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Datapath Elements and 
Their Designs



Why Datapaths?
 The speed of these elements often dominates the 

overall system performance so optimization 
techniques are important. 

  However, as we will see, the task is non-trivial since 
there are multiple equivalent logic and circuit 
topologies to choose from, each with adv./disadv. in 
terms of speed, power and area. 

 Datapath elements include shifters, adders, 
multipliers, etc. 



Bit-slicing method of constructing 
ALU
 Bit slicing is a technique for constructing a 

processor from modules of smaller bit width. 
 Each of these components processes one 

bit field or "slice" of an operand. 
 The grouped processing components would 

then have the capability to process the chosen 
full word-length of a particular software 
design. 

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Bit_field
http://en.wikipedia.org/wiki/Operand


Bit slicing

How can we develop architectures 
which are bit sliced?



Shifters
Sel1 Sel0 Operation Function

0
0
1
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0
1
0
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Y<-A
Y<-shlA
Y<-shrA
Y<-0

No shift
Shift left
Shift right
Zero 
outputs

What would be a bit sliced architecture of this simple shifter? 



Using Muxes
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Verilog Code
module shifter(Con,A,Y);
         input [1:0] Con;
         input[2:0] A;
         output[2:0] Y;
         reg [2:0] Y;
         always @(A or Con)
         begin
              case(Con)
                 0: Y=A;
                 1: Y=A<<1;
                 2: Y=A>>1;
                 default: Y=3’b0;
              endcase
          end
endmodule



Combinational logic shifters with 
shiftin and shiftout

Sel Operation Function

0

1

2

3

Y<=A, ShiftLeftOut=0
ShiftRightOut=0

Y<=shl(A), 
ShiftLeftOut=A[5]
ShiftRightOut=0

Y<=shr(A), 
ShiftLeftOut=0

ShiftRightOut=A[0]
Y<=0, ShiftLeftOut=0

ShiftRightOut=0

No shift

Shift left

Shift Right

Zero Outputs



Verilog Code
always@(Sel or A or ShiftLeftIn or ShiftRightIn);
begin
  A_wide={ShiftLeftIn,A,ShiftRightIn};
 case(Sel)
    0: Y_wide=A_wide;
    1: Y_wide=A_wide<<1;
    2: Y_wide=A_wide>>1;
    3:Y_wide=5’b0;
    default: Y_wide=A_wide;
 endcase
ShiftLeftOut=Y_wide[0];
Y=Y_wide[2:0];
ShiftRightOut=Y_wide[4];
end



Combinational 6 bit Barrel Shifter
Sel Operation Function

0
1
2
3
4
5

Y<=A
Y<-A rol 1
Y<-A rol 2
Y<- A rol 3
Y<-A rol 4
Y<-A rol 5

No shift
Rotate once
Rotate twice
Rotate Thrice

Rotate four times
Rotate five times



Verilog Coding
 function [2:0] rotate_left;
      input [5:0] A;
      input [2:0] NumberShifts;
      reg [5:0] Shifting;
      integer N;
      begin
         Shifting = A;
         for(N=1;N<=NumberShifts;N=N+1)
           begin
              Shifting={Shifting[4:0],Shifting[5]};
           end
         rotate_left=Shifting;
      end
     endfunction



Verilog
 always @(Rotate or A)
   begin
      case(Rotate)
        0: Y=A;
        1: Y=rotate_left(A,1);
        2: Y=rotate_left(A,2);
        3: Y=rotate_left(A,3);
        4: Y=rotate_left(A,4);
        5: Y=rotate_left(A,5);
        default: Y=6’bx;
       endcase
     end



Another Way
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Code is left as an exercise…



Single-Bit Addition
Half Adder         Full Adder
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Single-Bit Addition
Half Adder         Full Adder
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Carry-Ripple Adder
 Simplest design: cascade full adders

 Critical path goes from Cin to Cout
 Design full adder to have fast carry delay

CinCout

B1A1B2A2B3A3B4A4

S1S2S3S4

C1C2C3



Full adder
 Computes one-bit sum, carry:

 si = ai XOR bi XOR ci

 ci+1 = aibi + aici + bici

 Half adder computes two-bit sum.
 Ripple-carry adder: n-bit adder built from full 

adders.
 Delay of ripple-carry adder goes through all 

carry bits.



