CS31001 COMPUTER
ORGANIZATION
AND

ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Datapath Elements and
Their Designs

—!
Why Datapaths?

O The speed of these elements often dominates the
overall system performance so optimization
techniques are important.

U However, as we will see, the task is non-trivial since
there are multiple equivalent logic and circuit
topologies to choose from, each with adv./disadyv. in
terms of speed, power and area.

O Datapath elements include shifters, adders,
multipliers, etc.

—!
Bit-slicing method of constructing

ALU

O Bit slicing is a technique for constructing a
processor from modules of smaller bit width.

0O Each of these components processes one
bit field or "slice" of an operand.

O The grouped processing components would
then have the capability to process the chosen
full word-length of a particular software
design.

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Bit_field
http://en.wikipedia.org/wiki/Operand

Bit slicing

i 2

Bit-sliced organization
is common for datapaths.

| Bit4
| Bit3
| Bit2
| Bit1

| Bito

Data-In

Data-Out

—!
Shifters

Sell Sel0 Operation Function

0 0 Y<-A No shift

0 1 Y <-shlA Shift left

1 0 Y <-shrA Shift right

1 1 Y<-0 Z.ero
outputs

What would be a bit sliced architecture of this simple shifter?

Using Muxes; cono

Al2]

. Y[2]

A[1] : MUX

0

All]
A[O] 1 > Y[1]
MUX

Al2] L
0
A[O]

AILL 1 ux -

—————————
Verilog Code

module shifter(Con,A,Y);
input [1:0] Con;
input[2:0] A;
output[2:0] Y;
reg [2:0] Y;
always @(A or Con)
begin
case(Con)
0: Y=A;
1: Y=A<];
2: Y=A>>1;
default: Y=3’b0;
endcase
end
endmodule

Combinational logic shifters with
shiftin and shiftout

Sel

Operation

Y<=A, ShiftLeftOut=0
ShiftRightOut=0

Y<=shl(A),
ShiftLeftOut=A[5]

ShiftRightOut=0

Y <=shr(A),
ShiftLeftOut=0

ShiftRightOut=A[0]
Y <=0, ShiftLeftOut=0
ShiftRightOut=0

Function

No shift

Shift left

Shift Right

Zero Outputs

I —
Verilog Code

always@(Sel or A or ShiftLeftIn or ShiftRightIn);
begin
A_wide={ShiftLeftIn,A,ShiftRightIn};
case(Sel)
0: Y_wide=A_wide;
1: Y _wide=A_wide<<1;
2: Y _wide=A_wide>>1;
3:Y_wide=5’b0;
default: Y _wide=A_wide;
endcase
ShiftL.eftOut=Y_wide[0];
Y=Y wide[2:0];
ShiftRightOut=Y_wide[4];
end

Combinational 6 bit Barrel Shifter

Sel Operation Function
0 Y<=A No shift
1 Y<-Arol 1 Rotate once
2 Y<-Arol 2 Rotate twice
3 Y<-Arol 3 Rotate Thrice
4 Y<-Arol 4 Rotate four times
5 Y<-Arol 5 Rotate five times

————————————
Verilog Coding

O function [2:0] rotate_left;
input [5:0] A;
input [2:0] NumberShifts;
reg [5:0] Shifting;
integer N;
begin
Shifting = A;
for(N=1;N<=NumberShifts;N=N+1)
begin
Shifting={Shifting[4:0],Shifting[5]};
end
rotate_left=Shifting;
end
endfunction

—————
Verilog

O always @(Rotate or A)
begin
case(Rotate)
0: Y=A;
1: Y=rotate_left(A,1);
2: Y=rotate_left(A,2);
3: Y=rotate_left(A,3);
4: Y=rotate_left(A,4);
5: Y=rotate_left(A,5);
default: Y=6’bx;
endcase
end

———
Another Way

n bits

data 1

Y n bits

n bits

data 2

Code is left as an exercise...

