
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Procedures and Data

2

The Stack for Data Storage
 We have seen that the stack can be used for

procedure calls, and for temporary storage of
data.

 Let us see the memory address space in the
MIPS memory.

Overview of the memory address space

$28

$29

$30

Reserved

Program

Static data

Dynamic Data

1 M words (reserved for

system)

Text Segment

63 M words

1000 0000

1000 8000

1000 f f f f

addressable

with

16-bit

signed offset

$gp

$sp

$fp

0000 0000

0040 0000

7fff fffc

Stack Segment

Data Segment

448 M words

reserved for memory
mapped I/O

3

Push and Pop in Stack
 The stack pointer $sp, points to the top

element in the stack.

 Push decrements the stack pointer and puts an
element into the stack.

 Pop removes an element from the stack, and
then adds the stack pointer.

Effects of push and pop on the stack

a

b

a

b

a

b

c

sp

sp

sp

Push c
Pop x

addi $sp, $sp,-4

sw $t4,0($sp)
lw $t5,0($sp)

addi $sp,$sp,4

4

The pop operation
 Note that the pop operation does not erase the old

top element, c

 c is still there, and would be still accessible by -
4($sp).

 However, it is not a part of the stack frame.
 Thus this is a logical deletion.

 Hence to delete the top 10 elements, we can
(logically) remove them by increasing the stack
pointer by 40.

The Stack Frame
 The stack is used for various purposes.
 Two of the important ones are:

 To pass more than 4 input parameters, or receive more than two
results.

 Place to store when calling other procedures (during nested call).

 Each procedure maintains an area: called as its stack frame.
 Its delimitors are $sp (top of the stack frame), and $fp(frame-pointer,

the other end).

 After the procedure terminates, the calling procedure expects
to find the stack undisturbed
 Thus it can restore the saved registers to their original values and

proceed with its own computations.

5

Use of the stack for procedures

a
b
c$sp

fp

frame for

current

procedure
a
b
c$fp

frame for

previous

procedure

Old ($fp)

y

local variables

Saved

Registers

$sp
frame for

current

procedure

The Frame Pointer
 It provides a stable reference point for addressing

memory words in the portion of the stack
corresponding to the present procedure.

 The words in the current frame are 4($fp),8($fp),…

 Though the stack pointer changes in the course of
the procedure, the frame pointer holds a fixed
address.

 Note that the use of the frame pointer is entirely
optional.

6

Example
proc: sw $fp, -4($sp)

addi $fp,$sp,0
addi $sp,$sp,-12
sw $ra,4($sp)
sw $s0,0($sp)
…
lw $s0,0($sp)
lw $ra,4($sp)
addi $sp,$fp,0
lw $fp,8($sp)
jr $ra

Reduce unnecessary stack operations

proc: sw $s0,-4($sp)

…

lw $s0, -4($sp)

jr $ra

This reduces the procedure call substantially.

7

Some Other Instructions
 Special arithmetic/logical instructions

 mult/div

 mult $s0, $s1 #Hi, Lo are set to $s0 x $s1

 div $s0, $s1 #Hi is $s0 mod $s1

 mfhi $t0 #set $t0 to (Hi)

 mflo $t0 #set $t0 to (Lo)

The mult and div instructions

000000 10000 10001 00000 00000

ALU

Instruction

Source

register 1

Unused function

mult=24,

div=26

0110x0

Source

register 2

000000 00000 00000 01000 00000

ALU

Instruction

Unused Unused function

mfhi=16

mflo=18

0100x0

Unused

Unused

Destination

register

8

The Shift Operations

000000 00000 10001 01000 00010

ALU

Instruction

Unused Shift

amount

function

sl1=0,

sr1=2

0000x0

Source

register

000000 10000 10001 01000 00000

ALU

Instruction

Amount

Register

Unused function

sl1v=4

srlv=6

0001x0

Unused

Destination

Regiister

Destination

register

Arrays and Pointers
 Often it is important to step through an array

or list.
 Two basic ways:
 Index: Uses a register that holds the index i and

increment the register in each step to effect
moving from element i of the list to element i+1.

 Pointer: Uses a register that points to (holds the
address of) the list element being examined, and
updates it each step to point to the next element.

9

Maximum sum prefix in a list of
integers

array base address A in $a0, its length n in $a1.

length of max-sum prefix: $v0

associated sum: $v1

Program
mspfx: addi $v0, $zero, 0 #initialize length

addi $v1, $zero, 0 #initialize max sum
addi $t0, $zero, 0 #initialize index to 0
addi $t1, $zero, 0#initialize running sum

loop: add $t2, $t0, $t0
add $t2, $t2, $t2
add $t3, $t2, $a0
lw $t4, 0($t3)

10

Program
add $t1, $t1, $t4
slt $t5, $v1, $t1
bne $t5, $zero, mdfy
j test
mdfy: addi $v0, $v0, 1

addi $v1, $t1, 0
test: addi $t0, $t0, 1

slt $t5, $t0,$a1
bne $t5, $zero, loop

done: jr $ra

Selection Sort using Pointers
#$a0 pointer to first element in unsorted array
#$a1 pointer to last element in unsorted array
#$t0 temporary place for value of last element
#$v0 pointer to max element in unsorted part
#$v1 value of max element in unsorted part
sort: beq $a0, $a1,done

jal max
lw $t0,0($a1)
sw $t0,0($v0)
sw $v1,0($a1)
addi $a1,$a1,-4

11

Selection Sort using Pointers
#$a0 pointer to first element
#$a1 pointer to last element
#$t0 pointer to next element
#$t1 value of next element
#$t2 result of (next) < (max)
#$v0 pointer to max element
#$v1 value of max element
max: addi $v0,$a0,0

lw $v1,0($v0)
addi $t0,$a0,0

loop: beq $t0,$a1,ret
addi $t0,$t0,4
lw $t1,0($t0)
slt $t2,$t1,$v1
bne $t2,$zero,loop
addi $v0,$t0,0 #update
addi $v1,$t1,0 #new max
j loop

ret: jr $ra

Rest of Procedures, refer to
Tutorial provided in the Lab.

