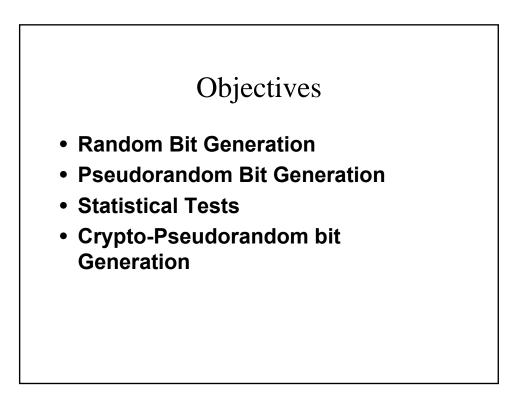
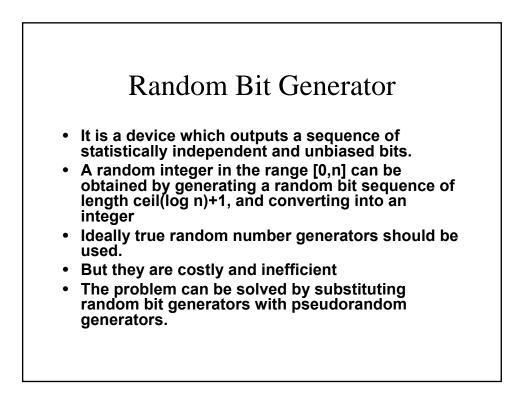
Pseudorandomness

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

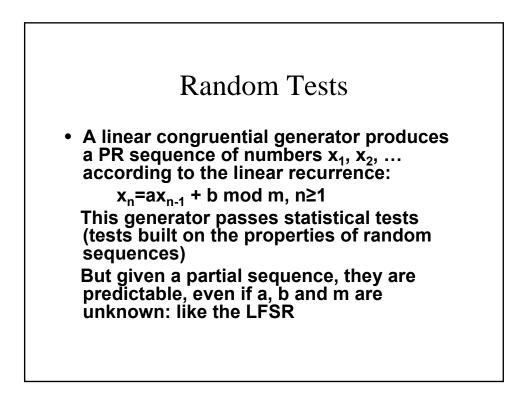


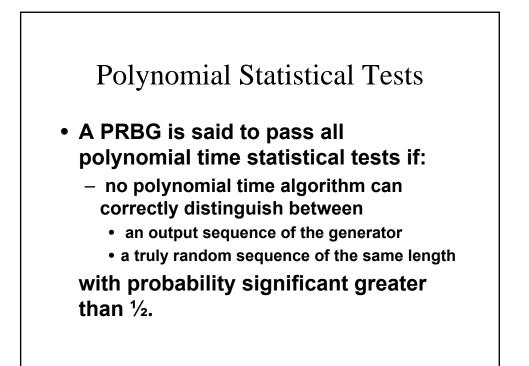
- Enormous
- Key stream in One Time Pads
- · Secret key in block ciphers
- primes p, q in the RSA algorithm
- private key in Digital Signature Algorithms
 - all these quantities must be chosen from a large space
 - probability of a particular value being selected should be small to avoid optimized search