Verilog for full adder
module fulladd(a,b,carryin,sum,carryout);

input a, b, carryin; /* add these bits*/

output sum, carryout; /* results */

assign {carryout, sum} = a + b + carryin; 

/*  compute the sum and carry */

endmodule



Verilog for ripple-carry adder
module nbitfulladd(a,b,carryin,sum,carryout)

input [7:0] a, b; /* add these bits */
input carryin; /* carry in*/
output [7:0] sum; /* result */
output carryout;
wire [7:1] carry; /* transfers the carry between bits */

fulladd a0(a[0],b[0],carryin,sum[0],carry[1]);
fulladd a1(a[1],b[1],carry[1],sum[1],carry[2]);

…
fulladd a7(a[7],b[7],carry[7],sum[7],carryout]);

endmodule



Generate and Propagate
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Two methods to develop C[i] and S[i].



Both are correct
 Because, A[i]=1 and B[i]=1 (which may lead 

to a difference is taken care of by the term 
A[i]B[i])

 How do we make an n bit adder?
 The delay of the adder chain needs to be 

optimized.



Carry-lookahead adder
 First compute carry propagate, generate:

 Pi = ai + bi

 Gi = ai bi

 Compute sum and carry from P and G:
 si = ci XOR Pi XOR Gi

 ci+1 = Gi + Pici



Carry-lookahead expansion
 Can recursively expand carry formula:

 ci+1 = Gi + Pi(Gi-1 + Pi-1ci-1)

 ci+1 = Gi + PiGi-1 + PiPi-1 (Gi-2 + Pi-1ci-2)

 Expanded formula does not depend on 
intermediate carries.

 Allows carry for each bit to be computed 
independently.



Depth-4 carry-lookahead



Analysis
 As we look ahead further logic becomes 

complicated.
 Takes longer to compute
 Becomes less regular.
 There is no similarity of logic structure in 

each cell.
 We have developed CLA adders, like Brent-

Kung adder.



Verilog for carry-lookahead carry 
block
module carry_block(a,b,carryin,carry);

input [3:0] a, b; /* add these bits*/
input carryin; /* carry into the block */
output [3:0] carry; /* carries for each bit in the block */
wire [3:0] g, p; /* generate and propagate */

assign g[0] = a[0] & b[0]; /* generate 0 */
assign p[0] = a[0] ̂  b[0]; /* propagate 0 */
assign g[1] = a[1] & b[1]; /* generate 1 */
assign p[1] = a[1] ̂  b[1]; /* propagate 1 */

…
assign carry[0] = g[0] | (p[0] & carryin);
assign carry[1] = g[1] | p[1] & (g[0] | (p[0] & carryin));
assign carry[2] = g[2] | p[2] & 

(g[1] | p[1] & (g[0] | (p[0] & carryin)));
assign carry[3] = g[3] | p[3] & 

(g[2] | p[2] & (g[1] | p[1] & (g[0] | (p[0] & carryin))));

 endmodule

ci+1 = Gi + Pi(Gi-1 + Pi-1ci-1)



Verilog for carry-lookahead sum unit

module sum(a,b,carryin,result);

input a, b, carryin; /* add these bits*/

output result; /* sum */

assign result = a ̂  b ̂  carryin; 

/*  compute the sum  */

endmodule



Verilog for carry-lookahead adder
 module carry_lookahead_adder(a,b,carryin,sum,carryout);

input [15:0] a, b; /* add these together */
input carryin;
output [15:0] sum; /* result */
output carryout;
wire [16:1] carry; /* intermediate carries */

assign carryout = carry[16]; /* for simplicity */
/* build the carry-lookahead units */
carry_block b0(a[3:0],b[3:0],carryin,carry[4:1]);
carry_block b1(a[7:4],b[7:4],carry[4],carry[8:5]);
carry_block b2(a[11:8],b[11:8],carry[8],carry[12:9]);
carry_block b3(a[15:12],b[15:12],carry[12],carry[16:13]);
/* build the sum */
sum  a0(a[0],b[0],carryin,sum[0]);
sum  a1(a[1],b[1],carry[1],sum[1]);