Single-Bit Addition
Half Adder A B

Cout
COUt = Cout

W
[

Full Adder ~» s

C. S

S

b—\l—\OO:D
_ o = O W
HHHF—‘OOOO}H

C
0
1
0
1
0
1
0
1

—_ R, O O Rk R O O w

[»)
D

A
7X

Couré C
S

Full Adder

S=AOBOC
C.. = MAJ(A,B,C)

r

Bit Addition

Sin%le—

S=A0B
:Ag3

COllt

S

A B C C

S

A B C,

Carry-Ripple Adder

O Simplest design: cascade full adders
% Ciritical path goes from Cin to Cout

" Design full adder to have fast carry delay
A, B, A, B, A, B, A B

4 4 3 3 2 2 1 1

e
Full adder

O Computes one-bit sum, carry:
= s =a XORb XOR ¢

= Ci+1 = aibi + aiCi + biCi

0 Half adder computes two-bit sum.

O Ripple-carry adder: n-bit adder built from full
adders.

0 Delay of ripple-carry adder goes through all
carry bits.

—!

Verilog for full adder

module fulladd(a,b,carryin,sum,carryout);
Input &, b, carryin; /* add these hits*/
output sum, carryout; /* results */

assign {carryout, sum} =a+ b + carryin;
[* compute the sumand carry */
endmodule

———
Verilog for ripple-carry adder

module nbitfulladd(a,b,carryin,sum,carryout)
input [7:0] a, b; /* add these bits */
Input carmyin; /* carry in*/
output [7:0] sum; /* result */
output carryou;
wire [7:1] carry; /* transfers the carry between bits */

fulladd a0(a[0],b[0],carryin,sum(0],carry[1]):
fulladd al1(a[1],b[1],carny{1],sun1],carry{2]):

" fulladd a7(a[7]b[7],carmy{7],sumi7],camyout]);
endmodule

—!

Generate and Propagate

Gli] = Ali].Bli]
Pli]=Ali]U Bli]
Cli]=Gli]+ Pli].C[i —1]
Sli]=Pli]UC[i —1]

Gli
Pli.

Cli

1

l

=A

=G

i].Bli]
= Al

i]+ BJi]
i]+ Pli].Cli —1]

Sli]=Ali]U Bli] U Cl[i—1]

Two methods to develop CJ[i] and SJi].

—!

Both are correct

O Because, Ali]=1 and B[i]=1 (which may lead
to a difference is taken care of by the term
Ali]Bli])

L' How do we make an n bit adder?

O The delay of the adder chain needs to be
optimized.

Carry-lookahead adder

O First compute carry propagate, generate:
= P=a+b
" G=ab

0 Compute sum and carry from P and G:
® s =c XORP XORG,

"¢, =G +Pc

—!

Carry-lookahead expansion

O Can recursively expand carry formula:
c,=G+P(G,+P.)
c,=G+PG,+PP. (G,+P,c,)

0 Expanded formula does not depend on

intermediate carries.

O Allows carry for each bit to be computed
independently.

————
Depth-4 carry-lookahead

G, P, carry, G, P, carry, G, P, carry, G, P, carry,

sum, sum; sum, sum,

—!

Analysis

O As we look ahead further logic becomes
complicated.

O Takes longer to compute
O Becomes less regular.

O There is no similarity of logic structure in
each cell.

0 We have developed CLA adders, like Brent-
Kung adder.

—!

Verilog for carry-lookahead carry
block

module carry _block(a,b,carryin,carry);
input [3:0] &, b; /* add these hits*/
input carryin; /* carry into the block */
output [3:0] carry; /* carries for each bit in the block */
wire [3:0] g, p; /* generate and propagate */

assign g[0] = a[0] & b[Q]; /* generate 0 */ . A~ - . .
assign g[1] =a[1] & b[1]; /* generate 1 */
assign p[1] =a[1] ~ b[1]; /* propagate 1 */

assign cary[0] = g[0] | (p[0] & carryin);
assign carry(1] = g[1] | p[1] & (9[0] | (P[O] & carryin));
assign cay[2] = 2] | p2] &
(©[1] | p[1] &(9[0] | (P[O] & carryin)));
assign camy{3] =g[3] | p[3] &
(@[2] | p[2] & (9[1] | p[1] & (90] | (P[O] & carryin)));

o endmodule

—!

