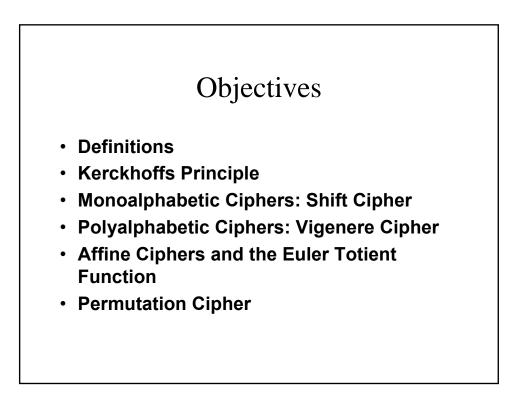
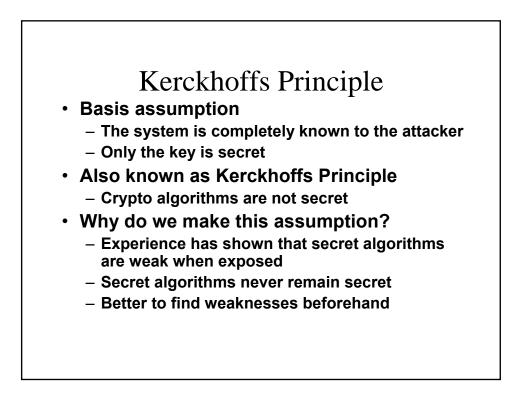
Classical Cryptosystems

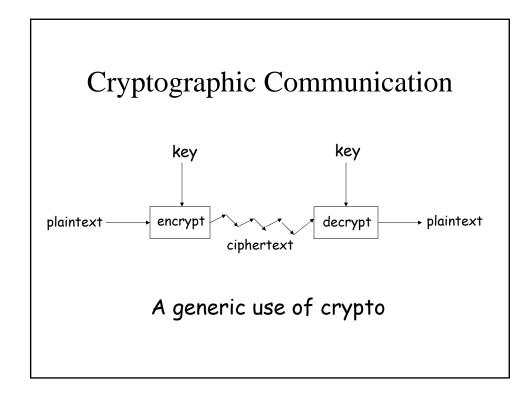
Debdeep Mukhopadhyay

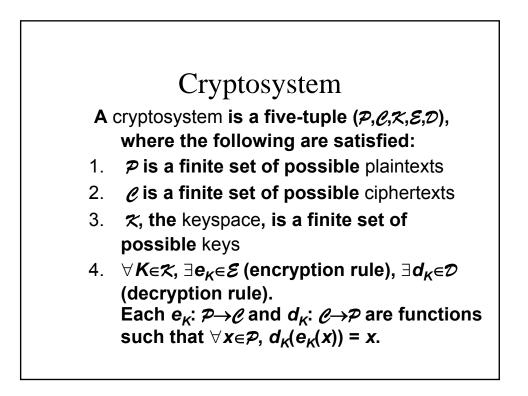
Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

