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Abstract— VLSI design involves a number of steps such as
system-level design, high-level synthesis (HLS), logic design,
test generation and physical design. All these steps involve
combinatorial optimizations that are NP-complete. Genetic
algorithms (GA) have been used to solve many problems in
VLSI design. HLS is the crucial step where the architecture
of the system is decided upon.

We have worked on several problems relating to high-
level synthesis, and developed GAs for them. In this paper
we describe our GAs for the following three problems and
describe some general methods that we have used in these
GAs to enhance their operation.
• Minimum node deletion (MND).
• Allocation and binding for data path synthesis.
• Scheduling, allocation and binding for the synthesis of

structured architectures.
All of the above problems are NP-complete. We have used
the following techniques to enhance the operation of the GA:
• Population control to enforce diversity within a rela-

tively small population size.
• Solution completion using approximate algorithms to

generate superior valid solutions.
• Selection control to reduce crossover between incom-

patible members.
These GAs have been tested on the usual benchmarks and

the results have been found to be acceptably good. The en-
hancing techniques we describe here are of a general nature
and may be used with other GAs to produce better results.

Keywords—VLSI Design, High-Level Synthesis, Data path
Design, Structured Architecture, Genetic Algorithm

I. Introduction

In this paper we describe GAs to solve three problems
that arise in high-level synthesis. These problems are of
increasing complexity and are: the minimum node deletion
problem, allocation and binding for high-level synthesis and
the synthesis of structured architectures.

We first briefly highlight the important steps in high-
level synthesis. The aim of high-level synthesis is to enable
the designer to start designing at a higher level of abstrac-
tion. A digital system typically consists of a number of
storage devices, buses, functional units to perform logical
and arithmetic operations, and interface ports. The stor-
age devices could be individual registers or small memories
of one or two ports. A regular single port memory has an
address port and a data port. A dual port memory has
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two sets of address and data ports, and permits two con-
current accesses to its memory locations. Such a system is
usually driven by a clock and its operation is typically char-
acterized by the events that take place in each clock cycle.
Current design flows usually require the designer to deter-
mine each of these events, ie. in each time step, the data
that must be put on each bus, the operations that must
be performed and the registers where newly created results
must be stored. This is a cumbersome process, and it is de-
sirable to specify the design at a higher level of abstraction,
such as a program written in a common high-level language
(say C). Such a program may be translated into a set of
directed acyclic graphs as the one shown in figure 1. Given
such a high-level description and some design parameters,
we would now like the register-transfer level (RTL) design
to be automatically generated.

This would require principally the following steps to
be performed: scheduling of operations into specific time
steps, formation of functional units (FU) to execute oper-
ations, formation of a storage configuration to store values
and interconnect configuration. The overall operation of
the system is as follows: The operation scheduled in a par-
ticular time step will execute on a designated functional
unit. The operands for the operation have to be fed using
some of the buses to the functional unit. The result has to
be transferred using a bus to a storage location designated
to store the result. Thus, the scheduling problem is to de-
termine which operations are to be scheduled in which time
step. The allocation and binding problem is to determine
the RTL data path components (storage elements, func-
tional units) and their interconnections using interconnect
elements. The port assignment problem comes in as part
of the interconnect configuration if dual-port memories are
used. All of these are computationally hard (NP-complete)
problems. There are also no particularly good heuristic
methods to solve these problems in an approximately op-
timal manner. In this context the genetic algorithm was
applied to solve these problems. We now move on to intro-
duce the specific problems dealt with in this paper.

The first problem of node deletion arises in the context
of port assignment of dual port memories. It is necessary
to assign accesses to the memory in each time step to one
of the two ports. The goal is to make an assignment that
leads to minimum interconnect. In the second problem
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Fig. 1. A sample directed acyclic graph.

of allocation and binding we start with a register transfer
level (RTL) design specification and wish to assign the op-
erations to functional units, storage variables to memory
and transfers to buses. The goal is to perform this assign-
ment to minimize the overall cost of the functional units,
registers and estimated interconnect cost. The last prob-
lem is to start with an unscheduled data flow specification
and have a RTL specification and a structured data path
to satisfy the RTL specification. The goal is to be able to
have a RTL specification within a specified number of time
steps and to have a minimum cost structured data path to
satisfy it.

In all these three cases we have had to rely on enhanced
crossover mechanisms. The crossover used for the mini-
mum node deletion (MND) problem was the best in the
sense that we were able to get a theoretical guarantee that
it would generate an optimum solution with high probabil-
ity. In case of MND the crossover alone was able to con-
tribute heavily towards obtaining optimal solutions. The
next two problems on data path synthesis are of a more
intricate nature, where it would be easy for a more tra-
ditional crossover to generate mostly infeasible solutions.
An overwhelming proportion of infeasible solutions places
a heavy demand on computing resources to run the GA. We
worked around this problem by using a crossover mecha-
nism which would always generate a feasible solution after
inheriting attributes from parent solutions. Another prob-
lem was the proliferation of copies of a slightly better solu-
tion in the population, thereby killing the diversity within
the population. This problem was solved by using a re-
placement scheme that forcibly retains some solutions in
the population to enforce a minimum degree of population
diversity.

Our experience with these three GAs indicates that a
combination of a robust crossover and a diversity sustaining
replacement mechanism have helped us solve three combi-
natorial problems of increasing complexity relating to high-
level synthesis, with satisfactory results.

The rest of the paper describes the problem formulation
and the corresponding genetic algorithms for the above
three problems, starting with MND and then allocation
and binding and finally the structure architecture synthe-
sis problem.
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Fig. 2. A non-bipartite graph.

II. Minimum node deletion

On-chip dual port memories are increasingly being used
as architectural elements. When multi-port memories are
used it becomes necessary to carefully assign the accesses
to its cells over its ports so as to minimize the cost of inter-
connecting the memory with other circuit elements. This
is the origin of the port assignment (PA) problem. PA for
dual ports memories is particularly useful as these are the
most commonly used multi-port memories. Optimal PA
for dual port memories directly maps on to the minimum
node deletion problem (MND) as follows: Certain nodes
(which may be a register, a port of an ALU, etc.) need to
be directly connected to one or more ports of the dual port
memory to be able to send or receive data from it. If there
are two nodes that need to transfer data to or from the
memory in the same time step then they must have con-
nections to different ports of the memory. Otherwise, they
may possibly be connected to the same port of the mem-
ory. This situation may be represented by putting an edge
between nodes that transfer data to or from the memory
in the same time step. We thus have a graph whose nodes
are the nodes in the circuit that need to be connected to
the memory and has edges as just described. Connection
to a port of the memory may be represented by assigning
a color to that node. Since there are only two ports in a
dual port memory, we may use only two colors. We pre-
fer to connect a node to just a single node of the memory
to reduce interconnection costs. Thus we try to color the
nodes of our graph with two colors. In some cases we shall
succeed – when the graph is bipartite. It is easy (in poly-
nomial time) to determine whether a graph is bipartite. If
not then some of the nodes will have to be connected to
both the ports of the memory. We may delete these nodes
from the graph and check whether the rest of the graph is
bipartite. To reduce our interconnection costs we try to get
a bipartite graph by deleting a minimum number of nodes
– hence the MND problem. We shall now discuss a GA for
MND.

A graph is said to be bipartite if it can be coloured using
just two colours. The node deletion problem is to deter-
mine, for a non-bipartite graph, the smallest set of vertices
that need to be deleted to make the graph bipartite.

III. Algorithm for Minimum Node Deletion

A. Solution representation

Convention bit string representations sometimes mask
the structure inherent in the solution. Davis [1] pointed
out that employing non-bit-string solutions for specific op-
timization problems is advantageous. For MND we have



found it convenient to represent the solution directly as
three sets. The first two sets contain the vertices corre-
sponding to each of the two colours. The third set con-
tains vertices that could not be two coloured and which
are chosen for deletion.

