
Application of Equivalence Checking for Evaluation of

Students’ Programming Assignments

K. K. Sharma

Application of Equivalence Checking for Evaluation of

Students’ Programming Assignments

Thesis submitted in partial fulfillment
of the requirements for the award of the degree

of

Doctor of Philosophy

by

K. K. Sharma

Under the supervision of

Prof. Chittaranjan Mandal

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

February 2019

c© 2019 K. K. Sharma. All Rights Reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Application of Equivalence Checking for
Evaluation of Students’ Programming Assignments”, submitted by K. K.
Sharma to the Indian Institute of Technology Kharagpur, for the award of the
degree of Doctor of Philosophy has been accepted by the external examiners
and that the student has successfully defended the thesis in the viva-voce ex-
amination held today.

Prof. Debasis Samanta Prof. Arobinda Gupta
(Member of the DSC) (Member of the DSC)

Prof. Chittaranjan Mandal
(Supervisor)

(External Examiner) (Chairman, DSC)

Date:

CERTIFICATE

This is to certify that the thesis entitled “Application of Equivalence Check-
ing for Evaluation of Students’ Programming Assignments”, submitted by
K. K. Sharma to Indian Institute of Technology Kharagpur, is a record of bona
fide research work under our supervision and we consider it worthy of consid-
eration for the award of the degree of Doctor of Philosophy of the Institute.

Dr. Chittaranjan Mandal
Professor
CSE, IIT Kharagpur

Date:

Declaration

I certify that

a. The work contained in this thesis is original and has been done by myself
under the general supervision of my supervisors.

b. The work has not been submitted to any other Institute for any degree or
diploma.

c. I have followed the guidelines provided by the Institute in writing the
thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code
of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text)
from other sources, I have given due credit to them by citing them in
the text of the thesis and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put
them under quotation marks and given due credit to the sources by citing
them and giving required details in the references.

K. K. Sharma

Acknowledgments

I take this opportunity to express my sincere thanks to my supervisor Prof.
Chittaranjan Mandal for his valuable supervision, guidance, encouragement
and advice throughout in this investigation. I would like to express my sincere
gratitude to Prof. Dipankar Sarkar, earstwhile DSC member, for constant
encouragement and evaluation of my research work.

At this point I would also like to thank Head of the Department of Computer
Science & Engineering and the Director IIT Kharagpur for providing the nec-
essary facilities during the entire period of research. I shall be ever indebted to
Prof. P. K. Das, Dean PGS&R, for his kind support in thesis submission, with-
out which this thesis would never get submitted. I also thank Prof. Arobinda
Gupta and Prof. Debasis Samanta, the DSC members, for their fruitful sug-
gestions. A special thanks to Prof. Pabitra Mitra, Prof. S. P. Pal, Prof. K. S.
Rao, Prof. R. Mall, Prof. S. Misra, Prof. N. Ganguly, Prof. Shamik Sural,
Prof. Abhijit Das, Prof. G. Biswas, Prof. Pallab Dasgupta, for their support
in various ways. I would also like to thank Mr. Soumitri Mishra, Mr. Mithun
Sarkar, Mr. Prasun Bhattacharya, Dr. Atanu Basu and all other staff mem-
bers of Computer Science & Engineering Department, IIT Kharagpur for their
needful help.

A special thanks to Prof. Manoj Tiwari, Prof. Pawan Kumar, Dr. Rajiv
Misra, Dr. Tanmai Kulshreshtha, Mr. Arun Kumar Shukla, Dr. Jay Mant Jha,
Dr. Rahul Das Gupta, Dr. Shashidhar Koolagudy, Dr. Prasenjit Bhavathankar,
Prof. Mahesh Shirole, Dr. P. V. Rajkumar, Dr. Anant Nimkar, Prof. John C.
John, Dr. C. Karfa, Dr. K. Banerjee, Dr. Rajendra Prasath, Prof. R. R. Suman,
Indra Vikas, Late Prof. Vaibhav Tiwari, Ratan Kumar, Sathu Harish, Sudeep
Kumar, Mukul Verma, Shri N. S. Debra and friends in Computer Science &
Engineering Department and earstwhile SIT, IIT Kharagpur for their constant
motivation and support. I also owe thanks to all those teachers and colleagues
of SGSITS, Indore, whose motivation, encouragement and cooperation has
helped me enormously in completing my research.

Last but not the least, I would like to take this opportunity to express my sin-
cere gratitude to my parents Ram Rishi Sharma and Late Smt. Shanti Devi and
siblings Late Rajeev, Late Lalit Kishor Sharma and Dr. Nawal Kishor Sharma
and other relatives for their constant support.

K. K. Sharma

Abstract

This work develops a new method of program assessment based on equiva-
lence checking of finite state machines with data-paths (FSMDs), reporting
the error and providing feedback towards error correction. In order to assess
a student’s program, it is compared with a model program supplied by the
teacher or instructor. For comparison, we actually establish the equivalence of
their FSMDs, which is an intermediate representation of the programs and as
FSMD is a graph like a flowchart, where the vertices are states and edges rep-
resent data and control flow, it provides scope for further analysis of paths in
terms of statement containment, which is done after the execution of equiva-
lence checker reports error. It uses containment checking algorithm, by which
it categorizes the containment in the FSMD of a student’s program into one of
the three types of cases identified in this work, in order to assess the student’s
program. These categories of containment can be mapped to various types of
errors in the programs with respect to the golden model, which may creep in
while programming. The details of these errors and the methods for detecting
and reporting them are described in this thesis. Various cases of errors in the
students’ programs have been correctly analyzed.

Conditional constructs require the conditions to follow a precedence or-
der, so that the code corresponding to no condition is un-reachable. If there
is a violation of precedence in occurrence of conditions, then the program can
be immediately declared to be erroneous. This work describes how handling
conditional constructs could be done as a pre-processing step to the equiva-
lence checking to facilitate better feedback to the student. This work further
addresses the variable mapping problem, as the reference program is likely to
use variable names that are quite different to those used in the students’ pro-
grams. This problem is important as the equivalence checking method requires
that the names of the variables used must be the same, in the programs whose
equivalence is to be established.

Next in the thesis, the automated checking of approximate equivalence of
expressions, that cannot effectively be checked through formal equivalence
checking, is described. It is based on a randomised simulation in a given do-
main. The final topic covered is an automated evaluation scheme for awarding
marks to student programs.

Keywords: FSMD, equivalence checker, containment checking, cut-point,
last correct state (LCS), corresponding state of last correct state (CSLCS).

Contents

Abstract xiii

Table of Contents xv

List of Symbols xix

List of Figures xxi

List of Tables xxvii

1 Introduction 1
1.1 Introduction . 1
1.2 Literature survey . 3

1.2.1 Automated suggestions for correction of errors: survey of var-
ious approaches . 7

1.2.2 Automated assessment of students’ programs: survey leading
to our formal method based approach 9

1.2.3 Related work for determining equivalence of two expressions 9
1.3 Motivation . 10

1.3.1 Objective of the thesis . 12
1.4 FSMD model . 12
1.5 Normalization . 26
1.6 Contributions of the thesis . 29

1.6.1 A scheme for statement containment analysis of students’ pro-
grams through equivalence checking 29

1.6.2 Methods to reconcile dissimilarities between FSMDs 30
1.6.3 Supporting techniques for checking and evaluation of students’

programs . 31
1.7 Thesis organization . 34
1.8 Assumptions in the thesis . 35
1.9 Conclusion . 36

2 Containment analysis 39
2.1 Introduction . 39
2.2 Containment checking . 40

xv

xvi CONTENTS

2.2.1 Outline of containment checking algorithm 47
2.2.2 Interpretation of the results of containment checking 62

2.3 Implementations of strategies for various types of errors 68
2.3.1 Error of dependency violation 69
2.3.2 Reporting errors of parenthesis skipping 87
2.3.3 Error of missing block of code 98
2.3.4 Error of missing code in the nested cases 116
2.3.5 Missing the code of nested loop 117
2.3.6 Steps for correction mechanism 120
2.3.7 Simulation of correction mechanism on example problems . . 127
2.3.8 Missing code of nested condition checking 134
2.3.9 Steps for correction mechanism 137
2.3.10 Simulation of above mechanism 138

2.4 Summary of the strategies . 142
2.5 Results and discussions . 146
2.6 Conclusion . 150

3 Methods to reconcile dissimilarities between FSMDs 151
3.1 Introduction . 151
3.2 Programs with constraints in ordering of conditions 152

3.2.1 Identification and correction of precedence of conditions in
else-if constructs . 153

3.2.2 Implementation . 156
3.2.3 Complexity analysis . 162
3.2.4 Results . 165

3.3 Variable mapping . 167
3.3.1 Illustrative examples . 168
3.3.2 Variable mapping algorithm 174
3.3.3 Demonstration of the algorithm 189
3.3.4 Various cases of variable mapping 191
3.3.5 Results . 200

3.4 Conclusion . 204

4 Supporting techniques for evaluation 207
4.1 Approximate equivalence checking of expressions 208

4.1.1 Introduction . 208
4.1.2 Example of approximate equivalence checking 210
4.1.3 Equivalence checking with randomised simulations with some

known properties . 210
4.1.4 Obtaining the range of evaluation from the conditions in the

program . 224
4.1.5 The decision procedure . 225
4.1.6 Results . 227

4.2 Automated evaluation of programs 229
4.2.1 An automated program evaluation scheme 230
4.2.2 Results . 235
4.2.3 Preliminary concepts of value propagation 235

CONTENTS xvii

4.2.4 Value propagation based automated program evaluation 237
4.2.5 An illustrative example . 240

4.3 The benchmark programming assignment suite 241
4.3.1 Possible future extensions 245
4.3.2 Conclusion . 246

5 Conclusion and future work 249
5.1 Summary of contributions . 249

5.1.1 Containment analysis of students’ programs through equiva-
lence checking . 250

5.1.2 Methods to reconcile dissimilarities between FSMDs arising
from students’ programs . 251

5.1.3 Supporting techniques for checking and evaluation of students’
programs . 252

5.2 Future work . 254
5.2.1 Enhancement of FSMD for pointers, I/O statements 255
5.2.2 Future work in variable mapping 261
5.2.3 Future work in approximate equivalence checking: Extension

of containment checking by both ways path extension for ap-
proximate equivalence checking 261