…
sum a15(a[15],b[15],carry[15],sum[15]);

endmodule



Dealing with the 
problem of carry propagation

1. Reduce the carry propagation time.

2. To detect the completion of the carry 
propagation time.

We have seen some ways to do the former. How 
do we do the second one?



Motivation 



Carry Completion Sensing 
A=0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1

B=0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

---------------------------------------------
1514



Can we compute the average length of 
carry chain?
 What is the probability that a chain generated 

at position i terminates at j?
 It terminates if both the inputs A[j] and B[j] are 

zero or 1.
 From i+1 to j-1 the carry has to propagate.
 p=(1/2)j-i

 So, what is the expected length?
 Define a random variable L, which denotes the 

length of the chain.



Expected length
 The chain can terminate at j=i+1 to j=k (the MSB 

position of the adder)
 Thus L=j-i for a choice of j.
 Thus expected length is:
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Carry completion sensing adder
A=011101101101101

B=100111000010101

------------------------------

C=000000000000000

N=000000000000000

------------------------------

C=000101000000101 

N=000000010000010

A=011101101101101

B=100111000010101

------------------------------

C=000101000000101 

N=000000010000010

------------------------------

C=001111000001101 

N=000000110000010



Carry completion sensing adder

A=011101101101101

B=100111000010101

------------------------------

C=001111000001101 

N=000000110000010

------------------------------

C=011111000011101 

N=000000110000010

A=011101101101101

B=100111000010101

------------------------------

C=011111000011101 

N=000000110000010

------------------------------

C=111111000111101 

N=000000110000010



Carry completion sensing adder

A=011101101101101

B=100111000010101

------------------------------

C=111111000111101 

N=000000110000010     
-----------------------------
-

C=111111001111101 

N=000000110000010



Carry completion sensing adder
 (A[i],B[i])=(0,0)=>(Ci,Ni)=(0,1)
 (A[i],B[i])=(1,1)=>(Ci,Ni)=(1,0)
 (A[i],B[i])=(0,1)=>(Ci,Ni)=(Ci-1,Ni-1)
 (A[i],B[i])=(1,0)=>(Ci,Ni)=(Ci-1,Ni-1)
 Stop, when for all i, Ci V Ni = 1



Justification
 Ci and Ni together is a coding for the carry.
 When Ci=1, carry can be computed. Make 

Ni=0
 When Ci=0 is the final carry, then indicate by 

Ni=1
 The carry can be surely stated when both Ai 

and Bi are 1’s or 0’s.



Carry-skip adder
 Looks for cases in which carry out of a set of 

bits is identical to carry in.
 Typically organized into b-bit stages.
 Can bypass carry through all stages in a group 

when all propagates are true: P i Pi+1 … Pi+b-1.
 Carry out of group when carry out of last bit in 

group or carry is bypassed.



Carry-skip structure

AND
Pi

Pi+1

Pi+b-1

…

OR

Ci+b-1

ci



Carry-skip structure

b adder stages

skip

P[0,b-1]Carry out

b adder stages

skip

P[b,2b-1]Carry out

b adder stages

skip

P[2b,3b-1]Carry out

Cin



Worst-case carry-skip
 Worst-case carry-propagation path goes 

through first, last stages:



Verilog for carry-skip add with P
module fulladd_p(a,b,carryin,sum,carryout,p);

input a, b, carryin; /* add these bits*/
output sum, carryout, p; /* results including propagate */

assign {carryout, sum} = a + b + carryin; 
/*  compute the sum and carry */

     assign p = a ̂  b;
endmodule



Want to use ripple carry adder for the 
blocks
module fulladd_p(a,b,carryin,sum,carryout,p);

input a, b, carryin; /* add these bits*/
output sum, carryout, p; /* results including propagate */

    $rtl_binding=“ADD3_RPL”;
assign {carryout, sum} = a + b + carryin; 

/*  compute the sum and carry */
     assign p = a ̂  b;
endmodule

Directive to a synthesis tool!