Example 1: For the graph of figure 2 one solution could
be < {b, d}, {c}, {a} >. The last set of the tuple cor-
responds to the set of deleted vertices which are con-
nected to both the ports. Another solution could be
< {a}, {c}, {b, d} >. 2

B. Fitness function

The fitness function is defined as

g = |set of deleted vertices| (1)

Minimization of g is the objective.

C. Initial population generation

Each member of the initial population is a randomly gen-
erated valid solution. While generating a solution, each
vertex of the graph is tested for possible membership in
one of the two partially constructed colour classes. In case
of a failure in inclusion to one colour class, the membership
for the other colour class is checked. In case of a repeated
failure the vertex is marked for deletion. The sequence in
which the vertices are visited while constructing a solution
is also random.

D. Reproductive plan

The parent selection policy, crossover and mutation oper-
ations constitute a reproductive plan. For a particular gen-
eration we have selected two parent solutions for crossover
to generate each child solution, randomly without replace-
ment from the current population. Only one offspring has
been generated as a result of a single reproduction. The
number of reproductions performed in one generation is
determined by the crossover rate.

The crossover is performed as follows. The offspring so-
lution first inherits a subset of a colour class from one of
the parent solutions. During crossover, larger colour classes
are chosen for inheritance with a higher probability, while
smaller ones are selected with a lower probability. The in-
herited class is now augmented with uncoloured vertices
according to the algorithm in figure 3. The augmentation
is based on a graph colouring algorithm presented in [2].
The algorithm is successively applied to the two inherited
colour classes. The augmentation algorithm is as follows.
Let V be the set of vertices of the graph. Let the initial
inherited colour class on which the algorithm is applied be
X. Γ(X) is defined as the subset of V − X, such that
for each element of the subset there is an element in X to
which it is connected by an edge. The effect of the steps (1)
and (5) of the augmentation algorithm is to remove from
Y all those vertices which have an edge with at least one
vertex of X. The newly defined Y has the property that
any of its vertices can be augmented to X. The process
of augmentation continues till the set Y becomes empty.

1. Y = V − Γ(X)
2. while (Y 6= ∅)
3. { among all y ∈ Y let x have

the minimum degree in Y
4. X = X

⋃{x}
5. Y = Y − ({x}⋃Γ(x))
6. }

Fig. 3. The augmentation algorithm

The vertex in Y that is to be selected is determined by the
simple heuristic of step (3) of the algorithm.

After the first colour class of the offspring is formed, the
second colour class is also formed similarly. The set from
which the second colour class is inherited is as follows. Let
P1 and P2 be the two parents. Let S11 and S12 be the two
sets in P1. Similarly, let S21 and S22 be the two sets in P2.
Suppose that the first colour class had been formed from
S11 of P1. Let

c0 =
|S11 ∩ S21|
|S11 ∪ S21|

and c1 =
|S11 ∩ S22|
|S11 ∪ S22|

.

The values c0 and c1, 0 ≤ c0, c1 ≤ 1 represent the affinity of
S11 with S21 and S22 of P2, respectively. Let S = S2(i+1),
such that ci ≤ c1−i, i ∈ {0, 1}. S is the colour class of P2

which is less affine to S11. Normally the second colour class
of the offspring is inherited from S, otherwise inheritance
is from S12. The vertices that could not be included in the
two colour classes of the offspring are placed in the third
set for deletion. This method of construction ensures that
each solution constructed is a valid solution.

During crossover, inheritance of only a part of the colour
class may be considered equivalent to the process of mu-
tation. The mutation rate instead of being kept fixed, is
varied with the standard deviation of the fitness value of
the candidate solutions. Should the fitness function values
tend to become uniform the mutation rate goes up.

E. Replacement policy

In our implementation all the offspring generated in the
current generation replace the maximum cost solutions in
the current population. This corresponds to the survival of
every new offspring generated for at least one generation.
Any existing better solution found survives since the worst
solutions are always replaced. This corresponds to an elitist
policy.

F. Deceptability of the Crossover

It has been shown in [3] that if the crossover operation is
free of type II deceptability, then the GA may be expected
to lead to the optimal solution. The crossover would be
free of type II deceptability, if on crossing two solutions
with high fitness value, the resulting new solution also has a
high fitness value [3]. The crossover used here has not been
proved to be strictly free of type II deceptability, but it is
likely to be so. We show this by probabilistic arguments.



First a probabilistic analysis of the augmentation algorithm
is presented.

Let the two colour classes be B1 and B2 and let the third
set be D. The analysis is applicable for random graphs
satisfying the following:

1. |B1| = |B2| = m.
2. |D| = k, thus |V | = 2m+ k.
3. By definition B1 and B2 are independent, (that is,

there are no edges between any pair of elements of a
particular set). An edge may be present between a
member of B1 and a member of B2 with probability
p. An edge may be present between a member of B1

and a member of D with probability p. An edge may
be present between any two members of D with prob-
ability p.

4. With probability q = 1 − p the edge in question is
absent.

Let X ⊂ B1 and |X| = r.
Y , as computed in step (1) of the augmentation algo-
rithm is (B1 −X)

⋃
(B2 − Γ(X))

⋃
(D − Γ(X)).

It may be shown that |B2 − Γ(X)| ≈ mqr.
Similarly it may also be shown that, |D−Γ(X)| ≈ kqr.
Let dZ(v) be the expected degree of v ∈ Z ∩ Y, Z, Y ⊆
V, in Y .

Let dB1
= dB1

(v) ≈ mpqr + kpqr. This is the expected
degree of a vertex of B1 ∩ Y in Y .

Let dB2
= dB2

(v) ≈ (m − r)p + kpqr. This is the ex-
pected degree of a vertex of B2 ∩ Y in Y .

Let dD = dD(v) ≈ (m− r)p+mpqr + (kqr − 1)p. This
is the expected degree of a vertex of D ∩ Y in Y .

d2 = dD − dB1
= (m− r)p− p = (m− (r + 1))p (2)

d1 = dB2
− dB1

= p(m(1− qr)− r) (3)

It is desirable that d1 > 0 and d2 > 0, for this will
ensure, with high probability (whp [2]), that if X turns
out to be a subset of B1 or B2 then it will be augmented
by members of B1 or B2, respectively. To satisfy d2 > 0
it is necessary that r < (m − 1). Thus when the subset
is being augmented with the last element, the algorithm
is not expected to guarantee the selection of the correct
element. However, in the stochastic environment of the
GA this does not pose a serious problem.

To satisfy d3 > 0 it is necessary that

m >
r

1− qr (4)

For r = 1, it is necessary that m > 1
p . For somewhat large

values of m and not too sparse graphs this will be satisfied.
Also, for r = m− 1,

m − m− 1

1 − qm−1
=

1 − mqm−1

1 − qm−1

Again for somewhat large values of m, this expression is

positive. Now consider the function
x

1−qx , x > 0.

d

dx
(

x

1− qx ) =
1 − qx(1 − x ln q)

(1− qx)
2 =

no. of. edge deletion a cost
nodes prob. by GA2 u.b.

20 0.082 0.000 0
20 0.107 0.000 0
20 0.154 0.903 1
20 0.250 3.483 4
20 0.400 6.903 7
20 0.500 8.903 9
20 0.650 10.70 11
30 0.082 0.000 0
30 0.107 1.000 1
30 0.154 3.677 4
30 0.250 8.677 9
30 0.400 13.61 14
30 0.500 16.80 17
30 0.650 19.70 20
40 0.082 1.709 2
40 0.107 3.806 4
40 0.154 8.516 9
40 0.250 15.35 16
40 0.400 22.29 23
40 0.500 25.48 26
40 0.650 28.77 29
60 0.082 7.451 8
60 0.107 12.38 13
60 0.154 20.38 21

aThe deletion in each line has been reported as
the average obtained by running GA2 on 30 indi-
vidual random graphs with known upper bounds.

