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Objectives

• Linear Complexity

• Berlekamp Massey Algorithm
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The LFSR Structure
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An LFSR is said to generate a finite sequence 
s0,s1,…,sN-1 when this sequence coincides with 
the first N output digits of the LFSR for some 
initial loading.

Generation of a sequence

• If L≥N, the LFSR always generates 
the sequence.

• If L<N, it follows that the LFSR 
generates the sequence if and only 
if:
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Theorem 1
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If some LFSR of length L generates the sequence 
, ,...,  but not  the sequence , ,..., ,  

then any LFSR that generates the latter sequence 
has length L', satisfying:
                    '
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Proof
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Case 1: L N, the theorem is trivially true.
Case 2: L<N, let , ,...,  and ' , ' ,..., '
denote the connection coefficients of the two 
LFSRs in question and assume that L' N-L.
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Proof (contd.)
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Consider,

Note that { , ,..., } is a subset 
of { , ,..., }.
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te that { , ,..., } is a subset 
of { , ,..., }.
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Thus we have 
a contradiction. 
This proves the 

result.

Linear Complexity

• Define LN(s) as the minimum length of all 
LFSRs that generate s0, s1, …, sN-1

• Clearly, LN(s)≤N
• Moreover, LN(s) must be monotonically 

decreasing with increasing N.
• Convention: 

– all 0 sequence is generated by the LFSR with 
L=0

– When s0, s1, …, sN-1 are all 0’s but sN=1, then 
L=N+1 
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Lemma 1
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If some LFSR of length L generates the sequence 
, ,...,  but not  the sequence , ,..., ,  

then 
    ( ) max[ ( ), 1 ( )]
From the monotonicity of ( ) ( ).
From Theorem 1, (
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Thus the lemma 1 follows.
Ns N L s≥ + −

Berlekamp Massey’s Algorithm

• A recursive algorithm for producing one of 
the LFSRs of length LN(s), which 
generates s0, s1,…, sN-1 for N=1, 2, 3, …

• C(D)=1+C1D+…+CLDL which has degree at 
most L in the indeterminate.

• Convention: C(D)=1 for the LFSR of length 
L=0
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Connection Polynomial
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For a given s, let
C ( ) 1 ( ) ... ( )

denote the connection polynomial of a minimal 
length L ( ) LFSR that generates , ,...,
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Discrepancy
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Lemma 1 is actually an equality. We have seen this 
for the base case. 
Assume an induction hypothesis for L ( ).

The corresponding polynomial is C ( ).
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Correcting the discrepancy

( 1)
1

1: 0
LFSR also generates the first n+1 bits of s. Thus, 
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Let m be the sequence length before the last 
length change in the minimal length register, 
i,e 
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Proving the Induction Hypothesis
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Recursive construction of 
polynomial
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:
( ) (D) D C (D) is a valid next choice for C ( ).

:  degree of C(D)=max[L ( ), ( )]
                                   =max[L ( ), 1 ( )]
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Conclusions

• The LFSR with length L and 
connection polynomial C(D) 
generates s0,s1,…,sn

• Since L satisfies Lemma 1 with 
equality, the induction is also 
proved. 

The final Algorithm
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Example

• Consider the sequence of periodicity 
20:
10010011110001001110

• We plot the variation of the linear 
complexity with N.
– this is obtained by the Berlekamp

Massey Algorithm
– this is called Linear Profile

Example
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Exercise

• Reconstruct an LFSR (of the shortest 
length) which generates the 
sequence 00111011.

81+D+D3751+D+D3

+ D5
1+D+D311

71231+D+D31+D301

61231+D+D31+D300

51231+D+D31+D301

41231+D+D31+D311

31231+D3111

21-101-00

11-101-00

01-101---

NB(D)mLC(D)T(D)dsn



Low Power   Ajit Pal   IIT Kharagpur 12

Further Reading
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• D. Stinson, Cryptography: Theory and 
Practice, Chapman & Hall/CRC

• A. Menezes, P. Van Oorschot, Scott 
Vanstone, “Handbook of Applied 
Cryptography” (Available online)

Next Days Topic

• Stream Ciphers (contd.)


