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Objectives

 The RSA Cipher

* Quadratic Residues

Low Power Ajit Pal 1IT Kharagpur



Public Key Cryptography

 Two keys
— Sender uses recipient’s public key to encrypt
— Receiver uses his private key to decrypt

» Based on trap door, one way function
— Easy to compute in one direction
— Hard to compute in other direction
— “Trap door” used to create keys

— Example: Given p and q, product N=pq is easy to
compute, but given N, it is hard to find p and q

Public Key Cryptography

* Encryption
— Suppose we encrypt M with Bob’s public key
— Only Bob’s private key can decrypt to find M

 Digital Signature
— Sign by “encrypting” with private key
— Anyone can verify signature by “decrypting”
with public key

— But only private key holder could have signed
— Like a handwritten signature
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The RSA

‘ ‘ RSA Cryptosystem

Let n = pq, where p and q are primes. Let P = € = Z,, and define
X =1{(n,pg,ab):ab=1 (mod ¢(n))}.
For K = (n, p,q,a,b), define
ex (z) = 2° mod n

and
dg (y) = y" mod n

(x,y € Zy). The values n and b comprise the public key, and the values p, ¢
and a form the private key.

Proof of Correctness

ab=1(mod ¢(n)) = ab=1+t¢@(n)

for some integer t > 1.

Suppose, X € Z; = x® = x*Y™ = x(x*™)" = x (mod n)
[follows from Euler's Theorem]

Now, consider xe Z,\Z,

So,gcd(x,n) #1= (x is a multiple of p)or(x is a multiple of q)
Thus, gcd(x,p)=p or gcd(x,q)=q

If gcd(x,p)=p, then gcd(x,q)=1

[as otherwise x is a multiple of both p and g and still

x is less than n=pq]
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Proof of Correctness

Thus, x*@ =1(mod q) = x“® =1(mod q)
— x#(@)¢(p) =1(mod q)
= x"™ =1(mod q)
Thus, x*™ =1+Kkq,
where K is a positive integer
Multiplying both sides by x,

Xt¢(n)+1

= X+kgx

- ged(x, p) = p = x =cp, for some positive integer ¢
XYM = x + kepq

YO = x® = x(mod n)

Similarly, we can prove when gcd(X,q)=¢

=X

Example

 Bob chooses p=101 and gq=113
— Thus n=11413
— ®(n)=100x112=11200=26527
— b can be used for encryption if and only
if it is not a multiple of 2, 5 or 7. Let
b=3533
 In practice Bob will not factor ®(n),
but will check whether gcd(b, ®(n))=1
using EA and compute b-! at the
same time.
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Examples

* Bob publishes n=11413 and b=3533.

» Suppose Alice wants to encrypt x=9726
and send to Bob.

* Hence, she computes x’(mod n)
=9726333mod 11413=5761 and sends it
to Bob.

« Bob computes b''mod ®(n)=6597 and
decrypts using 5761%°%” mod
11413=9726

Efficient Exponentiation

« Compute x¢ efficiently mod n.
o Express c as follows: .- Em

SQUARE-AND-MULTIPLY(z, ¢, i)

2+ 1
fori < ¢ — | downto (

z — z° mod n
do {ifc; =1

then z « (2 x ) mod n
return (z)
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Choosing the parameters of RSA

RSA PARAMETER GENERATION

Generate two large primes, p and ¢, such thatp # ¢

n + pgand ¢{n) «— (p—1)(¢ — 1)

Choose a random & (1 < b < ¢(n)) such that ged(b, &(n)) = 1
a « b~! mod 4(n)

e

The public key is (n, b) and the private key is (p, ¢, @).

* nis known, but its factors are not known

* bis also known, so to compute a one needs the value of ®(n),
for which we need p and q

» It has been conjectured that breaking RSA is polynomially
equivalent to factoring n. But there is no proof!

» Typically, value of n is 1024 bit long and the factors are also
large of around 512 bits.

Primality Testing

 How do we say whether a given number is
prime?

 We propose randomized algorithms,
called Monte-Carlo algorithms

* These algorithms give an answer in time
that is polynomial in log,n, which is the
number of bits required to store n.

 However there is a probability that the
algorithm may claim that n is prime when
it is not. These numbers are called
pseudo-primes.
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Prime Number Theorem

* Number of primes that are less than or
equal to N is given by:

N
In N

7(N) ~

Hence, ...

If N is a 512 bit number, then there
are around 2%12/|n 2512x2512/355,

So, a random 512 bit integer will be
prime with probability of 1/355.

Thus, if you choose 355 integers
then there is one number which is
prime

If you choose only odd numbers the
probability doubles.
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Monte-Carlo Algorithm

* Randomized algorithm, which is yes
based
— There is always an answer
— When the answer is yes, it is correct
— If the answer is no, the answer may be wrong

* (Error Probability=¢) => (for any instance if
the answer is yes, it can say no with a
probability at most ¢).

* The probability is over all random choices
of the algorithm.

The Problem Composites

] Composites
Instance: A positive integer n > 2,
Question: Is n composite?

* This is a decision problem.

* We will discuss the Solovay-Strassen
Algorithm, which is a Monte-Carlo
algorithm for Composites.

* Thus if it says yes, n is surely composite.

* However, if n is composite then it says yes
with probability at least >
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Quadratic Residue

Suppose p is an odd prime and a is an integer. a is defined to
be a quadratic residue modulo pif @ Z 0 (mod p) and the congruence y* = a

(mod p) has a solution y € Z,. a is defined to be a quadratic non-residue
modulo p if @ Z 0 (mod p) and a is not a quadratic residue modulo p.

e There are exactly (p-1)/2 QR
(Quadratic Residues)

Example

* 2y
12=1 Note, that the QR forms a palindrome
22=4 There are exactly (11-1)/2=5 QRs.
32=9
42=
52=3
62=3
72=5
82=9
92=4
102=1
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Generalization

How many solutions are there to x* = a(mod p)
for odd positive prime p?

If, y* =a(mod p),yeZ,

then (-y)* = a(mod p)

Note, y =—-y(mod p), as p is odd

Thus, the quadratic congruence:

x*> —a=0(mod p)

can be factored into

(x-y)(x+y)=0(mod p)

Since, p is prime, p|(Xx-y) orp|(X+Y)

Thus, x =xy(mod p)

Thus, there are exactly two solutions of the congruence.

The QR Problem

I:] Quadratic Residues

Instance: An odd prime p, and an integer a.
Question: Is a a quadratic residue modulo p?

 We have a polynomial time
deterministic algorithm to solve this
decision problem.
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Euler comes to the rescue again

[ ]| (Euler’s Criterion) Let pbe an odd prime. Then ais a quadratic
residue module p if and only if

a?~ 1% = 1 (mod p).

* The time complexity of this check is
O(log p)3 by applying square and multiply
method to raise an element to a power.

* Note that if a®*'2=—-1(mod p) then a is a non-
quadratic residue.

L egendre Symbol

Suppose p is an odd prime. For any integer a, define the
Legendre symbol (}%) as follows:

0 ifa=0 (modp)
(E) =41 if @ is a quadratic residue modulo p
£ —1 if a is a quadratic non-residue modulo p.

| Suppose pis an odd prime. Then

(E) = o= /2 (mod p).
p
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Jacobi Symbol

Suppose n is an odd positive integer, and the prime power
factorization of n is i
i=1

Let a be an integer. The Jacobi symbol (2) is defined to be

®-1@3)"

t=1

Example

. Compute (&%)

ey
BISGLS)

=(-D(-1°(-1)(-D) =
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