TABLE I

Performance of GA2 on random graphs where an upper

bound on the number of nodes to be deleted is known

1 − e(ln(ezx)/(ezx))

(1− qx)
2 , where z = 1/q.

Depending on the value of q the derivative may be negative
for small values of x, for larger values of x it is positive
and approaches 1. Thus, if (4) is satisfied for r = 1 and
r = m−1, then it will be satisfied for all intermediate values
of r. This, in general, will not be true for all members of
the population. However, in the stochastic environment of
GA it will be satisfied by at least a few members of the
population.

It is reasonable to assume that solutions whose colour
classes are close to the colour classes of an optimal solu-
tion will have relatively high fitness values. It has also
been ensured that the augmentation algorithm will, whp,
augment an inherited colour class which is a subset of an
optimum colour class with the appropriate vertices. Thus,
solutions with high fitness values, when combined through
crossover should also result in solutions with high fitness
values.

IV. Experimentation for Dual Port Memory PA

The GA for MND is referred to as GA2 here. The ex-
perimentation consists of two parts. The first part of the
experimentation deals with the testing of GA2, while in the
second part the quality of the estimate has been tested.

GA2 has been implemented in C in the UNIX environ-
ment on a SUN 3/280. It has been tested on graphs of



both small and relatively large numbers of vertices. While
testing GA2 on the smaller graphs, it has been possible
to compare the results against the exact solutions. This
testing has been done on random graphs of the type Gn,p,
where n is the number of nodes in the graph, and each of

the possible
n(n− 1)

2 edges is present with probability p.
Twelve sets of random graphs of ten, twelve, fourteen and
sixteen vertices with edge probabilities of 0.3, 0.5 and 0.7
were generated. The testing for each set was carried out
on thirty graphs of that type. For these small graphs (up
to 16 vertices), in each case the GA was able to obtain the
optimal solution.

For the relatively larger graphs it was not feasible to
find the exact solution for comparing the result obtained by
GA2. Therefore, a different method of testing has been em-
ployed here. GA2 was now tested against random graphs
which have been generated such that the upper bound on
the number of nodes to be deleted is known. The method
of constructing random graphs with a known upper bound
on the number of nodes to be deleted has been explained
in [4], [5]. The test results for graphs of 20, 30, 40 and 60
vertices and various edge probabilities have been presented
in table I. In this table the first column shows the num-
ber of vertices, |V |, in the graph and the second column
the edge probability p′. For each < |V |, p′ > combination
of a row of the table thirty random graphs of that type
were generated so that no more than the number of ver-
tices specified in the last column, the upper bound, needs
to be deleted to render the graph bipartite. The third col-
umn is the average number of vertices deleted by GA2. It
will be observed that deletion of GA2 is very close to the
upper bound, occasionally doing slightly better. A similar
method of testing, for another graph problem (the graph
3-colourability problem), has been used in [6].

The above results indicate that an efficient genetic algo-
rithm has been developed to solve the dual port memory
PA as the minimum node deletion problem. We have also
been able to obtain a theoretical guarantee that the GA
will find an optimal solution.

V. Allocation and binding for data path
synthesis

The basic input to data path synthesis (DPS) is a set
of operations and their interdependencies. These are typ-
ically expressed as directed acyclic graphs of operations
[7]. DPS involves scheduling of operations followed by al-
location and binding. After scheduling has been done the
resulting design is called a Register Transfer Level (RTL)
specification, which indicates data transfers to and from
registers and operations performed on the data, in each
time step. The latter step of allocation and binding con-
sists of several sub-tasks which include determining the mix
of functional units, grouping variables and assigning these
variable clusters to storage units, memory port assignment
when multi-port memories are used in the design, mapping
operations to the functional units and mapping transfers to
buses, when buses are used. The problem treated here is
concerned with the allocation and binding aspects of DPS.

This is a computationally hard problem and many of its
sub-problems are NP-complete [8]. These concerns have
motivated us to develop a Genetic Algorithm (GA), called
GABIND, for synthesizing optimized data paths from a
given scheduled data flow graph. GABIND builds on pre-
viously developed successful heuristics, such as force [9], by
incorporating them into the GA.

GABIND performs the following tasks: formation of
functional units (FU) (see example 2), binding operations
to FUs, binding transfers to buses, allocating storage, bind-
ing variables to storage units and allocating switches to in-
terconnect FUs and memory units to the interconnecting
buses. An important aim of developing GABIND was to be
able to satisfy all transfers using a given number of buses
and not relying on an unpredictable number of point-to-
point interconnections. The output is an optimized data
path which correctly implements the computation given to
GABIND in the form of scheduled data flow graphs. The
optimization is performed to jointly minimize the cost of
the FUs, the storage units and the switches for interconnec-
tion used in the data path. Specifications for subsequent
synthesis of the controller are also generated.

The rest of the discussion of allocation and binding
is organized as follows. The architectural considerations
used for the synthesis scheme are described in section VI.
The GA to solve the problem is described in section VII.
GABIND employs an algorithmic crossover, which is de-
scribed in section VIII. The experimental results and con-
clusions are given in sections IX.

Example 2: We give a small example of a schedule and
a possible data path (figure 4) to implement the schedule.

time |operations on | operations on

step |functional unit 1 | functional unit 2

-----+------------------+------------------

1 | x = dx + x | v1 = dx * x

2 | v0 = u * 3 | v6 = u * dx

3 | v2 = v0 * v1 | v3 = y * 3

4 | x < a | y = y + v6

5 | v4 = u - v2 | v5 = v3 * dx

6 | u = v4 - v5 |

In this data path, two functional units (FU-1:
<+,-,<,*>, FU-2: <+,*>) and five storage elements have
been used. The storage elements are as follows: one single
port memory of two cells to store dx and a, a single register
to store the constant 3 – shown as a single port memory
one cell and three dual port memories to store the variables
indicated in the diagram. Five buses and required inter-
connection links from the devices to the buses are present.
“Copper” contact between the buses and the links are in-
dicated by filled circles, while switched contacts between
them are indicated by hollow circles. 2

VI. Underlying Architectural Considerations

The optimization performed by GABIND is based on
the architectural considerations described in this section.
GABIND takes as input a scheduled data flow graph
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(SDFG) of the operations. It accepts the number of FUs
and buses as user specified design parameters. The former
indicates the total number of sites where operations may
be performed while the latter indicates the total number of
paths for carrying data transfers. The minimum number
of FU sites should equal the maximum number of oper-
ations that are scheduled to execute concurrently in the
given SDFG. An additional FU site generally leads to an
overhead in the interconnection and the control logic. The
capability of an FU is determined by the set of operations
of the SDFG that it needs to execute. Arithmetic pipelin-
ing, often used for multiplication in an FU is supported
and has been used for some of the examples.

Storage is implemented using multi-port memories and
register files in addition to individual registers. By placing
several variables in a single unit the number of independent
sources and sinks of data is reduced. The cost of some
memory units will be known in advance. Cost of other
memory units, having p-ports and n cells, is computed by
GABIND using the formula: cm(n, p) = n(αp + β) + γp,
where α is the cost of the access logic per port per cell, β
is the cost of each cell, and γ is the cost of the driver and
other logic per port of the memory. In order to achieve low
access time for a memory, the maximum number of cells
that a memory can have is restricted to some predefined
“small” number, input as a design parameter.