Verilog for carry-lookahead sum unit

module sum(a,b,carryin,result);
Input a, b, caryin; /* add these bits*/
output result; /* sum*/

assign result =a”* b carmyin;
[* compute the sum */
endmodule

S
Verilog for carry-lookahead adder

o module carry lookahead adder(a,b,carryin,sum,carryoLt);
input [15:0] &, b; /* add these together */
Input carryin;
output [15:0] sunm; /* result */
Ooutput Carryout;
wire [16:1] carry; /* intermediate carries */

assign carryout = carry[16]; /* for simplicity */

/* build the carry-lookahead units */

carry_block bO(a[3:0],b[3:0],carryin,carry{4:1));
carry_block b1(a[7:4],b[7:4],carry{4],carry[8.9]);
carry_block b2(a[11:8],b[11:8],carry[8],carry[12:9));
carry_block b3(a[15:12],b[15:12],carry[12],carry[16:13));
/* build the sum*/

sum a0(a[0],b[0],carryin,sum{0]);

sum al(a[1],b[1],carry{1],sum(1]);

sum al%(a[15],b[15],carry{ 15],sun{15]);
endmodule

—
Dealing with the

problem of carry propagation

1. Reduce the carry propagation time.

2. To detect the completion of the carry
propagation time.

We have seen some ways to do the former. How
do we do the second one?

Motivation

Probability

e—j Average carry propagation

Average worst case carry propagation

Absolute worst case carry propagation

]

log,k k

Carry Completion Sensing

A=0011101101101101
B=0100111000010101

1. & L 1L 8§ 1 2 9 ® T 1 0D T AL A
Gt O 1 0 I L 9 B 1L 1 X & 0 & 80 L I Gp
\ /N 4 \ I\ /

—!

Can we compute the average length of
carry chain?

0 What is the probability that a chain generated
at position 1 terminates at j?

It terminates if both the inputs A[j] and B[j] are
zero or 1.

From i+1 to j-1 the carry has to propagate.
p=(1/2)"
So, what is the expected length?

Define a random variable L, which denotes the
length of the chain.

———
Expected length

O The chain can terminate at j=i+1 to j=k (the MSB
position of the adder)

O Thus L=j-i for a choice of j.

O Thus expected length is: approximately 2!
kz_l (j=D)27V + (k-2
j=1+1
Ethe carry definitely ends at position k, so we do not
multiply 2~ with 1/2.)
= kg 27+ (k-2 %" =2 (k=i + D27 + (k-)27
=2 2—(k—1—i)

p
[Using, 2 127 =2-(p+2)27F]
=1

—!

Carry completion sensing adder

A=011101101101101
B=100111000010101

C=000000000000000
N=000000000000000

C=000101000000101
N=000000010000010

A=011101101101101
B=100111000010101

C=000101000000101
N=000000010000010

C=001111000001101
N=000000110000010

—!

Carry completion sensing adder

A=011101101101101
B=100111000010101

C=001111000001101
N=000000110000010

C=011111000011101
N=000000110000010

A=011101101101101
B=100111000010101

C=011111000011101
N=000000110000010

C=111111000111101
N=000000110000010

Carry completion sensing adder

A=011101101101101
B=100111000010101
C=111111000111101
N=000000110000010

C=111111001111101
N=000000110000010

—!

Carry completion sensing adder

0 (Alil,Bli])=(0,0)=>(Ci,N1)=(0,1)
B (AlilBIi])=(1,1)=>(Ci,Ni)=(1,0)
0 (Ali],Bli])=(0,1)=>(Ci,Ni)=(Ci-1,Ni-1)
O (Ali]l,B[i])=(1,0)=>(Ci,N1)=(Ci-1,Ni-1)
O Stop, when foralli, CiVNi=1

—!

