
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Instruction Execution Steps:
The Multi Cycle Circuit

2

The Micro Mips ISA

The Instruction Format

6 bits5 bits5 bits5 bits5 bits6 bits

op rs rt rd sh fn

Operand.offset,16 bits

immOpcode Source 1

or base

Source 2

or dest

Destination Unused Opcode ext

jta

jump target address

3

Performance of the Single Cycle
Architecture

 The above design of control circuit is a
stateless and combinational design.

 Each new instruction is read from the PC, and
is executed in one single clock.
 Thus CPI=1

 The clock cycle is determined by the longest
instruction.

lw is the longest instruction
 lw execution includes all the possible steps:

1. Instruction Excess: 2 ns
2. Register Read: 1 ns
3. ALU operation: 2 ns
4. Data Cache Access: 2 ns
5. Register Write-back:1 ns

Total: 8 ns
Thus a clock frequency of 125 MHz suffices.
So, for 1 instruction, (1/125) x 10-6 sec
Thus, 125 Million Instructions are executed per second (125

MIPS)

4

Obtaining better performance
 Note that the average instruction time is less, depends on the

type of instruction, and their percentages in an application.
 Rtype 44% 6 ns No data cache

Load 24% 8 ns
Store 12% 7ns No register write-back
Branch 18% 5ns Fetch+Register Read+Next-addr formation
Jump 2% 3ns Fetch + Instruction Decode
Weighted average = 6.36 ns

So, with a variable cycle time implementation, the performance is
157 MIPS

However, this is not possible. But we see that a single cycle
implementation has a poor performance.

Summary
 Clock cycle is determined by the slowest instruction.

 If the MIPS ISA includes more complex
instructions, the disadvantage is more.
 For example if we add a MULT/DIV instruction, then all

operations need to be slowed down.

 Thus MIPS does the MIPS/DIV instruction to a separate
block (than the ALU block), with separate registers Hi
and Lo.
 sufficient time is kept to write back the results to the register file

5

Shorter Clock Cycles in Multi-cycle
implementation
 The MIPS instructions typically has a set of actions,

namely: memory access, register read, ALU
operation, register write back.

 Each takes around 2 ns time.
 In a single cycle implementation, the worst-case

(longest) time of the instructions is taken as the
clock frequency.

 In a multi-cycle implementation, a subset of these
actions is performed in one clock: thus the clock
cycle can be much shorter.

 Every instructions takes several clock cycles (thus
CPI ≠1)

Comparision between the two
approaches
 Consider the execution of n instructions, with the

following characteristics
Name Time needed No of basic operations

--
Instruction 1 t1 i1

...
Instruction 2 tn in

Say, the max(t1,…,tn)=t, and each basic operation takes
t’ time units.

6

Comparision between the two
approaches

 Single Cycle: Clock Period : t
Total time = nt

 Multi Cycle: Clock Period: t’
Total time = (i1+…+in)t’

Thus, multi-cycle is better if:
(i1+…+in)t’ < nt

or, (i1+…+in)<n(t/t’)
or, I < nr

I=8, n=2, r=4

7

I=7, n=2, r=4

TIME

SAVED

Multi-cycles of the Instructions
 Each instruction starts in the same way (at the same

state) and passes through 3-5 clock cycles before
being executed:

1. Instruction Fetch Cycle

2. Instruction Decode and Register Access

3. update of PC (Jump/Branch), ALU operations: (-) in
case of branch, (+) in case of lw/sw, varies (in case of
ALU-type instructions)

4. Memory Read (lw), Memory Write (sw)

5. Register Write Back (lw)

8

Subtle Points/Differences from the
single cycle implementation

 A single memory unit suffices (as read and
write from and to memory) are at different
clock cycles.

 Requirement of Instruction Register: This
register has to hold the instructions to
generate appropriate control signals through
the multiple cycles until it is executed.