Verilog for carry-skip adder
module carryskip(a,b,carryin,sum,carryout);

input [7:0] a, b; /* add these bits */
input carryin; /* carry in*/
output [7:0] sum; /* result */
output carryout;
wire [8:1] carry; /* transfers the carry between bits */
wire [7:0] p; /* propagate for each bit */
wire cs4; /* final carry for first group */

fulladd_p a0(a[0],b[0],carryin,sum[0],carry[1],p[0]);
fulladd_p a1(a[1],b[1],carry[1],sum[1],carry[2],p[1]);
fulladd_p a2(a[2],b[2],carry[2],sum[2],carry[3],p[2]);
fulladd_p a3(a[3],b[3],carry[3],sum[3],carry[4],p[3]);
assign cs4 = carry[4] | (p[0] & p[1] & p[2] & p[3] & carryin);
fulladd_p a4(a[4],b[4],cs4,     sum[4],carry[5],p[4]);

…
assign carryout = carry[8] | (p[4] & p[5] & p[6] & p[7] & cs4);

endmodule



Delay analysis
 Assume that skip delay = 1 bit carry delay.
 Delay of k-bit adder with block size b:

 T = (b-1) + 0.5 + (k/b –2) + (b-1)

        block 0  OR gate  skips       last block

 For equal sized blocks, optimal block size is 
sqrt(k/2).



Delay of Carry-Skip Adder
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Carry-select adder
 Computes two results in parallel, each for 

different carry input assumptions.
 Uses actual carry in to select correct result.
 Reduces delay to multiplexer.



Carry-select structure



Carry-save adder
 Useful in multiplication.
 Input: 3 n-bit operands.
 Output: n-bit partial sum, n-bit carry.

 Use carry propagate adder for final sum.

 Operations:
 s = (x + y + z) mod 2.
 c = [(x + y + z) –2] / 2.
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Carry Network is the Essence of a Fast Adder

Generic structure of a binary adder, highlighting its 
carry network.

Carry network 

. . . . . . 

x i y i 

g p 
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0   1  
1   0  
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(impossible)  

Carry is: g i p i 

gi = xi yi 
pi = xi ⊕ yi 

Ripple; Skip;
Lookahead;
Parallel-prefix
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Ripple-Carry Adder Revisited

Alternate view of a ripple-carry network in connection with the 
generic adder structure shown  in Fig. 5.14.
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The carry recurrence:   ci+1 = gi ∨ pi ci 

Latency of k-bit adder is roughly 2k gate delays:
   

1 gate delay for production of p and g signals, plus 
2(k – 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits
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The Complete Design of a Ripple-Carry Adder

Carry network 

. . . . . . 
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Carry is: g i p i 

gi = xi yi 
pi = xi ⊕  yi 



6.1  Unrolling the Carry Recurrence
Recall the generate, propagate, annihilate (absorb), and transfer signals:

         Signal Radix r Binary
gi is 1 iff xi + yi ≥ r  xi yi

pi is 1 iff xi + yi = r – 1 xi ⊕ yi

ai is 1 iff xi + yi < r – 1 xi′yi ′ = (xi ∨ yi) ′ 
ti is 1 iff xi + yi ≥ r – 1 xi ∨ yi 

si (xi + yi + ci) mod r xi ⊕ yi ⊕ ci

The carry recurrence can be unrolled to obtain each carry signal directly 
from inputs, rather than through propagation 

        ci    = gi–1 ∨ ci–1 pi–1

 = gi–1 ∨ (gi–2 ∨ ci–2 pi–2) pi–1

= gi–1 ∨ gi–2 pi–1 ∨ ci–2 pi–2 pi–1

= gi–1 ∨ gi–2 pi–1 ∨ gi–3 pi–2 pi–1 ∨ ci–3 pi–3 pi–2 pi–1

= gi–1 ∨ gi–2 pi–1 ∨ gi–3 pi–2 pi–1 ∨ gi–4 pi–3 pi–2 pi–1 ∨ ci–4 pi–4 pi–3 pi–2 pi–1

= . . .