5.2.4 Future work in FSMD to C conversion 263
5.2.5 Future work in debugging of evolving programs 264
5.2.6 Future work in debugging programs involving bit-vectors . . . 264

A Golden solution for each of the programming assignments 265

B Examples for handling cases of missing code of nested loops 271

C Outlines of a new procedure for correcting the student’s programs 295
C.1 Introduction . 295
C.2 Supporting procedures . 296
C.3 Outline of an overall correction scheme 308

Bibliography 311

List of Symbols

Mi Finite State Machine with Datapath (FSMD) of a program 12
Qi Set of control states of FSMD Mi . 12
qi,0 Reset state of FSMD Mi . 12
Ii Set of input variables of FSMD Mi . 12
Vi Set of storage variables of FSMD Mi . 12
Oi Set of output variables of FSMD Mi . 13
τi State transition function of FSMD Mi . 13
Si Set of status expressions of FSMD Mi . 13
ν Computation in an FSMD . 18
νs ' νg Computations νs and νg are equivalent . 18
Ms FSMD of student’s program .19
Mg FSMD of golden program . 19
Ms vMg FSMD Ms is contained in FSMD Mg . 19
χ,ξ Paths in FSMD . 19
χs Start state of path chi . 19
χ f End (final) state of path χ . 19
Cχ Condition of execution of the path χ . 20
rχ Data transformation of the path χ . 20
sχ Storage variable transformations of the path χ . 20
θχ Output list of the path χ . 20
P1,P2 Path cover of the FSMDs M1 and M2 . 20
qs,i A state of FSMD Ms . 20
qg,i A state of FSMD Mg . 20
qi, j � qi,k The path between the states qi, j and qi,k . 22

qi, j
c−−� qi,k

The path between the states qi, j and qi,k having c as its condition of execu-
tion . 22

p1•p2 path p1 is concatenated with path p2 . 42

n≺ m
n is ordered before m, the symbol used for precedence between elements
with ordering . 159

x 7→ y Variable x maps to variable y . 169
M Map, the set of pairs of mapped variables between Ms and Mg 174

xix

List of Figures

1.1 Mg: FSMD for golden program for computing GCD. 14
1.2 Figure explaining recursive definition of block structured FSMD. . . . 15
1.3 Figure explaining compaction of block structured FSMD. 16
1.4 Figure explaining compaction of block structured FSMD. 16
1.5 Figure explaining compaction of block structured FSMD. 17
1.6 Figure explaining compaction of block structured FSMD. 17
1.7 (a) Mg: Golden FSMD. (b) Ms: Student’s FSMD. 23
1.8 Expression tree for method of obtaining normalization for x+ y ∗ z−

(c÷d). 28
1.9 Block diagram for automated assessment 34

2.1 FSMD of student’s program . 43
2.2 FSMD of golden program . 43
2.3 Mg, path-wise one way contained example 45
2.4 Ms, path-wise one way contained example 45
2.5 Ms, path-wise un-contained example 47
2.6 Mg, path-wise un-contained example 47
2.7 Ms: path qc→ qd shown with a dashed line, for which containment is

to be found in Mg. 48
2.8 Mg: both ways containment of path qc→ qd of Ms found in path q02→

q03, shown with a dashed line. 48
2.9 Ms: path qc→ q f is shown with a dashed line, for which containment

is to be found in Mg. 49
2.10 Mg: start with path q02→ q03, shown with a dashed line. 49
2.11 Mg: extend the path to q04, shown with dashed lines. 49
2.12 Mg: finally containing path q02...q05 obtained, shown with dashed

lines, by extending to q05. 49
2.13 Parts of FSMDs (a) Ms and (b) Mg shown from LCS and CSLCS on-

wards. 53
2.14 Unordered path-wise both way contained Part-I: FSMD on fig (a) con-

tains the dotted path which is equal to the dotted path shown in the fig
(b). 62

xxi

xxii LIST OF FIGURES

2.15 Unordered path-wise both way contained Part-II: FSMD on fig (a)
contains the dotted path which is equal to the dotted path shown in the
fig (b). 63

2.16 Path-wise un-contained: FSMD in fig (a) contains the dotted paths
which are not found in the fig (b) by containment checker. 64

2.17 Path-wise one way contained - I: FSMD in fig (a) show paths which
are path-wise one way contained in the FSMD in the fig (b). 65

2.18 Path-wise one way contained - II: FSMD in fig (a) show paths which
are path-wise one way contained in the FSMD in the fig (b). 65

2.19 Unordered path-wise both way contained and path-wise one way con-
tained for faulty branching - I: FSMD in fig (a) shows the path, which
is equal to the path shown in the FSMD in fig (b). 66

2.20 Unordered path-wise both way contained and path-wise one way con-
tained for faulty branching - II: FSMD in fig (a) shows the path, which
is contained in the path shown in the FSMD in fig (b). 67

2.21 Worst-case exponential nature of the containment checking algorithm. 68
2.22 Example of dependency violation. 72
2.23 Example of dependency violation: Working of equivalence checker I. 73
2.24 Example of dependency violation: Working of equivalence checker II. 74
2.25 Example of dependency violation: Working of equivalence checker III. 74
2.26 Example of dependency violation: Working of equivalence checker IV. 75
2.27 Example of dependency violation: Working of equivalence checker V. 75
2.28 Example of dependency violation: Working of equivalence checker VI. 76
2.29 Example of dependency violation: Working of equivalence checker VII. 77
2.30 Example of dependency violation: Working of equivalence checker

VIII. 77
2.31 Example of dependency violation: Working of equivalence checker IX. 78
2.32 Example of dependency violation: Working of equivalence checker X. 78
2.33 Example of dependency violation: Working of equivalence checker XI. 79
2.34 Example of dependency violation: Working of equivalence checker XII. 79
2.35 Example of dependency violation: Working of equivalence checker

XIII. 80
2.36 Example of dependency violation: Working of containment checker

showing the unordered path-wise both way contained paths I. 81
2.37 Example of dependency violation: Working of containment checker

showing the unordered path-wise both way contained paths II. 81
2.38 DAGs of (a) golden program and (b) student’s program. 82
2.39 Dependency graph of golden program 83
2.40 Dependency graph of student’s program 83
2.41 Dependency list of golden program 85
2.42 Dependency list of student’s program 85
2.43 Case I: Figures showing (a) Mg and (b) Ms 89
2.44 Case I: Figures showing equivalent states in (a) Mg and (b) Ms 90
2.45 Case II: (a) Mg and (b) Ms . 91
2.46 Case II: Equivalence found for the dark edges but not for the dotted

edges of Ms . 91

LIST OF FIGURES xxiii

2.47 Figures showing the output of algorithm for case II. Dark edges are
the entry present in stack1 and stack2. 96

2.48 Figures showing (a) Mg and (b) extension of loop in Ms due to skip-
ping parenthesis. 97

2.49 Figures showing (a) Mg and (b) Ms, showing equivalence checker fail-
ing for path shown with dark line . 98

2.50 Mg and Ms, Ms has a missing block of code 101
2.51 Mg and Ms, Ms has a missing block of code 102
2.52 Mg and Ms, Ms has a missing block of code 102
2.53 Mg and Ms, Ms has extra block of code 103
2.54 Mg and Ms, Ms has a missing block and an extra block of code 104
2.55 Mg and Ms, removing code from extra block in Ms 104
2.56 Mg and Ms, merging the states at the two ends of extra block in Ms . . 105
2.57 Mg and Ms reversed, equivalence check finds Mg 6vMs 105
2.58 Figure showing Mg with several blocks of code. 108
2.59 Figure showing Ms with missing block of code. 109
2.60 Figure showing Ms with application of correction vector. 110
2.61 Figure showing Ms with application of correction vector for the sec-

ond time. 111
2.62 Figure showing Ms becoming same as Mg after correction done for

skipping parenthesis. 113
2.63 An Mg for digitsum program . 118
2.64 An Ms for digitsum program. 119
2.65 Outgoing transitions from loop state 121
2.66 Mg, generate tables program . 128
2.67 Ms, generate tables program . 128
2.68 Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for generate tables program. 130
2.69 Modified incorrect FSMD after introducing loop2 inside loop1 in Ms

for generate tables program. 132
2.70 Modified incorrect FSMD after introducing chain in loop 2 in Ms for

generate tables program. 133
2.71 Mg having nested conditions. 135
2.72 Ms missing nested conditions. 136
2.73 After introduction of missing state q′06 in Ms. 139
2.74 After introduction of missing states q′07, q′08 and q′19 in Ms. 140
2.75 Corrected Ms, after introduction of missing states q′09 and q′20. 141

3.1 Depicting a normalized cell . 161
3.2 Depicting the expression 3 + 2 * a + 5 * x * y with list of normalized

cells . 162
3.3 An example of case 1 . 165
3.4 Another example of case 1 . 165
3.5 An example of case 2 . 165
3.6 Another example of case 2 . 165
3.7 An example of case 3 . 166
3.8 Another example of case 3 . 166

xxiv LIST OF FIGURES

3.9 An example of case 4 . 166
3.10 Another example of case 4 . 166
3.11 An example of case 5 . 166
3.12 Another example of case 5 . 166
3.13 An example of case 6 . 166
3.14 Another example of case 6 . 166
3.15 FSMD 1 of example 3.1 . 169
3.16 FSMD 2 of example 3.1 . 169
3.17 FSMD 1 of example 3.2 . 170
3.18 FSMD 2 of example 3.2 . 170
3.19 Two FSMDs for example 3.3 . 172
3.20 Two FSMDs: demonstration of variable mapping program 189
3.21 Two FSMDs: Case I, variable mapping 192
3.22 FSMD 1: Case II, variable mapping 196
3.23 FSMD 2: Case II, variable mapping 197
3.24 Two FSMDs: Case III, variable mapping 199