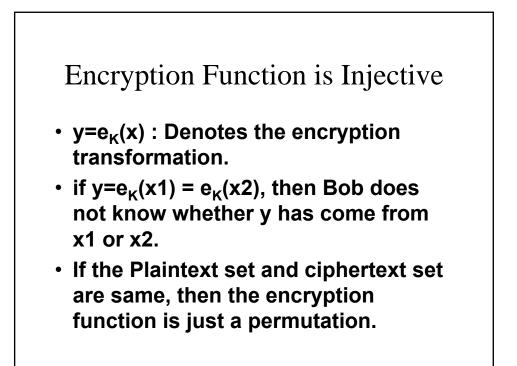


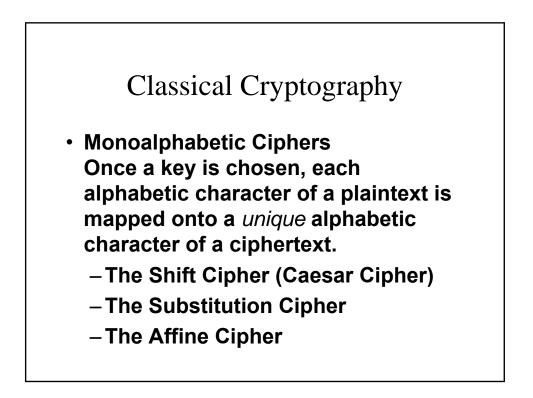
Definitions A cipher or cryptosystem is used to encrypt the plaintext The result of encryption is ciphertext We decrypt ciphertext to recover plaintext A key is used to configure a cryptosystem A symmetric key cryptosystem uses the same key to encrypt as to decrypt A public key cryptosystem uses a public key to encrypt and a private key to decrypt.





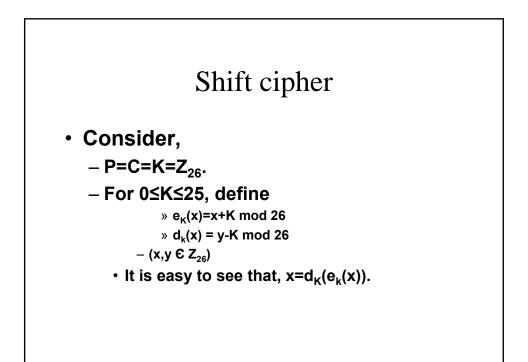


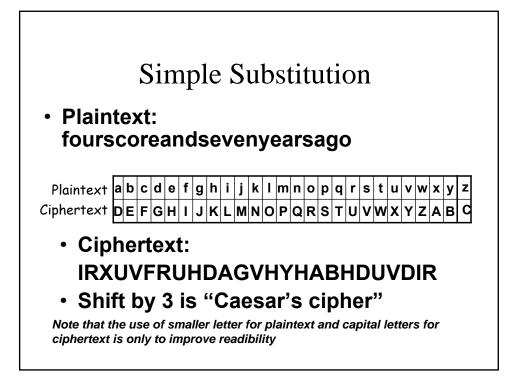


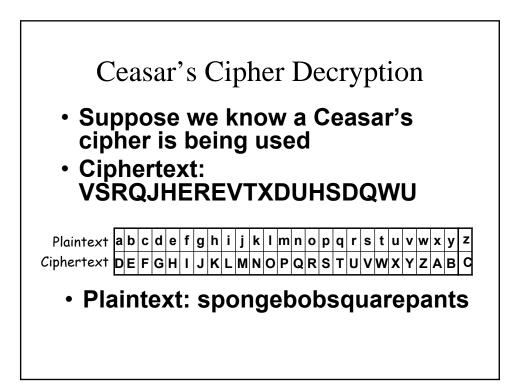


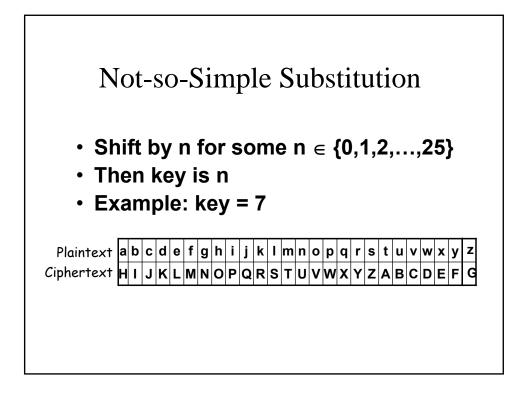
Classical Cryptography

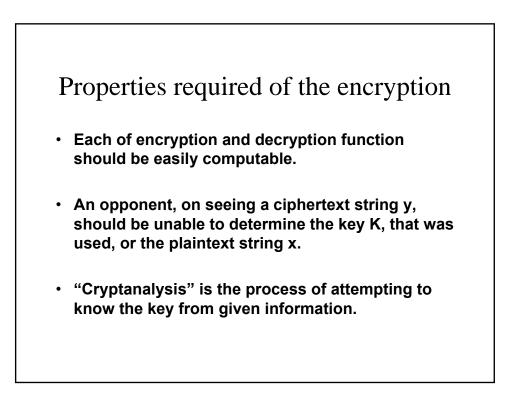
- Polyalphabetic Ciphers
 Each alphabetic character of a
 plaintext can be mapped onto m
 alphabetic characters of a ciphertext.
 Usually m is related to the encryption
 key.
 - The Vigenère Cipher
 - -The Hill Cipher
 - -The Permutation Cipher

