
1

CS31001 COMPUTER 
ORGANIZATION 
AND 
ARCHITECTURE

Debdeep Mukhopadhyay, 
CSE, IIT Kharagpur

Assembler



2

Steps in Transforming an Assembly 
Language
 Assembly languages have been developed that allow 

the use of symbolic names for instructions and 
memory locations. 

 Assemblers convert instruction sequences in 
assembly languages to machine language.

 Assemblers accept numbers in a variety of simple 
and natural representations, and automatically 
convert them to required machine formats.

 Further, assemblers allow pseudo-instructions and 
macros.

Linkers and Loaders
 Multiple program modules are assembled 

independently.

 They, along with the library routines are 
linked subsequently by the linker.

 The linked routine forms a complete 
executable program which is then loaded to 
the memory.



3

Simulators
 Instead of loading the machine language 

instructions, they are often interpreted by a 
simulator.

 It examines each instructions, and carries out 
its functions by updating variables and data 
structures, that correspond to registers, and 
other machine parts.

 These simulators are needed in the design 
phase. 

The assembly process
 Two passes exist.
 First pass: main function is to construct a symbol table.
 A symbol is a string of characters that is used as an 

instruction label.
 As instructions are read, the assembler maintains an 

instruction location counter that determines the relative 
position of the instruction. 

 It is assumed that the program is loaded in a memory with 
address 0.

 There is also an additional relocation information produced 
by the assembler, which is used by the loader according to the 
eventual location in memory.



4

Example
 check: beq $t0,$t1,loop
 The assembler detects the operation symbol, “beq”
 The register symbols, $t0 and $s0 are also read.
 The labels “check” and “loop” are also read.
 However if “loop” refers to an backward memory 

location, it already exists in the symbol table.
 Else, we put it in the symbol table with its location 

blank. 
 We solve these missing locations in a second pass.

Assembler Directives
 Provides the assembler with information on how to 

translate the program but does not themselves lead to 
the generation of machine instructions.
 may specify the layout of data in the program’s data 

segment

 define variables with symbolic names and desired initial 
values

 Assembler reads this directives and takes them while 
executing the rest of the programs.



5

Some examples
,macro                               #start macro
.end_macro #end macro 
.text                                 #start program’s text segment
…
.data                               #start program’s data segment
tiny: .byte 156, 0x7a     #name and initialize data byte(s)
max: .word 1000000    #name and initialize data words(s)
small: float 2E-3          #name short float
big: .double 2E-3        #name long float

.align 2                 #align next item on word boundary
array: .space 600        #reserve space for 150 words 
str1: .ascii “a*b” #name and initialize ASCII string 
str2: .asciiz “xyz” #null-terminated ASCII string

.global main    #consider main as a global name

The .byte directive
 tiny .byte 156 0x7a

 a byte holding 156 followed by a second byte containing 
0x7a

 tiny($s0), refer to the first byte if $s0 is 0, second byte if 
$s0 is 1 and so on.

 The directives .word, .float and .double are similar, except 
that they define words, short float, and long float respectively

 .float f1,..., fn Store the n floating-point single precision 
numbers (32 bits) in successive memory locations. 

 double is for double precision (64 bits)



6

Pseudo-instructions
 Pseudo-instructions allow us to formulate 

computations and decisions in alternative 
forms not directly supported by hardware.

 The assembler takes care of translating these 
to basic  hardware supported instructions.

 Example: MIPS lacks a logical NOT 
instruction.
 same effect can be achieved by nor $s0,$s0,$zero

The abs instruction
 Some pseudo-instructions need more than one 

instruction.
 abs $t0,$s0 #put |$s0| into $t0
 The assembler translates this into:

add $t0,$s0,$zero
slt $at,$t0,$zero
beq $at,$zero,+4
sub $t0,$zero,$s0



7

Some conversions
 neg $t0,$s0: sub $t0,$zero,$s0
 rem $t0,$s0,$s1: div $s0,$s1

mfhi $t0
 li $t0,imm:

 addi $t0,$zero,imm #if imm fits in 16 bits
 lui $t0,upperhalf #if imm needs 32 bits

ori $t0,lowerhalf

 blt $s0,$s1,label
 slt $at,$s0,$s1
 bne $at,$zero,label



8

Macro-instructions
 A mechanism to give a name to an often used 

sequence of instructions (helps like a short 
form).

 .macro(arg list)

…

.end_macro

Two important points
 How is a macro different from a pseudo-

instruction?
 Pseudo-instructions are a part of the assembler 

design. They are fixed for a user. On the other 
hand, macros are user defined.

 Further, a pseudo-instruction looks exactly like an 
instruction. We can say by looking that 
move/not/li/la are pseudo-instructions. But a 
macro is more like a high level language code.



9

The other question.
 How is a macro different from a procedure?

 A procedure execution takes place by at least two jump 
instructions (jal and jr). 

 A macro is just a short hand for several lines of assembly. 

 The macro is replaced by the assembler with the 
equivalent lines of code for each time the macro is called.

 After that there is no trace of macro in the final assembly. 

Example
 Determine the largest of three values in registers and put the result in a 

fourth register. Write a macro for this.

.macro max3reg(m,a1,a2,a3)
move m,a1
bge m,a2,+4
move m,a2
bge m,a3,+4
move m,a3

.end_macro

When the macro is used like
max3reg($t0,$s0,$s4,$s3), the assembler simply replaces the arguments 
m,a1,a2, and a3 in the text of the macro with these registers.