Note: 
Addition symbol 
vs logical OR
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Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly 
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing 
the complexity of this ideal, but impractical, arrangement by 
hardware sharing among the various lookahead circuits

s0s1s2s3

y0y1y2y3 x0x1x2x3

cin

. . .



Four-Bit Carry-Lookahead Adder

Complexity 
reduced by 
deriving the 
carry-out 
indirectly

 Four-bit carry network with 
full lookahead. 

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

 

Full carry lookahead is quite practical 
for a 4-bit adder

c1  =  g0 ∨ c0 p0

c2  =  g1 ∨ g0 p1 ∨ c0 p0 p1

c3  =  g2 ∨ g1 p2 ∨ g0 p1 p2 ∨ c0 p0 p1 p2

c4  =  g3 ∨ g2 p3 ∨ g1 p2 p3 ∨ g0 p1 p2 p3 
                                       ∨ c0 p0 p1 p2 p3



Carry Lookahead Beyond 4 Bits

32-input AND

Consider a 32-bit adder

c1  =  g0 ∨ c0 p0

c2  =  g1 ∨ g0 p1 ∨ c0 p0 p1

c3  =  g2 ∨ g1 p2 ∨ g0 p1 p2 ∨ c0 p0 p1 p2

     .
     .
     .

c31 =  g30 ∨ g29 p30 ∨ g28 p29 p30 ∨ g27 p28 p29 p30 ∨  . . .  ∨ c0 p0 p1 p2 p3 ... p29 p30 

32-input OR

. . .
High fan-ins necessitate 
tree-structured circuits

No circuit sharing:
Repeated computations



Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 59

Solution to the Fan-in Problem

High-radix addition (i.e., radix 2h)
      

      Increases the latency for generating  g and p signals and sum digits,
      but simplifies the carry network (optimal radix?) 

Multilevel lookahead

Example: 16-bit addition

      Radix-16 (four digits) 

      Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c4, c8, and c12 are determined first

 c16 c15 c14 c13 c12 c11 c10 c9  c8   c7   c6   c5   c4   c3   c2   c1   c0

cout   ?    ?          ?        cin 



Carry-Lookahead Adder Design
      Block generate and propagate signals

g [i,i+3] =  gi+3 ∨ gi+2 pi+3 ∨ gi+1 pi+2 pi+3 ∨ gi  pi+1 pi+2 pi+3 

p [i,i+3] =  pi  pi+1 pi+2 pi+3 

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3
c

g

iii+1i+1i+2 i+2 i+3  i+3

 [i,i+3]

Schematic diagram of a 4-bit lookahead carry generator.



A Building Block for 
Carry-Lookahead Addition

A 4-bit 
lookahead 
carry generator 
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g2
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c4
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c2

c3
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p2

p1

p0

 

gi

gi+1

gi+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p [i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

A 4-bit 
carry 
network 
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Combining Block g and p Signals

Block generate and 

propagate signals 

can be combined in 

the same way as bit 

g and p signals to 

form g and p signals 

for wider blocks

Fig. 6.3      Combining of g and p signals of four 
(contiguous or overlapping) blocks of arbitrary widths 
into the g and p signals for the overall block [i0, j3].
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A Two-Level Carry-Lookahead Adder
cccc

4-bit lookahead carry generator

4-bit lookahead carry generator

g 
p

ccc

g 
p

12 8 4 0

48 32 16

[0,63]

16-bit 
Carry-Lookahead 
Adder

[0,63]

[48,63]

[48,63] g 
p

[32,47]

[32,47] g 
p

[0,15]

[0,15]g 
p

[16,31]

[16,31]

g 
p [12,15]

[12,15] g 
p [8,11]

[8,11] g 
p [4,7]

[4,7] g 
p [0,3]

[0,3]

Fig. 6.4   Building a 64-bit carry-lookahead adder from 16 
 4-bit adders and 5 lookahead carry generators.