Justification

O Ci and Ni together is a coding for the carry.

O When Ci=1, carry can be computed. Make
Ni=0

0 When Ci=0 is the final carry, then indicate by
Ni=1

O The carry can be surely stated when both Ai
and Bi are 1’s or 0’s.

—!
Carry-skip adder

O Looks for cases in which carry out of a set of
bits is identical to carry in.

O Typically organized into b-bit stages.

O Can bypass carry through all stages in a group
when all propagates are true: P, P, ... P ..

Carry out of group when carry out of last bit in
group or carry is bypassed.

Carry-skip structure

AND

+
—_

Ba~RA= RN

+
T
—_

OR

Carry-skip structure

b adder stages b adder stages b adder stages

Carry put P[2b,3b-1] Cargy out P[b,2b-1] Carry out P[0,b-1]
Cin

Worst-case carry-skip

O Worst-case carry-propagation path goes
through first, last stages:

—!

Verilog for carry-skip add with P

module fulladd p(a,b,carryin,sum,carryout,p);
Input &, b, carryin; /* add these hits*/
output sum, carryout, p; /* results including propagate */

assign {carryout, sum} =a+ b + carryin;
[* compute the sumand carry */
assignp=a”’Db;
endmodule

Want to use ripple carry adder for the
blocks

module fulladd p(a,b,carryin,sum,carryout,p);
Input &, b, carryin; /* add these hits*/
output sum, carryout, p; /* results including propagate */
$rtl_binding=“ADD3_RPL";
assign {carryout, sum} =a+ b + carryin;
[* compute the sumand carry */
assignp=a”’Db;
endmodule

Directive to a synthesis tool!

N —
Verilog for carry-skip adder

module carryskip(a,b,carryin,sum,carryoLt);
input [7:0] a, b; /* add these hits */
input carryin; /* carry in*/
output [7:0] sunt; /* result */
Ooutput Carryout;
wire [8:1] carry; /* transfers the carry between bits */
wire [7:0] p; /* propagate for each bit */
wire cs4; /* final carry for first group */

fulladd_p a0(&[0],b[0],carryin,sum{0],carry{1],p[O0]);
fulladd_p al(a[1],b/1],carry{1],sum{1],carry{2],p{1]);
fulladd_p a2(a[2],b{2],carry{2],sum(2],carry{3],p{2]);
fulladd_p a3(&[3],b[3],carry{3],sumi3],camy{4],p(3]);
assign cs4 = canyf4] | (p[0] & p[1] & p{2] & p[3] & carryin);
fulladd_p a4(e4],bj4],cs4, sumi4],carry{5],p[4]);

assign carryout = carmy{8] | (p[4] & p[5] & p[6] & p[7] & cs4);
endmodule

Delay analysis

O Assume that skip delay = 1 bit carry delay.
O Delay of k-bit adder with block size b:
" T=(b-1)+0.5 + (k/b =2) + (b-1)
block 0 OR gate skips last block

0 For equal sized blocks, optimal block size is
sqrt(k/2).

Delay of Carry-Skip Adder
| yd

ripple adder

bypass adder

4

4.8 N

tg =2k —1)tgca + -2 HSKIP
B [

k

Carry-select adder

0 Computes two results in parallel, each for
different carry input assumptions.

O Uses actual carry in to select correct result.
O Reduces delay to multiplexer.

Carry-select structure

Bm1 Dt 4 b,
Fer0
carry in
Ty | 0
__________________________ e
iy m-1 I:|'|+m-1 El| h, .
one : previous stage
carry in ;
N | N
_______ Tl.. _.___-.___.__T__.|.. Comoooaood
0 1 o 1 0 1
sel sel 2= sel G,
mux _I MuX _] mux _I)
| | l

Carry-save adder

O Useful in multiplication.
O Input: 3 n-bit operands.
O QOutput: n-bit partial sum, n-bit carry.
" Use carry propagate adder for final sum.
O Operations:
" s=(x+y+z)mod 2.
" oc=[(x+y+z)-2]/2.