4.1 FSMDs (a) Ms and (b) Mg. 217
4.2 FSMDs (a) Ms and (b) Mg. 219
4.3 FSMDs (a) Ms and (b) Mg. 219
4.4 An example of value propagation. 236
4.5 (a) Model FSMD, Mg. (b) Student FSMD, Ms for example 4.12. . . . 238
4.6 An example to illustrate automated program evaluation scheme. (a)

Model FSMD, Mg. (b) Student FSMD, Ms. 240

5.1 Parse tree for &v . 258
5.2 Data Structure used for NCell . 259
5.3 Data Structure used for read/ write 261
5.4 FSMDs (a) Ms and (b) Mg. 262

B.1 Mg, digitsum program . 272
B.2 Ms, digitsum program . 272
B.3 Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for digitsum program. 274
B.4 Incorrect FSMD after modifying loop1 in Ms for digitsum program. . 276
B.5 Modified incorrect FSMD after introducing chain in loop2 in Ms for

digitsum program. 278
B.6 Modified incorrect FSMD after completion of chain copy in loop1 in

Ms for digitsum program. 280
B.7 Mg, diamond program . 281
B.8 Ms, diamond program . 281
B.9 Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for diamond program. 283
B.10 Incorrect FSMD after inserting loop2 in Ms for diamond program. . . 284
B.11 Modified incorrect FSMD after introducing chain in loop2 in Ms for

diamond program. 285
B.12 Mg, a simple program . 286

LIST OF FIGURES xxv

B.13 Ms, a simple program . 286
B.14 Mg, digitsum program . 289
B.15 Ms, digitsum program . 289
B.16 Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for digitsum program. 291
B.17 Incorrect FSMD after modifying loop1 in Ms for digitsum program. . 293

C.1 FSMD of Golden Program, in the figure t0..t11 are the set of state-
ments, e.g. t0={a=5;b=4;a=b+c;..} 298

C.2 Figure with FSMDs for various examples. 302
C.3 Figure with FSMDs for finding similarity and overll correction. 310

List of Tables

2.1 Table of cases of error diagnosis of program FSMDs 148
2.2 Table of cases of error handling of program FSMDs for missing nested

or in-line code . 149

3.1 Examples for else-if constructs 156
3.2 Extended examples for else-if constructs 157
3.3 Results for else-if constructs . 167
3.4 Condition not matched . 200
3.5 More variables . 201
3.6 Different output . 201
3.7 Wrong output . 202
3.8 Missing loop . 202
3.9 Uninitialized variables . 203

4.1 Checking expression equivalence . 229
4.2 Automatic evaluation vs TA’s evaluation for Coordinate.c, C1=3, C2=7 231
4.3 Automatic evaluation vs TA’s evaluation for Friend.c, C1=3, C2=7 . . 231
4.4 Automatic evaluation vs TA’s evaluation for Equal0_1.c, C1=3, C2=7 232
4.5 Automatic evaluation vs TA’s evaluation for GCDBenchmark.c, C1=3,

C2=7 . 232
4.6 Automatic evaluation vs TA’s evaluation for LCM.c, C1=3, C2=7 . . . 233
4.7 Automatic evaluation vs TA’s evaluation for GCD.c, C1=3, C2=7 . . . 233
4.8 Automatic evaluation vs TA’s evaluation for BarCode.c, C1=3, C2=7 . 234
4.9 Automatic evaluation vs TA’s evaluation for Swap.c, C1=3, C2=7 . . . 234

A.1 Table for comparison of various features of benchmark programs . . . 270

C.1 Dominator table . 300

xxvii

Chapter 1

Introduction and literature survey

1.1 Introduction

Computers are being used heavily to aid learning. Students can be taught and eval-

uated through computers. An automated tutoring system and automated evaluation

system are needed for automated electronic learning. This thesis describes principles

of the design of a tool for automated evaluation of students’ programs.

Automatic evaluation is considered to be consistent and fast, as compared to hu-

man evaluation, which is not always consistent, let alone being fast.

We now introduce briefly our scheme for automated evaluation of students’ pro-

grams. A program can be visualized as a finite state machine with data-path (FSMD).

Automated evaluation can be aimed at by using equivalence checking of FSMDs of

two programs, which is a well studied problem [44, 45, 47, 54]. In our approach, for

a given programming assignment, the instructor is expected to provide a golden solu-

tion to serve as the source of a reference FSMD. The program of the student serves

as the source of the other FSMD. For our approach we leverage equivalence checking

techniques for two FSMDs pioneered locally [44, 45, 47, 75]. The bare mechanism

for equivalence checking is to identify a finite set of path segments to capture any

computation in one of the FSMDs. Thereafter, a set of corresponding path segments

are identified in the other FSMD, so that for any computation expressed as a concate-

nation of path segments in the first FSMD, there is a corresponding computation in

1

2 Chapter 1 Introduction

the second FSMD, which can be expressed as a concatenation of corresponding path

segments in the other FSMD.

In the basic equivalence checking scheme, the objective would be only to deter-

mine whether or not the two programs are equivalent. For this work the objective is

broader. We also seek to understand how the student program deviates from the golden

solution and use that to “correct” the faulty student program and explain the correc-

tion applied. That way our scheme is expected to be an automated assist mechanism

to aid the student to write correct programs. We do not seek to correct syntax errors;

it is assumed that the given program is syntactically correct. Also, a problem may

have multiple solutions whose equivalence may be non-trivial to prove automatically.

This is addressed by using a set of golden programs rather than a single program. The

golden program that is found to be the “closest” to the student program is considered

as the reference. With the wide relevance of static pedagogical content available on

the Internet, it is becoming increasingly important to have dynamic mechanisms to

aid teaching. An area that deserves attending to is the application of formal methods

to assist evaluation of content. In this work we focus on the application of equiva-

lence checking techniques to assist student program evaluation for correctness. We

consider this to be an important problem because programming is considered to be

a basic engineering and scientific ability, yet evaluating programming exercises is a

skill intensive exercise, of which there is a short supply of experts. This claim is based

on the student-teacher ratio in a typical course involving programming, where a single

teacher may have to deal with 100 or more number of students. The overall goal is

lofty and we have made only a humble beginning in this direction.

This method has potential application in automatically carrying out evaluation of

programs in an environment where there is a large number of students, thus saving a

lot of time for the instructor. Being automated, our scheme will ensure consistency

in evaluation and ensure speedy evaluation. The major contributions of this work are:

i) extension of equivalence checking method of FSMDs, by checking statement con-

tainment, for the diagnosis of errors in student programs, ii) identification of classes

of some errors in programs, iii) detecting violation of precedence in if-else-if con-

structs, in a student’s program iv) variable mapping for the preprocessing of student

programs, v) approximate equivalence checking of mathematical expressions, vi) sug-

gesting a scheme for automated marking of student programs. This work can be used

in many fields, not only in assessment of a student’s ability of computer programming

1.2 Literature survey 3

but also for detecting some potential errors in computer programs, if an “ideally” and

correctly developed program exists.

1.2 Literature survey

Literature review papers have been published on automated assessment in 2005 by

Mutka [7] and the subsequent developments from 2006 to 2010 have been reported

by Ihantola et al. [38]. Liang et al. [55] have also reported a survey of automated

programming assessment tools.

Douce et al. [27] in their review have classified automated assessment tools in

terms of three generations, viz, early assessment systems, tool-oriented systems and

web-oriented systems. Automated assessment techniques have been developed for

judging partial correctness of programs using graph based similarity [64]. Some of

the features in the automated assessment systems have been the test definitions for

the black-box or white box testing, resubmission policies and sand-boxing issues for

secure submission [58]. Model checking based approaches for checking programs

are available in the literature, some of which are by Clarke, Kroening & Lerda [24],

Yu, Duan, Tian & Yang [94], Merz, Falke & Sinz [61] and Rocha, Ismail, Cordeiro

& Barreto [70] etc. In these, model checking has been used for property checking

of programs. The method of Clarke, Kroening & Lerda [24] handles the programs

which can be unwound. In model checking, there is a model, which is a finite state

system. A program, whereas, is not necessarily a finite state system as far as data

values are concerned (if true integers are considered), resulting in infinite data states.

The number of control states is finite. In case of model checking, the objective is

to determine whether a given model satisfies a given temporal property. State space

explosion is a commonly encountered problem in model checking. Bounded model

checking [17, 61] is a restricted form of model checking for a given extent of loop un-

winding. In case of equivalence checking we want to ensure that the transformation of

data values is also consistent, which is not captured by model checking. Equivalence

checking considers the equivalence of computations performed by two systems under

consideration, one of which could be a reference model. Assessment of a student pro-

gram is aligned to equivalence checking where conformity with a golden program is

considered.

4 Chapter 1 Introduction

There are many approaches to designing the systems for automatic assessment of

students’ programs. In the literature there are three major approaches - dynamic anal-

ysis, the use of software metrics and static analysis [91]. In the survey by Ala Mutka

[7], which is a well cited paper on survey of automated assessment approaches for pro-

gramming assignments, two broad categories of approaches have been discussed for

automated assessment, dynamic and static. A brief detail of what they have discussed

in [91] about the methods is as follows. In dynamic analysis the student program is ex-

ecuted and the output is checked for correctness. In case of dynamic approach, where

the student’s program is to be executed for assessment, there is an essential require-

ment to provide a secured running environment like a sandbox, for running students’

programs without risks to the surrounding environment as the student’s program may

have bugs or it may be designed intentionally to be malicious. In dynamic approach a

program is tested for its i) functionality and ii) efficiency.

Also, in this approach, the students are supposed to write programs which pass

given test cases. Some examples of tools for functionality checking are Ceilidh [15]

(now CourseMarker [37]), Assyst [39], Homework Generation and Grading project

(HoGG) at Rutgers University [63], Online Judge [21], and BOSS [40]. Some ex-

amples of tools for checking efficiency are Ceilidh [15] (now CourseMarker [37]),

Assyst [39] and Online Judge [21]. Some special features that have been incorporated

in tools using dynamic approach are e.g., i) a feature to allow assessment in the middle

of processing, defining a test case with a planned relationship to the program state cre-

ated during previous test input. Quiver uses a similar approach. ii) language specific

implementation issues, e.g., testing dynamic memory management in C++ language.