Abstraction of Instruction Execution
Unit

PC

CONTROL UNIT

op fn

ALUCACHE

Inst
Reg

Data
Reg

z Reg

imm

REG
FILE

rs,rt,rd

(rs)

(rt)

x Reg

y Reg

jta

9

The control state machine

Inst’Data=0
MemRead=1
IRWrite=1
ALUSrX=0
ALUSrY=0

ALUFunc=‘+’
PCSrc=3

PCWrite=1

ALUSrX=0
ALUSrY=3

ALUFunc=‘+’

ALUSrX=1
ALUSrY=1 or 2

ALUFunc=varies

ALUSrx=1
ALUSrY=2

ALUFunc=‘+’

ALUSrX=1
ALUSrY=1

ALUFunc=‘-’
JumpAddr=%

PCSrc=@
PCWrite=#

RegDst=0 or 1
RegInData=1
RegWrite=1

Inst’Data=1
MemRead=1

Inst’Data=1
memWrite=1

RegDst=0
RegInData=0
RegWrite=1

State 0

State 1 State 2 State 3 State 4

State 5
State 6

State 7 State 8

ALUtype

lw/

sw

Jump/

Branch

sw

lw

State 5
 %: 0 for j or jal, 1 for syscall, don’t care for

other instructions

 @: 0 for j, jal, syscall, 1 for jr, 2 for branches

 #: 1 for j, jr, jal, syscall, ALUzero(‘) for
beq(bne),bit 31 of ALUout for bltz

 For jal, RegDst=2, RegInData=1, RegWrite=1

10

FSM Types

Next state logic
(combinational)

Current State
Register

(sequential)

Output logic
(combinational)

Clock

Mealy
Outputs

Next state logic
(combinational)

Current State
Register

(sequential)

Output logic
(combinational)

Clock

Moore
Outputs

Asynchronous Reset

Asynchronous Reset

Inputs

Inputs

Coding FSMs in Verilog

ST0

ST3
ST1

ST2

Reset

Y=1

Y=2

Y=3

Y=4
Control

11

Issues
 State Encoding
 sequential

 gray

 Johnson

 one-hot

Encoding Formats

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

0000

0001

0011

0111

1111

1110

1100

1000

000

001

011

010

110

111

101

100

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

One-hotJohnsonGraySequentialNo

12

Comments on the coding styles
 Binary: Good for arithmetic operations. But

may have more transitions, leading to more
power consumptions. Also prone to error
during the state transitions.

 Gray: Good as they reduce the transitions,
and hence consume less dynamic power.
Also, can be handy in detecting state
transition errors.

Coding Styles
 Johnson: Also there is one bit change, and can be

useful in detecting errors during transitions. More
bits are required, increases linearly with the number
of states. There are unused states, so we require
either explicit asynchronous reset or recovery from
illegal states (even more hardware!)

 One-hot: yet another low power coding style,
requires more no of bits. Useful for describing bus
protocols.

13

Improper way
always @(posedge Clock or posedge Reset)

begin

if(Reset) begin

Y=1;

STATE=ST0;

end

Improper Way leads to unnecessary
latches
else

case(STATE)
ST0: begin Y=1; STATE=ST1; end
ST1: begin Y=2;

if(Control) STATE=ST2;
else STATE=ST3;

ST2: begin Y=3; STATE=ST3; end
ST3: begin Y=4; STATE=ST0; end

endcase
end

Output Y is assigned under synchronous always block
so extra latches inferred.

14

Good FSMs
 Keep separate CS, NS and OL

Next State (NS)
always @(input or currentstate)
begin

NextState=ST0;
case(currentstate)
ST0: begin

NextState=ST1;
end

ST1: begin …
…
ST3:

NextState=ST0;
endcase

end

15

Current State (CS)
always @(posedge Clk or posedge reset)

begin

if(Reset)

currentstate=ST0;

else

currentstate=Nextstate;

end

Output Logic (OL)
always @(Currentstate)
begin

case(Currentstate)
ST0: Y=1;
ST1: Y=2;
ST2: Y=3;
ST3: Y=4;

end

16

The control state machine

Inst’Data=0
MemRead=1
IRWrite=1
ALUSrX=0
ALUSrY=0

ALUFunc=‘+’
PCSrc=3

PCWrite=1

ALUSrX=0
ALUSrY=3

ALUFunc=‘+’

ALUSrX=1
ALUSrY=1 or 2

ALUFunc=varies

ALUSrx=1
ALUSrY=2

ALUFunc=‘+’