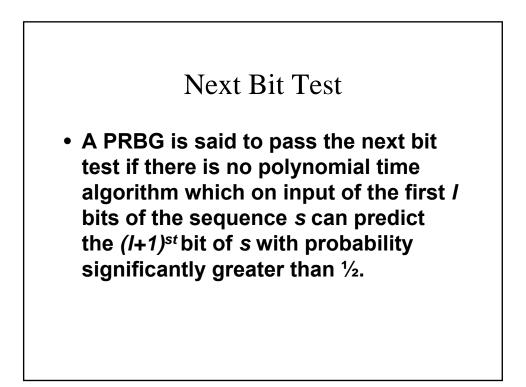


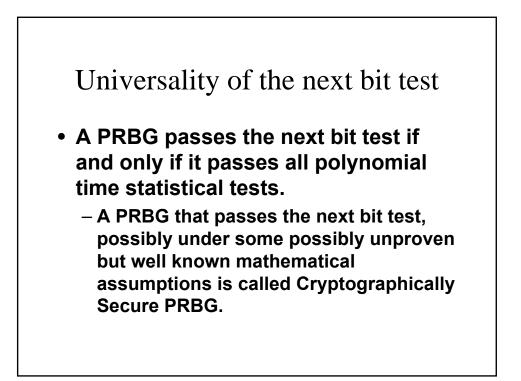
Pseudorandom bit generators

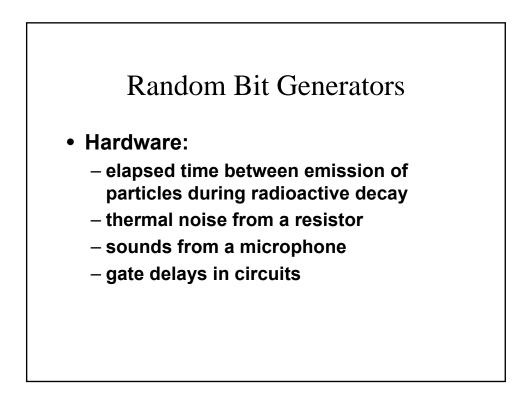
- It is a deterministic algorithm which given a truly random binary sequence of length k, outputs a binary sequence of length l>>k, which appears to be random.
 - input to the PRBG is called seed
 - output is called the PRB sequence.







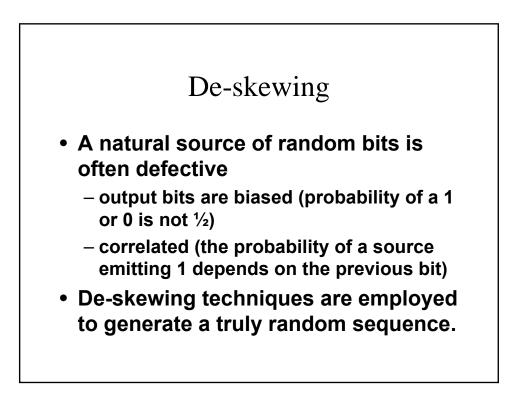


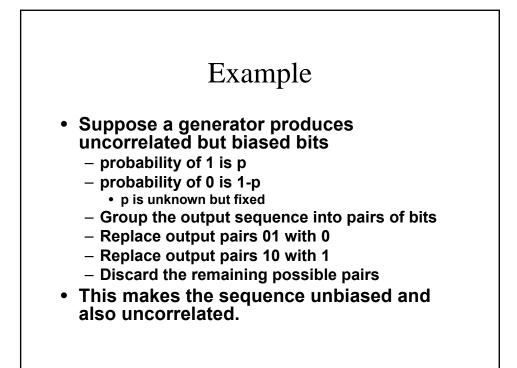


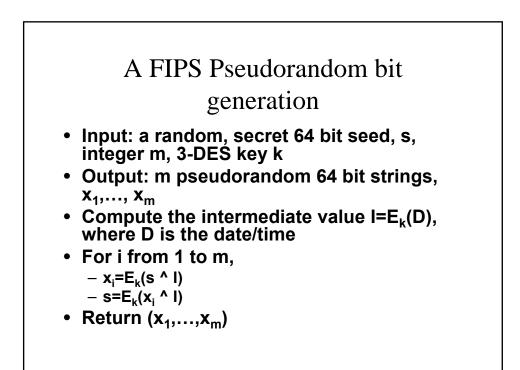
Random Bit Generators

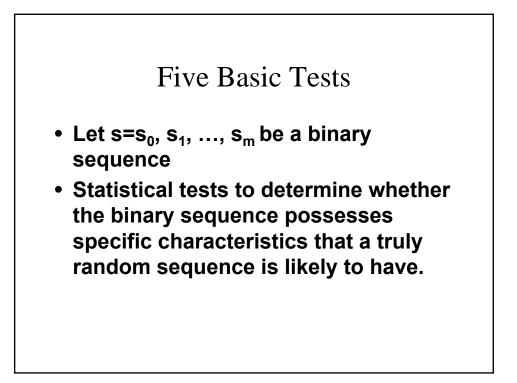
• Software:

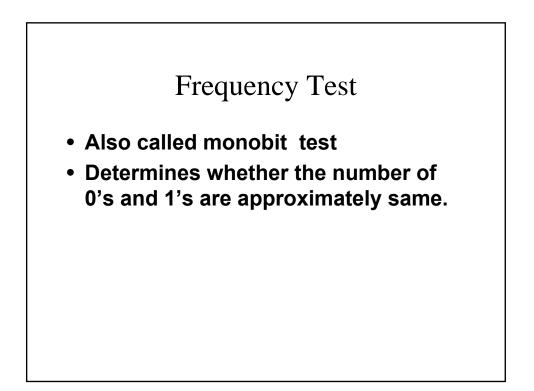
- system clock
- elapsed time between keystrokes or mouse movements
- user input
- system load in computers
- network statistics