These systems, such as TRY [69], Scheme-robo [74], Online Judge [21], Quiver [29],

and RoboProf [26], usually adopt a dynamic testing assessment mechanism which

runs a student program through a set of testing data. The only factor that can influence

the evaluation is the success or otherwise of a test [90]. Further to the drawbacks of

the dynamic testing assessment mechanism, the following has been observed in [90]:

" ... does not take into account the way in which a problem has been solved. This

sometimes leads to inequitable grading results, because a program producing a right

output may not meet the programming specification. There is another drawback of

dynamic testing based assessment systems. In many cases, a program, submitted by

a novice in an examination, may not produce an output or even may not terminate

when dynamically tested, which makes these systems fail to give reasonable marks".

1.2 Literature survey 5

Further we quote from [90]: "CourseMarker [37], Boss [40], and GAME [18, 19],

improved the dynamic testing assessment mechanism by introducing static analysis.

These tools perform quality or style checks against a set of metric tools and provide

feedback. GAME also performs structure analysis by examining strategic key points

in the code. However, the drawbacks of the dynamic testing assessment mechanism

have not been well solved yet".

In other methods software metrics such as lines of code, number of variables,

statements and expressions are used for the assessment.

The other approach discussed by Mutka [7] is static assessment, where evaluation

can be carried out by collecting information from program code without executing

it. In static analysis the student program is not executed but it is compared to some

standard program usually on the basis of its structure. The extent of similarity between

the two gives an estimate for the assessment. Although commonly assessment is done

by executing the submitted programs, the static assessment has its own advantages

like i) exposing the functionality features that may remain unnoticed by the limited

set of test cases, ii) can be used even if the program is buggy or has malicious intent.

Most static assessment methods rely on the formal structure of the program and thus

they require the program to be syntactically and semantically correct.

The static method is used to assess the following features: Coding style, program-

ming errors, software metrics, design. Search for some word or expression in program

code and plagiarism detection features are among the special features incorporated in

tools using static method.

In this survey the emphasis is more on the static assessment methods. In all the

static methods that we came across, the student program is compared against a stan-

dard program chosen from a set of model solution programs. Both the programs that

are to be compared are at first transformed and normalized in some way and thus

converted to some intermediate representation so as to become more worthy of com-

parison (i.e., easier to compare). In most of the cases the intermediate representation is

either some graphical representation e.g. a system dependence graph (SDG) [91], an

abstract syntax tree (AST), an augmented object-oriented program dependence graph

(AOPDG), or it may be a textual representation e.g. Backus Naur Form (BNF). Be-

fore comparing, both the programs are converted to some intermediate representation

6 Chapter 1 Introduction

in order to capture their control and data-flow graphs explicitly, for example, the work

reported in [91] extracts system dependence graphs from both the student and the

instructor supplied programs before checking for equivalence.

Many researchers point out that automatically detecting equivalence between two

arbitrary programs or two mutants is an undecidable problem; however, for many

specific cases, equivalence can be decided [91].

In the context of automatic grading, student programs and model programs are

much simple, and they may be alike, so we can determine their equivalence and calcu-

late their semantic similarities [91]. Songwen Xu et al. [93] have described in details

a transformation based approach to automate the diagnosis of students’ programs.

A grading framework combining the approaches of testing, software verification,

and control flow graph similarity measurement have been reported in [89]. The tools

make use of an intermediate code representation, thus being applicable to various

languages.

The static method has its own advantages and hence dynamic systems were im-

proved by the use of static method. In recent systems like AutoLEP [90] and eGrader

[76], a combination of both static and dynamic approaches is visible.

A pseudo-code comparison technique is reported in the work by Rahman et al. in

[68] and its evaluation discussed in [67].

A service-oriented approach for the design and implementation of an automatic

assessment system for programming assignments has been reported in [9] by M.

Amelung et al.

In some studies unit testing has been used for automated assessment tools. The

unit testing is defined as follows: “In computer programming, unit testing is a soft-

ware testing method by which individual units of source code, sets of one or more

computer program modules together with associated control data, usage procedures,

and operating procedures, are tested to determine whether they are fit for use.” [50].

Use of JUnit, a unit testing framework for Java, has been made for designing auto-

mated assessment tools for programming exercises in Java. BOSS [40] and Oto [86]

are examples of such a tool using JUnit. A marking tool should incorporate the follow-

1.2 Literature survey 7

ing aspects viz., to assess the correctness of programs, quality of the code, efficiency

of the program, quality of the tests developed by the students to test their own program

and ability to detect originality of the code i.e., plagiarism detection.

Recently a graph-based grading system for introductory Java programming has

been introduced by Shamsi et al. [76]. This system, called eGrader, grades sub-

mission both dynamically and statically. While dynamic analysis is based on JUnit

framework, the static analysis is based on the graph representation of the program and

its quality which is measured by software metrics. The graph representation is based

on the Control Dependence Graphs (CDG) and Method Call Dependencies (MCD),

which are constructed from the abstract syntax tree of the source code They have also

introduced a notion of Identification pattern, which is an encoded pattern of digits, to

analyze both the structure and the Software Engineering Metrics (SEM) of students’

programs. Identification pattern matching is based on the distance between them. The

distance measure has been defined as the number of missing control structures and

SEM components from the model program in addition to the number of extra control

structures and SEM component in the students’ identification pattern. Formally, it is:

D = |NMissing+NExtra|, where D is the distance, NMissing is the number of missing con-

trol structures, and NExtra is the number of extra control structures. As there will be

more than one model solutions for a given programming exercise,the model solution

which has lesser distance D with the student’s program will be chosen for the assess-

ment of the student’s program. However, this approach of using JUnit framework is

limited only to Java programs.

A number of automated assessment systems are evolving. Automated assessment

system Mooshak [53], has been evaluated in [72], concluding that the system of feed-

back needs to be richer.

1.2.1 Automated suggestions for correction of errors: survey of

various approaches

LAURA [5] is a system built with a goal to pin-point the semantic errors, or at least

localize them; even that is a big help in debugging. In order to establish equivalence

of the model program and the student’s program this system employs program trans-

formations which are either semantics preserving or are heuristically driven. In case

8 Chapter 1 Introduction

the transformations can not be applied systematically (as opposed to the standardized

transformations), the heuristic criteria are used. While trying to establish equivalence,

the step where the system finds that it cannot be established, LAURA concludes error

and tries to pin-point it or at least localize it. A comparison of automated debuggers as

tutoring systems is given in [96], a paper discussing the design of Aadil - a knowledge

based automated debugger.

In a recent work Könighofer and Bloem [52] present a novel debugging method for

imperative software, featuring both automatic error localization and correction. They

use symbolic execution for program analysis. This allows for a wide range of different

trade-offs between resource requirements and accuracy of results. Their error local-

ization method rests upon model-based diagnosis and SMT-solving. Error correction

is done using a template-based approach which ensures that the computed repairs are

readable. Their method can handle all sorts of incorrect expressions, not only under

a single-fault assumption but also for multiple faults. A general-purpose SMT-based

error finding platform has been reported in [88], a tool for statically checking program

assertions and errors. Cordeiro et al. [25] have applied propositional bounded model

checking "successfully to verify embedded software but is limited by the increasing

propositional formula size and the loss of structure during the translation". They have

investigated "the application of different SMT solvers to the verification of embed-

ded software written in ANSI-C." Komuravelli et al. [51] presented an SMT-based

symbolic model checking algorithm for safety verification of recursive programs.

In another recent work Rishabh Singh et al. [83] present a new method for auto-

matically grading introductory programming assignments. In order to use this method,

instructors provide a reference implementation of the assignment, and an error model

consisting of potential corrections to errors that students might make. Using this in-

formation, the system automatically derives minimal corrections to student’s incorrect

solutions, providing them with a quantifiable measure of exactly how incorrect a given

solution was, as well as feedback about what they did wrong. They have introduced a

simple language for describing error models in terms of correction rules, and formally

define a rule-directed translation strategy that reduces the problem of finding minimal

corrections in an incorrect program to the problem of synthesizing a correct program

from a sketch. Identifying students’ misconception of programming is aimed in [41].

1.2 Literature survey 9

1.2.2 Automated assessment of students’ programs: survey lead-

ing to our formal method based approach

The work in this thesis derives from the equivalence problem of flowchart schema

discussed at length in Manna [59]. The equivalence checking problem of FSMDs

(EPFSMD) is the same as the equivalence problem of flowchart schema and has found

wide application in different areas. Kim et al. [48] have reported an automated formal

verification method of the scheduling process using FSMD. In a different work Kim et

al. [48] discussed automated formal verification of scheduling with speculative code

motions. Matsumoto et al. [60], in their method, at first identify the textual differences

between the two programs to find where the equivalence must be checked. Symbolic

simulation and validity checking techniques are used to check the equivalence of dif-

ferences. If the equivalence is not established, their method incrementally extends

statements to be verified based on dependency, until the equivalence is proved. For

the extensions, the method uses dependence graphs of the programs. Karfa et al. [47]

have shown the application of FSMD based method in High Level Synthesis. A given

behavioral specification prior to scheduling and its equivalent produced by a sched-

uler, both of them can be represented by their corresponding FSMDs. In their work

they have proposed an algorithm to find the equivalence of two such FSMDs. This

FSMD based method has been shown to be equally applicable in several high level

code transformations by them. The method has found application in hardware design

verification and verification of embedded systems.

1.2.3 Related work for determining equivalence of two expres-

sions

Determining equivalence of two programs basically entails checking whether on giv-

ing the same inputs, the two programs produce the same outputs or not. Although this

problem is undecidable in general, the problem can be proven to be sound [12, 47, 59]

and even complete [56] for some restricted subsets. Since it has to be ascertained that

the values output by both the programs are the same, checking equivalence of expres-

sions is at the core of this problem. In this section, we outline the various procedures

undertaken to determine equivalence of expressions involving different data-types.

