Modern Block Cipher Standards (AES)

Debdeep Mukhopadhyay

Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

Finite Fields

- A finite field is a field with a finite number of elements.
- The number of elements in the set is called the order of the field.
- A field with order m exists iff m is a prime power,
 i.e m=pⁿ for some integer n and with p a prime integer.
- p is called the characteristic of the finite field.

Polynomials over a field A polynomial over a field F is an expression of the form : $b(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + ... + b_0$ x being called indeterminate of the polynomial, and the $b_i \in F$ the coefficients. The degree of a polynomial equals l if $b_j = 0$, $\forall j > l$, and l is the smallest number with this property. The set of polynomials over a field F is denoted by F[x]. The set of polynomials over a field F, which has a degree less than l, is denoted by F[x]_l

Example

Let *F* be the field in *GF*(2). Compute the sum of the polynomials denoted by 57 and 83. In binary, 57=01010111, and 83=10000011. In polynomial notations we have, $(x^6 + x^4 + x^2 + x + 1) \oplus (x^7 + x + 1)$ $= x^7 + x^6 + x^4 + x^2 + (1 \oplus 1)x + (1 \oplus 1)$ $= x^7 + x^6 + x^4 + x^2$ The addition can be implemented with the bitwise XOR instruction.

- First round of evaluation
 - 15 proposed algorithms accepted
- Second round
 - 5 proposed algorithms accepted
 - Rijndael, Serpent, 2fish, RC6, and MARS
- Final Standard November 2001
 - Rijndael selected as AES algorithm

	Key Length (Nk words)	Block Size (Nb words)	Number o Rounds <i>(Nr)</i>			
AES-128	4	4	10			
AES-192	6	4	12			
AES-256	8	4	14			

Key Expansion								
Expa	ansion o	of a 128-	bit Cipł	ier Key:				
Th	is section	contains	the key e	xpansion of	of the foll	owing cir	oher kev:	
Ci	pher Ke	v = 2b 7e	15 16 28	ae d2 a6 a	ab f7 15 8	88 09 cf 4	f 3c	
fc	or $Nk = 4$	which re	sults in					
w	0 = 2b7e	1516 w^{1} :	= 28aed?	a6 w? = a	hf71588 v	$w^3 = 09cf$	f4f3c	
vv		1310 W1 '	20acu2	au w2 - a	DI/1300 \			
i		After	After	D	After XOR		w[1]=	
(dec)	temp	RotWord()	SubWord()	RCON [1/NK]	with Rcon	w[i-Nk]	temp XO w[i-Nk]	
(dec) 4	temp 09cf4f3c	RotWord()	SubWord() 8a84eb01	01000000	with Rcon 8b84eb01	w[i-Nk] 2b7e1516	temp XO w[i-Nk] a0fafe1	
(dec) 4 5	temp 09cf4f3c a0fafe17	RotWord()	SubWord() 8a84eb01	01000000	with Rcon 8b84eb01	w[i-Nk] 2b7e1516 28aed2a6	temp XO w[i-Nk] a0fafe1 88542cb	
(dec) 4 5 6	temp 09cf4f3c a0fafe17 88542cb1	RotWord()	SubWord() 8a84eb01	01000000	with Rcon 8b84eb01	w[i-Nk] 2b7e1516 28aed2a6 abf71588	temp X0 w[i-Nk] a0fafe1 88542cb 23a3393	
(dec) 4 5 6 7	temp 09cf4f3c a0fafe17 88542cb1 23a33939	RotWord()	SubWord() 8a84eb01	01000000	with Rcon 8b84eb01	w[i-Nk] 2b7e1516 28aed2a6 abf71588 09cf4f3c	temp X0 w[i-Nk] a0fafe1 88542cb 23a3393 2a6c760	
(dec) 4 5 6 7 8	temp 09cf4f3c a0fafe17 88542cb1 23a33939 2a6c7605	RotWord() cf4f3c09 6c76052a	SubWord() 8a84eb01 50386be5	01000000 02000000	with Rcon 8b84eb01 52386be5	w[i-Nk] 2b7e1516 28aed2a6 abf71588 09cf4f3c a0fafe17	temp X0 w[i-Nk] a0fafel 88542cb 23a3393 2a6c760 f2c295f	