Carry Network is the Essence of a Fast Adder

g; P;| Carryis: X; Y

oo [ammamsoes | 9=,
U - P'Upuuulbu —

1 0 | generated p; = X O Y
11

(impossible) U
Yk-2 Pi-2 JisaPina 19i Pi g.p
9y, P L g4p,
. . e oa CO

Ripple; Skip;
l P i Ci s b Lookahead:;

0 .
k-2 Ciit ? 1 Parallel-prefix
Si

Generic structure of a binary adder, highlighting its
carry network.

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 52

Ripple-Carry Adder Revisited

The carry recurrence: c,, =g;Up;c

Latency of k-bit adder is roughly 2k gate delays:

1 gate delay for production of p and g signals, plus
2(k — 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

k-1 Pk-1 k-2 Pk-2 1 P1 Jo

i

: C
K Ck-1 Ck-2 ‘ C2 C1 0

Alternate view of a ripple-carry network in connection with the
generic adder structure shown in Fig. 5.14.

|

Q)

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 53

.
The Complete Design of a Ripple-Carry Adder

g; P;| Carryis: XI.L ‘yi

0 0 | annihilated or killed .= X. V.
0 1 | propagated }L 9 i Vi
1 0 | generated p; = X; O)%
1 1 | (impossible) U

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 54

—!

6.1 Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Sianal Radix r Binarv
Signal Radix/ Binary
g ISliffx,+y =r XY
p. sSliffx.+y =r—-1 x. 1y,
a, Is1liffx,+y <r-1 x'y'=x0y)'
t sliffx.+y=2r—-1 x. 1y,
Si (X;+y;+c)modr x; Uy, g

The carry recurrence can be unrolled to obtain each carry signal directly

from inputs, rather than through propagation Note:
B g Addition symbol
Ci =91 UCiPiy vs logical OR

=0, U9, UcC,p)Py

=01 UG:oPy UCL,P0P

=03 U0:oP 1 UG 3PioPiy UC 3P 3PPy

=01 UG9,Pi UG 3PioPiy UGiaPi3PisPiy UC 4PiaPizPisPiy

—!

Full Carry Lookahead

X3 Y3 X2 Yo X1 Y1 Xo Yo

A

A AL AL AL AI
gl

iss isz isl iSo

Theoretically, it is possible to derive each sum digit directly
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing
the complexity of this ideal, but impractical, arrangement by
hardware sharing among the various lookahead circuits

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 56

° C4
Four-Bit Carry-Lookahead Adder __@’
\- Ps
complexity ' -
reduced by s
deriving the “ —(@—— N
carry-out ‘ | P
indirectly ~— ‘
2
Full carry lookahead is quite practical —
for a 4-bit adder e 7] b,
2
N
C; = go UCypy g
C, = g, Ugop; UCypoP,y Po
¢;= g,Ug.p, Ugop.p, LICyPy PP, “ — L g
C,= 05 Dgzps Dglpzps Dgop1p2p3 Co
LI Cy PP PP Four-bit carry network with

full lookahead.

Carry Lookahead Beyond 4 Bits

Consider a 32-bit adder
_ NoO circuit sharing:
C, = g, UCypy

c,= g, 0g.p, (¢, p.p Repeated computations
2 1 0”1 or’oM1
¢, = g,Ug,p,1g,p.p, U

: 32-input AND
C31= g30 Dg29p30 Dg28l)29pBO Dg27p28p29p30 D e DCO"'ngpSO

_ High fan-ins necessitate
32-input OR tree-structured circuits

Solution to the Fan-in Problem

High-radix addition (i.e., radix 2")

—_Increases the lfatency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition
Radix-16 (four digits)
Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c,, c,;, and c,, are determined first

Cie C15 Ciqy Cy3 €y, €4y €y G Cg C; G C5 C, C3 €, C; C
C ? ? ? C

out in

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 59

————————————
Carry-Lookahead Adder Design

Block generate and propagate signals

Giiva= Giva UGiaPivs U i1 PiioPivs U G; Pist PisaPisa
Piii+z1= PiPir1Pi2Pira

C C

Ci+3<_ i+2<_ i+1<_
8+3Pi+3 &+2Pi+2|g+1Pi+1| & Pi

4-bit lookahead carry generator («—

vy

8rii+3] Plii+3]

Schematic diagram of a 4-bit lookahead carry generator.

