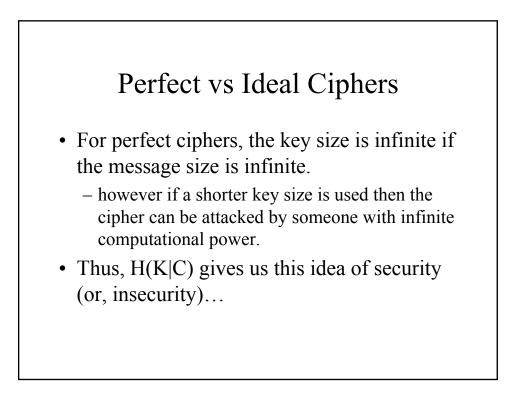


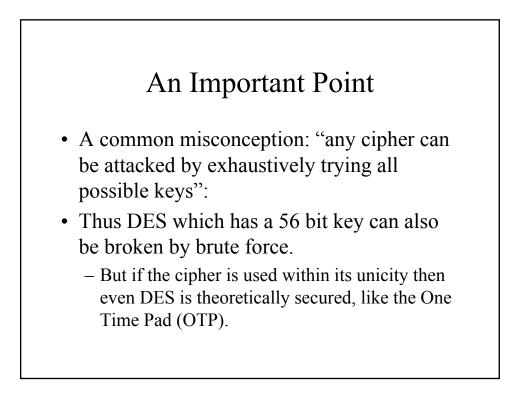
# Perfect vs Ideal Ciphers

- H(P)=H(C), then we have H(K|C)=H(K)
  - That is the uncertainty of the key given the cryptogram is the same as that of the key without the cryptogram.
- Such kinds of ciphers are called "ideal ciphers"
  - For perfect ciphers, we had H(P)=H(P|C) or, equivalently H(C)=H(C|P)



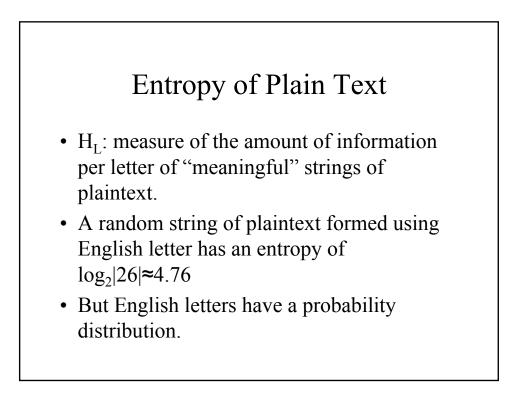


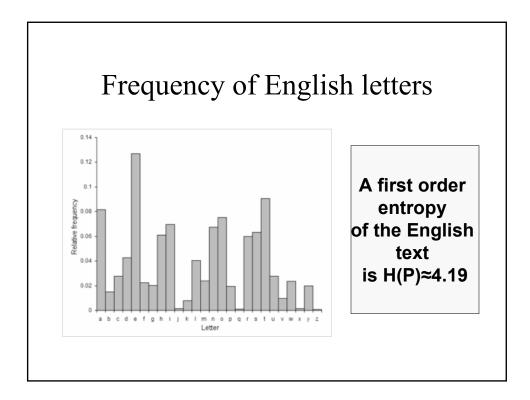
- Q: How to protect data against a brute force attacker with infinite computation power?
  - Shannon defined "**unicity distance**" (we shall call it unicity), as the least amount of plaintext which can be deciphered uniquely from the corresponding ciphertext: given unbounded resources by the attacker.
  - Often measured in units of bytes, letters, symbols.