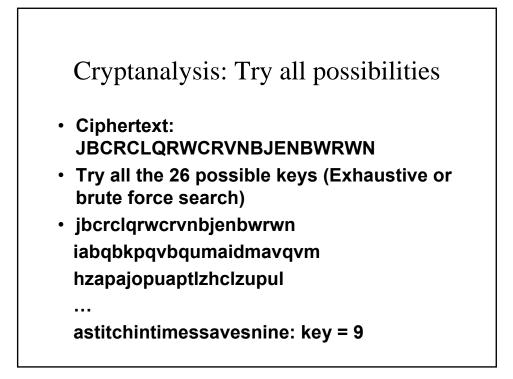


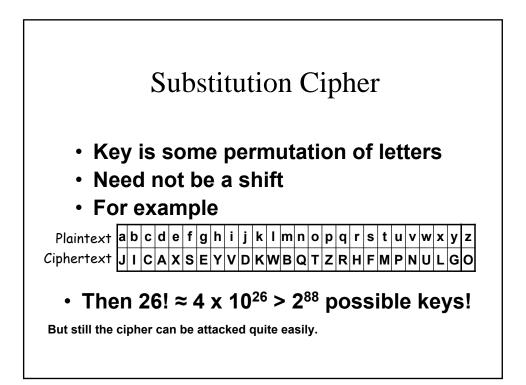






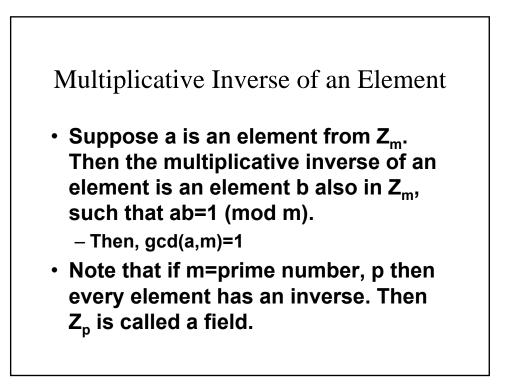


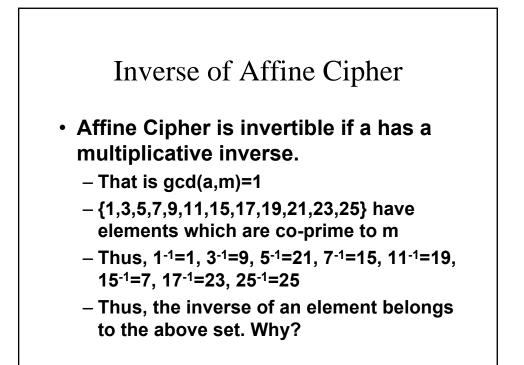


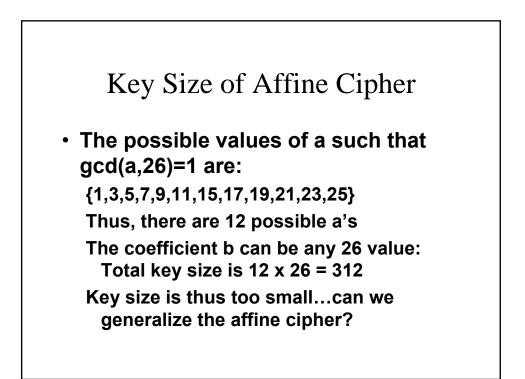


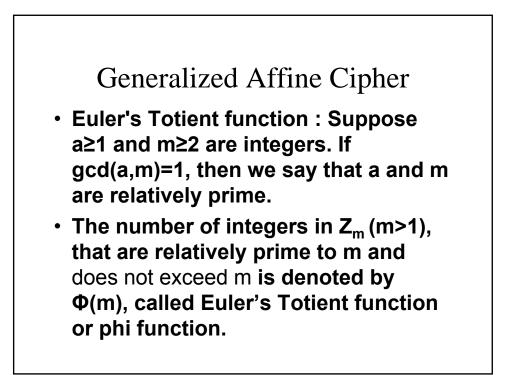
The Affine Cipher

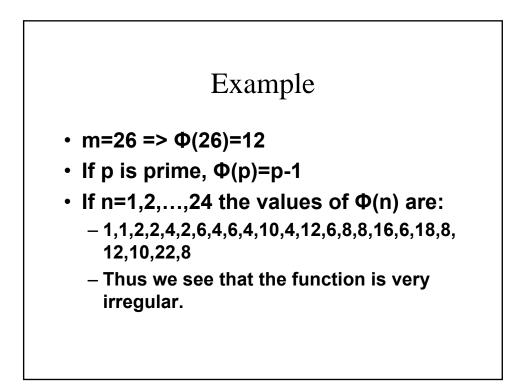
Let $\mathcal{P} = \mathcal{C} = Z_{26}$, let $\mathcal{K} = \{(a, b) \in Z_{26} \times Z_{26} | \gcd(a, 26) = 1\}.$ $\forall x \in \mathcal{P}, \forall y \in \mathcal{C}, \forall K \in \mathcal{K}, \text{ define}$ $e_{\mathcal{K}}(x) = ax + b \pmod{26}$ and $d_{\mathcal{K}}(y) = a^{-1}(y - b) \pmod{26}.$ The encryption is injective if and only if $\gcd(a, 26) = 1$

