
1

CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

The Instruction Set
Architecture (ISA):
From CISC to RISC

2

Complex Instructions
 The ISA for MIPS was simple.

 Instead, we can have more complex
instructions.
 Complex Instruction Set Computers (CISC)

 Motivation for designing CISC ISA is to provide
an ISA that supports the complex operations and
data structures of high level languages (HLLs).

Reasons for the CISC style
 Lesser memory requirements: Memory

technology was slow and also small. Complex
instructions leads to programs which has
lesser memory requirements.

 Hardware based computations are faster than
doing it in software:
 time is saved in fetching and decoding several

instructions.

3

Examples
 VAX-11/780 was an ultimate CISC processor in 1978, supported 22

addressing modes, and has a variable instruction size ranging from 2 to
57.

 For example it has an autoincrement addressing mode:
 a single instruction can read data from memory, add to the content of a

register, store it back in memory and increment the memory pointer.
(R2)=(R2)+R1, R2=R2+1

The Complex Instruction can be written as a group of simple instructions (like we
have seen in MIPS ISA):

R4=(R2) #load instruction, I-type
R4=R4+R1 #add instruction, R-type
(R2)=R4 #Store instruction, R-type
R2=R2+1

 The CISC instruction may be faster than the 4 RISC instructions. But there
are other costs, which needs to be investigated.

CISC vs RISC

16

2-57

22

303

VAX 11/780

CISC RISC

328Number of
general
purpose
registers

41-12Instruction
Size (bytes)

111Addressing
Modes

94235Number of
Instructions

MIPS R4000Intel 486Characteristi
cs

4

The Problems of CISC: Why RISC?

 Limited Usage of the Complex Instructions:
Complex instructions were used much lesser
than expected.
 Like, sortup reg1, reg2 is a complex instruction to

arrange the array from address stored in reg1 to
reg2 in a non-descending order is used quite less.
Further, the corresponding way of doing the sort
hardwired may not be the best way of doing so
(the best sorting depends on the type of data).

The Problems of CISC: Why RISC?

 Difficulty of Compilers: With the
development of compilers, it was observed
that compilers tend to synthesize codes that
have simple instructions.
 Simple ISA also helps in writing efficient

compilers.

5

The Problems of CISC: Why RISC?

 Few Data Types: CISC ISA tends to have a
variety of data structures, from simple data
types to complex data structures.

 Beneficial to design a system that supports
simple data types efficiently, and from which
the complex data types can be synthesized.

The Problems of CISC: Why RISC?

 Simple Addressing Modes: CISC designs
provide large number of addressing modes.
 support complex data structures
 provide flexibility to access operands

 Inefficient Instruction Decoding:
 Problems arise because of variable instruction

execution times, as the time depends on the
location of the operands.

 Variable instruction length

6

Large Register Sets
 Several researchers have studied the procedure calls

in HLLs.
 Study shows that C programs have 12 to 15%

call/return instructions.
 Of machine language instructions, it is around 30%.
 Call/return instructions have around 50% memory

references: memory is used for local variables,
parameters, storing activation record.

 Thus it is important to have proper support for
call/return instructions.

Large Register Sets
 Research shows that 1.25 % of the called

procedure has more than six arguments.
 More than 93% of them have less than six

local variables.
 These figures show that activation records are

not large.
 If we have large number of registers one can

avoid memory references for most procedure
calls.

7

Missing Addressing Modes in MIPS
 Index Addressing: Based addressing that we have seen in the

MIPS ISA, has a register storing the base address, and an
immediate value which is the offset.

 The reverse is also possible, that is the base is specified by an
immediate value (and is constant), while the variable index is
the content of a register: the register is called index register.

 When the immediate part is 0, the computed address is the
same as the value in the base register.
 This is also called as register index addressing mode: memory is

indirectly obtained from a register.

 Some early computers had more than one index registers:
 the content of one of the index registers is added to the base address,

which is either directly specified or indirectly specified.

Indirect Addressing
 Two stage process for obtaining an operand.

 The destination location (either a register or a
memory word) is seen.

 It provides an address which is then accessed to
obtain the operand.

 If the first stage is a register: register indirect
addressing.

 Can be used for executing case statements with jump
tables.

8

Summary of addressing modes
 Implied
 Immediate
 Register
 Base
 PC-relative
 Pseudo-indirect
 Index
 Indirect

 Often a complex instruction can be expressed through
simple addressing modes.

