

Algorithms for the DLP Problem

- If αⁱ was monotonically non decreasing with i, we could have done a binary search to find i.
 - but the problem with modular exponentiation is that there is no ordering of the powers.
 - Thus one have to do an exhaustive search in the worst case.
 - Thus it can be solved in O(n) time and O(1) space.
 - However pre-computation helps.

- Shank's Algorithm
- Pollard Rho Discrete Log Algorithm
- Index Calculus Method

Shanks Algorithm

Algorithm 6.1: SHANKS (G, n, α, β)

- 1. $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. for $j \leftarrow 0$ to m-1do compute α^{mj}
- 3. Sort the *m* ordered pairs (j, α^{mj}) with respect to their second coordinates, obtaining a list L_1
- 4. for $i \leftarrow 0$ to m 1do compute $\beta \alpha^{-i}$
- 5. Sort the *m* ordered pairs $(i, \beta \alpha^{-i})$ with respect to their second coordinates, obtaining a list L_2
- 6. Find a pair $(j, y) \in L_1$ and a pair $(i, y) \in L_2$ (i.e., find two pairs having identical second coordinates)
- 7. $\log_{\alpha} \beta \leftarrow (mj+i) \mod n$

	Tables				
.1:					• Match:
(0, 1) (5, 329) (10, 644) (15, 727) (20, 528) (25, 586)	$\begin{array}{c}(1,99)\\(6,211)\\(11,654)\\(16,781)\\(21,496)\\(26,575)\end{array}$	$\begin{array}{c}(2,93)\\(7,664)\\(12,26)\\(17,464)\\(22,564)\\(27,295)\end{array}$	$\begin{array}{c} (3,308)\\ (8,207)\\ (13,147)\\ (18,632)\\ (23,15)\\ (28,81) \end{array}$	(4, 559) (9, 268) (14, 800) (19, 275) (24, 676)	(10,644) and (19,644) $log_3525=(29x10)$ +19)mod 808=309.
(0, 525) (5, 132) (10, 440) (15, 388) (20, 754) (25, 356)	(1, 175) (6, 44) (11, 686) (16, 399) (21, 521) (26, 658)	(2, 328) (7, 554) (12, 768) (17, 133) (22, 713) (27, 489)	$\begin{array}{c}(3,379)\\(8,724)\\(13,256)\\(18,314)\\(23,777)\\(28,163)\end{array}$	$\begin{array}{c} (4, 396) \\ (9, 511) \\ (14, 355) \\ (19, 644) \\ (24, 259) \end{array}$	000-309.