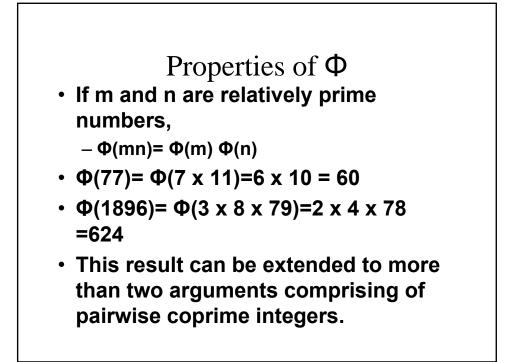


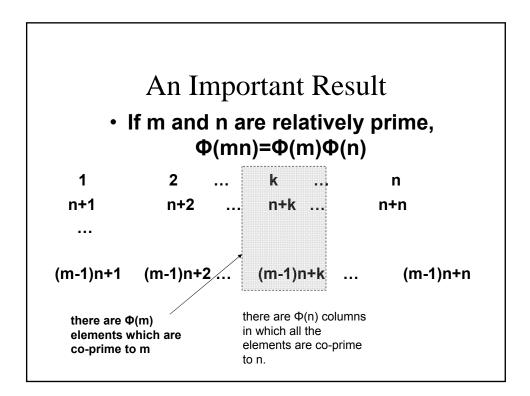


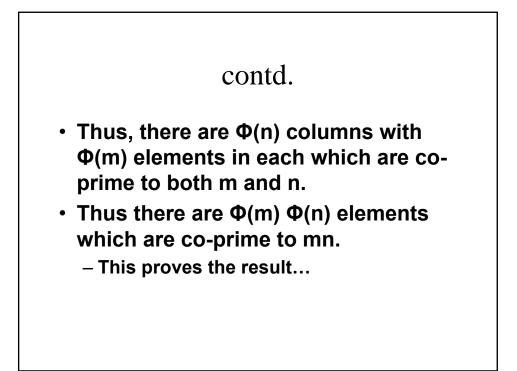


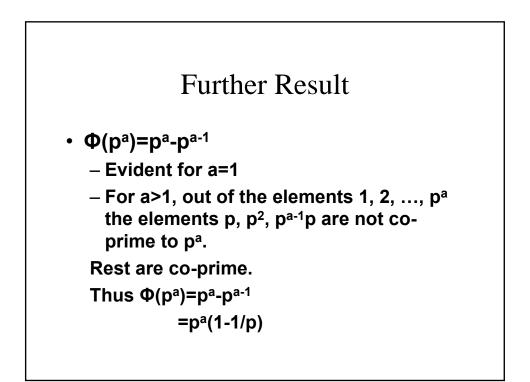


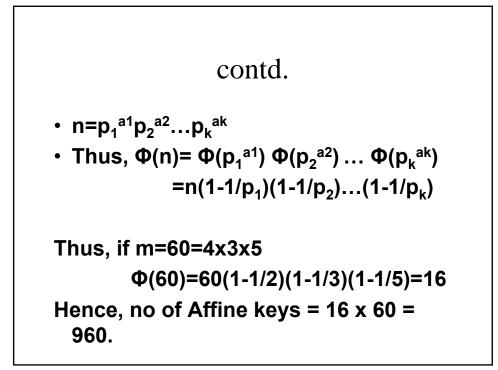


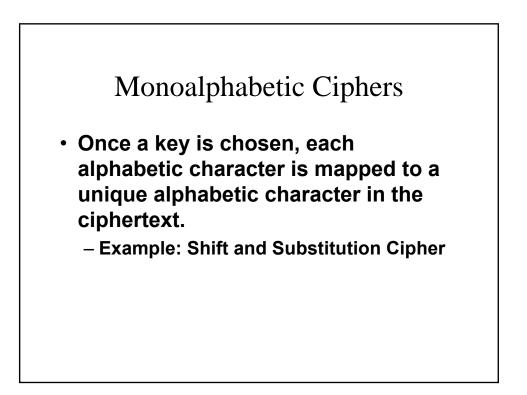