Carry-out:        cout  =  g [0,k–1] ∨ c0 p [0,k–1]  =  xk–1yk–1 ∨ sk–1′ (xk–1 ∨ yk–1)
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Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c4, c8, and c12 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels

Total latency for the 16-bit adder 9 gate levels 

(compare to 32 gate levels for a 16-bit ripple-carry adder)

Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder:   Tlookahead-add = 4 log4k + 1 gate levels 



Carry Determination as Prefix Computation

Combining of g and p signals of two (contiguous or overlapping) blocks B' 
and B" of arbitrary widths into the g and p signals for block B.

g        p 

g″     p″ 

g′ 
         p′  

g" p"

i 0
i 1

j 0
j 1

g p

g' p'

Block B'

Block B"

Block B
(g, p)

(g", p")    (g', p')

¢

g = g" + g'p" 
p = p'p"
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Formulating the Prefix Computation Problem
The problem of carry determination can be formulated as:
Given   (g0, p0)(g1, p1)   .  .  .  (gk–2, pk–2) (gk–1, pk–1)                        
                   
Find    (g [0,0] , p [0,0]) (g [0,1] , p [0,1]) . . .  (g [0,k–2] , p [0,k–2]) (g [0,k–1] , p [0,k–1]) 

   c1  c2 .  .  .   ck–1   ck

Carry-in can be viewed as an extra (−1) position:   (g–1, p–1) = (cin, 0)

The desired pairs are found by evaluating all prefixes of
 (g0, p0)  ¢  (g1, p1)  ¢   .  .  .   ¢  (gk–2, pk–2)  ¢  (gk–1, pk–1) 

 
The carry operator ¢ is associative, but not commutative

 [(g1, p1) ¢ (g2, p2)] ¢ (g3, p3) = (g1, p1) ¢ [(g2, p2) ¢ (g3, p3)]

Prefix sums analogy:
Given     x0     x1     x2 .  .  .     xk–1                              
                                                        
Find     x0     x0+x1     x0+x1+x2 .  .  .     x0+x1+...+xk–1 
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g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]

= (c1, --)

g[0,1], p[0,1]

= (c2, --)

g[0,2], p[0,2]

= (c3, --)

g[0,3], p[0,3]

= (c4, --)

Example Prefix-Based Carry Network

g        p 

g″     p″ 

g′ 
         p′  

++

++

26 5−1

712 5 6

g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]

= (c1, --)

g[0,1], p[0,1]

= (c2, --)

g[0,2], p[0,2]

= (c3, --)

g[0,3], p[0,3]

= (c4, --)

¢¢

¢¢

(a) A 4-input 
prefix sums 
network

Scan 
order

(b) A 4-bit
Carry 
lookahead 
network

Fig. 6.6  Four-input 
parallel prefix 
sums network and 
its corresponding 
carry network.
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Brent-Kung Carry Network (8-Bit Adder)

¢ ¢ ¢ ¢ 
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[0, 7 ] [0, 6 ] [0, 5 ] [0, 4 ] [0, 3 ] [0, 2 ] [0, 1 ] [0, 0 ] 

g         p [0,1]    [0,1] 

g         p [1,1]    [1,1] 
g 
         p 
[0,0]     
         [0,0] 

[2, 3 ] 
[4, 5 ] 

[6, 7 ] 

[4, 7 ] 
[0, 3 ] 

[0, 1 ] 
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Brent-Kung Carry Network (16-Bit Adder)
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parallel prefix 
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2 log2k – 2 



Adder comparison
 Ripple-carry adder has highest 

performance/cost.
 Optimized adders are most effective in very 

long bit widths (> 48 bits).



ALUs
 ALU computes a variety of logical and 

arithmetic functions based on opcode.
 May offer complete set of functions of two 

variables or a subset.
 ALU built around adder, since carry chain 

determines delay.
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