Linear Cryptanalysis

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

Objectives

- Linear Approximations and bias value
- Piling Up Lemma
- Linear Approximation Tables
- Performing the Attack

Generalized lemma

Lemma 1 [1] For *n* independent, random binary variables X_1, X_2, \ldots, X_n , with bias $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$,

$$Pr(X_1 \oplus \ldots \oplus X_n = 0) = 1/2 + 2^{n-1} \prod_{i=1}^n \epsilon_i$$

Thus if X_1, X_2, \ldots, X_n are *n* linear approximations then the bias of the linear approximation made out of these *n* equations is denoted by [2]:

$$\epsilon_{1,2,\dots,n} = 2^{n-1} \prod_{i=1}^{n} \epsilon_i$$

Note that if there is one bias on the RHS which is 0, then LHS is also 0

Computing the probability of linear
approximation
$$Pr[X_1 = x_1, ..., X_m = x_m, Y_1 = y_1, ..., Y_n = y_n) = 0$$
if $(y_1, ..., y_n) \neq S(x_1, ..., x_m)$
$$Pr[X_1 = x_1, ..., X_m = x_m, Y_1 = y_1, ..., Y_n = y_n) = 2^{-m}$$
if $(y_1, ..., y_n) = S(x_1, ..., x_m)$

Linear Approximations of the 3(=4-1) round Cipher

Approximations of the S-Boxes with high values:

- In S_2^1 , the random variable $\mathbf{T_1} = \mathbf{U_5^1} \oplus \mathbf{U_7^1} \oplus \mathbf{U_8^1} \oplus \mathbf{V_6^1}$ has bias 1/4
- In S_2^2 , the random variable $\mathbf{T_2} = \mathbf{U_6^2} \oplus \mathbf{V_6^2} \oplus \mathbf{V_8^2}$ has bias -1/4
- In S_2^3 , the random variable $\mathbf{T}_3 = \mathbf{U}_6^3 \oplus \mathbf{V}_6^3 \oplus \mathbf{V}_8^3$ has bias -1/4
- In S_4^3 , the random variable $\mathbf{T_4} = \mathbf{U_{14}^3} \oplus \mathbf{V_{14}^3} \oplus \mathbf{V_{16}^3}$ has bias -1/4

If we assume that the 4 random variables are independent we can combine them by the Piling Up Lemma.

Next Days Topic

• Differential Cryptanalysis