All components are connected to one or more buses. The
connection may be switched or un-switched, ie. physical.
Interconnecting buses are often major contributors to the
routing area for data paths. The number of buses serves as
an effective handle to control their proliferation. A suffi-
cient number of buses need to be present to satisfy concur-
rent transfers between the FUs and the memories that are
eventually formed. Multiple data transfers arising from a
common source are identified for possible use in intercon-
nect optimization. Such transfers may be routed through
a common bus making better use of existing connections.

VII. The GA Based Solution

GABIND employs a genetic algorithm to perform op-
timizations and solve the problem. Our technique makes
use of the GA as an efficient randomized search scheme
for finding good solutions. It also differs from the usual
GAs on several aspects, explained below. The motivating
factor for taking this approach was to have a GA to solve
the problem in reasonable time with a population of solu-
tions of practical size. We found it fit to incorporate known
good heuristics such as force to speed up the search pro-
cess. Qualitative justifications for the design decisions for
several aspects of the GA are given at appropriate places.
The main features of the GA are as follows.

A. Design representation

A structured solution representation has been used. For
each operation and each transfer there are fields indicating
the FU or the bus to which it is bound, respectively. The
binding of a variable indicates the memory and the number
of ports that it has. Individual binding decisions of opera-
tions, transfers and storage are highly interdependent.

B. Crossover

This is the most important step in the GA. Application
of a traditional recombinant crossover often results in off-
springs that do not represent a feasible solution, thus wast-
ing computation time. A randomized heuristic algorithmic
crossover has been used to ensure that a crossover always
results in a feasible solution. The role of the heuristic is to
avoid generating extremely poor solutions. The random-
ization ensures that the application of the heuristic does
not seriously arrest the search that takes place in course
of the GA based optimization. This technique has been
successfully applied in [10].

Three steps are involved in the crossover. First, it is
determined which of all the attributes of both the parent



solutions will be considered for inheritance. Then a tenta-
tive partial data path (TPDP) is formed by inheriting some
of these attributes. Finally, the complete offspring solution
is formed by completing the partial solution. Details of the
crossover are given in section VIII.

C. Population control

It is important to ensure that diversity of the popula-
tion is sustained throughout the run of the GA. This has
been achieved as follows. First, a minimum number of so-
lutions having the kth, k > 1, best overall solution cost
are retained. This policy is implemented for up to a fixed
value of k. Second, the minimum number of distinct mem-
ory configurations in the population is maintained above
a certain minimum number. This condition may not be
satisfied at the beginning but once sufficient memory con-
figurations have been produced, a certain number of so-
lution groups having the same memory configuration are
maintained. These memory configurations are tracked ac-
cording to the memory configuration cost only. Third, a
few solution groups with the same memory configuration
as lower cost solutions are also maintained. The conscious
decision to ensure memory diversity has been taken in view
of the vast number of memory formations possible, as com-
pared to FU formations.

D. Parent selection

Crossover is performed between two solutions taken from
the population of solutions. A solution is selected only once
during one generation to ensure maximum participation
of solutions in the crossover. The selection policy gives
preference to choosing parent solutions which are more fit.
To choose better fit parents, a list of solutions whose cost
is less than some threshold is maintained. The threshold
is determined according of the distribution of the solution
costs in the population. Solutions can be picked up from
this list at random.

Due to the strong interdependence between binding de-
cisions, it is likely that two good solutions will have highly
incompatible solution attributes. A crossover between such
a pair of solutions is very likely to produce an offspring of
high cost or low fitness value. This was experimentally ob-
served during development. It has been suggested in [3]
that special precautions need to be taken to handle such a
case, as an excessive amount of type II deceptability could
undermine the GA for the particular problem. Therefore,
a provision has been made to choose parents that are ge-
netically less incompatible. Parents may be chosen such
that they have identical memory configurations. During
crossover the use of core attributes helps by reducing the
incidence of “noisy attributes”.

E. Other aspects

First an initial population of feasible solutions is created.
Each solution is produced by randomly generating feasible
binding and allocation decisions. The cost of each solu-
tion is computed and stored. The population control data
structures are then created. Offspring solutions which are

produced are integrated into the main population of solu-
tions only after the current generation is completed. They
replace an equal number of solutions from the current pop-
ulation. This is a flexible compromise between replacing
the entire population, and replacing just one solution. The
GA is started to run for a certain minimum number of gen-
erations. Every time there is an improvement it is run for
at least another fixed number of iterations in the hope of
another improvement. Finally, the data path correspond-
ing to any one of the best solutions obtained is output.

VIII. Details of Crossover

Crossover is performed in five phases, described below.
Actual allocations and bindings are made in the final phase.

A. Determining prominent solution attributes

The cost of a solution is sensitive to the bindings. An
unfavorable binding could give rise to additional data path
elements. For this reason a 0/1 gradation is performed
for the operation and transfer bindings in the parent solu-
tions. The aim of transfer binding gradation is to consider
only the more frequently accessed component connections
to each bus before proceeding with the inheritance. Simi-
larly, the aim of operation binding gradation is to consider
for inheritance only the more frequently used functionality
of each FU. In the implementation the better bindings are
marked core while the inferior ones are marked non-core.

Variable to memory bindings are graded in a contin-
uous scale. For a particular memory the points ac-
cessing it are determined. The importance of each
such point has been defined as the number of vari-
ables of the memory that are accessed by that point.
The importance of a variable has been defined as the∑

(importance of points that access the variable). The
spread of a memory has been defined as the total
number of points accessing the memory. The rel-
ative importance of a variable has been defined as:

(min. spread among all mems.)∗
(imp. of var .)

αv(spread) ∗ (max . imp. of var . in mem.)
, αv ≥ 1.

The above scheme is intended to distill out only some of
the binding decisions which are likely to work together as
good building blocks, while filtering out the noisy building
blocks. This GA will still benefit from implicit parallelism,
but less than the usual analytical value. We feel that for
the usual analytic results to apply, the required population
size would be too large to be useful.

B. Correspondence Between Data Path Elements

A matching between the data path components of the
two parent solutions is used while performing inheritances.
Affinity measures between components are computed based
on similarity of bindings of operations, transfers and vari-
ables, with FUs, buses and memories, respectively. A
greedy algorithm driven by edge weights is then used to
match these.



C. Operation and Transfer Binding Inheritance Plan

A tentative plan of operation and transfer bindings to be
inherited, time step by time step, is constructed. In each
time step, either core operation or core transfer bindings
are inherited first. The choice is made probabilistically.
Next, associated core transfer or operation bindings, re-
spectively, are attempted to be inherited. This is done by
inspecting the buses or FUs one by one, respectively. If
operation bindings are inherited first in a time step then
core transfers connected with these operations are inherited
provided the target bus is available. Similarly, the case of
first inheriting transfer bindings is handled. The tenta-
tive binding inheritance plan implies a tentative allocation
scheme for the data path to be constructed. The actual
allocation and binding is explained later in this section.

D. Memory Formation

First, a blank memory configuration is formed by in-
heritance. A variable inherits the memory binding with a
probability which is either the register inheritance proba-
bility parameter, or the importance of the variable in the
memory, as defined earlier in this section. After inheri-
tance is completed, in general, there will still be variables
to be mapped to memories. These remaining variables are
packed into the memories already constructed during in-
heritance. Those variables which could not be packed into
these memories are packed into new memories. The choice
of memories to be packed is governed by a simple heuristic.
The heuristic is to choose the variable for which the num-
ber of unmapped variables that can still be packed into this
memory without increasing the number of ports is maxi-
mum.

E. Final Generation of Actual Allocations and Bindings

The actual operation and transfer bindings are now
made, time step by time step, in three phases: complet-
ing implied bindings, performing bindings by inheritance
and completion of pending bindings. This also completely
determines allocation of all data path components.