10 Chapter 1 Introduction

Boolean expressions are the easiest to check for equivalence. Any two Boolean

expressions can be converted into either of the two canonical forms namely, con-

junctive normal form and disjunctive normal form, and then checked for equivalence

based on the fact that whether they have reduced to the same syntactical form or

not. However, no such canonical form exists for expressions over integers and con-

sequently, a normal form for such expressions has been proposed in [49] which re-

duces many of the computationally equivalent expressions into identical syntax, e.g.,

0+ 1× a× a+ 2× a× b+ 1× b× b is the normal form of (a+ b)2. This work has

later been adopted in [75], some simplification rules for the normalization grammar

have been proposed in [47]; recently, this grammar has been extended to include array

references in [14].

The theory of real numbers and bit-vectors, on the other hand, is decidable [20],

[85]. Effective solutions for expressions over such variables can be obtained from

state-of-the-art SMT solvers. Accordingly, these SMT solvers have been adopted

in [13] to handle such datatypes in the context of checking equivalence of programs.

It is to be noted that user-defined data-types actually encompass multiple variables

of the same or different data-types; consequently checking equivalence of two user-

defined variables of the same sort requires application of separate rules for each of its

constituent variables. SMT solvers, such as CVC4 [1], provide constructs which can

readily capture user-defined data-types as defined in high-level languages, such as C.

1.3 Motivation

Many, if not all, engineering institutions provide mandatory courses on elementary

programming for undergraduates. Consequently, the number of students enrolled in

such subjects is high. Often, due to lack of sufficient and/or efficient staff, quick and

consistent evaluation of students’ programs may not be ensured in such places. As a

result, automated evaluators which can speedily and consistently assess students’ pro-

grams have become a necessity for sustenance of the modern academic needs. Owing

to the large number of students that academic institutions have to accommodate, au-

tomated evaluation of students’ programs has received impetus in recent years; an

automated evaluator not only ensures speedy evaluation but also consistency in distri-

bution of marks. As an example at IIT Kharagpur a course on programming and data

1.3 Motivation 11

structures is offered to the first year undergraduates, which are approximately 1000

per semester. If 10 assignments each having 10 problems is given to them, a total of

1000x10x10=100000 programs have to be checked per semester, which is a huge task

even for a team of 5 instructors and 10 TAs. Another area where automated evaluation

is very useful is MOOCs, as discussed in the paper [65] by V. Pieterse. As computer-

assisted learning is nowadays becoming popular among students, mainly because it

provides an affordable medium for acquiring knowledge and allow remote access;

the recent increase in availability of massive open online courses [3] and virtual labs

supported by the Indian government [4] bear testimony to this fact. Automated assess-

ment has been observed to have various advantages in such courses [65]. Ala-Mutka

[7] mentions speed, availability, consistency and objectivity of assessment, whereas

Vujošević-Janičić et al. [89] mention the advantage of feedback available immediately

to the students, particularly novices as they can be benefited from early disambigua-

tion of complex ideas. Advantages that are particularly relevant for MOOCs are its

potential to facilitate learning and allowing students to practise and get feedback at

any time and anywhere Malmi et al. [57], as well as the possibility to give more

tasks to the students Enström et al. [30]. Chen [22] claims that use of their system

could enable students achieve a higher standard and helped students in meeting such

standard.

In this work, we have chosen the FSMD model to represent the programs since

equivalence checking of FSMDs is a well studied problem and has found extensive

application in translation validation of programs [11, 12, 44, 45, 47, 54]. Specifically,

FSMD based equivalence checking is first proposed in [45], which is later developed

to handle uniform and non-uniform code motion based optimization techniques in [44,

47, 54]. This method is general enough for checking equivalence of digital circuits as

well [46]. A further enhancement of this method can be found in [11, 12] which

can additionally handle code motions across loops. Thus, by adopting the FSMD

based equivalence checking method into our program evaluation system, we can add

to our repertoire a wide range of supported code optimization techniques that may be

applied by a student; to the best of our knowledge, no other assessment mechanism

has targeted code optimization techniques to such an extent before.

12 Chapter 1 Introduction

1.3.1 Objective of the thesis

In view of the importance of automated evaluation of students’ programming assign-

ments in early programming courses and inadequate research in its design philosophy

using equivalence checking and implications, the following research objectives are set

for the thesis.

1. To develop a scheme for statement containment analysis of students’ programs

through equivalence checking.

2. To develop methods to reconcile dissimilarities between FSMDs.

3. To develop supporting techniques for checking and evaluation of students’ pro-

grams.

As the model used in the thesis for analysis is the finite state machine with data-

paths (FSMD). We present the formal description of FSMD model in brief in the

following section; a more detailed description of FSMD models is given in paper by

Karfa et al. [47]. This description is followed by the equivalence checking mechanism

presented by Karfa et al. [47], which we present next with the help of an example for

developing the understanding of the method.

1.4 FSMD model

Finite state machine with data-paths (FSMD) is a graph representing a program, hav-

ing a set of states, known as control states, which are joined through edges. Ev-

ery edge is associated with conditions over the program variables and some data-

transformation. The edges therefore are labeled with conditions and data-transformation

pairs.

The FSMD model [33], used in this work to model the golden programs provided

by the teacher and the students’ programs, is formally defined as an ordered tuple

M=〈Q,q0, I,V,O,τ : Q×2S →Q, h : Q×2S →U〉, where Q is the finite set of control

states, q0 is the reset (initial) state, I is the set of input variables, V is the set of

1.4 FSMD model 13

storage variables, O is the set of output variables, τ is the state transition function,

S represents a set of relational expressions involving arithmetic expressions over the

members of I and V , U represents a set of assignments of expressions over inputs

and storage variables to some storage or output variables and h is the update function

capturing the conditional updates of the output and storage variables taking place in

the transitions through the members of U .

Below we present an example of program code for computing GCD of two num-

bers, z1 and z2. The result is stored in res. The corresponding FSMD is given in the

Figure 1.1 (This example is incorporated from [43]).

int z1, z2, res = 1;
scanf(‘‘%d, %d’’, &P1, &p2);
z1 = P1;
z2 = P2;
while (z1 != z2){

if (z1 % 2 == 0)
if (z2 % 2 == 0)

res = res * 2;
z1 = z1 / 2;
z2 = z2 / 2;

else
z1 = z1 / 2;

else
if (z2 % 2 == 0)

z2 = z2 / 2;
else

if (z1 > z2)
z1 = z1 - z2;

else
z2 = z2 - z1;

}
res == res * 2;
printf (‘‘%d’’, res);

Every label of a transition has two parts separated by the symbol ‘/’. On the left

of the separator is the condition of execution and to the right is the data-transfer, e,g.,

if a label is c/d, then c is the condition of execution (e.g., (y > 0)) and d is the data

transfer (d could mean a statement like x = y + z;). The data-transfer could be a

comma separated list for a path between two adjacent cut-points, as sometimes such

labels are used for paths between two neighboring cut-points. Label -/d means the

14 Chapter 1 Introduction

(z2%2 == 0)/

!(z2%2 == 0)/

(z1%2 == 0)/−
!(z2%2 == 0)/−

(z2%2 == 0)/

z1 = z1/2

z2 = z2/2

z1 = z1/2,
z2 = z2/2

!(z1 == z2)/−

!(z1%2 == 0)/−
!(z1 > z2)/

(z1 > z2)/z1 = z1− z2

z2 = z2− z1

res = res∗2

−/OUT (yout,res)

q1,5

q1,4

q1,2

q1,1

q1,0

−/z1 = P1, z2 = P2, res = 1

(z1 == z2)/res = res∗ z1

q1,6

q1,3

ξ2

ξ3

ξ5ξ6

ξ7

ξ10

ξ11

ξ4

ξ8

ξ1

ξ9

Figure 1.1: Mg: FSMD for golden program for computing GCD.

condition of execution is True and the data transformation is d, whereas -/- means

the condition of execution is True and there is no data transformation.

In the following discussion we describe the block structured languages, Aho et

al. [6], and the FSMD of a block structured program.

Definition 1 (Block structured languages). A block structured language is a high level

programming language, permitting the programs to be made up of blocks, a block may

be nested within another block. The blocks are separated by delimiters, which ensure

that either the blocks are independent or are nested. A block consists of a sequence of

statements and/or other blocks, preceded by declarations of variables.

Nesting of blocks in a block structured language may go to any depth. Variables

declared in the beginning of a block are visible inside the entire block including any

nested blocks, unless the same variable is declared inside an inner block. Variable

declarations have a nested scope. If a variable is already declared outside and a new

declaration of that variable takes place inside an inner block, then the inner declaration

has scope throughout the inner block. At the end of the inner block, the outer declara-

tion becomes effective again. Although scoping rules are important, but, in this thesis

we are not concerned with the scope rules of variable declarations. In this thesis, the

scope of variable declarations are not important, as global variables are used through-

out in the thesis. Here, we are more concerned with handling data-transformations

1.4 FSMD model 15

along-with their conditions of execution, so we go with the assumption that variables

are in general global variables.

In the following we present block structured FSMD in a recursive manner, illustrated

in figure 1.2. The base case is the FSMD of a straight line code, which is a sequence

of operations, see figure 1.2(a). The FSMD of a branching code, e.g., if-then-else,

where control is transferred to block B1 for if part and to block B2 for else part is

shown in figure 1.2(b). The FSMD of a loop, e.g., while (condition) B is shown in

figure 1.2(c), where the control is transferred to block B on the condition c being true.

In this case, when condition is false, the control is transferred out of the loop.

(a) FSMD for straight line code

A

B

entry state

exit state

entry state

FSMD for B1 FSMD for B2

exit state

(b) FSMD for branching code, if-then-else

entry state

FSMD for B

(c) FSMD for while loop code

exit state

c

¬c

−/data-transformation due to sequence of

c ¬c

operations

Figure 1.2: Figure explaining recursive definition of block structured FSMD.

The FSMD of a block structured program represents each block separately, starting

16 Chapter 1 Introduction

with a distinct state and ending in a distinct state. As the FSMD representation is

more elegant, a compact FSMD may be obtained by merging the states having a null

transition (-/-, condition of execution is True and there is no data transformation)

between them or by pushing the not-null transition up or down, as will be evident

from the figures 1.3, 1.4, 1.5 and 1.6, where if represents the statements of if-

block and else represents the statements of else-block. In the thesis, the compacted

version of the FSMD has been assumed, wherever the mention is not explicit, without

loss of generality.

