CS31001 COMPUTER
ORGANIZATION
AND
ARCHITECTURE

Debdeep Mukhopadhyay,
CSE, IIT Kharagpur

Assembler

Steps In Transforming an Assembly
Language

0 Assembly languages have been developed that allow
the use of symbolic names for instructions and
memory locations.

O Assemblers convert instruction sequences in
assembly languages to machine language.

O Assemblers accept numbers in a variety of simple
and natural representations, and automatically
convert them to required machine formats.

O Further, assemblers allow pseudo-instructions and
macros.

_

Linkers and Loaders

O Multiple program modules are assembled
independently.

O They, along with the library routines are
linked subsequently by the linker.

o The linked routine forms a complete
executable program which is then loaded to
the memory.

—

Simulators

o Instead of loading the machine language
instructions, they are often interpreted by a
simulator.

O It examines each instructions, and carries out
its functions by updating variables and data
structures, that correspond to registers, and
other machine parts.

O These simulators are needed in the design
phase.

_

The assembly process

O Two passes exist.
o First pass: main function is to construct a symbol table.

o Asymbol is a string of characters that is used as an
instruction label.

O As instructions are read, the assembler maintains an
instruction location counter that determines the relative
position of the instruction.

O Itisassumed that the program is loaded in a memory with
address 0.

O There is also an additional relocation information produced
by the assembler, which is used by the loader according to the
eventual location in memory.

—

Example

check: beq $t0,$t1,loop

The assembler detects the operation symbol, “beq”
The register symbols, $t0 and $s0 are also read.
The labels “check” and “loop” are also read.

However if “loop” refers to an backward memory
location, it already exists in the symbol table.

Else, we put it in the symbol table with its location
blank.

O We solve these missing locations in a second pass.

O Ooooao

O

_

Assembler Directives

O Provides the assembler with information on how to
translate the program but does not themselves lead to
the generation of machine instructions.

m may specify the layout of data in the program’s data
segment

m define variables with symbolic names and desired initial
values
o Assembler reads this directives and takes them while
executing the rest of the programs.

—

Some examples

,macro #start macro

.end_macro #end macro

text #start program’s text segment
.data #start program’s data segment

tiny: .byte 156, 0x7a #name and initialize data byte(s)
max: .word 1000000 #name and initialize data words(s)

small: float 2E-3 #name short float
big: .double 2E-3 #name long float
.align 2 #align next item on word boundary

array: .space 600 #reserve space for 150 words

strl: .ascii “a*b” #name and initialize ASCII string

str2: .asciiz “xyz” #null-terminated ASCII string
.global main #consider main as a global name

_
The .byte directive

O tiny .byte 156 0x7a

m a byte holding 156 followed by a second byte containing
Ox7a

m tiny($s0), refer to the first byte if $s0 is 0, second byte if
$s0 is 1 and so on.

O The directives .word, .float and .double are similar, except
that they define words, short float, and long float respectively

o .float f1,..., fn Store the n floating-point single precision
numbers (32 bits) in successive memory locations.

O double is for double precision (64 bits)

—

Pseudo-instructions

O Pseudo-instructions allow us to formulate
computations and decisions in alternative
forms not directly supported by hardware.

o The assembler takes care of translating these
to basic hardware supported instructions.

o Example: MIPS lacks a logical NOT
instruction.
m same effect can be achieved by nor $s0,$s0,$zero

_

The abs instruction

O Some pseudo-instructions need more than one
instruction.

O abs $t0,$s0 #put |$s0| into $tO
o The assembler translates this into:
add $t0,$s0,%zero
slt $at,$t0,$zero
beq $at,$zero,+4
sub $t0,$zero,$s0

Some conversions

neg $t0,$s0: sub $t0,$zero,$s0
rem $t0,$s0,$s1: div $s0,$s1
mfhi $t0

O o

li $t0,imm:

m addi $t0,$zero,imm #if imm fits in 16 bits

m |ui $t0,upperhalf #if imm needs 32 bits
ori $t0,lowerhalf

O

blt $s0,$s1,label
m slt $at,$s0,$s1
m bne $at,$zero,label

O

—

Macro-instructions

o A mechanism to give a name to an often used
sequence of instructions (helps like a short
form).

o .macro(arg list)

.end_macro

_

Two important points

o How is a macro different from a pseudo-
instruction?

m Pseudo-instructions are a part of the assembler
design. They are fixed for a user. On the other
hand, macros are user defined.

m Further, a pseudo-instruction looks exactly like an
instruction. We can say by looking that
move/not/li/la are pseudo-instructions. But a
macro is more like a high level language code.

The other question.

o How is a macro different from a procedure?

m A procedure execution takes place by at least two jump
instructions (jal and jr).

m A macro is just a short hand for several lines of assembly.

m The macro is replaced by the assembler with the
equivalent lines of code for each time the macro is called.

m After that there is no trace of macro in the final assembly.

Example

o Determine the largest of three values in registers and put the result in a
fourth register. Write a macro for this.

.macro max3reg(m,al,a2,a3)
move m,al
bge m,a2,+4
move m,a2
bge m,a3,+4
move m,a3
.end_macro

When the macro is used like

max3reg($t0,$s0,$s4,$s3), the assembler simply replaces the arguments
m,al,a2, and a3 in the text of the macro with these registers.

