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Objectives
– Introduction to Finite Fields
– AES Algorithm

• Sub Byte
• Shift row
• Mix Column
• Add round Key

– Key Expansion
– Encryption / Decryption
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Finite Fields

• A finite field is a field with a finite number of 
elements.

• The number of elements in the set is called the 
order of the field.

• A field with order m exists iff m is a prime power, 
i.e m=pn for some integer n and with p a prime 
integer.

• p is called the characteristic of the finite field. 
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Complex Fields

• GF(p): The elements of the fields can be 
represented by 0, 1, …, p-1

• However if p is not prime, then addition and 
multiplications are not defined.

• However for finite fields GF(pn), with n>1, 
slightly complex representations are used.

• Elements are represented as polynomials 
over GF(p).
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Polynomials over a field

1 2
1 2 0

A polynomial over a field F is an expression 
of the form :
( ) ...
 being called indeterminate of the polynomial,  

and the  the coefficients.

n n
n n

i

b x b x b x b
x

b F

− −
− −= + + +

∈
The degree of a polynomial equals  if 0, > ,

and  is the smallest number with this property. 
The set of polynomials over a field F is denoted 
by F[x]. The set of  polynomials over a field F, 
whi

jl b j l

l

= ∀

ch has a degree less than ,  is denoted by F[x]|ll
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Operations on Polynomials

• Addition: 

( ) ( ) ( ) ,0i i ic x a x b x c a b i n= + ⇔ = + ≤ ≤

Addition is closed 
0 (polynomial with all coefficients 0) is the identity element.
The inverse of an element can be found by replacing each 
coefficient of the polynomial by its inverse in F.

[ ] ,  flF x< + > orms an Abelian group



D. Mukhopadhyay Crypto & Network 
Security   IIT Kharagpur 4

D. Mukhopadhyay Crypto & 
Network Security    IIT Kharagpur

Example

6 4 2 7

7 6 4 2

Let  be the field in (2). Compute the sum 
of the polynomials denoted by 57 and 83.
In binary, 57=01010111, and 83=10000011. 
In polynomial notations we have, 
( 1) ( 1)

(1 1)

F GF

x x x x x x
x x x x
+ + + + ⊕ + +

= + + + + ⊕
7 6 4 2

(1 1)

The addition can be implemented with the bitwise XOR
instruction.

x
x x x x

+ ⊕

= + + +
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Multiplication
• Associative
• Commutative
• Distributive wrt. addition of polynomials.

In order to make the multiplication closed over [ ] |
we select a polynomial m(x) of degree , called the 
reduction polynomial.
The multiplication is then defined as follows:
( ) ( ). ( ) ( ) ( ) (

lF x
l

c x a x b x c x a x b= ⇔ ≡ × ) (mod m(x))
Hence, the structure < [ ] | , ,.  is a commutative ring. 
For special choices of the polynomial m(x), the structure 
becomes a field.

l

x
F x + >
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Irreducible Polynomial

• A polynomial d(x) is irreducible over the field 
GF(p) iff there exist no two polynomials a(x) and 
b(x) with coefficients in GF(p)  such that 
d(x)=a(x)b(x), where a(x) and b(x) are of     
degree > 0.

Let F be the field GF(p). With suitable choice for the reduction 
polynomial, the structure < [ ] | , ,.  is a field with p  elements, 

usually denoted by GF(p ).

n
n

n

F x + >
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Example
8

6 4 2 7

13 11 9 8 7 7 5 3 2

6 4 2

13 11

Compute the product of the elements 57 and 83 in GF(2 )
57=01010111, and 83=10000011. 
In polynomial notations we have, 
( 1) ( 1)

( ) ( )
( 1)

x x x x x x
x x x x x x x x x x
x x x x

x x

+ + + + × + +

= + + + + ⊕ + + + +

⊕ + + + +

= + + 9 8 6 5 4 3

13 11 9 8 6 5 4 3

7 6 8 4 3

1
and,
( 1)

1 (mod 1)

x x x x x x

x x x x x x x x
x x x x x x

+ + + + + +

+ + + + + + + +

≡ + + + + + +
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Introduction to AES
• In 1999, NIST issued a new standard that said 

3DES should be used
– 168-bit key length
– Algorithm is the same as DES

• 3DES had drawbacks
– Algorithm is sluggish in software
– Only uses 64-bit block size
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Introduction to AES (Cont.)