The first phase is trivial involving only bookkeeping
steps. For the second phase, first the operations are pro-
cessed and then the transfers are handled. For each opera-
tion binding in the inheritance plan if the corresponding FU
is available, then the actual binding is set. If the FU does
not already implement that type of operation then possi-
bility of doing so is decreased. Similarly, transfer bindings
are inherited but with some additional processing. While
making a transfer binding if the existing links between and
FUs, system ports and the memories with the buses suffice
to support the transfer then the binding is directly made.
If new links need to be introduced at both the source and
the destination of the transfer then the inheritance is not
made. If only one new link is needed then the inheritance is
done probabilistically. Whenever a new link is introduced
the data path is updated.

After the first two phases, in general, some operations
and transfers will still remain unmapped. The operation

and then the transfer bindings are made using a force di-
rected completion algorithm, time step by time step. The
decisions are made in a best first approach selecting the
binding that leads to the least force. The force is computed
in a way to encourage utilization of existing data path com-
ponents, and discourage introduction of new components.

IX. Experimental Results for GABIND

GABIND has been tested on a Silicon Graphics Indigo
(IRIS) workstation (R4000SC RISC CPU, 100Mhz (int.),
50Mhz (ext.)) with the standard benchmark examples of
Facet [11], differential equation solver (Diffeq.) [9] and el-
liptic wave filter (EWF) [12]. The results have been tabu-
lated along with those of some other well known systems in
table II. The columns of the table indicate the technique,
the number of multiplexer channels (#M), the number of
links (#L), the number of storage cells (#C), the memory
configuration, the FU configuration and the run time. A
memory configuration of the form < x, y >, indicates y
memories each having x ports. GABIND is able to synthe-
size the designs using only single or double port memories.
A double port memory of one cell is equivalent to a reg-
ister. The results indicate that the cost of FUs and total
number of multiplexer channels are consistently kept low.
Sometimes the storage requirements are marginally higher
than competing systems. It may be noted that because of
the high level of design, DPS techniques usually cannot be
compared exactly. It was observed that the solution quality
is not critically sensitive on the GA parameters. In general,
the time taken by the algorithm depends on the total num-
ber of time steps used in the schedule and is proportional
to it. A larger population size is required for designs in-
volving higher number of FUs or time steps. The same GA
parameters were used for all designs, although the optimal
result is obtained for the smaller examples with a smaller
population size.

Given a schedule of operations, GABIND is able to syn-
thesize globally optimized data paths in terms of the cost
of the functional units, multiplexing switches and storage
elements. The synthesized data paths compare well with
those produced by other contemporary systems. Operation
pipelining and multi-cycling are supported. Storage imple-
mentation can accommodate individual registers, single or
multi-port memories. GABIND relies on the genetic algo-
rithm to perform optimization. For this GA we have de-
veloped a specific crossover based on a force directed com-
pletion algorithm. We have shown experimentally that the
GA framework can be applied successfully for structured
representations suitable for DPS.

X. Synthesis of structured architectures

This is similar to the earlier problem of allocation and
binding, except that scheduling of operations and trans-
fers are additional sub-problems, and the architectural con-
straints are much stronger. SAST (structured architecture
synthesis tool) essentially takes as input, precedence con-
straints between operations represented as a partial order,
and outputs a schedule of operations and transfers, and a



System
name

#M #L #C memory
config.

FU config. CPU
time

Facet in 4 time steps, 3FUs

Facet 11 — 8 — — —

Splicer 8 — 7 — — 3s

HAL 6 13 5 — — —

Vital-NS 6 12 5 — — 1.5s

GABIND 5 11 6 < 2, 3 >
< 1, 2 >

〈+〉, 〈+|?〉,
〈−&/〉

28s

Diffeq. in 4 time steps

Using single cycle multipliers and 5 FUs

Splicer 11 — 6 — — —

HAL 10 25 5 — — 40s

Vital-NS 12 22 5 — — 3s

GABIND 8 18 5 < 2, 5 >
< 1, 1 >

2?, +, -, < 38s

Using single cycle multipliers and 3 FUs

GABIND 12 16 6 < 2, 4 >
< 1, 2 >

〈+?〉, 〈?〉,
〈+,−, <〉

32s

Diffeq. in 8 time steps, 2FUs, 1 pipelined multiplier

HAL 13 19 5 — — 120s

Vital-NS 13 17 5 — — 2.5s

GABIND 7 13 5 < 2, 2 >
< 1, 2 >

〈?〉, 〈+,−, <〉 24s

EWF in 17 time steps, pipelined multiplier

HAL 31 — 12 — 3+, 2? 120s

SAM 31 50 12 — 3+, 2? —

PSGA Syn — — 10 — 3+, 2? 10s

Vital-NS 32 50 11 — 3+, 2? 110s

STAR 26 — 11 — 2+, 1? —

GABIND 29 29 13 < 2, 5 >
< 1, 1 >

2+, 1? 210s

EWF in 18 time steps, pipelined multiplier

HAL 34 — 12 — 3+, 1? 240s

SAM 30 40 12 — 3+, 1? —

PSGA Syn — — 10 — 3+, 1? 10.2s

Vital-NS 33 40 10 — 3+, 1? 140s

GABIND 31 35 11 < 2, 6 >
< 1, 1 >

3+, 1? 251s

EWF in 19 time steps, pipelined multiplier

HAL 26 — 12 — 2+, 1? 360s

SAM 21 40 12 — 2+, 1? —

PSGA Syn — — 9 — 2+, 1? 10.2s

Vital-NS 29 40 11 — 2+, 1? 200s

STAR 28 — 11 — 2+, 1? —

GABIND 27 33 14 < 2, 4 >
< 1, 2 >

2+, 1? 255s

TABLE II

Results of running GABIND of Facet, Diffeq. and EWF.

data path to implement the schedule. The generated data
path is organized as architectural blocks (A-block), and
optional global memory blocks. Each A-block has a local
functional unit (FU), local storage and internal intercon-
nections. The A-blocks and the memory blocks, if any, are
interconnected by a few global buses. The structure of the
data path is characterized by a set of architectural parame-
ters, such as, the number of A-blocks, the number of global
memories, the number of global buses, the number of access
links which connect an A-block to the global buses and the
maximum number of writes per time step to storage loca-
tions in an A-block. The last parameter becomes relevant
if a memory with a fixed number (e.g. one or two) of write
ports is to be used to implement storage in an A-block.
SAST delivers the following: i) a schedule of operations,
ii) the A-block in which each operation is scheduled, iii)
the schedule of all transfers over the global buses, satisfy-
ing the architectural constraints, and iv) the composition
of the FU in each A-block, in terms of specific implementa-
tions of operators from a module database. The option to
pick up modules from a data base permits the flexibility of
using units which are pipelined or combinational and also
units varying in speed and size. SAST can handle specifi-
cations with multiple basic blocks [7]. This requires certain

variables carrying data across basic blocks to be located at
predetermined locations. If the value destined for such a
variable is defined or available only outside the A-block or
memory where the variable is supposed to be located then,
a transfer from a suitable A-block or memory to the ap-
propriate destination for its assignment needs to be made.

The main feature of this work is that random long-
distance interconnects between data path elements are
avoided. This makes this technique attractive for synthe-
sizing designs targeted towards programmable structures,
where global wiring resources are limited. The experimen-
tal results indicate that this technique compares favorably,
in terms of schedule time and component cost with other
synthesis techniques that do not attempt to generate data
paths free of random long distance interconnects. In sec-
tion XI the structured architecture synthesis problem is
discussed. The GA based synthesis algorithm is presented
in section XII. Some results for SAST are given in section
XIII.

