
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Instruction Execution Steps:
The Single Cycle Circuit

2

The Micro Mips ISA

The Instruction Format

6 bits5 bits5 bits5 bits5 bits6 bits

op rs rt rd sh fn

Operand.offset,16 bits

immOpcode Source 1

or base

Source 2

or dest

Destination Unused Opcode ext

jta

jump target address

3

Abstraction of Instruction Execution
Unit

NEXT
ADDRESS

ALU
REG
FILE

PC
INSTR

CACHE DATA
CACHE

CONTROL UNIT

rs,rt,rd

imm

(rs)

(rt)

jta

Addr

Data

op fn

Register File

FF

FF

FF

FF

MUXES
DECODER

Write Data

Write
Address

Write

Enable

Read

Enable

Read Address 0

Read Address 1

Read

data 0

Read

data 1

2h k-bit registers

4

The ALU Architecture

ALU
XOR

LOGIC

XOR
Overflow

x

y

Add’

/Sub AND 00

OR 01

XOR 10

NOR 11

Pad 16 0s

fn:

00: lui

01 Set less

10 Arithmetic

11 Logic
MSB 0
or 1

LogicFn

FnClass

Execution Steps for R-type ALU
Instructions

 Read contents from rs and rt, and pass them to
the ALU.

 Control the ALU to perform the correct
operation, according to the “func”-value of
the Instruction.

 Write the output of the ALU in register rd.

5

Execution Steps for I-type ALU
Instructions

 Contents of rs and immediate value in the
instruction are forwarded as inputs to the
ALU.

 Control the ALU to perform appropriate
function.

 Result is stored in the register rt (rather than
rd in case of R-type instructions).

Execution Steps for I-type Memory
Instructions

 Read contents of rs.
 Add the contents of rs to signed extended

immediate value in the instruction to form a
memory address.

 Read from or write to the memory location
computed thus.

 In case of lw, place the result in rt.
 In case of sw, copy the result from rt.

6

Register Access and ALU

ALUREG
FILE

PC
INSTR

CACHE

rs

ALUimm

(rs)

(rt)

rt

rt
rd

31

RegDst RegWrite

(rs)

(rt)

imm

ALUFunc

Writing of the ALU output

ALUREG
FILE

rs

ALUimm

(rs)

(rt)

rt

rt
rd

31

RegDst RegWrite

(rs)

(rt)

imm

DATA
CACHE

IncrPC

ALUFunc Data

Read

Data

Write
RegIn
Data

Data

Addr

Data

InSE16
32

7

Handling the Branches
 The next address loaded into the program counter

can be updated in various ways, depending on the
type of instruction.

 Since, the addresses are always multiples of 4, the
lower 2 bits are always 00.

 Hence, we consider the upper 30 bits, and consider
how they can be updated.

 Thus, adding 4 to the PC value implies, that we are
adding 1 to (PC)31:2.

Update of PC in our Processor
(PC)31:2

=(PC)31:2+1 # Default

= (PC)31:28|jta # Unconditional jump/branch

=(rs)31:2 #Jump Register

= (PC)31:2+1+imm# Condition is satisfied in
conditional jump

=SysCallAddr #Start Address of an OS routine

8

The Next Address Architecture

Adder

Branch
Condition
Checker

(rs)

(rt)

BrType

(PC)31:2

BrTrue

IncrPC

jta

4 MSBs

of PC 26
bits

30
bits

SE

16
bits

SysCallAddr

Next
PC

PCSel

Generating Control Signals
 The control signals are a function of op and fn

fields.
 One can express the control signals as a

function of the op and fn bits.
 It is quite easy

 However, the demerit of such an approach is
if the instruction set is modified, or if we add
new instructions, the entire control unit needs
to be redesigned.

9

The Decoder based control unit

op

1

fn
RtypeInst

bltzInst
jInst

jalInst
beqInst
bneInst
addiInst

sltiInst

andiInst

oriInst

xoriInst
luiiInst
lwInst
swInst

42

0
1

2
3
4
5

8

10

12

13

14

15
35
43

jrInst

syscallInst

addInst

subInst

andInst

orInst
xorInst
norInst
sltInst

8

12

32

34

36
37
38

39

Expressing the Control Signals
 Auxiliary signals:

 arithInst=addInst V subInst V sltInst V addiInst V sltiInst
 logicInst=andInst V orInst V xorInst V norInst V andiInst

V oriInst V xoriInst
 immInst = luiInst V addiInst V sltiInst V andiInst V

oriInst V xoriInst

 Some Control Signals:
 RegWrite=luiInst V arithInst V logicInst V lwInst V

jalInst
 ALUImm=ImmInst V lwInst V swInst

10

Performance of the Single Cycle
Architecture

 The above design of control circuit is a
stateless and combinational design.

 Each new instruction is read from the PC, and
is executed in one single clock.
 Thus CPI=1

 The clock cycle is determined by the longest
instruction.

lw is the longest instruction
 lw execution includes all the possible steps:

1. Instruction Excess: 2 ns
2. Register Read: 1 ns
3. ALU operation: 2 ns
4. Data Cache Access: 2 ns
5. Register Write-back:1 ns

Total: 8 ns
Thus a clock frequency of 125 MHz suffices.
So, for 1 instruction, (1/125) x 10-6 sec
Thus, 125 Million Instructions are executed per second (125

MIPS)

11

Obtaining better performance
 Note that the average instruction time is less, depends on the

type of instruction, and their percentages in an application.
 Rtype 44% 6 ns No data cache

Load 24% 8 ns
Store 12% 7ns No register write-back
Branch 18% 5ns Fetch+Register Read+Next-addr formation
Jump 2% 3ns Fetch + Instruction Decode
Weighted average = 6.36 ns

So, with a variable cycle time implementation, the performance is
157 MIPS

However, this is not possible. But we see that a single cycle
implementation has a poor performance.

Summary
 Clock cycle is determined by the slowest instruction.

 If the MIPS ISA includes more complex
instructions, the disadvantage is more.
 For example if we add a MULT/DIV instruction by k

times, then all operations need to be slowed down.

 Thus MIPS does the MIPS/DIV instruction to a separate
block (than the ALU block), with separate registers Hi
and Lo.
 sufficient time is kept to write back the results to the register file