−/d1

−/d2 −/d2 −/d2

−/d1

if

if

if

if

else

else

else

else

else

(a) (b)

Figure 1.3: Figure explaining compaction of block structured FSMD.

−/d1 −/d1

if

if

ifelse

else

else

(a) (b)

if else

−/d1

Figure 1.4: Figure explaining compaction of block structured FSMD.

1.4 FSMD model 17

−/−

−/−

if

if

if

if

else

else

else

else

else

(a) (b)

Figure 1.5: Figure explaining compaction of block structured FSMD.

−/−

if

if

ifelse

else

else

(a) (b)

if else

Figure 1.6: Figure explaining compaction of block structured FSMD.

18 Chapter 1 Introduction

A state transition t is a 4-tuple of the form 〈qi,q f ,Ct ,rt〉, where qi,q f ∈Q, Ct ∈ 2S

and rt ∈U , τ(qi,Ct) = q f and h(qi,Ct) = rt . The third and fourth parameters of t are

often represented as 〈Ct/lt ← et(v)〉. Ct is the condition which is to be satisfied by the

values of the variables at the state qi for the transition to take place, lt is the left hand

side (LHS) variable and et(v) is an arithmetic expression over variables; the value of

the variable lt changes to et(v) when the transition takes place. Depending upon the

context, a state transition t is often abbreviated as 〈qi,q f 〉, when its initial and the

final states are of concern, and also as 〈Ct/lt ← et(v)〉, when its condition and data

transformation are of concern.

A computation ν, say, of an FSMD is a sequence of states starting and ending

with the reset states without having any occurrence of the reset state in between. The

computation ν is associated with two entities, the condition of execution Cν and its

data-transformation rν; the condition Cν is a logical expression over variables in I and

captures the condition that should be satisfied by these variables at the initial state

(reset state) q0 for the computation ν to be executed.

The data transformation rν is an ordered pair 〈sν,θν〉, where sν represents the

symbolic expression values of program variables in V in terms of input variables I

at the end of computation ν; the second member θν is a list of symbolic expressions

representing the output list produced by the computation ν. 1

Definition 2 (Equivalence of computations). The computations ν1 and ν2 are equiva-

lent, denoted as ν1 ' ν2, if and only if

1. Cν1 ≡Cν2 and

2. rν1 = rν2 .
1To determine the equivalence of arithmetic expressions under associative, commutative, distribu-

tive transformations, expression simplification, constant folding, etc., we rely on the normalization

technique presented in [75] which supports Booleans and integers only and assumes that no overflow

or underflow occurs. The method in [87], in contrast, can handle floating point expressions as well

since it treats LCM to be a purely syntactical redundancy elimination transformation.

1.4 FSMD model 19

In our context we have two programs: a student’s program, whose FSMD is de-

noted as Ms, and the instructor supplied golden program, whose FSMD is denoted as

Mg.

Definition 3 (Containment of FSMD). An FSMD Ms = 〈Qs,qs,0, I,Vs,O,τs : Qs×
2Ss→Qs, h : Qs×2Ss→Us〉 is said to be contained in an FSMD Mg = 〈Qg,qg,0, I,Vg,O,τg :

Qg×2Sg → Qg, h : Qg×2Sg →Ug〉, denoted as Ms vMg, if for the computation νs of

Ms due to any input on Ms, there exists a computation νg of Mg for the same input on

Mg, such that νs ' νg.

Definition 4 (Equivalence of FSMDs). The FSMDs Ms and Mg are equivalent, de-

noted as Ms ∼= Mg, if

1. Ms vMg and

2. Mg vMs.

Due to loops there may be infinite number of computations, hence, containment

or equivalence of FSMDs cannot be resolved using the definitions 3 and 4 directly.

By introducing cut-points in the loops, a program can be considered to comprise of

finite paths, where a path extends from the reset state to a cut-point, a cut-point to an-

other cut-point or from a cut-point to the reset state without having any intermediary

cut-points. A path based equivalence checker uses this mechanism to reduce the prob-

lem of deciding equivalence of any two computations to the problem of establishing

equivalence of the paths which constitutes this computation.

Definition 5 (Cut-point). A cut point in an FSMD is either the starting or the terminal

state, or it is any other state having more than one outgoing transitions.

The formal notion of paths is introduced below.

A path χ in an FSMD model is a finite sequence of states of the form 〈q1,q2, . . . ,q f 〉,
where qi ∈ Q,1≤ i≤ f . There are transitions τi from qi to qi+1,1≤ i < f , q1 and q f

are cut-points and q j,1 < j < f , are not cut-points. The initial state q1 is designated

as χs and the final state q f is designated as χ f . For any i,0 ≤ i ≤ f − 1, the sym-

bol χ(i) represents the prefix of χ of length i; thus, specifically, χ(i) is the sequence

〈q1,q2, . . . ,q1+i〉.

20 Chapter 1 Introduction

A path χ is associated with two entities: the condition of execution Cχ and its data-

transformation rχ; the condition Cχ is a logical expression involving variables in the

sets V and I, and captures the condition that should be satisfied by these variables at

the initial state (reset state) q0 for the path χ to be traversed.

The data transformation rχ is an ordered pair 〈sχ,θχ〉, where sχ represents the sym-

bolic expression values of program variables in V in terms of input variables I at the

end of the computation along the path χ; θχ is a list of symbolic expressions repre-

senting the output list produced by the computation along the path χ. θχ is typically

of the form [OUT (Pi1,e1),OUT (Pi2,e2), . . .]. More specifically, for every expression

e output to port P along the path χ, there is a member OUT (P,e) in the list appearing

in the order in which the outputs occur in χ. The condition of execution and the data

transformation of a path are computed using the method of symbolic execution.

Definition 6 (Corresponding states and equivalence of paths of two FSMD models).

1. The reset state of two FSMD models are corresponding states,

2. A reset state of one FSMD cannot be a corresponding state of a non-reset state

of another FSMD,

3. Two paths χs of Ms and ξg of Mg are said to be equivalent if, χs
s and ξs

g are

corresponding states, Cχs ≡Cξg and rχs = rξg ,

4. If two paths χs and ξg are equivalent, then their final states χ
f
s and ξ

f
g are

corresponding states.

In the FSMDs Ms and Mg, the states are represented as qs,i and qg, j respectively. It

is to be noted that two equivalent programs must have the same set of output variables.

When we look at the output value of a variable, the output value of the counterpart

variable in other FSMD must also be the same. Thus, equivalence of θχ depends on

the equivalence of sχ. In the remaining part of this chapter, therefore, computation of

sχ is described; for reason of brevity, the computation θχ is omitted.

Definition 7 (Path cover of an FSMD). A path cover of an FSMD M is a finite set of

paths P = {χ1,χ2,χ3, . . . ,χk}, such that any computation ν of M can be viewed as a

concatenation of some paths ∈ P.

1.4 FSMD model 21

A path cover is thus a finite set of all paths from one cut -point to the next cut-point,

in which there is no cut-point in between [32]. Identification of equivalent paths from

the two FSMDs and the corresponding states of the two FSMDs go hand in hand as

indicated in definition 6.

The above discussion leads to the following theorem [10, 43], for which an induc-

tive proof is given below.

Theorem 1 (FSMD containment). Given two FSMDs Ms and Mg, let there be a finite

path cover Ps = {χ1,χ2, . . . , χl1} of Ms and a finite set of paths Pg = {ξ1,ξ2, . . . ,ξl2}
of Mg such that for all corresponding state pairs, 〈qs,i ∈Ms,qg, j ∈Mg〉, for any path

χm ∈ Ps starting from qs,i, there exists a path ξn ∈ Pg starting from qg, j such that

χm ' ξn, then Ms is said to be contained in Mg (Ms vMg).

Proof: Ps being a path cover from Ms, every computation νs from Ms is along a

concatenated path [χi1χi2 . . .χir] from Ps, originating at the reset state qs,0 and ending

also on the same reset state. We need to prove that there exists a computation νg in Mg

so that νs ' νg. Let νg be the concatenated path [ξ j1ξ j2 . . .ξ jl], where χik ' ξ jk ,1 ≤
k ≤ l, as per the hypothesis in the theorem. In the following we prove that νg is a

computation of Mg and νs ' νg.

Let νs,l(νg,l),1 ≤ k ≤ r, be a subsequence of νs(νg). We prove by induction on l

that for any valuation σ of the varaiables of Ms (and Mg), which results in the compu-

tation νs in Ms, the computation νg would result in Mg and νs,l ' νg,l . Note that Ms and

Mg are both deterministic, hence for each valuation σ, there is a unique computation

in Ms.

Basis:(l = 1): νs,1 = [χi1]; since νs is a computation of Ms, the initial state χs
i1 of

the path χi1 is the reset state of Ms. Since reset state of Ms can have correspondence

with only the reset state of Mg, the path ξs
j1 must be the reset state. By construction

of νg, χi1 ' ξ j1; hence νs,1 ' νg,1. Since Ms and Mg are deterministic, χi1 is the only

path of Ms and ξ j1 is the only path of Mg which bear equivalence under σ. Also, the

final states χ
f
i1 and ξ

f
j1 are corresponding states as per the clause 4 of Definition 6.

Induction Hypothesis: Let νs,l = [χi1, . . . ,χil] ' νg,l = [ξ j1, . . . ,ξ jl] and the final

states χ
f
il and ξ

f
jl are corresponding states. Thus, the respective transformed values

of σ along the subsequences νs,l and νg,l , namely, rs,l(σ) and rg,l(σ) are equal, i.e.,

22 Chapter 1 Introduction

rs,l(σ) = rg,l(σ).

Inductive Step: R.T.P. νs,l+1 = [χi1, . . . ,χil+1]' νg,l+1 = [ξ j1, . . . ,ξ jl+1].

