## High Level Synthesis of Linear Analog Systems

Soumya Pandit IIT Kharagpur, India

soumya\_pandit@ieee.org

## Outline

- Motivation
- □ Related Work
- Proposed Synthesis Methodology
- □ Architecture Synthesis
- Performance Optimization
- □ Experiment
- Conclusion

# **Motivation**

#### Bottom-up design for analog circuits

- Low productivity
- Reduced possibility of system-level optimization
- Inadequate system verification
- Top-down design is more efficient and less costly than bottom-up design.
- For high performance analog system design, system level synthesis and optimization must precede circuit level details.

### **Related Work**

#### □ ARCHGEN and ARCHSIM (B.A.A.Antao, 1995)

- State Space representation of the systems
- Synthesis of Intermediate Architecture
- Behavioral Simulation for Verification
- Exploration based Synthesis guided by the Signal flow Graph of a system starting from an HDL description. (Doboli & Vemuri, 2003)
- Two-layer Library based approach to synthesis of analog systems from VHDL-AMS specs

(Doboli & Vemuri, 2004)

# **Limitations of Previous Work**

Heuristics based Architecture Synthesis Procedure
Lack of Optimal Topology Synthesis
Lack of Hierarchical Sizing of Circuits
System dependent

# **High Level Synthesis Methodology**

Analog and Mixed Signal High Level Synthesis consists of four main tasks

- System Specification
- > Architecture Synthesis (System netlist Generation)
- Performance Model Generation
- Constraint Transformation
- □ Input: Desired specifications
- Output: Optimal sized architecture and constraints which are to be passed to the next level of design hierarchy.

#### **Proposed Methodology**



### **State Space Model and SFG**

$$s\mathbf{x}(s) = \mathbf{A}\mathbf{x}(s) + \mathbf{B}\mathbf{u}(s)$$

$$y(s) = \mathbf{C}\mathbf{x}(s) + Du(s)$$

where A,B,C,D are real state space matrices.

□ Signal Flow Graph (SFG) represents the above set of linear equations

□State space models are not unique. All models are behaviorally equivalent but differs in performance measure.

## **Architecture Synthesis**

□ In the first step behavioral block level architectures are generated from the SFG.

BBAs are behavioral structures composed of implementation style independent functional units like adders, scalars, integrators.

□ In the second step, the behavioral blocks are replaced with appropriate OTA based circuits.

Generation Generatio Generation Generation Generation Generation Generation G

#### **Generic OTA Structure**



# **Sensitivity Optimization**

- Sensitivity to circuit parameter variations is a vital performance metric, providing an indication on the manufacturability of a particular design.
- Sensitivity analysis provides tolerance levels for the sizes and constraints for the synthesized architectures.
- □ L2 norm measure of the sensitivity matrix is a realistic choice of the measure.

### **Cost Function**

$$S_{L2}\left(\mathbf{P}\right) = tr\left[\frac{1}{2\pi}\int_{0}^{2\pi}\mathbf{PN}\left(e^{j\omega}\right)\mathbf{P}^{-1}\mathbf{N}^{T}\left(e^{-j\omega}\right)d\omega\right] + tr\left(\mathbf{PW}\right) + tr\left(\mathbf{P}^{-1}\mathbf{K}\right)$$

**W** and **K** are the observability Gramian and controllability Gramian matrices respectively. **N** is another Gramian matrix, all related to state space matrices **(A,B,C**,D). **P=TT'** where **T** is the similarity transformation matrix.

□ Thus the L2 sensitivity value is architecture dependent.

# **Optimization Strategy**

- Hybrid Approach using statistical global search (SA) and deterministic local search (Gradient based) procedures.
- While exploring the architecture space, check that the matrix P is positive symmetric and the architectural solution points are stable so that Gramians are defined.

#### **Experiment: Low Pass Filter Synthesis**

- Desired Specification: Passband Gain between 0 dB and -2 dB; Stopband Gain at least -20 dB; Cut off frequency 10 Hz. Sensitivity < 8%.</p>
- From Matlab toolbox simulation, order = 4, assuming Butterworth specifications. Transfer function and initial state space model determined.
- Optimal state space determined using the optimization strategy.
- From the optimal state space model and the SFG, BBA and Gm-C structure determined. Gm sizes calculated from the model.
- SPICE simulation and Monte Carlo analysis of the resultant architecture.

## **Synthesis Results**

| Parameters        | Specifications  | Synthesis Results |
|-------------------|-----------------|-------------------|
| Passband Gain     | 0 dB and -2 dB  | -0.2 dB           |
| Stopband Gain     | At least -20 dB | -35 dB            |
| Cut off Frequency | 10 Hz           | 15 Hz             |
| Sensitivity       | < 8 %           | 6.64 %            |

#### **Simulation Plots**





Figure 2(a),(b): Monte Carlo analysis of controllability and optimized architecture.



# Conclusion

- Formal Approach to High Level Synthesis of analog systems
- Reduces the labour of circuit designers by providing sized optimal architecture with proper tolerances and other constraints.
- L2 sensitivity of the synthesized architecture is minimized.
- Allows hierarchical synthesis of robust analog systems in short time without requiring detailed analog knowledge.