XI. The Structured Architecture Synthesis
Problem

It is necessary to find a schedule of operations such that
each operation is scheduled in one of the A-blocks. The
composition of an FU is determined by all the operations
that it has to perform. It is also necessary to find a schedule
of transfers of values between the A-blocks using the per-
mitted buses as access links. It is assumed that sufficient
storage is available in an A-block. There are a set of global
buses interconnecting the A-blocks to permit the transfer
of data between them. Each A-block is connected to the
global buses by means of a specific number of access links.
The number of access links limit the maximum transfer
bandwidth between an A-block and the global buses.

A functional unit in an A-block is a set of one or more
hardware operators such that in any time step only one op-
eration can be initiated and in any time step only one result
can be generated. Operations scheduled on an FU are not
permitted to have input or output conflicts. Similarly, ex-
ecution conflicts are not permitted in which operations try
to execute simultaneously on the same hardware. It may be
noted that multiple operations may execute on a pipelined
unit without execution conflict.

If a variable is required by an operation scheduled in an
A-block, it should either be available in that A-block or
it should be transferred from another A-block or memory
where it is already available. A variable becomes available
in an A-block at a particular time step if it is either defined
there or transferred therein, in that time step.

Certain variables, referred to here as program variables
are meant to reside at specific storage locations in specific
A-blocks, as explained later in section XII-A. These are
initialized as being available for use in the appropriate A-
block from the first time step. Variables in an A-block are
stored in local storage elements. Any two variables which
are live [7] at the same time need to be assigned to distinct
locations. The present implementation also permits the use
of multiple implementations of an operator, such as a slow



adder or a fast adder. Use of pipelined operators, such as
pipelined multipliers is also supported.

Thus several decisions need to be taken, which are as fol-
lows: i) The time step where an operation is to be sched-
uled. ii) The A-block in which the operation is to execute.
iii) The particular module that will implement an opera-
tion in the FU in an A-block. iv) The time step when an
input for an operation is to be transferred over a global
bus, if it is not already available in the local A-block. v)
If such a transfer is required, then the A-block from where
the value should be obtained. It may be noted that a value
may be present in more than one A-block. vi) Transfers be-
tween A-blocks that may be required for defining program
variables (explained in section XII-A) – indicating the time
step, source and destination.

XII. GA Based Scheduling Algorithm

A genetic algorithm has been designed and implemented
for solving the scheduling problem. A brief overview of
the GA is given now. The detailed description follows in
the sub-sections that follow. In view of the complex na-
ture of the problem a structured solution representation
has been used, as against a simple bit string. An initial
population of solutions is generated at random. New so-
lutions are obtained by inheriting values of decision vari-
ables from parent solutions, selected from the population.
The decision values of the solution attributes are not inde-
pendent and so the solution representation resulting from
inheritance could correspond to an infeasible solution. To
handle this situation a completion algorithm has been used
to obtain a feasible solution from the solution representa-
tion resulting from a crossover. The completion algorithm
is also used to obtain a feasible solution from a solution
representation obtained by randomly assigning values to
solution attributes, while generating the initial population
of solutions. A scheduling heuristic has been used in the
completion algorithm and this has been found to improve
the performance of the genetic algorithm. A population
control mechanism had to be employed to sustain diver-
sity in the population, while at the same time retaining
solutions with good overall and partial fitness. The genetic
algorithm is run up to a fixed number of iterations and this
serves as the stopping criterion. The last improvement in
solution cost (i.e. when the best solution is obtained) usu-
ally occurs well before all the iterations are completed.

In the rest of this section the solution representation, the
cost function, the parent selection scheme, the crossover
scheme, the completion algorithm, the replacement scheme
and the heuristic to enhance the performance of the genetic
algorithm are explained.

A. Solution representation

Each solution comprises of several decisions which are re-
quired for the proper implementation of the design. Figure
5 indicates the decisions required for scheduling an opera-
tion. For each operation the time when it is to be scheduled
and the A-block where it has to be scheduled are stored.
For each input operand of an operation the A-block from

Group of operations
to be scheduled in
the same A-block.

* marked entries correspond to design decisions related to the 
scheduling of the operation that need to be taken.

 source operands of operation

 an operation

 time frame of operation

. . .

source A-block of operand *

 time of initiation of 
operation *

 A-block in which operation
 is scheduled *

time steps

times of fetching 
source operands *

Fig. 5. Decisions for scheduling an operation.

where this value is to be obtained and the transfer time
are given. If the operand is present in the same A-block
then the time of transfer is redundant, as no transfer is
necessary between A-blocks.

With loop based computations, which are very common,
some of the variables defined in some basic block are re-
quired for subsequent iterations of a loop. Such variables
are referred to as program variables. A program variable
needs to reside at a fixed location before the basic block in
which it is used starts executing. For each program variable
the time step of assignment and the A-block from where
the value is to be obtained are indicated.

The period after which the result of an operation be-
comes available after it has been initiated on an FU de-
pends on how long the particular module implementing the
operation in the FU takes to deliver the result. For exam-
ple, an addition could be implemented by a fast adder in a
single time step or by a slow adder in two time steps. Simi-
larly, a multiplication could be implemented by a combina-
torial multiplier or by a pipelined multiplier. The decisions
involved in determining the composition of the FU need to
be represented. It is necessary to indicate which operations
an FU can implement and also the modules used for imple-
menting these operations. The former need not be stored
explicitly because it is fully implied by the union of all the
types of operations that are scheduled on it. However, the
module information needs to be stored explicitly.

Thus there are three types of information to be repre-
sented, which are as follows: i) Information directly related
to the scheduling of operations, ii) information indicating
the scheduling of variable transfers and iii) information re-
garding the composition of FUs. A structured representa-
tion is used for storing the above information. This is suit-



able for performing the algorithmic crossover (described in
the section XII-E), which leads to a feasible solution rep-
resentation.

It is often desirable to partially normalize a represen-
tation to reduce redundancies in the representation aris-
ing from permutation of attribute assignments. It may be
noted that permutations of operation to A-block bindings
alone do not correspond to equivalent solutions because the
program variables are also bound to specific A-blocks. Such
a permutation would, in general, lead to distinct transfer
requirements.

B. Cost function

The scheduling algorithm tries to find a schedule of op-
erations and transfers within a specified number of time
steps. The solution cost is constructed to indicate the cost
of the hardware and the extra time steps used in the sched-
ule. It is of the form

C = (penalty)(extra time steps) + (cost of FUs).

The penalty is chosen to accord priority to finding a solu-
tion within the specified number of time steps. The penalty
on the extra number of time steps is a constant chosen to
be an order of magnitude higher that maximum possible
cost of the FUs. In addition the cost of FUs is also sepa-
rately accessible for performing population control, to be
explained later in section XII-G.

C. Parent selection

The parents are selected on the basis of their costs using
the roulette wheel technique [13]. This being a minimiza-
tion problem, the selection probability of a parent is com-
puted taking into account the maximum cost of solutions in

the population as follows: psi = Cmax + δ − Ci
Nsols(Cmax + δ)−∑i Ci

,

where psi is selection the probability for solution i, δ ≥ 0,
Ci is the cost of the solution, Cmax is the maximum solu-
tion cost in the current population and Nsols is the number
of solutions in the population. Solutions with higher cost
are selected with lower probability. If δ = 0 then the so-
lutions with cost Cmax will never be selected. Selection is
done with replacement so that a member solution of the
population may participate more than once in crossovers,
in one generation.