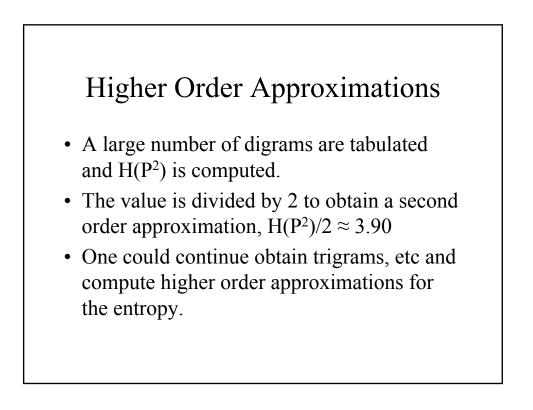


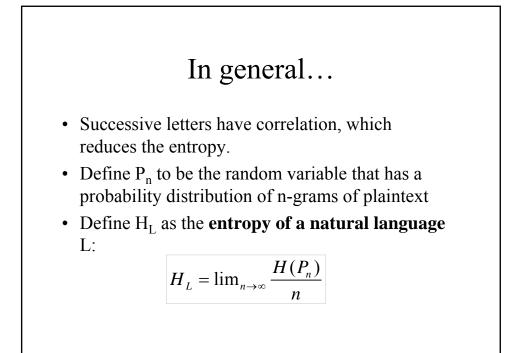
# Spurious Keys

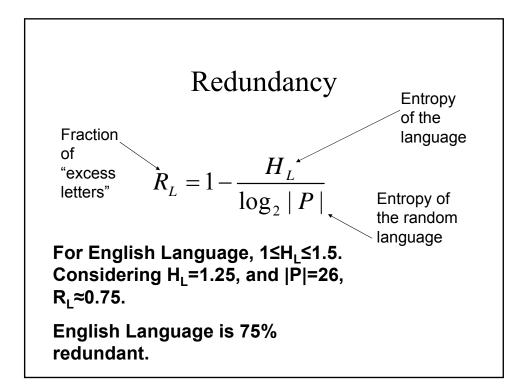
- Thus, H(K|C) is the amount of uncertainty that remains of the key after the cipher text is revealed.
  - We know, it is called the key equivocation
- Attacker to guess the key from the ciphertext shall guess the key and decrypt the cipher.
- He checks whether the plaintext obtained is "meaningful" English. If not, he rules out the key.
- But due to the redundancy of language more than one key will pass this test.
- Those keys, apart from the correct key, are called spurious.