S SPC		4 1		C 11 .			
3 300	tion contain	s the key exp	73 b0 f7	da og 64 E	apher key:	2h	
	rbuer veð	- 80	90 79 e5	62 f8 ea d2	2 52 2c 6b	2D 7b	
Nk =	= 6, which re	sults in					
1	$w_0 = 8e73b0$	£7 W1	=da0e6452	$w_2 = w_2 = 0$	c810f32b	$W_3 = 80$	9079e5
,	$w_4 = 62f8ea$	d2 ws	= 522c6b7t				
	.4 022004	un	511002/1				
		1.0	After		After XOR		w[i]=
i (dec)	temp	After RotWord()	SubWord()	Rcon[i/Nk]	with Rcon	w[i-Nk]	temp XOR w[i-Nk]
i (dec) 6	temp 522c6b7b	RotWord() 2c6b7b52	SubWord()	Rcon[i/Nk] 01000000	with Rcon 707f2100	w[i-Nk] 8e73b0f7	temp XOR w[i-Nk] fe0c91f7
i (dec) 6 7	temp 522c6b7b fe0c91f7	After RotWord() 2c6b7b52	SubWord() 717f2100	Rcon[i/Nk]	with Rcon 707f2100	w[i-Nk] 8e73b0f7 da0e6452	temp XOR w[i-Nk] fe0c91f7 2402f5a5
i (dec) 6 7 8	temp 522c6b7b fe0c91f7 2402f5a5	After RotWord() 2c6b7b52	SubWord() 717f2100	Rcon [1/Nk]	with Rcon 707f2100	w[i-Nk] 8e73b0f7 da0e6452 c810f32b	temp XOR w[i-Nk] fe0c91f7 2402f5a5 ec12068e
i (dec) 6 7 8 9	temp 522c6b7b fe0c91f7 2402f5a5 ec12068e	After RotWord() 2c6b7b52	SubWord () 717f2100	Rcon [1/Nk] 01000000	with Rcon 707f2100	w[i-Nk] 8e73b0f7 da0e6452 c810f32b 809079e5	temp XOR w[i-Nk] fe0c91f7 2402f5a5 ec12068e 6c827f6b
i (dec) 6 7 8 9 10	temp 522c6b7b fe0c91f7 2402f5a5 ec12068e 6c827f6b	After RotWord() 2c6b7b52	SubWord () 717f2100	Rcon [1/Nk]	with Rcon 707f2100	w[i-Nk] 8e73b0f7 da0e6452 c810f32b 809079e5 62f8ead2	temp XOR w[i-Nk] fe0c91f7 2402f5a5 ec12068e 6c827f6b 0e7a95b9
(dec) 6 7 8 9 10 11	temp 522c6b7b fe0c91f7 2402f5a5 ec12068e 6c827f6b 0e7a95b9	Affer RotWord() 2c6b7b52	SubWord() 717f2100	Rcon [1/Nk]	with Rcon 707f2100	w[i-Nk] 8e73b0f7 da0e6452 c810f32b 809079e5 62f8ead2 522c6b7b	temp XOR w[i-Nk] fe0c91f7 2402f5a5 ec12068e 6c827f6b 0e7a95b9 5c56fec2

IZC	y La	pansi	OII(2)	30-DII	l Cip	ner r	xey)
his sec	ction contain	s the key exp	pansion of th	ne following c	ipher key:		
	Cipher Key	= 60	3d eb 10	15 ca 71 be	e 2b 73 ae	£0 85 7d	77 81
		1f	35 2c 07	3b 61 08 d	7 2d 98 10	a3 09 14	df f4
or <i>Nk</i> =	= 8, which re	sults in					
	$w_0 = 603 \text{deb}$	10 W1	=15ca71b	• w ₂ = :	2b73aef0	$w_3 = 85$	7d7781
	$w_4 = 1f352c$	07 W5	= 3b6108d	$w_6 = :$	2d9810a3	w ₇ = 09	14dff4
i		After	After	Daram [d / Mala]	After XOR	and diaments	w[i]=
(dec)	cemp	RotWord()	SubWord()	Reon[1/NK]	with Rcon	w[1-NK]	w[i-Nk]
8	0914dff4	14dff409	fa9ebf01	01000000	fb9ebf01	603deb10	9ba35411
9	9ba35411					15ca71be	8e6925af
10	8e6925af					2b73aef0	a51a8b5f
11	a51a8b5f					857d7781	2067fcde
12	2067fcde		b785b01d			1f352c07	a8b09c1a
13	a8b09cla					3b6108d7	93d194cd
14	93d194cd					2d9810a3	be49846e
15	be49846e			1		0914dff4	b75d5b9a
16	b75d5b9a	5d5b9ab7	4c39b8a9	02000000	4e39b8a9	9ba35411	d59aecb8

Network Security IIT Kharagpur

						T	nτ	701	rs	<u>р</u>	2_1	R	v				
										<u>.</u>	<u> </u>						
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f
	0	52	09	бa	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	е9	cb
	2	54	7b	94	32	a6	с2	23	3d	ee	4 c	95	0b	42	fa	c3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	бc	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
v	7	d0	2c	1e	8f	са	3f	0f	02	с1	af	bd	03	01	13	8a	бb
^	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	Ce	f0	b4	еб	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	бe
	а	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3 e	4b	C6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4 a	0đ	2d	e5	7a	9f	93	c9	9C	ef
	e	a0	e0	3b	4d	ae	2a	f5	b0	C8	eb	bb	3 C	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

InvShiftDow(state);	
InvSninRow(state); InvSubBytes(state);	
AddRoundKey(state, v	<i>w</i> [0, Nb-1];
out=state;	

