The RSA Cryptosystem

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

• The RSA Cipher

• Quadratic Residues
Public Key Cryptography

- Two keys
 - Sender uses recipient’s public key to encrypt
 - Receiver uses his private key to decrypt
- Based on trap door, one way function
 - Easy to compute in one direction
 - Hard to compute in other direction
 - “Trap door” used to create keys
 - Example: Given p and q, product N=pq is easy to compute, but given N, it is hard to find p and q

Public Key Cryptography

- Encryption
 - Suppose we encrypt M with Bob’s public key
 - Only Bob’s private key can decrypt to find M
- Digital Signature
 - Sign by “encrypting” with private key
 - Anyone can verify signature by “decrypting” with public key
 - But only private key holder could have signed
 - Like a handwritten signature
Encryption

Authentication
The RSA

RSA Cryptosystem

Let \(n = pq \), where \(p \) and \(q \) are primes. Let \(\mathcal{P} = \mathcal{C} = \mathbb{Z}_n \), and define

\[
\mathcal{K} = \{(n, p, q, a, b) : ab \equiv 1 \pmod{\phi(n)}\}.
\]

For \(K = (n, p, q, a, b) \), define

\[
e_K(x) = x^b \mod n
\]

and

\[
d_K(y) = y^a \mod n
\]

\((x, y \in \mathbb{Z}_n)\). The values \(n \) and \(b \) comprise the public key, and the values \(p, q \) and \(a \) form the private key.

Proof of Correctness

\(ab \equiv 1 \pmod{\phi(n)} \Rightarrow ab = 1 + t\phi(n) \)

for some integer \(t \geq 1 \).

Suppose, \(x \in \mathbb{Z}_n^* \) \(\Rightarrow x^{ab} \equiv x^{1 + t\phi(n)} \equiv x(x^{\phi(n)})^t \equiv x \pmod{n} \)

[follows from Euler's Theorem]

Now, consider \(x \in \mathbb{Z}_n \setminus \mathbb{Z}_n^* \)

So, \(\gcd(x, n) \neq 1 \Rightarrow (x \text{ is a multiple of } p) \text{ or } (x \text{ is a multiple of } q) \)

Thus, \(\gcd(x, p) = p \) or \(\gcd(x, q) = q \)

If \(\gcd(x, p) = p \), then \(\gcd(x, q) = 1 \)

[as otherwise \(x \) is a multiple of both \(p \) and \(q \) and still \(x \) is less than \(n = pq \)]
Proof of Correctness

Thus, \(x^{\phi(q)} \equiv 1 \mod q \) \(\Rightarrow x^{i\phi(q)} \equiv 1 \mod q \)
\[\Rightarrow x^{i\phi(q)p} \equiv 1 \mod q \]
\[\Rightarrow x^{i\phi(n)} \equiv 1 \mod q \]

Thus, \(x^{i\phi(n)} = 1 + kq \),
where \(k \) is a positive integer

Multiplying both sides by \(x \),
\[x^{\phi(n)+1} = x + kq \]
\[\therefore \) gcd\((x, p) = p \Rightarrow x = cp \), for some positive integer \(c \)
\[x^{\phi(n)+1} = x + kcpq \]
\[\Rightarrow x^{i\phi(n)+1} \equiv x^{ab} \equiv x \mod n \]

Similarly, we can prove when gcd\((x, q) = q \)

Example

- Bob chooses \(p = 101 \) and \(q = 113 \)
 - Thus \(n = 11413 \)
 - \(\Phi(n) = 100 \times 112 = 11200 = 2^6 \times 5^2 \times 7 \)
 - \(b \) can be used for encryption if and only if it is not a multiple of 2, 5 or 7. Let \(b = 3533 \)
- In practice Bob will not factor \(\Phi(n) \), but will check whether gcd\((b, \Phi(n)) = 1 \) using EA and compute \(b^{-1} \) at the same time.
Examples

- Bob publishes $n=11413$ and $b=3533$.
- Suppose Alice wants to encrypt $x=9726$ and send to Bob.
- Hence, she computes $x^b \pmod{n} = 9726^{3533} \pmod{11413} = 5761$ and sends it to Bob.
- Bob computes $b^{-1} \pmod{\phi(n)} = 6597$ and decrypts using $5761^{6597} \pmod{11413} = 9726$

Efficient Exponentiation

- Compute x^c efficiently mod n.
- Express c as follows:
 \[
 c = \sum_{i=0}^{\ell-1} c_i 2^i
 \]

```
FUNCTION SQUARE-AND-MULTIPLY(x, c, n)
  y ← 1
  FOR i FROM \ell-1 DOWNTO 0
    y ← y^2 mod n
    \[
    \text{if } c_i = 1 \text{ then } y \leftarrow (y \times x) \pmod{n}
    \]
  END FOR
  RETURN y
```

Choosing the parameters of RSA

<table>
<thead>
<tr>
<th>RSA PARAMETER GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generate two large primes, (p) and (q), such that (p \neq q)</td>
</tr>
<tr>
<td>2. (n \leftarrow pq) and (\phi(n) \leftarrow (p-1)(q-1))</td>
</tr>
<tr>
<td>3. Choose a random (b) ((1 < b < \phi(n))) such that (\gcd(b, \phi(n)) = 1)</td>
</tr>
<tr>
<td>4. (a \leftarrow b^{-1} \mod \phi(n))</td>
</tr>
<tr>
<td>5. The public key is ((n, b)) and the private key is ((p, q, a)).</td>
</tr>
</tbody>
</table>

- \(n \) is known, but its factors are not known
- \(b \) is also known, so to compute a one needs the value of \(\Phi(n) \), for which we need \(p \) and \(q \)
- It has been conjectured that breaking RSA is polynomially equivalent to factoring \(n \). But there is no proof!
- Typically, value of \(n \) is 1024 bit long and the factors are also large of around 512 bits.

