on P and K, induce 
a probability distribution on C, the cipher text. 
For a key K, CK(x)={eK(x): x Є P}
Does the cipher text leak information about the 
plain text?

Given, the cipher text y, we shall compute 
the a posteriori probability of the plain text, ie. 
pP(x|y) and see whether it matches with that of 
the a priori probability of the plain text.

Example

P={a,b}; pP(a)=1/4, pP(b)=3/4
K={K1,K2}, pK(K1)=1/2, pK(K2)= pK(K3)=1/4
C={1,2,3,4}. What the a posteriori probabilities 
of the plain text, given the cipher texts from C?
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Example
pC(1)=pP(a)pK(K1)    

=(1/4).(1/2)=1/8
pC(3)=pP(a)pK(K3) +pP(b) 

pK(K2)        
=(1/4)(1/4)+(3/4)(1/4)=1/1
6+3/16=1/4

Likewise I can compute the 
other probabilities…
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Example
pP(a|1)=1;pP(b|1)=0
pP(a|2)=?
The ‘2’ can come when 
the plain text was ‘a’ and 
the key was ‘K2’ or when  
the plain text was ‘b’ and 
the key was ‘K1’
Given ‘2’, we need to 
compute the probability 
that it came from ‘a’.
Is it that of choosing K2? 
No.
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4
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Example
Given ‘2’, we need to 
compute the probability 
that it came from ‘a’.
The ‘2’ can appear with a 
probability:

by having ‘a’ as the PT 
and K2 as the key: 
(1/4)(1/4)=1/16
by having ‘b’ as the PT 
and K1 as the key: 
(3/4)(1/2)=6/16

pP(a|2)=(1/16)/(7/16)=1/7
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P={a,b}; pP(a)=1/4, 
pP(b)=3/4
K={K1,K2}, pK(K1)=1/2,            
pK(K2)= pK(K3)=1/4

Generalization of the Example
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Perfect Secrecy

A Cryptosystem has perfect secrecy if         
pP(x|y)=pP(x) for all x Є P, y Є C. 
That is the a posteriori probability that 
the plaintext is x, given that the cipher 
text y is observed, is identical to the a 
priori probability that the plaintext is x.  

Shift Cipher has perfect 
secrecy

Suppose the 26 keys in the Shift Cipher 
are used with equal probability 1/26. 
Then for any plain text distribution, the 
Shift Cipher has perfect secrecy.
Note that P=K=C=Z26 and for 0≤K≤25
Encryption function: y=eK(x)=(x+k)mod
26
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Perfect Secrecy
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Theorem

Suppose (P,C,K,E,D) be a cryptosystem, 
where |K|=|C|=|P|. The cryptosystem 
offers perfect secrecy if and only if every 
key is used with probability 1/|K|, and for 
every xЄP and every y ЄC, there is a 
unique key, such that y=eK(x).

Perfect Secrecy (equivalent): pC(y|x)=pC(y)
Thus if Perfect Secret, a scheme has to 
follow the above equation.
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Cryptographic Properties

pC(y|x)>0
This means that for every cipher text, 
there is a key, K, st. y=EK(x)
Thus |K|≥|C|. In our case, |K|=|C|
Thus, there is no cipher text, y, for which 
there are two keys which take them to 
the same plaintext.
There is exactly one key, such that 
y=EK(x)

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101000100111010001100010000001

reltihlieh

101110001111110110001100101110

000110101000100111101110101111

rshtsshlrs

Encryption: Plaintext ⊕ Key = Ciphertext

Plaintext:
Key:

Ciphertext:
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One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

101000100111010001100100010011

000110101000100111101000111101

reltihllik

Ciphertext:
“key”:

“Plaintext”:

Suppose a wrong key is used to decrypt:

One-time Pad

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

101110001111110110001100101110

rshtsshlrs

000011010110000011010100000001

101101011001110101011000101111

ekisekileh

Ciphertext:
“Key”:

“Plaintext”:

And this is the correct key:
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Unconditionally secured scheme

For a given ciphertext of same size 
as the plaintext, there is a equi-probable 
key that produces it. Thus the scheme is 
unconditionally secured.