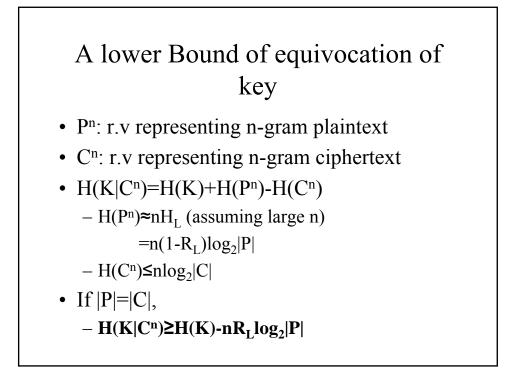


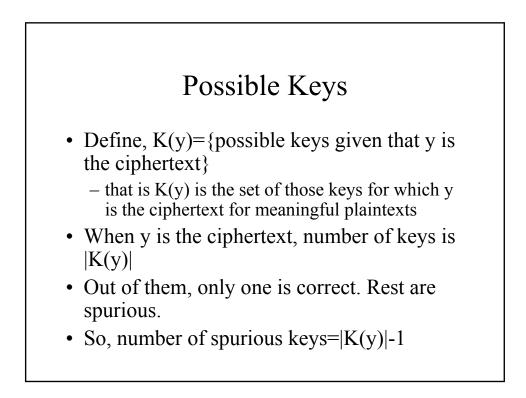


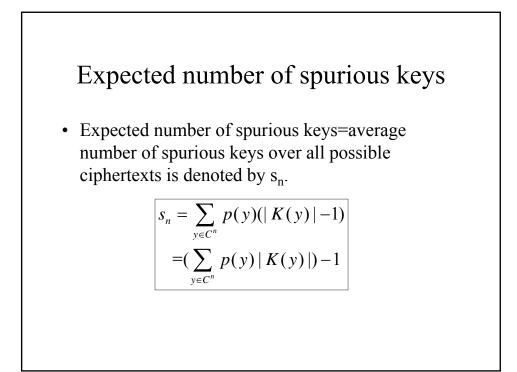


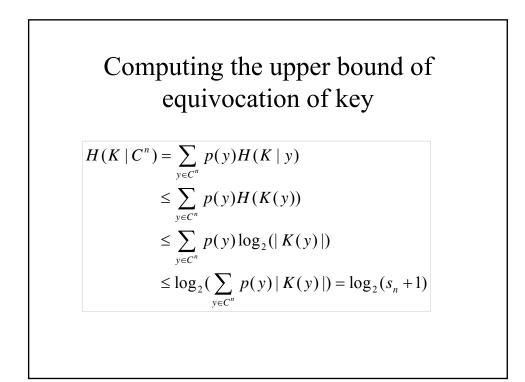


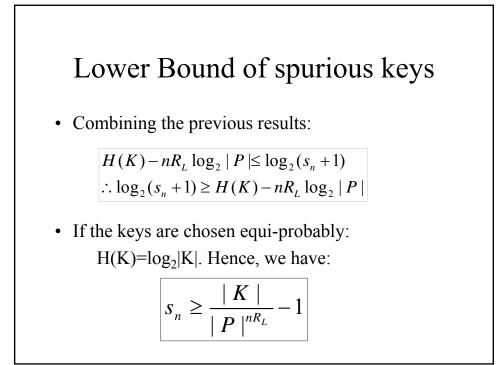


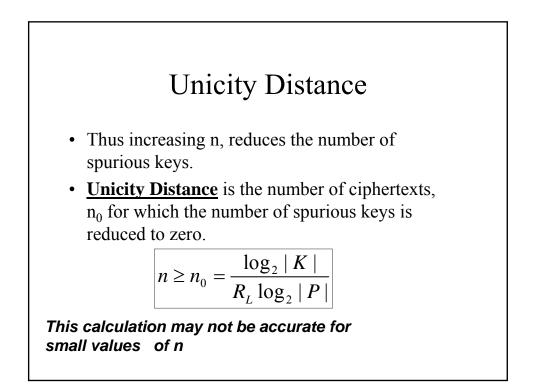






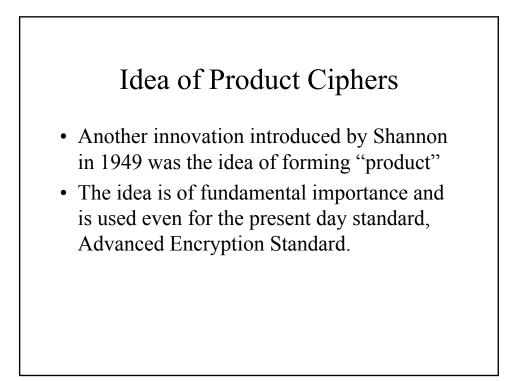






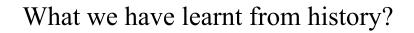
#### Unicity Distance for Substitution Ciphers

- |P|=26
- |K|=26!≈4 x 10<sup>26</sup>, R<sub>L</sub>=0.75
- n<sub>0</sub>=25 (approx)
- Given a ciphertext string of length 25, it is possible to predict the correct key uniquely
  - Thus key size alone does not guarantee security, if brute force is possible to an attacker with infinite computational power.



# **Endomorphic Ciphers**

- If P=C, then we have an endomorphic cipher.
- Thus the shift cipher on English alphabets is an endomorphic cipher.

