
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Instructions and
Addressing

2

 An ISA or Instruction Set Architecture describes
the aspects of a computer architecture visible to the
low-level programmer, including the native datatypes,
instructions, registers, addressing modes, memory
architecture, interrupt and exception handling, and
I/O organization.
ISA is a logical address.

ISA vs. MicroarchitectureISA vs. Microarchitecture

 Microarchitecture is the set of internal processor
design techniques used to implement the instruction
set (including microcode, pipelining, cache systems
etc.)

MIPS: Background

 MIPS: Microprocessor without Interlocked
Pipelined Stages

 1981: A Stanford University engineering
team headed by Dr. John Hennessy initiates
the MIPS RISC architecture project.

 1984: MIPS Computer Systems, Inc. founded
by Dr. John Hennessy.

 MIPS is a RISC microprocessor architecture
developed by MIPS Technologies.

 32-bit processor R3000 was developed in
1988 and the first 64-bit processor released in
1991.

A MIPS R4400 processor
made by Toshiba.

3

Computer Organization

Memory LOC 0…

(4 bytes/location)

ALU

$s0

$s31
Integer

mul//div

HI LO

Registers and data sizes in MIPS

4

Big Endian-Little Endian
 An important aspect is how the

bytes in memory are indexed.

 Convention is right-most bit is
assigned the index 0, and the left
most bit is assigned the bit 31.

Byte 0Byte 1Byte 2Byte 3

31 23 7 0

Words are stored as individually
addressable bytes in memory M.

What is the storage order of the bytes?

Consider, a sequence of words,
W0,W1,…Wm of (m+1) 4 byte words.

Suppose, Wi=Bi,3,Bi,2,Bi,1,Bi,0.

Thus, the sequence is:

B0,3,B0,2,B0,1,B0,0,…,Bm,3,Bm,2,Bm,1,Bm,0

Two forms of addressing is available:

Big Endian: adr0,adr1,…adr(4m+3),

in increasing order.

[most significant byte is given the
lowest address]

Little Endian:

B0,0,B0,1,B0,2,B0,3,…,Bm,0,Bm,1,Bm,2,Bm,3

(von Neumann) Processor
Organization
 Control needs to

1. input instructions from Memory

2. issue signals to control the
information flow between the
Datapath components and to control
what operations they perform

3. control instruction sequencing

Fetch

DecodeExec

CPU

Control

Datapath

Memory Devices

Input

Output

 Datapath needs to have the

 components – the functional units and
storage (e.g., register file) needed to execute instructions

 interconnects - components connected so that the
instructions can be accomplished and so that data can be
loaded from and stored to Memory

5

MIPS Arithmetic
Instructions
 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2
 Each arithmetic instruction performs only one

operation

 Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination source1 op source2

 Operand order is fixed (destination first)

 Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $

MIPS
Register File

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

 Holds thirty-two 32-bit
registers

 Two read ports and

 One write port

 Registers are

 Faster than main memory

 But register files with more locations are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file)

 Read/write port increase impacts speed quadratically

 Easier for a compiler to use

 e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs. stack

 Can hold variables so that

 code density improves (since register are named with fewer bits than a memory
location)

write control

6

 Instructions, like registers and words of data, are 32 bits long

 Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add
Instruction

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

op rs rt rd shamt funct

MIPS Memory Access
Instructions
 MIPS has two basic data transfer instructions for accessing

memory
lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data is loaded into (lw) or stored from (sw) a register in
the register file – a 5 bit address

 The memory address – a 32 bit address – is formed by adding
the contents of the base address register to the offset value

 A 16-bit field meaning access is limited to memory
locations within a region of 213 or 8,192 words (215 or
32,768 bytes) of the address in the base register

 Note that the offset can be positive or negative

7

Compiling using a variable Index
 g=h+A[i]
 Assume A is an array of 100 elements whose base is

in register $s3 and the compiler associates the
variables g, h, and i with the registers $s1, $s2 and
$s4. What is the MIPS assembly code?
 add $t1,$s4,$s4
 add $t1,$t1,$t1
 add $t1,$t1,$s3 #address of A[100]
 lw $t0,0($t1)
 add $s1,$s2,$t0

I-type Instructions
 R-type Instruction

 I-type (Immediate) Instructions

6 bits 5 bits 5 bits 6 bits 5 bits 6 bits

OpCode
Source

register 1

Source

register 2

Destination

register

Shift

amount

function

6 bits 5 bits 5 bits 16 bits

OpCode
Source

register

Destination

register 1

offset

8

Immediate and operations
 addi $t0,$s0,61

001000 01000 10000 0000000000111101

Instructions are such that the constant can be directly added.

Adders in MIPS are 32 bits. So, the 16 bits are sign extended.

Other examples are: andi, ori, xori.

andi can be used to extract fields from a word.

rs (source) rt (destination)

Load and Store Instructions

 lw $t0,40($s3) #load mem[40+($s3)] into $t0

 sw $t0,A($s3) #store $t0 into mem[40+($s3)]

opcode base reg data reg offset (16 bit signed value)

10x011 01000 offset (16 bit signed value)

Instruction:

lw=35

sw=43

10011

Base Reg Data Reg Offset relative to base

9

Loading a Constant
 addi $t0,$zero,constant #works if constant is

#lesser then 16 bits
 For larger than 16 bits. use “lui” (load upper

immediate) instruction:
lui $s0, 61 #immediate value of 61 (decimal) is

#loaded in the upper half of $s0, with the lower 16
#bits set to 0s.