Practical Problems
Large quantities of random keys are 
necessary.
Increases the problem of key 
distribution.
Thus we will continue to search for 
ciphers where one key can be used to 
encrypt a large string of data and still 
provide computational security.

Like DES (Data Encryption Standard)
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One-time Pad Summary
Provably secure, when used correctly

Cipher-text provides no information about 
plaintext
All plaintexts are equally likely
Pad must be random, used only once
Pad is known only by sender and receiver
Pad is same size as message
No assurance of message integrity

Why not distribute message the same way 
as the pad?

Entropy Revisited

What is H(P)?
H(P)=(1/4)log2(4)+(3/4)log2(4/3)≈0.81

H(K)≈1.5
H(C)≈1.85

P={a,b}; pP(a)=1/4, pP(b)=3/4
K={K1,K2,K3}, pK(K1)=1/2,               
pK(K2)= pK(K3)=1/4
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Huffman Encoding 

Consider S: a discrete source of symbols
The messages from S: {s1,s2,…,sk}
Can we encode these messages such 
that their average length is as short as 
possible, and hopefully equal to H(S)?
Huffman Code provides an optimal 
solution to this problem. 

Informal Description 
The message set X has a probability 
distribution. Arrange them in ascending order:            

p(x1)≤p(x2) ≤p(x3)… ≤p(xj)
Initially the codes of each element are empty.
Choose the two elements with minimum 
probabilities
Merge them into a new letter, say x12 with 
probability as the sum of x1 and x2. Encode the 
smaller letter 0 and the larger 1.
When only one element remains, the code of 
each letter can be constructed by reading the 
sequence backwards.
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Example

X={a,b,c,d,e}
p(a)=.05, p(b)=.10, p(c)=.12, p(d)=.13, p(e)=.6 

Illustration of the encoding

1

10
.6.13.12

10
.6.13.12.10.05
edcba

.15

.25.15 .6

10

0
1

1e

011d

010c

001b

000a

f(x)x

0.4
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Some more results on Entropy

X and Y are random variables. 
H(X,Y)≤H(X)+H(Y)

When X and Y are independent:
H(X,Y)=H(X)+H(Y)

Conditional Entropy:
H(X|Y)=-Σp(x|y)log2p(x|y)

H(X,Y)=H(Y)+H(X|Y)
H(X|Y)≤H(X)

When X and Y are independent: H(X|Y)=H(X)

Theorem 

Let (P,C,K,D,E) be an encryption 
algorithm. Then 

H(K|C)=H(K)+H(P)-H(C)
Proof: H(P,K)=H(C,K) [why?]
or, H(P)+H(K) = H(K|C)+H(C)
or, H(K|C)=H(K)+H(P)-H(C)

Equivocation (ambiguity) 
of key given the ciphertext
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Perfect vs Ideal Ciphers

H(P)=H(C), then we have H(K|C)=H(K)
That is the uncertainty of the key given 
the cryptogram is the same as that of 
the key without the cryptogram.

Such kinds of ciphers are called 
“ideal ciphers”

For perfect ciphers, we had H(P)=H(P|C) 
or, equivalently H(C)=H(C|P)

Perfect vs Ideal Ciphers

For perfect ciphers, the key size is 
infinite if the message size is infinite.

however if a shorter key size is used then 
the cipher can be attacked by someone 
with infinite computational power.

Thus, H(K|C) gives us this idea of 
security (or, insecurity)…
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Unicity and Brute Force Attack

Q: How to protect data against a brute 
force attacker with infinite computation 
power?

Shannon defined “unicity distance” (we 
shall call it unicity), as the least amount of 
plaintext which can be deciphered uniquely 
from the corresponding ciphertext: given 
unbounded resources by the attacker. 
Often measured in units of bytes, letters, 
symbols.

An Important Point

A common misconception: “any cipher 
can be attacked by exhaustively trying all 
possible keys”: 
Thus DES which has a 56 bit key can 
also be broken by brute force.

