Message Authentication Codes (MACs)

Debdeep Mukhopadhyay

Assistant Professor

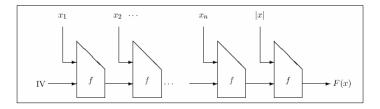
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

- Security Notions of MACs
- NMACs and HMACs
- CBC-MACs

Unkeyed Hash Functions

- We have studied un-keyed hash functions
 - Merkle Damgard Construction
 - iterative in nature



What are MACs?

- Message Authentication Codes
- They are keyed hash functions
- Needed for message integrity
 - One possible construction could be to make the IV (Initialization Vector) of hash functions secret.

Constructing MAC by making IV secret

- Consider for simplicity a hash function:
 - with no pre-processing steps
 - with no final output transformation.
 - Thus, every input message is a multiple of t, where compress: {0,1}^{m+t}→{0,1}^m
 - Key K is of m bits
- Given x and h_k(x) (MAC) we have to construct another valid pair.
 - Can we do that efficiently?

Constructing MAC by making IV secret

- h_K(x)=compress(K,x)
- Consider x||x', where x,x' are of t bits.
- Thus, $h_k(x||x') = compress(h_k(x),x')$
 - which can always be computed, even though key is secret!
 - this can be also attacked to those cases where padding is required and there is a pre-processing step.

Hash with pre-processing step

- Consider, y=x||pad(x), such that |y|=rt
- Let w be any bit string:
 - st. x'=x||pad(x)||w
 - y'=x||pad(x)||w||pad(x'), |y'|=r't, r'>r
- Note that the attacker knows z_r=h_K(x)

Computing $h_K(x')$ from $h_K(x)$

- The attacker can obtain the value even without knowing K:
 - $-z_{r+1}$ =compress($h_K(x)||y_{r+1}$)
 - $-z_{r+2}$ =compress($z_{r+1}||y_{r+2}$)

• • •

. . .

- $-z_{r'}$ =compress($z_{r'-1}||y_{r'}$)
- $-h_{K}(x')=z_{r'}$

What is security of MAC?

- Attacker is allowed to request for q valid MACs on x₁,x₂,...,x_α
- Thus he obtains the list:

$$((x_1,y_1),(x_2,y_2),...,(x_q,y_q))$$

- Forgery: If he is able to output (x,y), where x is not among the q values queried for, then we say that the pair is a forgery.
- If the probability is ε , then adversary is an (ε,q) forger.

Nested MAC (NMAC)

Suppose that (X, Y, K, G) and (Y, Z, L, H) be two hash families.

The composition of these hash families is the hash family $(X, Z, M, G \circ H)$ in which $M=K \times L$ and $G \circ H = \{g \circ h : g \in G, h \in H\}$ where $(g \circ h)_{(K,L)}(x) = h_L(g_K(x))$ for all $x \in X$.

A Result

- The nested MAC is secure provided that the following two conditions hold:
 - H is a secured MAC, given a fixed unknown key.
 - G is collision-resistant, given a fixed unknown key.

Adversaries

- Three kinds of adversaries:
 - forger for the nested MAC (big MAC attack)
 - forger for the little MAC (small MAC attack)
 - collision finder for the hash, when the key is secret (unknown key collision attack)

Theorem

Suppose $(X,Z,M,G\circ H)$ is a nested MAC. Suppose there does not exist an $(\varepsilon_1,q+1)$ – *collision attack* for a randomly chosen function $g_K \in G$, when the key K is secret. Further, suppose that there does not exist an (ε_2,q) – *forger* for a randomly chosen function $h_L \in H$, where L is secret. Finally suppose there exists an (ε,q) – *forger* for the nested MAC, for a randomly chosen function $(g \circ h)_{(K,L)} \in G \circ H$. Then $\varepsilon \leq \varepsilon_1 + \varepsilon_2$.

Result Proved in the class...