• In 1997, NIST issued a CFP for AES
– security strength >= 3DES
– improved efficiency
– must be a symmetric block cipher (128-bit)
– key lengths of 128, 192, and 256 bits
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Introduction of AES (cont.)
• First round of evaluation

– 15 proposed algorithms accepted
• Second round

– 5 proposed algorithms accepted
• Rijndael, Serpent, 2fish, RC6, and MARS

• Final Standard - November 2001
– Rijndael selected as AES algorithm
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Rijndael Algorithm
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Difference between 
Rijndael and AES

• Rijndael is a block cipher with both a variable 
block length and a variable key length.

• The block and key lengths can be independently 
fixed to any multiple of 32, ranging from 128 to 
256 bits.

• The AES fixes the block length to 128 bits, and 
supports key lengths of 128, 192 and 256 bits. 
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Rijndael Algorithm
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Rijndael Algorithm

• In Rijndael, there are four round functions.
(1) Byte Sub
(2) Shift Row
(3) Mix Columns
(4) Add Round Key
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Byte Sub
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The AES SBox

• Based on the mapping defined by K. 
Nyberg, published in Eurocrypt 1993.

• The input is an eight bit value, a. Here, a is 
in GF(28).

• The SBox is based on the mapping:
1, 0

:
0, 0

a a
g a b

a

−⎧ ≠
→ = ⎨

=⎩
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The AES SBox

• In addition no fixed points  or opposite 
fixed points were desired.

• Hence an affine mapping was defined.

[ ] 00,
             , 
S a a a

FF a
⊕ ≠ ∀

≠ ∀
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The AES S-Box Affine mapping

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0
1 1 0 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1
1 1 1 1 0 0 0 1 1

b a
b a
b a
b a
b a
b a
b a
b a

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= ⊕⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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S-Box
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Shift Row
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Mix Columns
• Mix Columns:
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Add Round Key

Modern Block Cipher Standards 
(AES)
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Assistant Professor
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Objectives

• The AES Key scheduling

• The AES Decryption function

• Implementation of the AES Round on 
modern processors
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The AES KeyScheduling
• Efficiency:

– Low working memory
– Performance on a wide range of processors

• Symmetry elimination: use round constants 
to eliminate symmetricity

• Diffusion: High diffusion of cipher key 
differences into the expanded key

• Non-linearity: Exhibit high non-linearity to 
prevent the determination of differences in 
the expanded key from that of the input key.
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Key Expansion
• The AES algorithm takes the Cipher Key, K, and performs a Key 

Expansion routine to generate a key schedule.

• The Key Expansion generates a total of Nb (Nr + 1) words: the 
algorithm requires an initial set of Nb words, and each of the Nr 
rounds requires Nb words of key data.

• Key Expansion includes the following functions :
(1)RotWord : Takes a word [a0,a1,a2,a3] as input , performs a 

cyclic permutation, and returns the word [a1,a2,a3,a0]
(2)SubWord : is a function that take a 4-bytes input word and 

applies the S-box to each of the four bytes to produce and 
output word.

(3)Rcon[i/NK] : contains the values given by [xi-1, 
{00},{00},{00}], with xi-1 being powers of x (x is denoted as 
{02}) in the field GF(28).
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The Key Scheduling Algorithm     
for Nk≤6

keyexpansion(byte key[4*Nk],word w[(Nr+1)*Nb],Nk)
word temp; i=0;
while (i<Nk)
{ w[i]={key[4i],key[4i+1]key[4i+2]key[4i+3]};

i=i+1;
}
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The Key Scheduling Algorithm     
for Nk≤6

while(i<Nb(Nr+1)){
temp=w[i-1];
if(i mod Nk = 0)
temp= Subword(Rotword(temp)) xor Rcon[i/Nk];

w[i]=temp xor w[i-Nk];
i=i+1;

}
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The Round Constant

• Each round constant is a 4 byte value, where 
the right most three bytes are always 0.