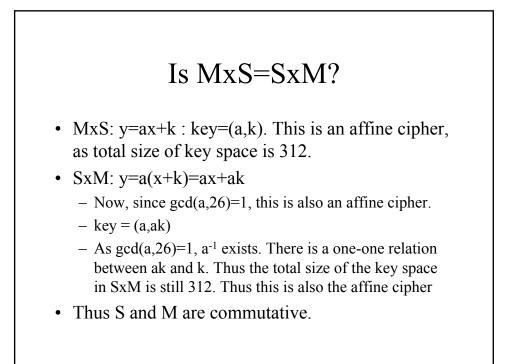


- **Observation:** If we have an endomorphic cipher C<sub>1</sub>=(P,P,K1,e1,d1) and a cipher C<sub>2</sub> (P,P,K2,e2,d2).
- We define the product cipher as C<sub>1</sub>xC<sub>2</sub> by the process of first applying C<sub>1</sub> and then C<sub>2</sub>
- Thus  $C_1xC_2 = (P, P, K1xK2, e, d)$
- Any key is of the form: (k1,k2) and e=e<sub>2</sub>(e<sub>1</sub>(x,k1),k2). Likewise d is defined.

Note that the product rule is always associative

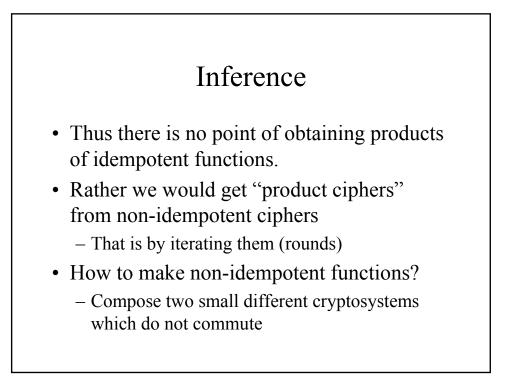
# Question:

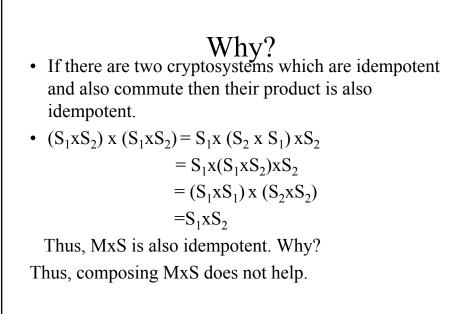
- Thus if we compute product of ciphers, does the cipher become stronger?
  - The key space become larger
  - 2<sup>nd</sup> Thought: Does it really become larger.
- Let us consider the product of a
  - 1. multiplicative cipher (M): y=ax, where a is co-prime to 26 //Plain Texts are characters
  - 2. shift cipher (S) : y=x+k

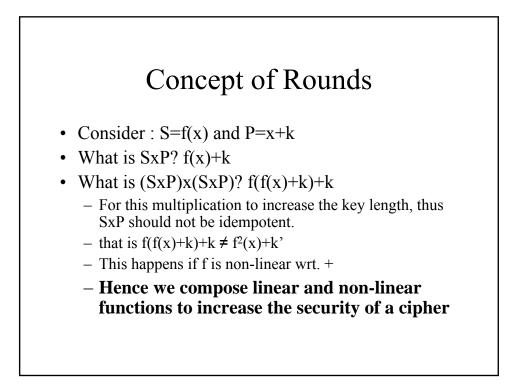


### Idempotent Cipher

- M is a permutation cipher.
- S is a substitution cipher.
- Composed cipher has a larger key but no extra security.
- If we had computed MxM or SxS, would that have lead to the increase of key space? No.
  - This is because SxS=S and MxM=M
  - These are called idempotent ciphers







### Assignment

• Show that the unicity distance of the Hill Cipher (with an m x m encryption matrix) is less than  $m/R_L$ .

#### Further Reading

- C. E. Shannon, *Communication Theory of* Secrecy Systems. Bell Systems Technical Journal, 28(1949), 656-715
- Douglas Stinson, Cryptography Theory and Practice, 2<sup>nd</sup> Edition, Chapman & Hall/CRC

# Next Day's Topic

- Symmetric Key Ciphers:
  - Block Ciphers
  - Stream Ciphers