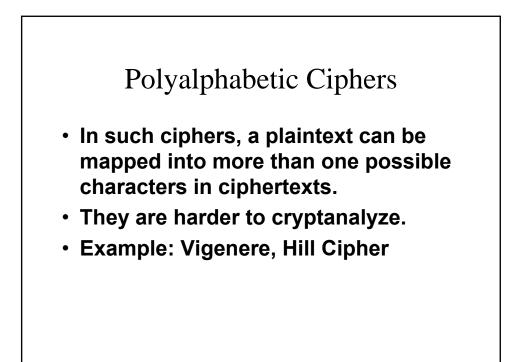


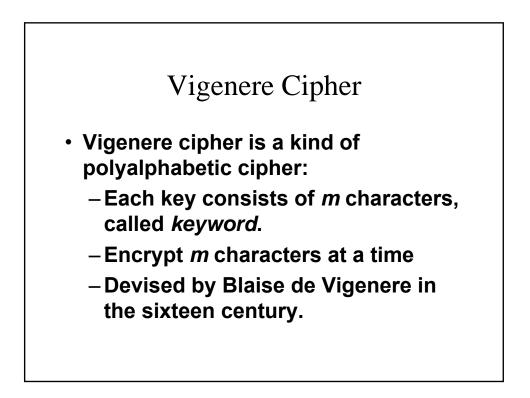


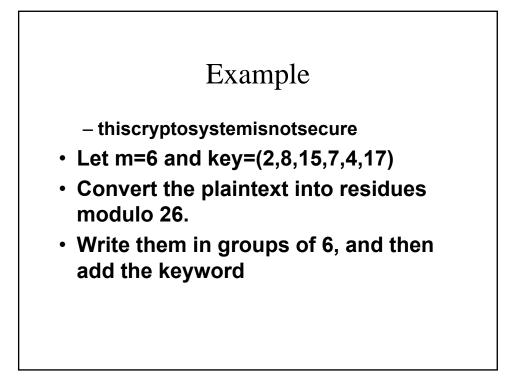












19	7	8	18	2	17	24	15	19	14	18	24
2	8	15	7	4	17	2	8	15	7	4	17
21	15	23	25	6	8	0	23	8	21	22	15