• The left byte is equal to xi-1, where x is an 
element in GF(28)

• The Round Constants can be either obtained 
from a table or computed by multiplication in 
GF(28), where m(x)=x8+x4+x3+x+1 is the 
reduction polynomial.
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Powers of x in GF(28)
• RC1 = x1-1=x0 =       0000 0001  =  0116
• RC2 = x2-1 = x   =       0000 0010  =  0216
• RC3 = x3-1 = x2  =       0000 0100  =  0416
• RC4 = x4-1 = x3  =       0000 1000  =  0816
• RC5 = x5-1 = x4  =       0001 0000  =  1016
• RC6 = x6-1 = x5  =       0010 0000  =  2016
• RC7 = x7-1 = x6  =       0100 0000  =  4016
• RC8 = x8-1 = x7  =       1000 0000  =  8016
• RC9 = x9-1 = x8  =       0001 1011  =  1B16
• RC10 = x10-1 = x9=     0011 0110   =   3616
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When Nk>6…
while(i<Nb(Nr+1)){

temp=w[i-1];
if(i mod Nk = 0)
temp= Subword(Rotword(temp)) xor Rcon[i/Nk];

if(i mod Nk=4)
temp = Subword(temp);

w[i]=temp xor w[i-Nk];
i=i+1;

}
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Key Expansion 
Expansion of a 128-bit Cipher Key:

This section contains the key expansion of the following cipher key: 
Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c 
for Nk = 4, which results in
w0 = 2b7e1516 w1 = 28aed2a6 w2 = abf71588 w3 = 09cf4f3c
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Key Expansion (192-bit Cipher Key)
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Key Expansion(256-bit Cipher Key)
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Algorithm of Encryption process
Cipher (byte  in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)]
begin

byte state [4,Nb];
state = in;
AddRoundKey(state, w[0,Nb-1];
for(round=1 to Nr-1)
begin

SubBytes(state);
ShiftRow(state);
MixColumn(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1];

end
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Last Round of AES encryption

SubBytes(state);
ShiftRow(state);

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1];

out=state;
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Inverse Cipher (decryption)

• The cipher transformations can be inverted 
and then implemented in reverse order to 
produce a straightforward Inverse Cipher for 
the AES Algorithm. The individual of 
transformation used in the Inverse Cipher 
process the state.

• InvshiftRows( ) 
• InvSubBytes( )
• InvMixColumn( )
• AddRoundKey( )



D. Mukhopadhyay Crypto & Network 
Security   IIT Kharagpur 21

D. Mukhopadhyay Crypto & 
Network Security    IIT Kharagpur

InvShiftRows( )
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Inverse S-Box
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InvMixColumns
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Algorithm of Decryption process
InvCipher (byte  in[4*Nb],byte out[4*Nb],word w[Nb*(Nr+1)]
begin

byte state [4,Nb];
state = in;
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1];

for(round= Nr-1 to 1)
begin

InvShiftRow(state);
InvSubBytes(state);
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1];
InvMixColumn(state);

end
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Last Round of AES decryption

InvShiftRow(state);
InvSubBytes(state);

AddRoundKey(state, w[0, Nb-1];

out=state;
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Some Points

• The order of InvShift Rows and               
InvSubBytes is indifferent.

• The order of AddRoundKey and 
InvMixColumns can be  inverted if the 
round key is adapted accordingly.
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A Linear transformation can be 
pushed through an XOR

⊕ L

k

x
L(x k)⊕

⊕L

k

x L(x k)⊕

L
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Encryption steps for 
two round AES variant

• AddRoundKey(State, ExpandedKey[0]);
• SubBytes(State);
• ShiftRow(State);
• MixColumn(State);
• AddRoundKey(State, ExpandedKey[1]);
• SubBytes(State);
• ShiftRow(State);
• AddRoundKey(State, ExpandedKey[2]);
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Decryption steps for 
two round AES variant

• AddRoundKey(State, ExpandedKey[2]);
• InvShiftRow(State);
• InvSubBytes(State);
• AddRoundKey(State, ExpandedKey[1]);
• InvMixColumn(State);
• InvShiftRow(State);
• InvSubBytes(State);
• AddRoundKey(State, ExpandedKey[0]);
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Equivalent Decryption steps for 
two round AES variant

• AddRoundKey(State, ExpandedKey[2]);
• InvSubBytes(State);
• InvShiftRow(State);
• InvMixColumn(State);
• AddRoundKey(State, EqExpandedKey[1]);
• InvSubBytes(State);
• InvShiftRow(State);
• AddRoundKey(State, ExpandedKey[0]);
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Equivalent Decryption

• The equivalent key-scheduling can be 
obtained by applying InvMixColumns after the 
key-scheduling algorithm.