ALUSrX=1
ALUSrY=1

ALUFunc=‘-’
JumpAddr=%

PCSrc=@
PCWrite=#

RegDst=0 or 1
RegInData=1
RegWrite=1

Inst’Data=1
MemRead=1

Inst’Data=1
memWrite=1

RegDst=0
RegInData=0
RegWrite=1

State 0

State 1 State 2 State 3 State 4

State 5
State 6

State 7 State 8

ALUtype

lw/

sw

Jump/

Branch

sw

lw

The Controller

NS

op||fn

CS

Next State

OL

Current
State

Control

Signals

clk
rst

17

Performance of the Multicycle Design

 The multi-cycle implementation has a larger
CPI than the single cycle implementation.

 Compute, the average CPI for:
Rtype 44%
Load 24%
Store 12%
Branch 18%
Jump 2%

Calculating CPI
Contribution to CPI

Rtype 44%: 4 cycles => 1.76
Load 24% : 5 cycles=> 1.20
Store 12%: 4 cycles=> 0.48
Branch 18%: 3 cycles=>0.54
Jump 2%: 3 cycles=> 0.06

Thus, average CPI = 4.04
Clock frequency = 500 MHz (for 2 ns clock duration)
This, corresponds to a performance of 500/4.04=123.8

MIPS!!

18

Example
 Consider a MIPS++ processor, which is similar to

our processor, except there are 3 types of R-type
instructions:
 Ra-type: half of all R-type instructions, 4 cycles
 Rb-type: ¼ th of all R-type instructions, 6 cycles
 Rc-type: ¼ th of all R-type instructions, 10 cycles

 With the same instruction mix in the last example,
and assuming the slowest R-type instruction takes
16ns to execute in a single cycle implementation ,
derive the performance ration for a multi-cycle
implementation.

Answer
 Single-cycle: 62.5 MIPS

Multi-cycle: 101.6 MIPS

 Inclusion of more complex type instructions,
have small effect on the CPI of a multi-cycle
implementation.

 However it has a significant effect on that of a
single cycle implementation.

19

Microprogramming
 The control state machine resembles a

program that has instructions, states,
branching, and loops.

 We call such a hardware program a micro-
program.

 Its basic steps are called as micro-instructions.
 Within each micro-instruction, there are

different actions being performed, being
called as micro-order.

Micro-program vs Hardwired Controller

 Instead of implementing the controller state machine
in custom hardware, we can store the micro-
instructions in a ROM.

 Hence, a program is broken into machine
instructions.

 A machine instruction is in turn broken into a
sequence of micro instructions.

 Each micro-instruction, thus defines a step in the
execution of a machine language instruction.

20

Advantages
 More regular.

 Less dependent on the Instruction-set architecture.
 The same hardware can be reused by simply changing the

content of the ROM.

 Errors and omissions can be taken care of by simply
changing the micro-program, rather than redesigning
the circuit.

 Microprogramming is designing a suitable sequence
of microinstructions to realize a particular ISA.

Disadvantage
 Lower speed compared to a hardwired control

circuit.
 Each machine level instruction takes 3-5

ROM accesses to fetch the micro-instructions.
 After each micro-instruction has been read

and placed in the micro-instruction register,
sufficient time has to be given to allow the
signals to stabilize and the actions to take
place.

21

Micro-instruction format
 The design of the microcontrolled controller

begins with a format.

 Each of the 20 control signals bear one-one
relationship with the control bits.

 Except for the last 2 bit Sequence control
signal.

MicroMIPS instruction format
PC

Control

Cache

Control

Register

Control
ALU Inputs

ALU

Function

Sequence

Control

Jump

Addr

PCSrc

PCWrite

Inst’Data

MemRead
MemWrite IRWrite RegWrite

RegDst

RegInData
ALUSrx

ALUSry
Add’Sub

LogicFn

FnType

22

Sequence Control Bits
 The 2-bit sequence control bits allow for the control

of micro-instruction sequencing in the same way that
“PC control” affects the sequencing of machine
language instruction.

 Option 0 is to advance to the next micro-instruction
in sequence by incrementing the μPC.