D. Crossover

New solutions are generated through crossover. An out-
line of the crossover mechanism used in SAST is given in
figure 6. An example illustrating the formation of opera-
tion scheduling attributes through crossover and its subse-
quent completion is given in example 3. First two parent
solutions are selected. These go through a mutation and
then the actual crossover takes place to generate a raw off-
spring. The crossover proceeds with inheritance of solution
attributes values from each of the two parents. These at-
tributes include schedule times and A-block bindings of op-
erations, transfer times for operation inputs and the defined
program variables. The FU configuration of the solution is

procedure crossover()
1. chose two parents from the population

of solutions.
2. mutate a each parent according to the mutation

probability.
3. for each operation to schedule do
4. inherit the various scheduling information

of the operation (such as, the A-block
where it is to be scheduled, the time when
the operation is to be initiated, for each
input operand, the source A-block and the
transfer time) from the two parents.

5. for each of the program variables do
6. inherit the time of assignment and the

source A-block from the the two parents.
7. for each of the A-blocks
8. inherit library module to implement

operations to be realized in the FU of
this A-block from the two parents.

Fig. 6. Generating initial attributes of offspring by crossover.

also formed by inheritance from the parents. Inheritance
of the attributes from either of the two parents proceeds
in the (inverse) ratio of their solution costs. This may be
considered to be a discrete multi-point crossover scheme.
The solution representation available after inheritance, in
general, not feasible. This is corrected by applying the
completion algorithm.

E. Solution completion

It was noticed that optimization obtained only by apply-
ing the genetic operators of mutation and crossover, with
small enough population sizes to be practical, do not per-
form very well. This is because of the vast numbers of
solution representations generated that do not correspond
to a feasible solution. A procedure for solution completion
is applied to the raw solution resulting from attribute in-
heritance during crossover. Solution completion is also ap-
plied while generating new solutions because the randomly
generated attributes used to construct the initial solutions
may not correspond to feasible solutions either. The pro-
cedure is essentially a list scheduling algorithm with some
programming intricacies to support the various features for
structured architecture synthesis. A simplified version is
shown in figure 7. The main data structures are a pair
of lists, the ready list and the active list. A pair of these
lists are used for scheduling operations and another pair
for scheduling assignments. Operations or assignments in
both types of lists are ready for scheduling in the current
time step. However, it is only attempted to schedule op-
erations or assignments from the corresponding active list.
In each iteration the ready lists are processed to transfer
some operations or transfers to the corresponding active
lists. It is first attempted to schedule operations in the ac-
tive list on the unit indicated in the solution representation
for that operation. If this attempt to schedule the opera-
tion fails then it is attempted to schedule these operations
on other available FUs. This is done to utilize FUs which
may otherwise go unutilized in the current time step and
is done only after it has been attempted to schedule all the
operations on the active list on the designated FU. If any



operation gets scheduled then the process of transferring
operations to the active list from the ready list and then
scheduling them is repeated. The intention of maintaining
an active list of operations is to give priority to the oper-
ations in this list over the operations in the ready list for
scheduling in the current time step. Assignments are nor-
mally handled after all the operations in the current time
step have been scheduled. To avoid any excessive adverse
effect of such a bias, assignments are sometimes attempted
before trying the second round of scheduling operations, as
indicated above, on other available FUs. When no more
scheduling is possible, data structures are updated to close
the current time step, and scheduling proceeds from the
next time step. Data structures have been chosen so that
single step, multi-cycle and pipelined operators implement-
ing operations are handled homogeneously as the schedul-
ing is done.

A scheduling heuristic is also used intermittently with
the intention of improving the quality of the solutions in the
population. The heuristic may be used while transferring
operations from the ready list to the active list (line 4, in
figure 7). Normally operations are selected from the active
list for scheduling at random (line 5, in figure 7). However,
if the heuristic is being used then operations are chosen
from the list on the basis of the scheduling heuristic. The
application of the heuristic is explained in the section XII-
F.

While trying to schedule an operation in an A-block at
a specific time, first it is checked whether the FU can be
used without input-conflict, output-conflict or execution-
conflict. Next the availability of operands is checked. If an
operand is not present in the current A-block then it needs
to be transferred from another A-block, in the current or
a preceding time step. For an operand or variable to be
transferred at a particular time a free transfer path from
the source to the destination needs to be identified. Thus a
free bus and a free access link at the source and destination
A-blocks have to be found. An operation can be scheduled
in an A-block only if the FU can be used without conflict,
and the operands are available or can be made available.

The inward transfer of a variable currently unavailable
is made as follows. The variable can be transferred any
time between the first time step and the current time step.
It can be transferred from any A-block where the variable
is available at the time the transfer is being attempted.
The transfer is first attempted at the time and from the A-
block indicated for that value in the solution. If the transfer
cannot be satisfied this way then other times and A-blocks
are considered in the following order: ts+1, ts−1, ts+2, . . .
and (bs + 1) mod totb, (bs + 2) mod totb, . . ., respectively,
where ts is the desired time of transfer, bs is the desired
source A-block and totb is the total number of A-blocks.
The order of scanning is block major (i.e. the block index
changes slower).

Example 3: Consider an operation having inputs v0 and
v1. Table III shows hypothetical scheduling attributes val-
ues of the operation in the two parent solutions (column
‘P1’ and ‘P2’), and those of the resulting offspring solu-

TABLE III

Crossover of scheduling attributes of a hypothetical

operation.

Attribute P1 P2 CS SP

Initiation time 3 4 3 1
A-blk. where scheduled 1 2 1 1

Source A-blk. of left operand 1 2 2 2
Transfer time of left operand 3 4 4 2

Source A-blk. of right operand 2 1 2 1
Transfer time of right operand 3 3 3 1 or 2

tion (column ‘CS’). The parent from which the attribute
is inherited is shown in column ‘SP’. There are obvious in-
consistencies in the inherited attribute values. These may
be corrected by the completion algorithm as follows.

Assume that this operation occurs in the active list while
scheduling for time step ‘3’. Let us assume that A-block ‘1’
is available for this operation. The algorithm would find
that it is not feasible to transfer the left operand into the
A-block in time step 4, and would consider all feasible time
steps for transferring in this operand so as to monotonically
recede from the time step indicated in the offspring. Thus
if the feasible transfer times for the left attribute were time
steps 2 and 3 then the algorithm would first consider time
step 3 and then time step 2. Let us assume that it is
feasible to transfer in the first operand in the third time
step from A-block ‘3’. Now while considering the second
operand suppose that it is not feasible to transfer it from
A-block ‘2’, as indicated in the offspring attribute. The
algorithm would then try to source the operand from other
A-blocks. Let us assume that it succeeds in sourcing the
operand from A-block ‘1’. This operation is now scheduled
in time step 3. 2

procedure complete_solution()
1. prepare initial ready lists of operations and

variable assignments.
2. while (operations and assignments remain

to be scheduled)
3. { decide whether heuristic scheduling is to be used

<sch_heur_flg> or priority will be given to
transfers <priority_trn_flag>.

4. transfer some operations to active list from
ready list.

5. try to schedule active operations on units
indicated in the chromosome.

6. if (priority_trn_flag)
7. try to schedule active assignments.
8. try of schedule remaining operations on

other units.
9. if (an operation has been scheduled)
10. redo iteration.
11. if (not priority_trn_flag)
12. try to schedule active assignments.
13. update ready list of operations.
14. update status of FUs.
15. bring in ready transfer candidates to active

transfer list.
16. move some transfers from ready list to active list.
17. update data structures and flags.
18. increment the time step.
19. }

Fig. 7. Completion algorithm.



F. Application of Heuristic

The heuristic assists the completion algorithm. It is ap-
plied stochastically. The heuristic is based on a weight
computed for each operation, which is defined as wi =∑
oj � oi(dj + W ), where oi and oj are operations, oj is

a successor of oi and W is a fixed positive value. While
selecting an operation to schedule using the heuristic, it
is chosen at random in proportion of its computed weight.
A stochastic choice is made to avoid excessive bias to a
particular decision.