• This can be generalized to the full round AES.
• Thus we see that in the equivalent decryption 

the sequence of steps is similar.
– This helps implementation
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Implementation on modern 
processors

• Different steps of the round 
transformation can be combined in a 
single set of look up tables.

• This allows very fast implementation on 
processors with word length 32 or 
greater.
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AES on the table!

, ,

Let the input of the round transformation be denoted by 
,  and the output of SubBytes by .

[ ],0 4 and 0

Let the output of ShiftRows be denoted by ,  and the 
output of MixColumns by 

i j RD i j b

a b
b S a i j N

c

∴ = ≤ < ≤ <

0

1

2

3

0,0,

1,1,

2, 2,

3, 3,

0, 0,

1, 1,

2, 2,

3, 3,

.

= ,0 j<N

02 03 01 01
01 02 03 01

and,  ,0 j<N
01 01 02 03
03 02 01 01

j Cj

j Cj
b

j j C

j j C

j j

j j

j j

j j

d
bc
bc

c b
c b

d c
d c
d c
d c

+

+

+

+

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∴ ≤⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ≤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

The above addition in the indices are done modulo N .

b

b
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AES on the table!

0

1

2

3

0,0,

1,1,

2, 2,

3, 3,

0,

1,

2,

3,

Combining the above equations we have,
[ ]02 03 01 01
[ ]01 02 03 01

 ,0 j<N
01 01 02 03 [ ]
03 02 01 01 [ ]

 

RD j Cj

RD j Cj
b

j RD j C

j RD j C

j

j

j

S ad
S ad

d S a
d S a

d
d
d
d

+

+

+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ≤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⇒
0 0

0 0

0, 1,

2, 3,

02 03
01 02

[ ] [ ]
01 01
03 01

01 01
03 01

                 [ ] [ ],0 j<N
02 03
01 02

RD j C RD j C

j

RD j C RD j C b

S a S a

S a S a

+ +

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊕
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊕ ⊕ ≤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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0 1 2 3

0 1

2 3

Define 4 tables, , ,  and .
02 [ ] 03 [ ]
01 [ ] 02 [ ]

[ ] , [ ]
01 [ ] 01 [ ]
03 [ ] 01 [ ]

01 [ ] 01 [ ]
03 [ ] 0

[ ] , [ ]
02 [ ]
01 [ ]

RD RD

RD RD

RD RD

RD RD

RD RD

RD

RD

RD

T T T T
S a S a
S a S a

T a T a
S a S a
S a S a

S a S a
S a

T a T a
S a
S a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 [ ]
03 [ ]
02 [ ]

RD

RD

RD

S a
S a
S a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

AES on the table!
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Cost of the table(s)
• Each table has 256 entries of size 4 bytes. 

Thus each table is of 1 kB.
• Since AddRoundKey can be implemented by 

additional 32 bit XOR, AES round can be 
implemented with 4 kB of tables, with 4 table 
look ups and one XOR per column per round.

• Note that final round does not  have a 
Mixcolumn step.

• Using some additional simple operations, the 
4 tables can be reduced to 1. (How?)
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Further Reading

• Douglas Stinson, Cryptography Theory 
and Practice, 2nd Edition, Chapman & 
Hall/CRC

• Joan Daemen, Vincent Rijmen, “The 
Design of Rijndael”, Springer Verlag
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Exercise

• Convince yourself that diffusion takes 
place very fast in AES. 
– How many rounds are necessary for a one 

byte diffusion to spread to the entire AES 
state matrix?
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Number of rounds of AES-128

• Two rounds provide full diffusion

• Short cut attacks exist on 6 rounds of AES-
128.

• As a conservative approach, two rounds of 
diffusion are provided at the beginning and 
two at the end, thus explaining the 10 rounds.
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Number of rounds

• Number of rounds increased by 1 for every 
32 bits additional key bits.

• The main reason is we need to avoid short 
cut attacks. Since with the increase in key 
size, the exhaustive key search grows 
exponentially, the short cut attacks will 
work for larger number of rounds than for 
AES-128.
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Attacks on reduced variants 

• Linear Cryptanalysis

• Differential Cryptanalysis

• Related key attacks

• Boomerang attacks

• Square attacks
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Next days topic

• Cryptanalysis of Block Ciphers:
– Linear Cryptanalysis