 Option 1 and 2 allow branching, depending on the
opcode of the instruction.

 Option 3 is to go to the microinstruction 0
corresponding to state 0; this initiates the fetch phase
of the next machine instruction.

Microprogrammed control unit

Dispatch
table 1

Dispatch
table 2

MicroPC

Microprogram
memory or

PLA

Microinstruction
register

… …

Incr

1

0

op (from

instruction
register)

Address

23

Dispatch tables
 Each of the two dispatch tables translates the

opcode into a microinstruction address.

 Dispatch table 1 corresponds to the multi-way
branch in going from cycle 2 to 3.

 Dispatch table 2 implements the branch
between cycles 3 and 4.

Microinstruction field values and their
symbolic names (default value is 0)

11

μPCfetch

10

μPCdisp2

01

μPCdisp1

Sequence

Control

X0111

V

X0011

Λ

1xx10

-

Xxx00

lui

1xx01

<

X1111

NOR

0xx10

+

X1011

XOR

ALU

function

110

x○imm

101

x○y

011

PC○ 4imm

000

PC○ 4

ALU

inputs

1101

$31PC

1011

rdz

1001

rtz

1000

rtData

Register

Control

1100

Cache

Load

1010

Cache

Store

0101

Cache Fetch

Cache

Control

X111

PCnext

X101

PCbranch

X011

PCjreg

1001

syscall

0001

PCjump

PC control

24

Micro-program
 x111 0101 0000 000 0xx10 00

is equivalent to:

PCnext, Cache Fetch, PC + 4

Complete Micro-program

State 7addi

State 8addi

x+imm

rdz, μPCfetch

addi1:

State 7slt

State 8slt

x-y

rdz, μPCfetch

slt1:

State 7sub

State 8sub

x-y

rdz, μPCfetch

subi:

State 7add

State 8add

x+y

rdz, μPCfetch

addi:

State 7lui

State 8lui

lui(imm)

rtz, μPCfetch

lui1:

State 0 (start)

State 1

PCnext,CacheFetch, PC+4

PC+4imm,μPCdisp1

fetch:

25

Complete Micro-program (Contd.)

State 7andi

State 8andi

xΛimm

rtz, μPCfetch

andi1:

State 7nor

State 8nor

x~Vy

rdz, μPCfetch

nor1:

State 7or

State 8or

xVy

rdz, μPCfetch

xor1:

State 7add

State 8add

xVy

rdz, μPCfetch

or1:

State 7and

State 8and

xΛy

rdz, μPCfetch

and1:

State 7slti

State 8slti

x-imm

rtz, μPCfetch

slti1:

Complete Micro-program (Contd.)

State 6CacheStore, μPCfetchsw2:

State 3

State 4

CacheLoad

rdData, μPCfetch

lw2:

State 2x+imm, μPCdisp2lwsw1:

State 7xori

State 8xori

xΦimm

rdz, μPCfetch

xori1:

State 7ori

State 8ori

xVimm

rtz, μPCfetch

ori1:

26

Complete Micro-program (Contd.)

State 5syscallPCsyscall, μPCfetchsyscall:

State 5jalPCjump, $31PC, μPCfetchjal1:

State 5branchPCbranch, μPCfetchbranch1:

State 5jrPCjreg, μPCfetchjr1:

State 5jPCjump, μPCfetchj1:

Comments
 Each line represents micro-instructions.

 The label 1(2) is to indicate that they are
arrived from dispatch table 1(2).

 The top-most microinstruction (fetch) is
stored at ROM address 0.

 Thus starting the machine with μPC cleared to
0, will cause program execution to start from
location 0.

27

Assignment (not for submission)
Simplify the micro-instruction format, and

design the micro-programs for the ISA, if the
5 ALU bits are directly generated in a
separate decoder and fed to the ALU.

Horizontal vs Vertical
Microinstruction
 The instruction discussed with separate bits for each

of the 20 control bits of the datapath is called
horizontal microinstruction.

 However, suitable encoding can reduce the size of
the instructions.
 Eg. the cache control field has four values, which can be

encoded in 2 bits.
 Such an encoded instruction format is called as

vertical microinstruction.
 However, they get slower as they need further

decoders.

