Stream Ciphers (contd.)

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

Theorem 1

If some LFSR of length L generates the sequence $s_0, s_1, ..., s_{N-1}$ but not the sequence $s_0, s_1, ..., s_{N-1}, s_N$ then any LFSR that generates the latter sequence has length L', satisfying:

 $L' \ge N + 1 - L$

Proof

Case 1: $L \ge N$, the theorem is trivially true. Case 2: L < N, let $c_1, c_2, ..., c_L$ and $c'_1, c'_2, ..., c'_{L'}$ denote the connection coefficients of the two LFSRs in question and assume that $L' \le N-L$. $\therefore \sum_{i=1}^{L} c_i s_{j-i} = s_j, j = L, L+1, ..., N-1$ $\neq s_N, j = N$ $\therefore \sum_{i=1}^{L'} c'_k s_{j-k} = s_j, j = L', L'+1, ..., N-1, N$

Lemma 1

If some LFSR of length L generates the sequence $s_0, s_1, ..., s_{N-1}$ but not the sequence $s_0, s_1, ..., s_{N-1}, s_N$ then $L_{N+1}(s) \ge \max[L_N(s), N+1-L_N(s)]$ From the monotonicity of $L_{N+1}(s) \ge L_N(s)$. From Theorem 1, $L_{N+1}(s) \ge N+1-L_N(s)$. Thus the lemma 1 follows.

Connection Polynomial

For a given s, let

 $\mathbf{C}^{N}(D) = 1 + C_{1}^{(N)}(D) + \dots + C_{L_{N}(S)}^{(N)}(D)^{L_{N}(S)}$

denote the connection polynomial of a minimal length $L_N(s)$ LFSR that generates $s_0, s_1, ..., s_{N-1}$

Discrepancy

Lemma 1 is actually an equality. We have seen this for the base case.

Assume an induction hypothesis for $L_N(s)$.

The corresponding polynomial is $C^{N}(D)$.

$$\therefore s_{j} \oplus \sum_{i=1}^{L_{n}(s)} c_{i}^{(n)} s_{j-i} = \begin{cases} 0, \ j = L_{n(s)}, \dots, n-1 \\ d_{n}, \ j = n \end{cases}$$

 d_n : next discrepancy (between s_n and the (n+1)st bit generated by the minimal length LFSR, which we have found to generate the first n bits of s.

Correcting the discrepancy

Case1: $d_n = 0$ LFSR also generates the first n+1 bits of s. Thus, $L_{n+1}(s) = L_n(s), C^{(n+1)}(D) = C^n(D)$ Case1: $d_n = 1$ Let m be the sequence length before the last length change in the minimal length register, i,e $L_m(s) < L_n(s)$ $L_{m+1}(s) = L_n(s)$

Recursive construction of polynomial

Claim:

 $C(D) = C^{n}(D) \oplus D^{n-m}C^{m}(D) \text{ is a valid next choice for } C^{n+1}(D).$ Note: degree of C(D)=max[L_n(s), n - m + L_m(s)] =max[L_n(s), n + 1 - L_n(s)] $\therefore C(D) \text{ is an allowable connection polynomial}$ for an LFSR of length L=max[L_n(s), n + 1 - L_n(s)]

s _n	d	T(D)	C(D)	L	m	B(D)	Ν
-	-	-	1	0	-1	1	C
0	0	-	1	0	-1	1	1
0	0	-	1	0	-1	1	2
1	1	1	1+D ³	3	2	1	3
1	1	1+D ³	1+D+D ³	3	2	1	4
1	0	1+D ³	1+D+D ³	3	2	1	5
0	0	1+D ³	1+D+D ³	3	2	1	6
1	0	1+D ³	1+D+D ³	3	2	1	7
1	1	1+D+D ³	1+D+D³ + D⁵	5	7	1+D+D ³	8