A Building Block for _
Carry-Lookahead Addition Ry i
’ \Sr N
:] Pr3
A 4-bit . —\
“ ~—_1 lookahead .
__@. carry,generator Block Signal Generation
g, Intermediate Carries
- —7-; . - —7-—--—-- ~~~~~
N — _\ —
Cins —
L e
. 3] | Pi+2 \\\
A 4-bit —\ ~—
carry o 8iso
network S 2] '
— [| _\ —
o /;L|] P Cito /7L| Pie1
‘\\ wl . ; \bl __ ///
\ g 8i+1/
' P(l) _ P
—_ . Cy O < NG =
K *@ % 1 Q . .

!!omﬁlmng BIoCK g and D glgna|s

| Jo 0
- . J1 il
; 2 12 Block generate and
- - propagate signals
: can be combined in
i1 C §1+1 Gj +1 the same way as bit
<4 <4 <4 g and p signals to
form g and p signals
&P &|P | BIP &P for wider blocks
vy vy LA A A / .
4-bit lookahead carry generator <4—
5P Fig. 6.3 Combining of g and p signals of four
\A4 (contiguous or overlapping) blocks of arbitrary widths

into the g and p signals for the overall block [i,, /;].

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 62

—!

A Two-Level Carry-Lookahead Adder ®
C12 C8 C4 C
< | & | & | [ayO
812,151 | 818,111 [81471 [8l03]
¢ | edyinyi g v
@< < o< (1215 WP is.11) WP 471 P o3l
4-bit lookahead carry generator "J
16-bit
8148,63] 8[32,47] 8[16,31] T 810,15] Carry-Lookahead
Prag,63] Pr32.471 Pl16,31] Po,15) Adder
v
4-bit lookahead carry generator <

810,63]
P [0,63]

Carry-out:

Apr. 2012

Fig. 6.4 Building a 64-bit carry-lookahead adder from 16
4-bit adders and 5 lookahead carry generators.

Cout = Gioua; UCoPrps = XetVuer USkd' (Xies OY,a)

Computer Arithmetic, Addition/Subtraction

Slide 63

—!

Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c,, c,, and ¢, 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels
Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)
Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: T oocanendaas = 4109,k + 1 gate levels

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 64

Carry Determination as Prefix Computation

Block B' " "

'Bl ck B"‘. > 9 P
- JO 10 g,
il a / p'
——@
g",p") (g,p)]
gilp" g' p
|

1 g=gv-gp"
giip p=pp

< Block B > (&.P) g P

Combining of g and p signals of two (contiguous or overlapping) blocks B’
and B" of arbitrary widths into the g and p signals for block B.

—!

Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:

Given (9, Po)(G1: PY) - - - Gk Prca) (91 Pit)
Find (Q 00+ Prooy) (Q 047 P - - - (@ 0k-2 1 Poxa) (@ io,k—l] » P oka)
c, c, .. G C,

Carry-in can be viewed as an extra (-1) position: (g, p_,) =(c,, 0)

The desired pairs are found by evaluating all prefixes of

1P ¢ H{grPD) ¢ . - . € (Ga Pii) ¢ (Gr Pi)

The carry operator ¢ is associative, but not commutative
[(91, P1) € (9, P,)] € (95, P2) = (91, P1) € [(92: P2) € (93,)]

Prefix sums analogy:
Given X, X, X, C X, 4

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 66

Find X, XotX, XytX +X, Co XgtX +.. . +X,

Example Prefix-Based Carry Network
6 -1 2 5

/ Fig. 6.6 Four-input
Q _ parallel prefix
(@) A 4-input_ syms network and

] prefix sums s corresponding
— network carry network.