From induction hypothesis, for the valuation σ, the transformed value at χs
il+1

=

rs,l(σ); from the fact that Ms is deterministic, there is only one path χil+1 possible under

rs,l(σ) and Cs,l+1(rs,l(σ)) is true. Since χil+1 ≡ ξ jl+1 , Cg,l+1(rg,l(σ))(≡Cs,l+1(rs,l(σ)))

must be true. Hence, by the fact that Mg is deterministic, ξ jl+1 is the only possible

path in Mg for the valuation rg,l(σ). Also, χ
f
il+1

,ξ
f
jl+1

are corresponding states and

rs,l+1(σ) = rg,l+1(σ). Hence, the inductive proof is complete. Now, specifically, for

l = r, νg,l = νg ' νs,l = νs and νg is the only sequence of paths followed by Mg under

σ; also ν
f
g has correspondence with ν

f
s and the later being the reset state of Ms, the

former is the reset state of Mg. So νg is a computation of Mg. �

We may note that i) there is no unique selection of cut-points and ii) it cannot be

guaranteed that for a given path cover of an FSMD, from a particular way of select-

ing cut-points, there will be a corresponding set of paths that are equivalent in the

other FSMD. The example below shows how an initial selection of cut-points may be

changed by equivalence checking method based on path extension [44, 47, 54], which

uses Theorem 1 for finding the equivalence of FSMDs.

Example 1. The golden FSMD MgGCD is shown in Figure 1.7(a) and Figure 1.7(b)

shows the FSMD MsGCD , from the student’s program. The FSMDs MgGCD and MsGCD

are from programs for computing the greatest common divisor of two integers. The

states {qg,0,qg,1,qg,2,qg,3,qg,4,qg,5} for MgGCD and the states {qs,0,qs,1} for MsGCD are

chosen cut-points initially. The notation qm � qn is used to denote a path starting

at the state qm and going to the state qn. The notation qm
cond−−−−� qn, which denotes

the path from qm to qn corresponding to the condition cond being satisfied, is used

in order to differentiate between the paths which originate from the same state due to

different conditions. It is to be noticed that if a mismatch is found between two paths

being compared, the path that is extended is the one associated with the condition of

execution that is weaker. In the following we give the sequence of execution of the

algorithm given in [47].

1. ξ1 is found as the equivalent path for χ1;

1.4 FSMD model 23

even(z2)/

!even(z2)/

even(z1)/−
!even(z2)/−

even(z2)/

z1⇐ z1/2

z2⇐ z2/2

z1⇐ z1/2,
z2⇐ z2/2

!(z1 = z2)/−

!even(z1)/−
!(z1 > z2)/

z1 > z2/z1⇐ z1− z2

z2⇐ z2− z1

res⇐ res∗2

−/OUT (yout,res)

qg,5

qg,4

qg,2

qg,1

qg,0

−/z1⇐ P1, z2⇐ P2, res⇐ 1

(a)

(b)

z1⇐ z1/2,
z2⇐ z2/2

!(z1 = z2) & !even(z1)& !even(z2)

−/z1⇐ P1, z2⇐ P2, res⇐ 1

!(z1 = z2) & even(z1)

res⇐ res∗2,

qs,2

!(z1 = z2) &

qs,1

z2⇐ z2/2

!(z1 = z2) & !even(z1)& !even(z2)

&z1 > z2/z1⇐ z1− z2

!(z1 = z2) & even(z1)
&!even(z2)/z1⇐ z1/2

−/yout⇐ res

z1 = z2/res⇐ res∗ z1

& even(z2) /

!even(z1) & even(z2) /

qs,0

qs,3

&!(z1 > z2)/z2⇐ z2− z1

−/OUT (yout,res)

z1 = z2/res⇐ res∗ z1

qg,6

qg,3

χ2

χ4

χ5

χ6

χ7

χ3

χ1

ξ2

ξ3

ξ5ξ6

ξ7

ξ10

ξ11

ξ4

ξ8

ξ1

ξ9

Figure 1.7: (a) Mg: Golden FSMD. (b) Ms: Student’s FSMD.

24 Chapter 1 Introduction

2. ξ2 is found as the equivalent path for χ2;

3. fails in order to find the equivalent path for ξ3, therefore, extension is done; the

paths extended are ξ3ξ4 and ξ3ξ5;

4. fails in order to find the equivalent path for ξ3ξ4, therefore, extension is done;

ξ3ξ4ξ6 and ξ3ξ4ξ7 are the extended paths;

5. fails in order to find the equivalent path for ξ3ξ5, therefore, extension is done;

ξ3ξ5ξ8 and ξ3ξ5ξ9 are the extended paths;

6. χ4 and χ3 are found the equivalent paths of ξ3ξ4ξ6 and ξ3ξ4ξ7 respectively;

7. χ6 is found to be the path equivalent to ξ3ξ5ξ8;

8. fails in order to find the path equivalent to ξ3ξ5ξ9, therefore, extension is done;

ξ3ξ5ξ9ξ10 and ξ3ξ5ξ9ξ11 are the paths after extension;

9. χ5 and χ7 are found the equivalent paths of ξ3ξ5ξ9ξ10 and ξ3ξ5ξ9 ξ11 respec-

tively.

It is thus found that the corresponding states in this example is given by the set

{〈qg,0,qs,0〉,〈qg,1,qs,1〉}. It is obtained from Theorem 1 that Mg vMs and vice versa,

i.e., Ms vMg again from Theorem 1. Hence, it is concluded that Mg and Ms are equiv-

alent from Definition 4. The path covers of the golden and the student’s FSMDs, Pg

and Ps are given below. There is a one-to-one correspondence between the members

1.4 FSMD model 25

in the two path covers, in terms of path equivalence.

Pg = { qg,0 � qg,1,

qg,1
z1=z2−−−−−� qg,0,

qg,1
!(z1=z2)−−−−−−−� qg,2

even(z1)−−−−−−� qg,3
even(z2)−−−−−−� qg,1,

qg,1
!(z1=z2)−−−−−−−� qg,2

even(z1)−−−−−−� qg,3
!even(z2)−−−−−−−� qg,1,

qg,1
!(z1=z2)−−−−−−−� qg,2

!even(z1)−−−−−−−� qg,4
even(z2)−−−−−−� qg,1,

qg,1
!(z1=z2)−−−−−−−� qg,2

!even(z1)−−−−−−−� qg,4
!even(z2)−−−−−−−� qg,5

z1>z2−−−−−� qg,1,

qg,1
!(z1=z2)−−−−−−−� qg,2

!even(z1)−−−−−−−� qg,4
!even(z2)−−−−−−−� qg,5

!(z1>z2)−−−−−−−� qg,1 },
Ps = { qs,0 � qs,1,

qs,1
z1=z2−−−−−� qs,0,

qs,1
!(z1=z2)&even(z1)&even(z2)−−−−−−−−−−−−−−−−−−� qs,1,

qs,1
!(z1=z2)&even(z1)&!even(z2)−−−−−−−−−−−−−−−−−−� qs,1,

qs,1
!(z1=z2)&!even(z1)&even(z2)−−−−−−−−−−−−−−−−−−� qs,1,

qs,1
!(z1=z2)&!even(z1)&!even(z2)&z1>z2−−−−−−−−−−−−−−−−−−−−−−−� qs,1,

qs,1
!(z1=z2)&!even(z1)&!even(z2)&!(z1>z2)−−−−−−−−−−−−−−−−−−−−−−−−−� qs,1 }.

�

It is seen in the example above that the approaches using path extension [44, 47,

54] modify the path cover in the initial set. The property characterized in the Theo-

rem 1 is satisfied by the resultant path covers. In the subsequent chapter, a method

is devised whereby a path based approach is used to find out such containment. A

path cover is obtained in this work by treating the start and final states and the branch-

ing states (i.e., states having number of outgoing transitions > 1) of the FSMD to be

cut-points, and by taking the path from one cut point to the next.

The FSMDs Ms and Mg are checked for equivalence using the FSMD equivalence

checker, which obtains the paths of the two FSMDs and starts to check equivalence

of paths originating from the initial states of Ms and Mg, which are assumed to be the

corresponding states. In general, the equivalence checker tries to identify for any path

χs of Ms, an equivalent path ξg of Mg originating from the state that corresponds to χs
s.

26 Chapter 1 Introduction

If it fails, then it extends one of these paths, p say, tries to obtain the equivalent of the

extended path with the original path of the other FSMD. Specifically, let Cξg →Cχs ,

in which case χs will be extended by concatenating a path emanating from χ
f
s . This

concatenated path of Ms is compared for equivalence with ξg. This extension may

go on for several steps. However, an extension never moves through a loop. After

several extensions, the equivalence checker may find an equivalent path, or meet some

loop cut-points, or the final state of the FSMD through which extension is no longer

possible. In case of extensions, after all the paths starting from the corresponding state

of ξs
g are found to fail to have equivalence with ξg, the equivalence checker terminates,

indicating that the path ξg does not have an equivalent path in χs. (In case Cχs →Cξg ,

then path ξg is extended).

The failure of equivalence checker indicates the student’s program is at fault and

thus there is further need to analyze exactly what is the fault. A statement contain-

ment checking mechanism has been devised in order to ascertain the type of fault

the student’s program has. Using statement containment checking the fault in the

student’s program can be categorized into one of the broad types of errors, which

are then dealt with by the corresponding error handling routine. The modification of

equivalence checking mechanism by adding statement containment checking and de-

velopment of error handling mechanisms is one of the primary objectives of the thesis.

The statement containment analysis and other objectives of this thesis are described

in the following section.

1.5 Normalization

The equivalence checking of two paths χ of FSMD Ms and ξ of FSMD Mg involves

matching syntactically the Cχ with Cξ and the rχ with rξ.

In doing so, a problem arises because the student may write the same expression

in a different way. For example, the expression (x + y) * w + v in the golden pro-

gram, may be written as x * w + y * w +v in the student’s program. The problem

here is, how to compare the two equivalent expressions as above, unless they are syn-

tactically identical. This brings us to the question of canonical form of the expressions.