But if the cipher is used within its unicity
then even DES is theoretically secured, 
like the One Time Pad (OTP).
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Spurious Keys

Thus, H(K|C) is the amount of uncertainty that remains of 
the key after the cipher text is revealed.

We know, it is called the key equivocation 
Attacker to guess the key from the ciphertext shall guess 
the key and decrypt the cipher. 
He checks whether the plaintext obtained is “meaningful”
English. If not, he rules out the key. 
But due to the redundancy of language more than one 
key will pass this test. 
Those keys, apart from the correct key, are called 
spurious.

Entropy of Plain Text

HL: measure of the amount of 
information per letter of “meaningful”
strings of plaintext.
A random string of plaintext formed 
using English letter has an entropy of 
log2|26|≈4.76
But English letters have a probability 
distribution.
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Frequency of English letters

A first order 
entropy 

of the English 
text 

is H(P)≈4.76

In general…

Successive letters have correlation, which 
reduces the entropy.
Define PL to be the random variable that has a 
probability distribution of n-grams of plaintext
Define HL as the entropy of a natural 
language L:

( )lim n
L n

H PH
n→∞=



19

Redundancy

2

1
log | |

L
L

HR
P

= −

Fraction of 

“excess 
letters”

Entropy of 
the language

Entropy of the 

random 

languageFor English Language, 1≤HL≤1.5. Considering HL=1.25, 
and |P|=26, RL≈0.75.

English Language is 75% redundant.

A lower Bound of equivocation of 
key

Pn: r.v representing n-gram plaintext
Cn: r.v representing n-gram ciphertext
H(K|Cn)=H(K)+H(Pn)-H(Cn)

H(Pn)≈nHL (assuming large n)
=n(1-RL)log2|P|

H(Cn)≤nlog2|C|
If |P|=|C|, 

H(K|Cn)≥H(K)-nRLlog2|P|
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Possible Keys

Define, K(y)={possible keys given that y 
is the ciphertext}

that is K(y) is the set of those keys for 
which y is the ciphertext for meaningful 
plaintexts

When y is the ciphertext, number of keys 
is |K(y)|
Out of them, only one is correct. Rest 
are spurious.
So, number of spurious keys=|K(y)|-1

Expected number of spurious keys

Expected number of spurious keys=average 
number of spurious keys over all possible 
ciphertexts is denoted by sn. 

( )(| ( ) | 1)

  =( ( ) | ( ) |) 1

n

n

n
y C

y C

s p y K y

p y K y
∈

∈

= −

−

∑

∑



21

Computing the upper bound of 
equivocation of key

2
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( | ) ( ) ( | )

                ( ) ( ( ))
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Lower Bound of spurious keys

Combining the previous results:

If the keys are chosen equi-probably: 
H(K)=log2|K|. Hence, we have:

2 2

2 2

( ) log | | log ( 1)
log ( 1) ( ) log | |

L n

n L

H K nR P s
s H K nR P
− ≤ +

∴ + ≥ −

| | 1
| | Ln nR

Ks
P

≥ −
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Unicity Distance

Thus increasing n, reduces the number of 
spurious keys.
Unicity Distance is the number of 
ciphertexts, n0 for which the number of 
spurious keys is reduced to zero. 

2
0

2

log | |
log | |L

Kn n
R P

≥ =

This calculation may not be accurate for large values of n

Unicity Distance for Substitution 
Ciphers

|P|=26
|K|=26!≈4 x 1026, RL=0.75
n0=25 (approx)
Given a ciphertext string of length 25, it 
is possible to predict the correct key 
uniquely

Thus key size alone does not guarantee 
security, if brute force is possible to an 
attacker with infinite computational power.
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Assignment 1

Let n be a positive integer. A Latin 
square of order n is an nxn array L with 
integers 1,2,…,n such that every integer 
occurs exactly once in each row and 
column. An example for n=3 is:

132

213

321

Assignment 1

Given any Latin square of order n, we 
can define a related cryptosystem, 
ei(j)=L(i,j), where 1≤i,j≤n. 
Prove from the computation of 
probabilities that the Latin square 
cryptosystem achieves perfect secrecy.

Deadline for submission: 20.8.09
Please submit hand written proofs.