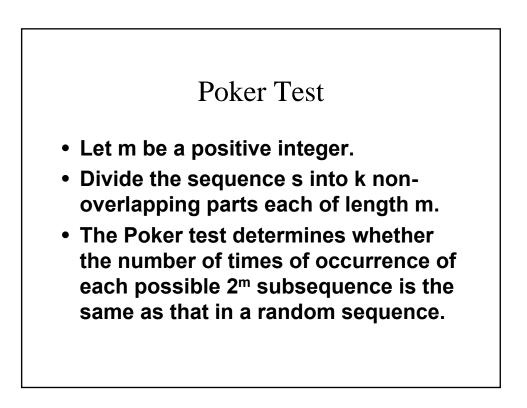


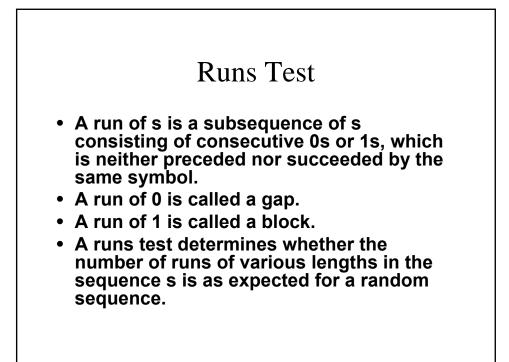


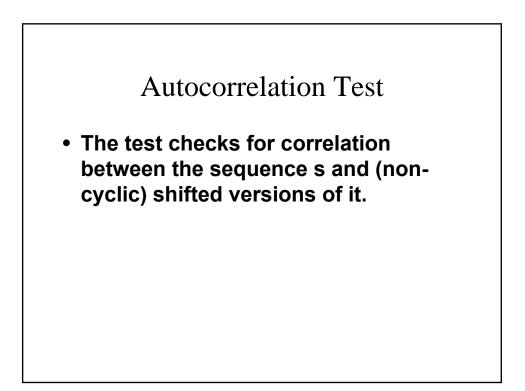


Serial Tests

 To determine whether the number of occurrences of 00, 01, 10, 11 as subsequences of s are approximately the same as that in a random sequence.





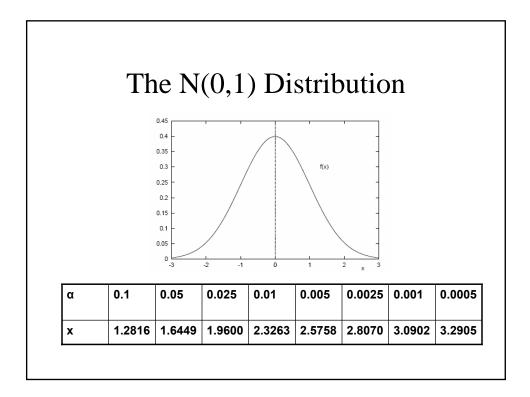


The Normal Distribution

A random variable X has a normal distribution with mean μ and variance σ^2 if its probability density function is defined by:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

Notation : $N(\mu, \sigma^2)$ Standard Normal Distribution: N(0,1)



The Chi Square Distribution

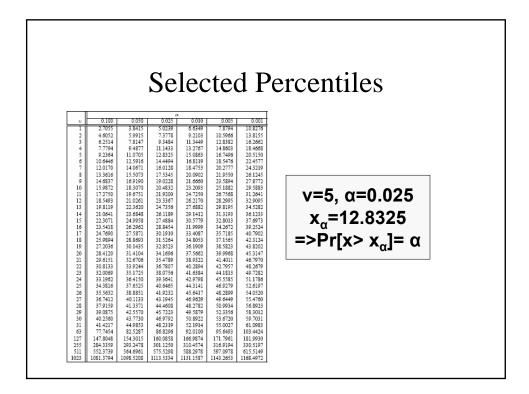
Let $v \ge 1$. A random variable X has a χ^2 distribution if the probability density function is defined by:

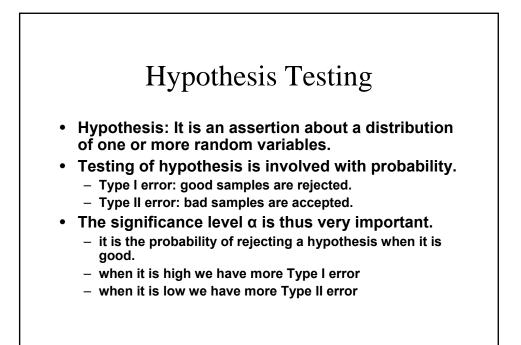
$$f(x) = \begin{cases} \frac{1}{\Gamma(v)2^{v/2}} x^{(v/2)-1} e^{-x/2}, & 0 \le x < \infty \\ 0, & x < 0 \end{cases}$$

