
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Procedures and Data

2

The Stack for Data Storage
 We have seen that the stack can be used for

procedure calls, and for temporary storage of
data.

 Let us see the memory address space in the
MIPS memory.

Overview of the memory address space

$28

$29

$30

Reserved

Program

Static data

Dynamic Data

1 M words (reserved for

system)

Text Segment

63 M words

1000 0000

1000 8000

1000 f f f f

addressable

with

16-bit

signed offset

$gp

$sp

$fp

0000 0000

0040 0000

7fff fffc

Stack Segment

Data Segment

448 M words

reserved for memory
mapped I/O

3

Push and Pop in Stack
 The stack pointer $sp, points to the top

element in the stack.

 Push decrements the stack pointer and puts an
element into the stack.

 Pop removes an element from the stack, and
then adds the stack pointer.

Effects of push and pop on the stack

a

b

a

b

a

b

c

sp

sp

sp

Push c
Pop x

addi $sp, $sp,-4

sw $t4,0($sp)
lw $t5,0($sp)

addi $sp,$sp,4

4

The pop operation
 Note that the pop operation does not erase the old

top element, c

 c is still there, and would be still accessible by -
4($sp).

 However, it is not a part of the stack frame.
 Thus this is a logical deletion.

 Hence to delete the top 10 elements, we can
(logically) remove them by increasing the stack
pointer by 40.

The Stack Frame
 The stack is used for various purposes.
 Two of the important ones are:

 To pass more than 4 input parameters, or receive more than two
results.

 Place to store when calling other procedures (during nested call).

 Each procedure maintains an area: called as its stack frame.
 Its delimitors are $sp (top of the stack frame), and $fp(frame-pointer,

the other end).

 After the procedure terminates, the calling procedure expects
to find the stack undisturbed
 Thus it can restore the saved registers to their original values and

proceed with its own computations.

5

Use of the stack for procedures

a
b
c$sp

fp

frame for

current

procedure
a
b
c$fp

frame for

previous

procedure

Old ($fp)

y

local variables

Saved

Registers

$sp
frame for

current

procedure

The Frame Pointer
 It provides a stable reference point for addressing

memory words in the portion of the stack
corresponding to the present procedure.

 The words in the current frame are 4($fp),8($fp),…

 Though the stack pointer changes in the course of
the procedure, the frame pointer holds a fixed
address.

 Note that the use of the frame pointer is entirely
optional.

6

Example
proc: sw $fp, -4($sp)

addi $fp,$sp,0
addi $sp,$sp,-12
sw $ra,4($sp)
sw $s0,0($sp)
…
lw $s0,0($sp)
lw $ra,4($sp)
addi $sp,$fp,0
lw $fp,8($sp)
jr $ra

Reduce unnecessary stack operations

proc: sw $s0,-4($sp)

…

lw $s0, -4($sp)

jr $ra

This reduces the procedure call substantially.

7

Some Other Instructions
 Special arithmetic/logical instructions

 mult/div

 mult $s0, $s1 #Hi, Lo are set to $s0 x $s1

 div $s0, $s1 #Hi is $s0 mod $s1

 mfhi $t0 #set $t0 to (Hi)

 mflo $t0 #set $t0 to (Lo)

The mult and div instructions

000000 10000 10001 00000 00000

ALU

Instruction

Source

register 1

Unused function

mult=24,

div=26

0110x0

Source

register 2

000000 00000 00000 01000 00000

ALU

Instruction

Unused Unused function

mfhi=16

mflo=18

0100x0

Unused

Unused

Destination

register

8

The Shift Operations

000000 00000 10001 01000 00010

ALU

Instruction

Unused Shift

amount

function

sl1=0,

sr1=2

0000x0

Source

register

000000 10000 10001 01000 00000

ALU

Instruction

Amount

Register

Unused function

sl1v=4

srlv=6

0001x0

Unused

Destination

Regiister

Destination

register

Arrays and Pointers
 Often it is important to step through an array

or list.
 Two basic ways:
 Index: Uses a register that holds the index i and

increment the register in each step to effect
moving from element i of the list to element i+1.

 Pointer: Uses a register that points to (holds the
address of) the list element being examined, and
updates it each step to point to the next element.

9

Maximum sum prefix in a list of
integers

array base address A in $a0, its length n in $a1.

length of max-sum prefix: $v0

associated sum: $v1

Program
mspfx: addi $v0, $zero, 0 #initialize length

addi $v1, $zero, 0 #initialize max sum
addi $t0, $zero, 0 #initialize index to 0
addi $t1, $zero, 0#initialize running sum

loop: add $t2, $t0, $t0
add $t2, $t2, $t2
add $t3, $t2, $a0
lw $t4, 0($t3)

10

Program
add $t1, $t1, $t4
slt $t5, $v1, $t1
bne $t5, $zero, mdfy
j test
mdfy: addi $v0, $v0, 1

addi $v1, $t1, 0
test: addi $t0, $t0, 1

slt $t5, $t0,$a1
bne $t5, $zero, loop

done: jr $ra

Selection Sort using Pointers
#$a0 pointer to first element in unsorted array
#$a1 pointer to last element in unsorted array
#$t0 temporary place for value of last element
#$v0 pointer to max element in unsorted part
#$v1 value of max element in unsorted part
sort: beq $a0, $a1,done

jal max
lw $t0,0($a1)
sw $t0,0($v0)
sw $v1,0($a1)
addi $a1,$a1,-4

11

Selection Sort using Pointers
#$a0 pointer to first element
#$a1 pointer to last element
#$t0 pointer to next element
#$t1 value of next element
#$t2 result of (next) < (max)
#$v0 pointer to max element
#$v1 value of max element
max: addi $v0,$a0,0

lw $v1,0($v0)
addi $t0,$a0,0

loop: beq $t0,$a1,ret
addi $t0,$t0,4
lw $t1,0($t0)
slt $t2,$t1,$v1
bne $t2,$zero,loop
addi $v0,$t0,0 #update
addi $v1,$t1,0 #new max
j loop

ret: jr $ra

Rest of Procedures, refer to
Tutorial provided in the Lab.