001111 00000 10000 0000000000111101

rs (source) rt (destination)

For the lower 16 bits
 Use the instruction “ori” (or-immediate)
 Say we want to load constant “0x2110 003d” to

$t0.
 lui $t0,0x2110
 ori $t0,0x003d

 How do you load the constant 0xffff ffff?
 You can change the immediate operand.
 Or, use the “nor” instruction.

 nor $s0,$zero,$zero

10

Obtaining the Machine Code
 A[300]=h+A[300]

 assume that $t1 has the base address of the array A and
$s2 stores the value of h

 opcodes for lw: 35, add:0, sw: 43

 Assembly:
 lw $t0,1200($t1)

 add $t0,$s2,$t0

 sw $t0,1200($t1)

 Write the machine language instructions?

Jump and Branch Instructions
 Unconditional Jumps:

 j endloop #go to memory loc “endloop”
 jr $ra #go to location whose memoy address

#is in $ra. $ra may hold the return address from
#a procedure.

 The first instruction is a simple jump, which causes program
execution to proceed from the location whose numeric or
symbolic address is provided.

 The second one is called “jump register”, specifies a register
to hold the jump target address.
 $ra, the register, is used to effect a return from a procedure to the

point from which the procedure was called.

11

Instruction Formats

 For the j instructions, the 26-bit address field in the
instruction, is augmented with:
 00 to the right

 4 higher order bits of the program counter to the left

 Called as Pseudodirect-addressing.

31 26 25 0

op Jump Target Address

The j instructions in MIPS

000010 25 0

op Jump Target Address

xxxx 25 0 00

12

The jr instructions in MIPS
 R-type

000000 11111 00000 00000 00000 001000

OpCode
Source

register ($ra)

Unused Unused Unused function

jr=8

Conditional Branches
 These instructions allow us to transfer control to a

given address when a condition is met.
 Conditions in MIPS ISA can be:

 Register Content being negative
 Equality of two register contents
 Inequality of two register contents

 For the other kind of branchings, MIPS offers an R-
type instruction, called as slt (set less than).
 If “less than relationship” holds between two registers, a

specified destination register is set to 1, else 0.

13

The Branch Statements in Assembly

 bltz $s1,L #branch to the symbolic memory L
 #if content of $s1<0
 beq $s1, $s2, L
 bne $s1, $s2, L
 slt $s1,$s2,$s3 #if the content of $s2<content

#of $s3, set content of $s1 to
#1, else 0.

 slti $s1, $s2, 61

Machine Language (M/L) Formats

000001 10001 00000 0000000000111101

rs (source) rt (destination)

00010x 10001 10010 0000000000111101

rs (source) rt (destination)

op offset

Relative Branch Distance in wordsSource
$s1

bltz=1

op

beq=4

bne=5

offset

Relative Branch Distance in words

Examples of PC relative addressing: the 16-bit signed offset is
multiplied by 4 (why?) and added to the 32 bit PC, to get a 32 bit branch
target address.

14

Other Branch Statements in M/L
 slt:

 slti:

000000 10010 10011 10001 00000

OpCode
Source

register
($s2)

Destination

Register

$s1

Unused function

slt=42

101010

Source

register
($s3)

001010 10010 10001 0000000000111101

OpCode

slti=10

Source

register
($s2)

Destination

Register

($s1)

Immediate Operand

slt $s1,$s2,$s3

slti $s1,$s2,61

A finer point
 What if the label specified in a beq statement

is too far to be reached via a 16-bit offset?
 The assembler automatically replaces:

beq $s0,$s1,L1

with:

bne $s0,$s1,L2

j L1

L2: …

15

Assignment
 Write the assembly language code snippets

for:
 if(i==j) x=x+y;
 if(i<j) x=x+y;
 if(i<=j) {x=x+1; z=1;} else {y=y-1; z=z*2;}
 while(A[i]==k) i=i+1;
 loop: i=i+step;

sum=sum+A[i];
if(i≠n) goto loop;

Addressing Modes
 Methods by which the location of an operand

is specified within an instruction:
1. Implied Addressing: Operand comes from, or

result goes to, a predefined place that is not
explicitly defined in the instruction.

Example: jal, address of next instruction is stored in $ra.

2. Immediate Addressing: Operand is given in the
instruction itself..
Example: andi, ori, addi

16

Addressing Modes
3. Register Addressing: Operand is taken from, or

result placed in, a specified register.

Example: R-type Instructions.

4. Base Addressing: Operand is in memory and its
location is computed by adding a 16-bit signed
integer, the offset, with the contents of the base
register, specified in the instruction.

Example: lw, sw

Addressing Modes
5. PC-relative addressing: Same as base addressing,

but the register is always the Program Counter
(PC).

Example: beq, bne
6. Pseudo-direct addressing: In direct addressing,

the operand address is part of the instruction.
However this is not possible in MIPS, as we have
32 bit instruction, and address also of 32 bits.
Hence, we have pseudo-direct addressing.
Example: j instruction

17

MIPS Instructions
 Please refer text book for the list.

Summary
 MIPS has a load/store architecture =>

operands must be in registers before they are
executed.

 MIPS instructions for accessing memory:
load, store, jump/branch

 MIPS has limited addressing modes:
 efficient hardware design is possible.

 Adequate for programming.