Primality Testing

- How do we say whether a given number is prime?
- We propose randomized algorithms, called Monte-Carlo algorithms
- These algorithms give an answer in time that is polynomial in \(\log_2 n \), which is the number of bits required to store \(n \).
- However there is a probability that the algorithm may claim that \(n \) is prime when it is not. These numbers are called pseudo-primes.
Prime Number Theorem

- Number of primes that are less than or equal to \(N \) is given by:

\[
\pi(N) \approx \frac{N}{\ln N}
\]

Hence,…

- If \(N \) is a 512 bit number, then there are around \(2^{512}/\ln 2^{512} \approx 2^{512}/355 \).
- So, a random 512 bit integer will be prime with probability of \(1/355 \).
- Thus, if you choose 355 integers then there is one number which is prime
- If you choose only odd numbers the probability doubles.
Monte-Carlo Algorithm

- Randomized algorithm, which is yes based
 - There is always an answer
 - When the answer is yes, it is correct
 - If the answer is no, the answer may be wrong

- (Error Probability=ε) => (for any instance if the answer is yes, it can say no with a probability at most ε).
- The probability is over all random choices of the algorithm.

The Problem Composites

| Instance: | A positive integer n ≥ 2. |
| Question: | Is n composite? |

- This is a decision problem.
- We will discuss the Solovay-Strassen Algorithm, which is a Monte-Carlo algorithm for Composites.
- Thus if it says yes, n is surely composite.
- However, if n is composite then it says yes with probability at least ½
Quadratic Residue

Suppose p is an odd prime and a is an integer. a is defined to be a quadratic residue modulo p if $a \not\equiv 0 \pmod{p}$ and the congruence $y^2 \equiv a \pmod{p}$ has a solution $y \in \mathbb{Z}_p$. a is defined to be a quadratic non-residue modulo p if $a \not\equiv 0 \pmod{p}$ and a is not a quadratic residue modulo p.

- There are exactly $(p-1)/2$ QR (Quadratic Residues)

Example

- \mathbb{Z}_{11}
 12=1
 22=4
 32=9
 42=5
 52=3
 62=3
 72=5
 82=9
 92=4
 102=1

Note, that the QR forms a palindrome
There are exactly $(11-1)/2=5$ QRs.
Generalization

How many solutions are there to $x^2 \equiv a \pmod{p}$ for odd positive prime p?

If, $y^2 \equiv a \pmod{p}, y \in \mathbb{Z}_p^*$

then $(-y)^2 \equiv a \pmod{p}$

Note, $y \equiv -y \pmod{p}$, as p is odd

Thus, the quadratic congruence:

$x^2 - a \equiv 0 \pmod{p}$

can be factored into

$(x - y)(x + y) \equiv 0 \pmod{p}$

Since, p is prime, $p \mid (x - y)$ or $p \mid (x + y)$

Thus, $x \equiv \pm y \pmod{p}$

Thus, there are exactly two solutions of the congruence.

The QR Problem

- **Instance:** An odd prime p, and an integer a.
- **Question:** Is a a quadratic residue modulo p?

- We have a polynomial time deterministic algorithm to solve this decision problem.
Euler comes to the rescue again

(Euler’s Criterion) Let p be an odd prime. Then a is a quadratic residue modulo p if and only if

$$a^{(p-1)/2} \equiv 1 \pmod{p}.$$

- The time complexity of this check is $O(\log p)^3$ by applying square and multiply method to raise an element to a power.
- Note that if $a^{(p-1)/2} \equiv -1 \pmod{p}$ then a is a non-quadratic residue.

Legendre Symbol

Suppose p is an odd prime. For any integer a, define the Legendre symbol $\left(\frac{a}{p} \right)$ as follows:

$$\left(\frac{a}{p} \right) = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{cases}$$

Suppose p is an odd prime. Then

$$\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p}.$$
Jacobi Symbol

Suppose n is an odd positive integer, and the prime power factorization of n is

$$n = \prod_{i=1}^{k} p_i^{e_i}.$$

Let a be an integer. The Jacobi symbol $\left(\frac{a}{n}\right)$ is defined to be

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}.$$

Example

- Compute $\left(\frac{6278}{9975}\right)$

- Note $9975=3\times5^2\times7\times19$

$$\left(\frac{6278}{9975}\right) = \left(\frac{6278}{3}\right) \left(\frac{6278}{5}\right)^2 \left(\frac{6278}{7}\right) \left(\frac{6278}{19}\right)$$

$$= \left(\frac{2}{3}\right) \left(\frac{3}{5}\right)^2 \left(\frac{6}{7}\right) \left(\frac{8}{19}\right)$$

$$= (-1)(-1)^2(-1)(-1) = -1$$
References

• D. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC

Next Days Topic

• Primality Testing