The heuristic is applied at two places, while selecting
operations from the active list and while transferring oper-
ations from the ready list to the active list. While complet-
ing a solution it is applied with a certain probability that
is taken as a parameter. Even when it is being applied
it is turned on and off at random as scheduling progress
through the time steps to avoid excessive bias from the
heuristic which might undo the evolutionary process.

G. Replacement

The replacement policy is designed to ensure that all so-
lutions generated stay in the population for at least one
iteration. This is done by introducing all the new solu-
tions generated through crossover during one generation of
the GA into the population, and replacing an equal num-
ber of existing solutions. The offsprings are stored in an
adjoint pool, to be introduced into the main population
once all the offsprings from the current generation are pro-
duced. The solutions to be replaced are mostly chosen at
random. This could lead to removal of apparently good
solutions, with low cost, from the population. To counter
this a scheme has been used, at the same time, to retain the
solutions with better costs, and also maintain a diversity
of FU configurations in the population.

During implementation it had been observed that solu-
tions with low cost FU configurations initially have sched-
ules requiring more time steps than are desirable. These,
therefore, have a higher cost and tend to get displaced. The
population is then left mostly with solutions having expen-
sive FU configurations. In order to retain low cost FU con-
figurations a fixed number of buckets of a certain capacity
are used to retain solutions having the same FU cost, al-
though they may differ in their solution costs. Solutions
which are in these buckets do not get replaced by a newly
generated solution. These buckets are used to forcibly re-
tain solutions with a range of low FU costs, even if their
solution cost is high.

When a new solution is generated, first a check is made to
see whether it can be placed in one of these buckets. If the
cost of the solution matches FU cost of one of the buckets
then it is introduced there if there is space in that bucket.
Otherwise it replaces an inferior solution from that bucket,
if any. In the absence of a matching bucket, the solution
is placed in a free bucket, if one is available. Otherwise,
solutions from the most expensive bucket are released. If
the FU cost of these exceed the that of the new solution
under consideration and this solution is put in.

TABLE IV

Comparison of results with other synthesis techniques.

System
No.
time
steps

No. + No. * No. Bus, Blk.,
A. link

No. Reg.

Elliptic wave filter scheduled in 18 steps using multi-cycle
multipliers

SAST 18 3 2 1, 3, 1 13
COBRA 18 3 2 3, 3, - 12
CASS 18 3 2 5, 4, - 16
HAL 18 3 2 — 12
PSGA Syn 18 3 2 — 10

Elliptic wave filter scheduled in 19 steps using multi-cycle
multipliers

SAST 19 2 2 2, 3, 2 12
COBRA 19 3 2 3, 3, - 13
CASS 19 2 2 4, 4, - 17
HAL 19 2 2 — 12
PSGA Syn 19 2 2 — 9

Elliptic wave filter using pipelined multipliers
SAST 18 2 1 2, 3, 2 12
COBRA 18 2 1 3, 3, - 13
HAL 18 3 1 — 12
PSGA Syn 18 3 1 — 10
SAM 19 2 1 — 12
STAR 19 2 1 — 11
PARBUS 19 2 1 — 12

System
No.
time
steps

No. + No. – No. *
No. Bus,
Blk., A. link

No. Reg.

Discrete Cosine Transform scheduled in 20 steps.
SAST 20 2 3 1 2, 3, 2 18
COBRA 20 2 2 2 3, 3, - 12
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Fig. 8. Structured architecture for Elliptic Wave Filter (EWF) in 18
time steps.

XIII. Experimentation for SAST

SAST has been implemented in ‘C’ in a SUN SPARC-5
under Solaris. It has been used successfully to synthesize
designs satisfying given architectural requirements. In par-
ticular the differential equation solver [14], fifth order el-
liptic wave filter (EWF) [12] and discrete cosine transform
(DCT) [15] examples were worked out and the results have
been given in table IV. The experimentation has been done
to investigate the effectiveness of the basic scheduling algo-
rithm, the ability to use the appropriate implementation of
an operator when many are possibly available and to find
schedules under tight architectural constraints. All the de-
signs require up to two concurrent writes per A-block. The
run times for the tabulated examples vary between two to
five minutes, depending on the difficulty of the problem.
The run time is determined by the number of generations
of the GA that need to be executed before a desirable so-



lution is obtained. Each generation is completed quickly.
The differential equation example was synthesized with

a choice of fast and slow adders. SAST synthesized a data
path of three A-blocks and one global bus. The FUs config-
uration in the three A-blocks were: 〈slow +,<, –〉, 〈2-cycle
*, +〉 and 〈2-cycle *〉. SAST uses a slow adder to make use
of the available slack time and a fast adder otherwise. This
is achieved by scheduling the operations such that such in
one of the A-blocks all the scheduled additions have a slack
time. Seven storage cells are used for the three program
variables and other intermediate results.

The elliptic wave filter example has been scheduled in 18
and 19 time steps using two-cycle multipliers and single cy-
cle adders. It has also been scheduled in 18 time steps using
pipelined multipliers. The usage of adders, multipliers and
storage for the various cases are indicated in table IV. The
architectural characteristics of the solutions are indicated
in the column labeled ‘No. Bus, Blk., A. link,’ to indicate
the number of buses, A-blocks and access links per block.
The structured architecture for EWF in 18 time steps is
given in figure 8.

The architecture for DCT was chosen to have three A-
blocks, two global buses and two access links per block.
SAST was permitted to use both a pipelined and a multi-
cycle multiplier and it finds a schedule using only one
pipelined multiplier, two subtracters and three adders,
which is a desirable solution.

We present here SAST, a technique for synthesizing
structured architectures with a simple and predictable lay-
out structure. It relies on a GA for scheduling and al-
location. The target architecture is characterized by the
number of A-blocks, global memories, global buses, access
links an A-block can have and the number of write ports
used in the local storage for an A-block. SAST is able
to handle multiple implementations of operations varying
in speed, including multi-cycle and pipelined implementa-
tions. In all cases the FU cost of designs synthesized by
SAST compare very favourably with those of other sys-
tems. An important feature of this work is that random
long-distance interconnects between data path elements in
the synthesized design are avoided. Designs produced by
SAST compare favorably with other systems that do not
attempt to generate structured data paths, and the run
times for the tested examples are reasonable.

XIV. Conclusions

We have described GAs used to solve three problems
of increasing intricacy: minimum node deletion, allocation
and binding for data path synthesis and the synthesis of
structured data paths, in the domain of HLS for VLSI de-
sign. In all three cases we have relied on an enhanced
crossover mechanism. The crossover used for MND was the
most elegant, in the sense that we were able to get a theo-
retical guarantee that it would generate an optimum solu-
tion with high probability. In case of MND the enhanced
crossover was able to contribute significantly to obtaining
the desired optimal solutions. We were able to ensure di-
versity in the population just by altering the mutation rate.

The next two problems dealing with the synthesis of data
paths are far more intricate. For both these problems gen-
erating a reasonably good solution was a primary concern.
During the development of the GAs for this problems we
realized the importance of cutting down on the generation
of infeasible solutions. In the unconstrained representation
space, for the chosen representation scheme, on a minute
fraction of the possible solution representations constitute
feasible solutions. Thus without the feature of bypassing
the generation of infeasible solutions, there was little scope
of finding good solutions. Another problem was the prolif-
eration of copies of a slightly better solution in the popula-
tion, thereby diminishing the diversity within the popula-
tion. This problem was solved by enforcing diversity using
the relatively more complex replacement mechanism used
for GABIND and SAST.

Our study of the three GAs in this paper indicates that a
combination of a robust crossover and a diversity sustain-
ing replacement mechanism represent a powerful scheme
for solving hard and intricate combinatorial optimization
problems. GA also offered the benefit of using multiple
heuristics and having a set of solutions around the identi-
fied optimal cost, which is highly useful in VLSI design.
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