Cryptographic Hash Functions (contd.)

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

The first reduction

Algorithm 4.4: COLLISION-TO-SECOND-PREIMAGE(h)

external ORACLE-2ND-PREIMAGE choose $x \in \mathcal{X}$ uniformly at random if ORACLE-2ND-PREIMAGE(h, x) = x'then return (x, x')else return (failure)

- Oracle-2nd-Preimage is an (ε,q) algorithm.
- Since it is a Las-Vegas algorithm, if it gives an answer it will be correct. Thus, x≠x' and h(x)=h(x'). Thus the collision is also found.
- Thus Collision-to-second-preimage is also an (ε,q) Las-Vegas algorithm

Reduction

THEOREM 4.5 Suppose $h : \mathfrak{X} \to \mathcal{Y}$ is a hash function where $|\mathfrak{X}|$ and $|\mathcal{Y}|$ are finite and $|\mathfrak{X}| \geq 2|\mathcal{Y}|$. Suppose ORACLE-PREIMAGE is a (1, Q)-algorithm for **Preimage**, for the fixed hash function h. Then COLLISION-TO-PREIMAGE is a (1/2, Q + 1)-algorithm for **Collision**, for the fixed hash function h.

• Proof discussed in class.

Construction of Iterated Hash Functions

- Extending a compression function to a hash function with an infinite domain
- A hash function created in this fashion is called an iterated hash function
- Consider hash functions whose inputs and outputs are bit strings
- |x|: length of a bit string x
- x||y: concatenation of strings x and y

- g: {0,1}^m→{0,1}ⁱ
- Define h(x)=g(z_r), g is a public function
- Sometimes, h(x)=z_r

The Preprocessing

x=x₁||x₂||...||x_k,
 where |x₁|=|x₂|=...=|x_{k-1}|=t-1 and |x_k|=t-1-d, where 0≤d≤t-2

- Thus,

$$k = \frac{n+d}{t-1} = \left\lceil \frac{n}{t-1} \right\rceil$$

When t=1

MERKLE-DAMGÅRD2(x)

external compress comment: compress: $\{0, 1\}^{m+1} \rightarrow \{0, 1\}^m$ $n \leftarrow |x|$ $y \leftarrow 11 \parallel f(x_1) \parallel f(x_2) \parallel \cdots \parallel f(x_n)$ denote $y = y_1 \parallel y_2 \parallel \cdots \parallel y_k$, where $y_i \in \{0, 1\}, 1 \le i \le k$ $g_1 \leftarrow \text{compress}(0^m \parallel y_1)$ for $i \leftarrow 1$ to k - 1do $g_{i+1} \leftarrow \text{compress}(g_i \parallel y_{i+1})$ return (g_k)

- Here the encoding, f is done in a special way.
 f(0)=0, f(1)=01
- The encoding is injective
- There does not exist two strings x≠x', such that y(x)=z||y(x'), that is no encoding is a postfix of another encoding.

Next Days Topic

• Cryptographic Hash Functions (contd.)