Vigenere cipher—key size

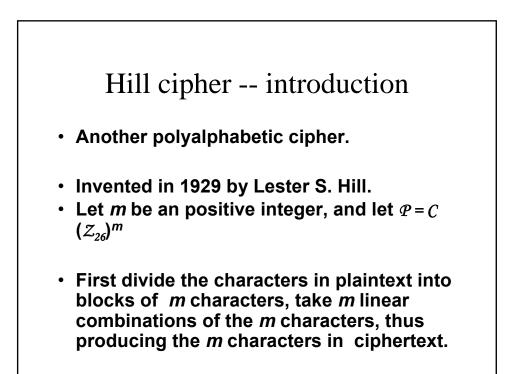
What is the key space? Suppose the keyword length is m.

There are total 26^m possible keys.

Suppose m=5, then $26^5 = 1.1 \times 10^7$, which is large enough to preclude *exhaustive key search* by hand.

However, we will see that there will be a systemic method to break Vigenere cipher.

We see that one character could be mapped into m different characters when the character is in m different positions.



Hill cipher -- example

Suppose m=2, a plaintext element is written as $x=(x_1,x_2)$ and a ciphertext element as $y=(y_1,y_2)$. Here y_1 would be a linear combination of x_1 and x_2 , as would y_2 .

Suppose we take:

 $y_1 = (11x_1 + 3x_2) \mod 26$

 $y_2 = (8x_1 + 7x_2) \mod 26$

then y_1 and y_2 can be computed from x_1 and x_2

We can write the above computations in matrix notation:

 $(y_1, y_2) = (x_1, x_2) \begin{pmatrix} 11 & 8\\ 3 & 7 \end{pmatrix}$

or y = xK where $y = (y_1, y_2)$, $x = (x_1, x_2)$, and $K = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}$

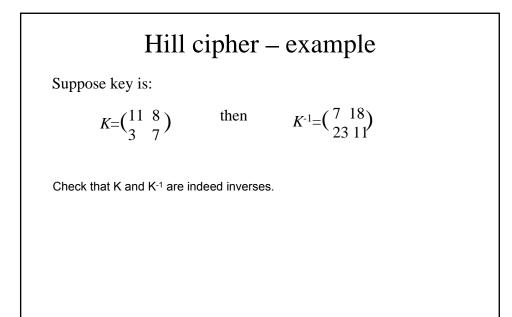
Assume all operations are performed by modulo 26.

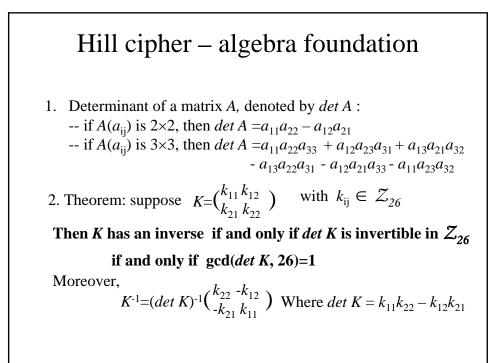
Hill cipher – theoretical foundation

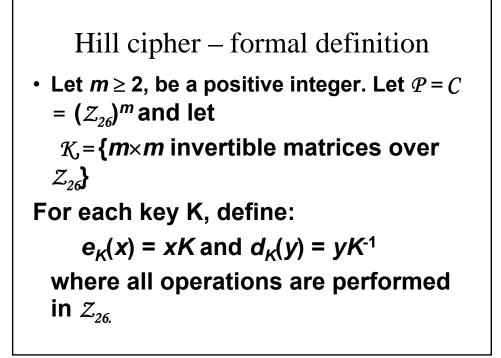
- Given plaintext x, we get ciphertext y = xK
- If given ciphertext *y*, we should get plaintext *x* by *yK*⁻¹