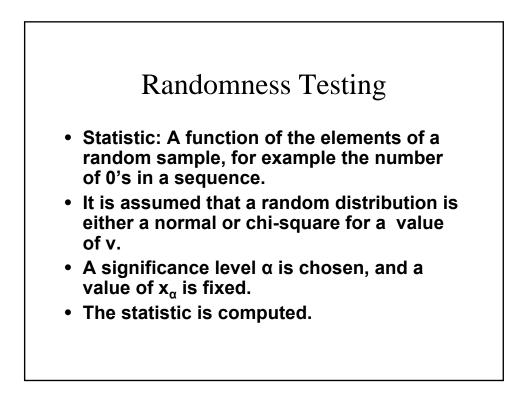
where Γ is the gamma function defined by:

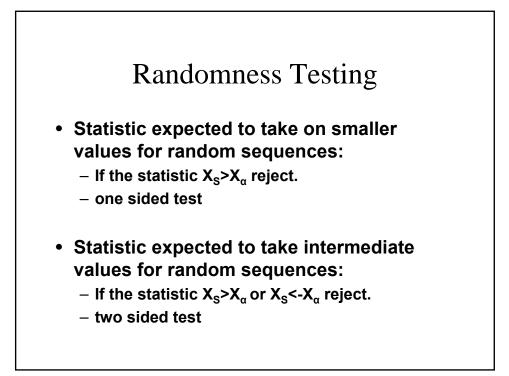
$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx, \text{ for } t > 0$$

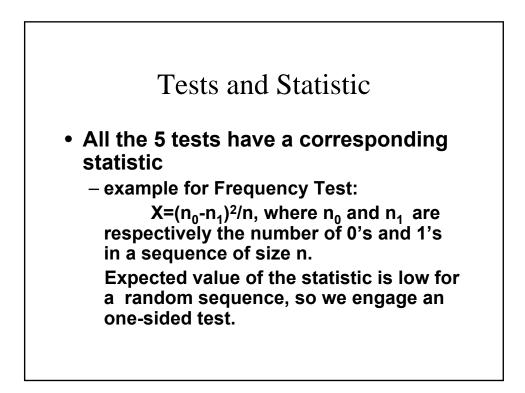
The mean and variance are v and 2v respectively.

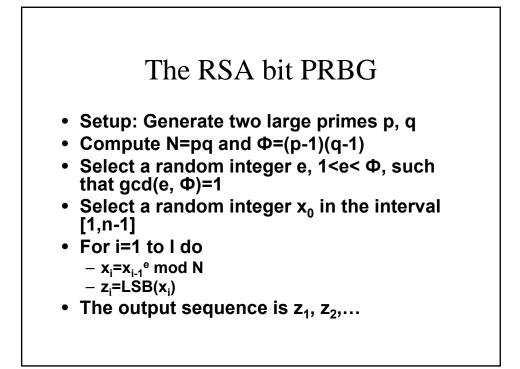




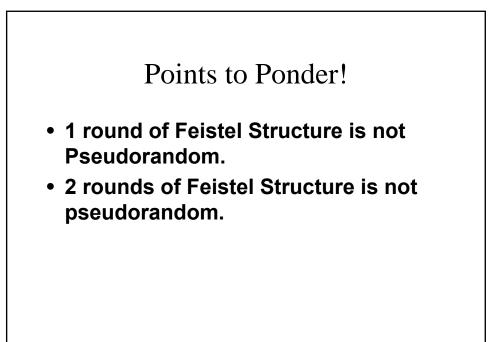


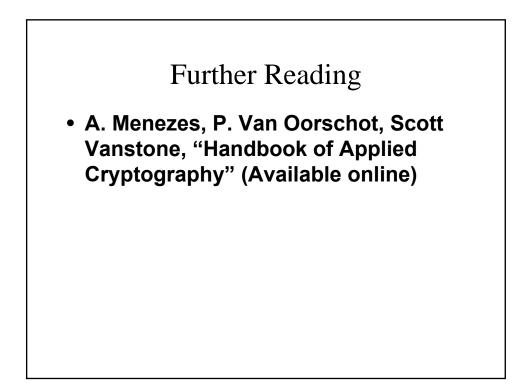












Next Days Topic

Cryptographic Hash Functions