Modern Block Cipher Standards (DES)

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

DES Numerology

- DES is a Feistel cipher
- 64 bit block length
- 56 bit key length
- 16 rounds
- 48 bits of key used each round (subkey)
- Each round is simple (for a block cipher)
- Security depends primarily on "S-boxes"
- Each S-boxes maps 6 bits to 4 bits

- DES has an initial permutation and a final permutation after 16 rounds.
- These permutations are inverses of each other and operate on 64 bits.
- They have no cryptographic significance.
- The designers did not disclose their purpose.

Properties of the S-Box

- There are several properties
- We highlight some:
 - The rows are permutations
 - The inputs are a non-linear combination of the inputs
 - Change one bit of the input, and half of the output bits change (Avalanche Effect)
 - Each output bit is dependent on all the input bits

DES Subkey

- For rounds 1, 2, 9 and 16 the shift r_i is 1, and in all other rounds r_i is 2
- Bits 8,17,21,24 of LK omitted each round
- Bits 6,9,14,25 of RK omitted each round
- Compression permutation yields 48 bit subkey K_i from 56 bits of LK and RK
- Key schedule generates subkey

Exercise

Prove that decryption in DES can be done by applying the encryption algorithm to the ciphertext, with the key schedule reversed.

Weak keys

- A weak key is the one which after parity drop operation, consists either of all 0's, all 1's or half 0's and half 1's.
- Four out of the 2⁵⁶ keys are weak keys.

Keys before parity drop	Actual key	
(64 bits)	(56 bits)	
0101 0101 0101 0101	0000000 0000000	
1F1F 1F1F 0E0E 0E0E	0000000 FFFFFFF	
E0E0 E0E0 F1F1 F1F1	FFFFFF 0000000	
FEFE FEFE FEFE FEFE	FFFFFFF FFFFFF	

Semi Weak Keys

- A semi weak key creates only two different round keys and each of them is repeated eight times.
- There are six key pairs that are called semiweak keys.
- The round keys created from each pair are the same in different order.

Semi weak keys			
First key in the pair	Second key in the pair		
01FE 01FE 01FE 01FE	FE01 FE01 FE01 FE01		
1FE0 1FE0 0EF1 0EF1	E01F E01F F10E F10E		
01E0 01E0 01F1 01F1	E001 E001 F101 F101		
1FFE 1FFE 0EFE 0EFE	FE1F FE1F FE0E FE0E		
011F 011F 010E 010E	1F01 1F01 0E01 0E01		
E0FE E0FE F1FE F1FE	FEE0 FEE0 FEF1 FEF1		

F	A Samnl	A #A1110 A	1 ,•
	i Dumpi	e round	key generation
1	9153E54319BD	6EAC1ABCE642	7
2	6EAC1ABCE642	9153E54319BD	There are 8 equalround keys in eachsemi-weak keys.Also, the round keyin the first set is thesame as the 16thkey in the secondset.
3	6EAC1ABCE642	9153E54319BD	
4	6EAC1ABCE642	9153E54319BD	
5	6EAC1ABCE642	9153E54319BD	
6	6EAC1ABCE642	9153E54319BD	
7	6EAC1ABCE642	9153E54319BD	
8	6EAC1ABCE642	9153E54319BD	
9	9153E54319BD	6EAC1ABCE642	
10	9153E54319BD	6EAC1ABCE642	
11	9153E54319BD	6EAC1ABCE642	This means that the
12	9153E54319BD	6EAC1ABCE642	kevs are inverses
13	9153E54319BD	6EAC1ABCE642	of each other.
14	9153E54319BD	6EAC1ABCE642	
15	9153E54319BD	6EAC1ABCE642	Thus,
16	6EAC1ABCE642	9153E54319BD	E _{k2} (E _{k1} (P))=P

2DES

- Uses two applications of the DES cipher.
- The total key size is 56x2=112 bits.
- However 2DES is vulnerable to a known plaintext attack.

Security of 2 DES

- Then the attacker checks for a match in the table in the value of M. He notes the key pair (K₁,K₂)
- If there are more than one keys, he takes another (P,C) pair.
- The attacker continues until there is only key left.
- Thus attack complexity is around 2⁵⁷.
- What does this say about the security of 2DES?

Triple DES

- Since 2DES was a bad design, people consider 3 applications of DES.
- The first and third stages use K₁ as key.
- The second stage use K₂ as the key.
- Also, the middle stage uses decryption.
- Thus, setting $K_1 = K_2$ we have simple DES.

Exercises

DES (Data Encryption Standard) although an elegantly designed cipher has become old. Its n = 56 bit key is being challenged by the present day computation power. As an alternative, it was thought of applying DES twice, i.e in creating a product cipher $DES' = DES \times DES$. If the key space of DES was $K = \{0, 1\}^n$, the key size of the product cipher is expected to be $K_1 \times K_2 = (K_1, K_2)$, where $K_1, K_2 \in K$. The plaintext of the cipher is denoted by $P = \{0, 1\}^m$ and the cipher is endomorphic (the plaintext and the ciphertext are the same set).

In regard to this composed cipher answer the following questions:

1. What is the property in the DES construction which helps to increase the key length by performing such composition? (Another way of asking the question is: why is DES not idempotent?)