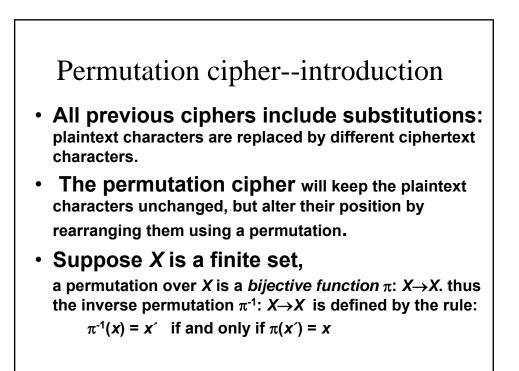
Thus, for Hill cipher to work, the matrix K must have an *inverse* K⁻¹.

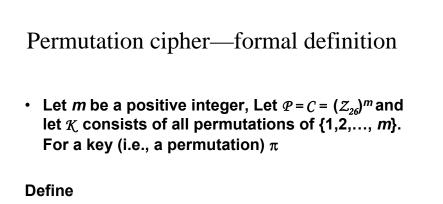
From linear algebra, suppose I_m is an identity matrix, K is $m \times m$ matrix, Then $KK^{-1}=I_m$. So, $yK^{-1}=xKK^{-1}=xI_m=x$.







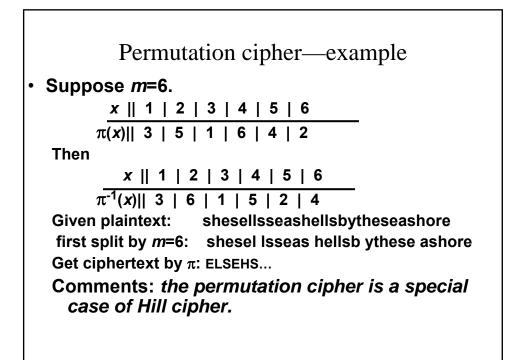


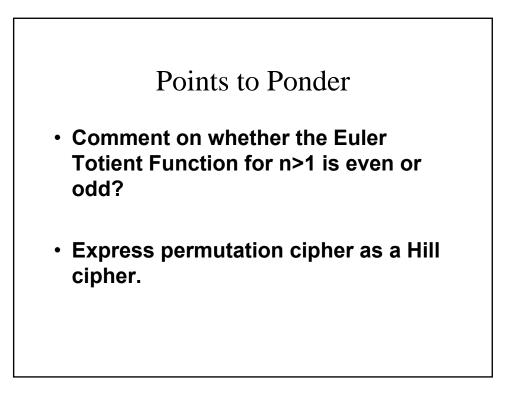


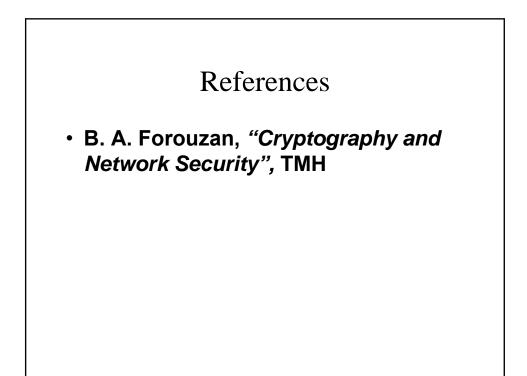
$$\mathbf{e}_{\pi}(\mathbf{x}_{1},...,\mathbf{x}_{m}) = (\mathbf{x}_{\pi(1)},...,\mathbf{x}_{\pi(m)})$$

and

 $d_{\pi}(y_1,...,y_m) = (y_{\pi^{-1}(1)},..., y_{\pi^{-1}(m)})$ where π^{-1} is the inverse permutation of π .







Next Days Topic

Cryptanalysis of Classical Ciphers