RISC vs CISC
 An ISA has two types of instructions; simple (S) and complex (C) types,

both of which takes similar time in a reference CISC implementation.
 Program profiling shows that 95% of the program consist of S type

instructions, while the remaining are C type instructions.
 The company is planning to start a RISC version of the processor:

 The S type instructions will be hardware supported and will have a 20%
speed up.

 The C type instructions will be translated to S-type instructions and will need
3 times for time.

 Which style (CISC or RISC) will give a faster execution of the program?

9

RISC vs CISC
 CISC: Let an instruction take t time units.
 RISC: Time = 0.95x0.8t + 0.05xt/3
 Speed up of RISC

= 1/(0.95x0.8+0.05/3)
=1.1

Further, the RISC processor is easier to
design and is test, and have a shorter time to
market.

Combination of RISC and CISC
 Modern processors, like the Intel Pentium

tries to combine the advantages in a single
machine.

 Front end hardware translators are used that
replaces CISC instructions with a sequence of
one or more RISC instructions.

10

A Single Instruction Processor
 How much can we simplify?
 “Make things as simple as possible, but not simpler.”

– Albert Einstein
 What is the ultimate RISC processor?

 URISC

 If we neglect the input/outpu, interrupts, scheduling,
and other such operations, for computations a single
instruction is sufficient!

 Thus extra instructions are added, only for
performance.

What is the instruction?
 The instruction does not need any opcode.
 Capability to perform arithmetic is needed:

 so, we have two operands
 we re-use the second operand as the destination
 since, there is no load/store instructions, two memory addresses are

needed:
 source1 and source2/destination

 Further, we need conditional branches:
 thus the instruction also has a third address, which specifies the target

address.
 The branch condition is specified, by using subtraction as the

arithmetic operation, and using the sign of the result as the condition.

11

The URISC instruction
subtract operand1 from operand2, replace

operand2 with the result, and jump to target
address in case of negative result

label: urisc dest, src1, target

Note, that the opcode is not needed.

Exiting the program
 The convention will be that the program

execution starts at the memory location 1.

 Branching to memory location 0, terminates
the program.

 We use the assembler directive, .word to
name and initialize one word of memory to be
used as an operand
 stop: .word 0

12

URISC program for move
stop: .word 0

start: urisc dest,dest,+1 #dest = 0

urisc src,temp,+1 #temp=-(src)

urisc temp,dest,+1 #dest=-(temp)

…

Assignments
 ex1: uadd dest,src1,src2
 ex2: uswap src1,src2
 ex3: uj label
 ubge: src1, src2, label #if (src1)≥(src2), goto label
 ubeq: src1,src2,label #if (src1)=(src2), goto label

Use at1 and at2 as temporary registers for the
assembler.

13

uadd
urisc at1, at1, +1 #at1 = 0

urisc src1,at1,+1 #at1 = -(src1)

urisc src2,at1,+1 #at1 = -(src1)-(src2)

urisc dest,dest,+1 #dest=0

urisc at1,dest,+1 #dest = -(at1)=(src1)+(src2)

URISCURISC

URISC stands for Ultra-RISC

One instruction only !!!!!!!!

No Opcode ……No need for it.. Interesting ???

Gets better, can be implemented with minimal
hardware too

14

Basic OperationsBasic Operations
Instruction should execute
 Subtract
 Branch if less than equal
 Memory Operations needed

Theorem states that any instruction that has
this capability can be used as an URISC

instruction
Reference: The Ultimate Reduced Instruction Set Computer
Int.J.Elect.Enging Educ., Vol 25, pp 327-334

MotivationMotivation

 How much can RISC be reduced to ?
 Main idea was to a create a fast, simple

computer
 Simple Instructions means a simple hardware

and a faster clock
 Eliminates the decode stages in other

computers
 URISC is extreme in simplicity

15

URISC is Turing URISC is Turing
CompatibleCompatible
Being equivalent to a universal Turing machine
essentially means being able to perform any
computational task that takes finite input and returns
finite output in finitely-many steps.

By creating other instructions based on subtract,
branch if negative or equal it can be shown that
URISC is Turing compatible.

