The RSA Cryptosystem

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

Proof of Correctness Thus, $x^{\phi(q)} \equiv 1 \pmod{q} \Rightarrow x^{t\phi(q)} \equiv 1 \pmod{q}$ $\Rightarrow x^{t\phi(q)\phi(p)} \equiv 1 \pmod{q}$ $\Rightarrow x^{t\phi(n)} \equiv 1 \pmod{q}$ Thus, $x^{t\phi(n)} = 1 + kq$, where k is a positive integer Multiplying both sides by x, $x^{t\phi(n)+1} = x + kqx$ $\therefore \gcd(x, p) = p \Rightarrow x = cp$, for some positive integer c $x^{t\phi(n)+1} = x + kcpq$ $\Rightarrow x^{t\phi(n)+1} \equiv x^{ab} \equiv x \pmod{n}$ Similarly, we can prove when $\gcd(x,q)=q$

Choosing the parameters of RSA

RSA PARAMETER GENERATION

- 1. Generate two large primes, p and q, such that $p \neq q$
- 2. $n \leftarrow pq$ and $\phi(n) \leftarrow (p-1)(q-1)$
- 3. Choose a random $b (1 < b < \phi(n))$ such that $gcd(b, \phi(n)) = 1$
- 4. $a \leftarrow b^{-1} \mod \phi(n)$
- 5. The public key is (n, b) and the private key is (p, q, a).
- n is known, but its factors are not known
- b is also known, so to compute a one needs the value of $\Phi(n),$ for which we need p and q
- It has been conjectured that breaking RSA is polynomially equivalent to factoring n. But there is no proof!
- Typically, value of n is 1024 bit long and the factors are also large of around 512 bits.

Quadratic Residue

Suppose p is an odd prime and a is an integer. a is defined to be a *quadratic residue* modulo p if $a \not\equiv 0 \pmod{p}$ and the congruence $y^2 \equiv a \pmod{p}$ has a solution $y \in \mathbb{Z}_p$. a is defined to be a *quadratic non-residue* modulo p if $a \not\equiv 0 \pmod{p}$ and a is not a quadratic residue modulo p.

There are exactly (p-1)/2 QR (Quadratic Residues)

Generalization

How many solutions are there to $x^2 \equiv a \pmod{p}$ for odd positive prime p? If, $y^2 \equiv a \pmod{p}$, $y \in Z_p^*$ then $(-y)^2 \equiv a \pmod{p}$ Note, $y \equiv -y \pmod{p}$, as p is odd Thus, the quadratic congruence: $x^2 - a \equiv 0 \pmod{p}$ can be factored into $(x - y)(x + y) \equiv 0 \pmod{p}$ Since, p is prime, $p \mid (x - y)$ or $p \mid (x + y)$ Thus, $x \equiv \pm y \pmod{p}$ Thus, there are exactly two solutions of the congruence.