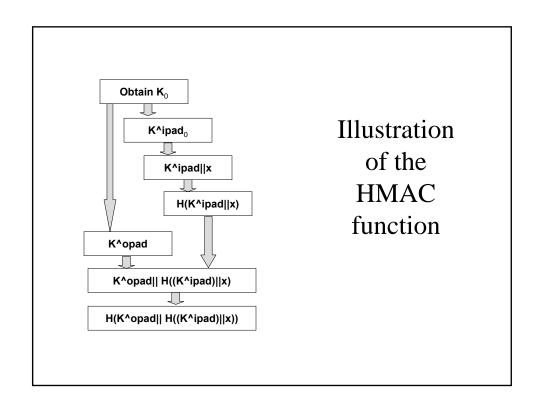
Hash based MAC (HMAC)

- HMAC is a nested MAC algorithm proposed by FIPS Standard.
- It constructs a MAC from an unkeyed hash function, namely SHA-1.
 - K: 512 bit key.
 - x is the message to be authenticated.
 - ipad and opad are 512 bit constants.

HMAC

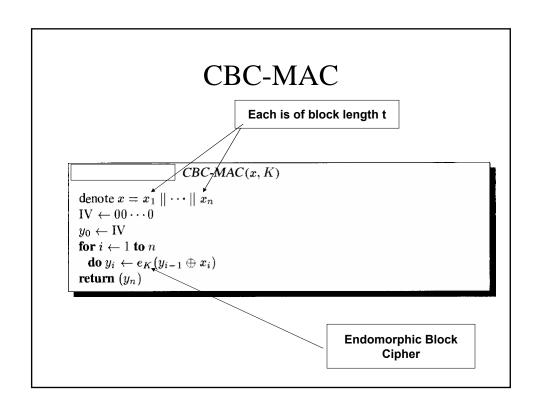
- ipad=3636...36; opad=5C5C...5C
- Thus the 160 bit MAC is defined as follows:

 $HMAC_K(x) = SHA - 1((K \oplus opad) || SHA - 1((K \oplus ipad || x)))$



Security Arguments

- First application of SHA-1 is assumed to be unknown key collision resistant.
- Second application of SHA-1 is assumed to be a secured MAC.
- Second SHA-1 needs only one compress function to be computed.
- Note that the "extension attack" is prevented in NMAC (or HMAC) because h_L avoids the exposure of g_K(x).



Attack on CBC-MAC

Set $q \approx 1.17 \times 2^{t/2}$ be an integer.

Choose q distinct bit strings of length t, which we denote $x_1^1,...,x_1^q$.

Choose q random bit strings of length t, which we denote $x_2^1,...,x_2^q$.

Let $x_3,...,x_n$ be fixed bit strings of length t.

Construct: $x^i = x_1^i || ... || x_n^i$, for $1 \le i \le q$.

Here for $3 \le k \le n$, $x_k = x_k^i$, for each i.

Note that $x^i \neq x^j$ if $i \neq j$, as $x_1^i \neq x_1^j$.

Attack on CBC-MAC

- The attacker now queries the hash value of the q, xⁱ values.
- Due to the Birthday Paradox, there is a collision with probability ½.
- Let h_K(xⁱ)=h_K(x^j). This happens if and only if y₂ⁱ=y₂^j, which happens if and only if:

$$y_1^i \oplus x_2^i = y_1^j \oplus x_2^j$$

Attack on CBC-MAC

- Let x_{δ} be a non-zero bit string of length t.
- Define: $v=x_1^i \parallel (x_2^i\oplus x_\delta) \parallel \cdots \parallel x_n^i$ and $w=x_1^j \parallel (x_2^j\oplus x_\delta) \parallel \cdots \parallel x_n^j$
- · The attacker now requests the MAC of v.
- . The MAC of w also is the MAC of v.
- So, he publishes (w, MAC of v) as a valid pair.
- Thus, we have an (1/2, O(2t/2))-forger.

Points to Ponder

- What would have happened if the hash function g, in the NMAC construction, would have been unkeyed?
- Why are different ipad and opads used?

References

- D. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC
- M. Bellare, R. Canetti, H. Krawczyk, "Keying Hash Functions for Message Authentication", 1996

Next Days Topic

• More Number Theoretic Results