URISC InstructionURISC Instruction
 b  b – a (a,b are Registers)
 If b <=0 then

PC = Branch Target Address

else

PC= PC + 1
Branch Addressing can be made relative or implicit

1st Operand = a 2nd Operand = b Branch Target Address

16

Machine Level InterpretationMachine Level Interpretation

<L> : <A>, , <P>

L: Instruction Label

P: Jump Target Label

A,B: References to the memory where the

operands are located.

Example ProgramsExample Programs
SUB(A,B) // B  B - A, no branch

SUB:A,B,END
END: …

SETZERO(A) // A  0

SETZERO:A,A,END
END: ...

ADD(A,B) // B  A + B, Assumes T0 is set to 0
ADD0:A,T0,ADD1
ADD1:T0,B,END

END: ...

17

Example ProgramsExample Programs
MOVE(A,B) // B  A Assumes T0 is set 0

MOV0: B,B, MOV1

MOV1: A,T0, MOV2

MOV2: T0,B, END

END: ...

JUMP(Target) // Unconditional Jump

JUMP:T0,T0,Target

Example ProgramsExample Programs
BEQ(A,Target) //Assumes T0 == 0

// IF A == 0 Then PC = Target
BEQ0:A,T0,BEQ2
BEQ1:T0,T0, END
BEQ2:T0,T0, BEQ3
BEQ3:T0,A, Target

END: ...

18

URISC is a URISC is a MulticycleMulticycle
ProcessorProcessor

Takes 4 clock cycles to complete a single instruction.

During each clock cycle a different set of control signals
is output from the control unit. These control signals
effect the flow of data in the processor/datapath.

A counter counts what microinstruction we are on. For
each value of the counter a different set of
microinstructions is output.

At the end of the instruction (after microinstruction 4 or
earlier) the counter is reset to 0, and execution of the next
instruction begins

Hardware ImplementationHardware Implementation

URISC hardware can be implemented in
various forms best suited for optimizing one
instruction

19

Hardware ImplementationHardware Implementation

Hardware ImplementationHardware Implementation
The URISC Computer uses minimal hardware.
To implement the instruction we need to:

check to see if PC = 0
load the first operand

increment PC
load the second operand

subtract the operand
store result in to the second operand

increment PC
load target

increment PC
if result is negative, set PC to target

20

Cycle 1 Cycle 1 –– PC check to 0PC check to 0

Cycle 2 Loading New OperandCycle 2 Loading New Operand

21

Cycle 3 PC IncrementCycle 3 PC Increment

Cycle 4 Load Second OperandCycle 4 Load Second Operand

22

Cycle 5 Cycle 5 SubstractSubstract and Store and Store

Cycle 6 Load TargetCycle 6 Load Target

23

Cycle 7 Load target IF PC Cycle 7 Load target IF PC --iveive

Problems with URISCProblems with URISC

URISC architecture is not competitive

The cycles taken by URISC or the execution
time per instruction is on an average 75% more
than a MIPS multi-cycle architecture

But that doesn’t prove it to be sub-optimal

24

Optimal ArchitecturesOptimal Architectures
Class of optimal architectures can be thought
of as a surface in a multidimensional computer
design space

Taking typical axes of the space to be
processor complexity the program size for
some benchmark, and the memory traffic
required to execute that benchmark, it’s clear
that URISC fares worse than any other
architecture

Optimal ArchitecturesOptimal Architectures

The minimal ultimate RISC can only be
proven to be suboptimal if a processor can be
found that is better when measured along at
least one axis of the design space while being
no worse along any other axes.

25

Work on URISCWork on URISC
Steve Loughran formally defined, designed
and built a 32-bit variant of this architecture as
his final-year project at Edinburgh University
in 1989
Adam Donlin has proposed using an Ultimate
RISC as a host for a dynamically
reconfigurable FPGA coprocessor in "Self
Modifying Circuitry -- A Platform for
Trackable Virtual Circuitry" in Proceedings of
FPL the 9th International Workshop, FPL99,
Springer-Verlag, ISSN 0302-9743, Aug 1999.

Work on URISCWork on URISC

Paul Frenger wrote published a paper in ACM
Sigplan Notices 35, 2 (Feb 2000) entitled "The
Ultimate RISC: A Zero-Instruction Computer";

ACM Computer Architecture News, 16, 3
(June 1988), pages 48-55.

Univ. of Waterloo URISC: F. Mavaddat and
B. Parhami, URISC: The Ultimate Reduced
Instruction Set Computer