e Scan g p"
order '
95 Ps 92 P, 9y Py Jor Po v
/ / /p
(¢ (¢ (b) A 4-bit
- Carry J
k/////// k//////» lookahead

@ @ network

93 Pos 2 Proz Yoy Poar Jooor Pooy v
- (C4! ") - (C3, ") - (Cz! ") - (Cl, ")

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 67

Brent-Kung Carry Network (8-Bit Adder)

[7,7] [6,6] [5,5] [4,4] [3,3] [2,2] [1,1] [O,0]

91,11 P11

90,0]
A Plo,0]

910,1] Plo,1]
[0,7] [0,6] [0,5] [0,4] [0,3] [0,2] [O,1] [O,0]

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 68

Brent-Kung Carry Network (16 Bit Adder)
13 M2 % KoK X XX X5 X X5 X X X

5 %14
Lf"“_ff—;g_f:_%_f—_ﬁéf:;d—%ﬁ— o

reasonor S LT[[OT [LOT |
2Iogzlzl—2 X ; i&)/// ///87// !
AN OTTTLHT g

| e % |

g | AT ST ST
gﬁpl*lg‘!pf : dg <{ <§§ <{ cfg <{ <{

515 514 813 512 511 S10 59 S8 S S. S S, S S, S S

Apr. 2012 Computer Arithmetic, Addition/Subtraction Slide 69

Adder comparison

O Ripple-carry adder has highest
performance/cost.

O Optimized adders are most effective in very
long bit widths (> 48 bits).

—!
Al.Us

O ALU computes a variety of logical and
arithmetic functions based on opcode.

O May offer complete set of functions of two
variables or a subset.

O ALU built around adder, since carry chain
determines delay.

	CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE
	Datapath Elements and Their Designs
	Why Datapaths?
	Bit-slicing method of constructing ALU
	Bit slicing
	Shifters
	Using Muxes
	Verilog Code
	Combinational logic shifters with shiftin and shiftout
	Slide 10
	Combinational 6 bit Barrel Shifter
	Verilog Coding
	Verilog
	Another Way
	Single-Bit Addition
	Slide 16
	Carry-Ripple Adder
	Full adder
	Verilog for full adder
	Verilog for ripple-carry adder
	Generate and Propagate
	Both are correct
	Carry-lookahead adder
	Carry-lookahead expansion
	Depth-4 carry-lookahead
	Analysis
	Verilog for carry-lookahead carry block
	Verilog for carry-lookahead sum unit
	Verilog for carry-lookahead adder
	Dealing with the problem of carry propagation
	Motivation
	Carry Completion Sensing
	Can we compute the average length of carry chain?
	Expected length
	Carry completion sensing adder
	Slide 36
	Slide 37
	Slide 38
	Justification
	Carry-skip adder
	Carry-skip structure
	Slide 42
	Worst-case carry-skip
	Verilog for carry-skip add with P
	Want to use ripple carry adder for the blocks
	Verilog for carry-skip adder
	Delay analysis
	Delay of Carry-Skip Adder
	Carry-select adder
	Carry-select structure
	Carry-save adder
	Carry Network is the Essence of a Fast Adder
	Ripple-Carry Adder Revisited
	The Complete Design of a Ripple-Carry Adder
	6.1 Unrolling the Carry Recurrence
	Full Carry Lookahead
	Four-Bit Carry-Lookahead Adder
	Carry Lookahead Beyond 4 Bits
	Solution to the Fan-in Problem
	Carry-Lookahead Adder Design
	A Building Block for Carry-Lookahead Addition
	Combining Block g and p Signals
	A Two-Level Carry-Lookahead Adder
	Latency of a Multilevel Carry-Lookahead Adder
	Carry Determination as Prefix Computation
	Formulating the Prefix Computation Problem
	Example Prefix-Based Carry Network
	Brent-Kung Carry Network (8-Bit Adder)
	Brent-Kung Carry Network (16-Bit Adder)
	Adder comparison
	ALUs
	Slide 72

