

Proof of Correctness

- $gcd(a,b)=gcd(r_0,r_1)=gcd(q_1r_1+r_2,r_1)=$ $gcd(r_1,r_2)=gcd(r_2,r_3)=...=gcd(r_{m-1},r_m)=r_m$
- Thus, the EA algorithm can be used to compute the gcd of two positive integers
 - Also to check whether an integer modulo n has a multiplicative inverse.
- But how can we compute the inverse?

• Define $(t_0, t_1, ..., t_m)$ and $(s_0, s_1, ..., s_m)$

• Define,

$$\rho(a_1,\ldots,a_r) = \sum_{i=1}^r a_i M_i y_i \mod M.$$

- Compute, ρ mod m_i≡a_i [This is because M_iy_i≡1 (mod m_i) and M_iy_i≡0 (mod m_i)]
- Since, the domain and range have the same cardinality and the function X() is onto, by our previous discussion the function is bijective. Thus the solution is unique modulo M.

The CRT Theorem

(Chinese remainder theorem) Suppose m_1, \ldots, m_r are pairwise relatively prime positive integers, and suppose a_1, \ldots, a_r are integers. Then the system of r congruences $x \equiv a_i \pmod{m_i}$ $(1 \le i \le r)$ has a unique solution modulo $M = m_1 \times \cdots \times m_r$, which is given by

$$x = \sum_{i=1}^r a_i M_i y_i \mod M,$$

where $M_i = M/m_i$ and $y_i = M_i^{-1} \mod m_i$, for $1 \le i \le r$.

Theorem

THEOREM 5.8 Suppose that p > 2 is prime and $\alpha \in \mathbb{Z}_p^*$. Then α is a primitive element modulo p if and only if $\alpha^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all primes q such that $q \mid (p-1)$.

• Proved in the class

