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Objectives

• Euclidean Algorithm
– to compute gcd (Greatest Common 

Divisor)
– to compute multiplicative inverse 

• Chinese Remainder Theorem (CRT)
– expressing the whole in parts

• Cyclic groups and a test for 
primitive-ness
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Previous Results Discussed

• Modular Arithmetic
• The set of residues modulo n, that are 

relatively prime to n is denoted by Zn
*.

• Zn* forms a multiplicative group under 
multiplication.

• Any element inside Zn
* has a multiplicative 

inverse.
• Zn

* is closed under multiplication.

The Euclidean Algorithm
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Proof of Correctness
• gcd(a,b)=gcd(r0,r1)=gcd(q1r1+r2,r1)= 

gcd(r1,r2)=gcd(r2,r3)=…=gcd(rm-1,rm)=rm

• Thus, the EA algorithm can be used to 
compute the gcd of two positive integers
– Also to check whether an integer modulo n has 

a multiplicative inverse.
• But how can we compute the inverse?

Example
• Compute the 28-1 mod 75

75=2x28+19
28=1x19+9
19=2x9+1
9=9x1

• So, gcd(28,75)=1. So, what is the 
inverse?

• Can you express the gcd as a linear 
combination of 28 and 75?
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Example

• 19=75-2x28
• 9=28-19=28-(75-2x28)=-75+3x28
• 1=19-2x9=(75-2x28)-2x(-75+3x28)=   

3x75-8x28
• Thus, gcd(28,75)=1=3x75-8x28.
• So, what is 28-1 mod 75?

Answer is -8 mod 75 = 67

So, what is the lesson?
• All the remainders generated by the 

EA algorithm can be expressed as a 
linear combination of the +ve
integers a and b.

• And the expression is unique.
• The extended EA algorithm 

generates/computes this linear 
combination in a systematic fashion
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• Define (t0, t1, …,tm) and (s0, s1, …,sm) 

0 1For 0 ,  we have that ,  

where the '  are as defined in the Euclidean 

Algorithm, and the '  and the '  are as 

defined in the recurrence.
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EA 
algorithm



Low Power   Ajit Pal   IIT Kharagpur 6

Example

1=3x75+(-8)x28
Thus, taking modulo 75, 28-1 mod 75=-8=67

Improvement 

The answer is -8 mod 75 = 67…

take a modulo 
operation with 
a=75.

Note that we do not require the si’s and can take a modulo 75 
each time while computing the ti’s. This will make the algorithm 
efficient.
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The Chinese Remainder Theorem 
(CRT)

• It solves a system of congruences.
• Suppose m1, m2,…,mr are pairwise

relatively prime positive integers.
• System of congruences:

CRT asserts that there is 
a unique solution to this 
system

Example

• x≡3 mod 5
• x≡1 mod 3
• x≡ ? mod 15
• You can verify that the only answer 

is 13 mod 15. The first thing to 
explain why there is only one 
solution.
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Uniqueness

• X(x)=(x mod 5, x mod 3)

Note that the mapping is bijective…

Example

• M=5x3=15
• M1=15/5=3, 3-1mod 5=2
• M2=15/3=5, 5-1mod 3=2
• x=(3x3x2+1x5x2)mod 15

=28 mod 15=13
What is the principle?
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Generalization
• We shall present a constructive proof
• In fact, CRT gives an explicit formula 

for  X-1 mod M, where M=m1m2…mr

• Compute, Mi=M/mi, for 1≤i≤r
– Thus, gcd(mi,Mi)=1

• Compute yi=Mi
-1mod mi

• Thus, Miyi≡1 (mod mi), for 1≤i≤r
• Define, 

• Compute, ρ mod mi≡ai [This is because 
Miyi≡1 (mod mi) and Miyi ≡0 (mod mj)] 

• Since, the domain and range have the same 
cardinality and the function X() is onto, by 
our previous discussion the function is 
bijective. Thus the solution is unique modulo 
M.
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The CRT Theorem

Other Useful Facts
• Suppose G is a multiplicative group 

of order n, and gεG. Then the order 
of g divides n.

• Corollary 1: If bεZn
*, then bΦ(n)≡1 

(mod n)
• Corollary 2: Suppose p is prime and 

bεZp. Then bp ≡b (mod p)
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Cyclic Group

• If p is prime, then Zp
* is a group of 

order  p-1 and any element in Zp
* has 

an order which divides (p-1).
• In fact, if p is prime, then there exists 

at least one element in Zp
* which has 

order equal to p-1.
– this is called cyclic group…

Primitive Element

• If p is prime, then Zp
* is a cyclic 

group.
• Any element α having order p-1 mod 

p is called a primitive element. Thus 
α is a primitive element iff:
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• n=19, There are 6 primitive elements.
• Note the order of each element in Z19

*.
• Is  there a relation?

Order of any element
• Any element β in Zp

* (where p is prime) can 
be written uniquely in the form β=αi, where 
α is a primitive element and 0≤i≤p-2.

• The order of β is: 

• β is itself primitive iff gcd(p-1,i)=1. Hence, 
what is the number of primitive elements 
modulo p?
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Example

• p=13
• Thus Φ(13-1)= Φ(12)= Φ(3x22)=12(1-

1/3)(1-1/2)=12x(2/3)x(1/2)=4.
• Question: Is 2 a primitive element of 

Z13
*?

– generate all the (p-1) powers of 2.
– lengthy process if p is large.

Theorem 

• Proved in the class
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