By having canonical form in an arithmetic, we can say that all equivalent expressions

1.5 Normalization 27

will have the identical canonical form, for example in switching algebra the sum of

products or the product of sums are examples of canonical forms. Canonical form

exists in switching algebra, as the same is decidable. However, in the integer arith-

metic such is not the case, as there is no canonical form possible. The best we can

do is to evolve a normal form in integer arithmetic, as no canonical form exists for

integer expressions. Canonical form is a special form of normal form, it renders any

computationally equivalent formulae to a single form. Normalization is way to put the

expressions in a fixed syntactic structure, called the normal form, whereby the chances

of two equivalent formulae becoming syntactically identical increases, but still there

is a possibility of some equivalent formulae not being syntactically identical. This

follows from the fact that 〈N,+,×〉 is incomplete, as per Gödel’s Incompleteness

theorem [84], and the set Z of integers is isomorphic to N, the set of non negative

numbers. This means we cannot have an axiomatic system, in which there will be

proof of all true statements. The undecidability of integer arithmetic is a consequence

of incompleteness, but not vice-versa. This undecidability implies that there is no

canonical expression possible for integer arithmetic expressions. We thus have to be

satisfied with only some normal forms, which only increase the the possibility of two

equivalent expressions becoming syntactically identical. The idea for normalization

was originally given in detail in the paper by Sarkar and De Sarkar [75] and has been

used in [10, 43]. It may, however, be noted that all equivalent expressions do not be-

come syntactically identical, when they are normalized, due to the reasons explained

above.

The grammar for normalization, which includes uninterpreted function constants/pri-

maries, is given as follows:

1. S→ S+T
∣∣cs, where cs is an integer.

2. T → T ∗P
∣∣ct , where ct is an integer.

3. P→ abs(S)
∣∣(S)mod(Cd)

∣∣ f (listS)
∣∣S÷Cd

∣∣v∣∣cm, where v is a variable, and cm is

an integer.

4. Cd → S÷Cd
∣∣(S)mod(Cd)

∣∣S,

5. listS→ listS,S
∣∣S.

28 Chapter 1 Introduction

0+1∗x+1∗y∗z−1∗[(1∗c+0)÷(1∗d+0)]

+

0+1∗x
x

0+1∗y∗z−1∗[(0+1∗c)÷(0+1∗d)]
−

0+(0+1∗y)∗(0+1∗z)=0+1∗y∗z
∗

0+1∗y
y

0+1∗z
z

0+1∗[(0+1∗c)÷(0+1∗d)]
÷

0+1∗c
c

0+1∗d
d

Figure 1.8: Expression tree for method of obtaining normalization for x+y∗ z− (c÷
d).

In the above grammar, the nonterminals S, T , P stand for (normalized) sums, terms

and primaries, respectively, and Cd is a divisor primary. The terminals are the variables

belonging to the set of input and storage variables, the interpreted function constants

abs, mod and ÷ and the user defined uninterpreted function constants f . An example

of user defined uninterpreted function constant is f (v1,v2,4), which will be normal-

ized as f (0+1∗v1,0+1∗v2,4). In addition to the syntactic structure, all expressions

are ordered as follows: any normalized sum is arranged by lexicographic ordering

of its constituent subexpressions from the bottom-most level, i.e., from the level of

simple primaries assuming an ordering over the set of variables; among the function

terminals, abs ≺ ÷ ≺ mod ≺ uninterpreted function constants, where the symbol ≺
stands for the ordering relation “precedes”. As such, all function primaries, including

those involving the uninterpreted ones, are ordered in a term in an ascending order of

their arities.

The equivalence checking of two paths χ of FSMD Ms and ξ of FSMD Mg thus

involves matching syntactically the normalized form of Cχ with that of Cξ and the

normalized form of rχ with that of rξ.

As an example of normal forms, the method of obtaining normal form for the

expression x+y∗z−(c÷d) is shown in Figure 1.8 with the help of an expression tree

for the normalized form.

1.6 Contributions of the thesis 29

The leaves of the tree in Figure 1.8 show the normal forms of the single variable

expressions x,y,z,c and d, which are 0+ 1 ∗ x,0+ 1 ∗ y,0+ 1 ∗ z,0+ 1 ∗ c and 0+

1 ∗ d, respectively. The intermediate nodes show the resultant normal form after the

operation at the node has been performed. For instance, the normal form of y ∗ z is

0+(0+1∗y)∗(0+1∗z), which evaluates to the form 0+1∗y∗z. The root of the tree

shows the normal form of the overall expression x+ y∗ z− (c÷d), which happens to

be 0+1∗ x+1∗ y∗ z−1∗ [(0+1∗ c)(0+1∗d)].

Normalization is a well defined procedure. Normalization is a sound but not com-

plete mechanism for checking equivalence of arithmetic expressions. The normaliza-

tion scheme used here is adapted from [43].

1.6 Contributions of the thesis

The thesis attempts to achieve its objectives by addressing specific research issues.

The following sub-sections describe the research objectives, the motivation and the

work done to address the research objectives. The results, and discussion on the results

have been provided in the respective chapters.

1.6.1 A scheme for statement containment analysis of students’

programs through equivalence checking

In this part of the work the research objectives were identified as i) developing a

scheme for containment analysis of students’ programs through equivalence checking,

ii) classifying the errors in programs into broad categories and iii) devising strategies

for error diagnosis for each class of errors in the programs. Work done for this part is

described below.

1. The existing path extension based FSMD equivalence checking approach, which

compares two given FSMDs having same variable naming and does a depth first

analysis for equivalence of paths from one cut point to the next in the two FS-

MDs, was modified to incorporate a statement containment checking approach.

30 Chapter 1 Introduction

In statement containment checking, it is examined whether the assignment state-

ments in a path are contained in the other FSMD or not. We define the statement

containment formally in the following discussion. For brevity we shall refer

statement containment checking as containment checking henceforth through-

out in this thesis.

2. Using the above approach of containment checking of the FSMDs based on

comparison between cut-point to cut-point path pairs in them, the containment

could be divided into following broad categories discussed at length in section

2.2.2 , viz., i) unordered path-wise both way contained, ii) path-wise one way

contained, and iii) path-wise un-contained. A combination of the categories

of unordered path-wise both way contained and path-wise one way contained,

known as unordered path-wise both way contained and path-wise one way con-

tained for faulty branching, is also worth noting as this case is reported in the

error of parenthesis skipping, mentioned below. This case is therefore treated as

a seaparate category of containment in addition to the three above. These cate-

gories of containment can be mapped to various types of errors in the programs

with respect to the golden model, which may creep in while programming in

detail in section 2.3 viz., i) dependency violation, ii) parenthesis skipping of

various types and iii) error of missing code segment. The details of these errors

and their associated type of containment have been shown in table 2.1.

3. Algorithms have been developed for reporting the type of error in the student’s

program and suggesting the correct portion of the code from golden program,

corresponding to the erroneous code of student’s program.

Containment checking and analysis is a novel idea and a major contribution in this

thesis. It has not been attempted before to the best of our knowledge.

1.6.2 Methods to reconcile dissimilarities between FSMDs

In this part of the work preprocessing requirements of programs have been aimed

at. The research objectives for this part of the work were identified as i) developing

methods to support automated evaluation, in cases where programs have conditional

1.6 Contributions of the thesis 31

constructs, which should obey precedences and ii) to develop a scheme for variable

mapping in programs. Work done for this part is described below.

The first aspect mentioned above is due to the fact that logic in programs demands

that in a nesting of if statements there are conditions that have to be evaluated in a

certain order, but the students may violate that order. The student’s program, therefore,

has to be subjected to a preprocessing step, before equivalence checking is done. The

objective of preprocessing is that the nested conditions should conform to some rule

of precedence and that a mapping of the names of variables has to be evolved.

In the following part we first describe the variable mapping problem. Since the

students will be using variable names different from those in the golden program, we

will have to evolve a mapping or an association of the variables used in the student’s

program, with the ones used in the golden model. An algorithm has been developed

for variable mapping between two programs. This is done as the FSMD based equiva-

lence checking assumes the variable names to be the same in the two programs under

examination, without which the equivalence checking is not possible. The variable

mapping algorithm is an FSMD driven algorithm in the sense that it prepares the

FSMD models of both the programs, compares their paths for similarity of conditions

and data-transformation in a depth first manner and tries to establish a mapping be-

tween the variables, which assume equivalent symbolic values after traversing a path

from a cut point to the next.

1.6.3 Supporting techniques for checking and evaluation of stu-

dents’ programs

The research objectives in this part of the work were to develop supporting techniques

for checking and evaluation of students’ programs such as i) checking equivalence

of approximately equivalent expressions and ii) develop a marking scheme for the

programming exercises.

To address the above research questions, in this work additional supporting tech-

niques for handling the student programs have been focused. A description of this

work is given below.

32 Chapter 1 Introduction

Checking equivalence of approximately equivalent expressions

Comparison of approximately equivalent functions [78, 79] may be required as an aid

to equivalence checking discussed earlier. This may be because equivalence checking

is not able to determine such equivalences, where two expressions which are approxi-

mately equivalent are to be examined for equivalence. An example of two equivalent

expressions could be sin2θ and 2sinθcosθ. The equivalence checker cannot find out

that these two expressions are equivalent. In this work, therefore, we have used a ran-

domised simulation based approach in which a function is examined at random points

in the domain of the other function. The closeness in their values at most of the points

may indicate their approximate equivalence. A randomised decision procedure has

been presented to establish the equivalence and the results obtained have established

the suitability of the method.

Marking scheme for the programming exercises

A marking scheme for the programming exercises has been developed and tested to

perform satisfactorily. Based on FSMD equivalence checking, using propagation vec-

tors, we have also suggested an improved method [77]. This method also suggests the

as soon as possible (ASAP) and as late as possible (ALAP) marking strategies; they

are based on the observation that a student program should not be penalized for some

apparent error as it may have been taken care of at a later stage in the program.

ASAP stands for as soon as possible and ALAP stands for as late as possible.

The ASAP and ALAP strategies are based on the observation that a student may have

apparently missed out some code in the initial part of his program, which he may

have included at a later stage in the program. Hence, a student program should not be

penalized for some apparent error in the beginning, which might have been taken care

of in the later part of the program. The ALAP and ASAP passes of evaluation scheme

are explained in the section “ 4.2.4 A value propagation based automated program

evaluation scheme.”

An algebraic formula has been suggested to compute marks for the student’s pro-

gram, using some constants, which need to be empirically established. While eval-

uating the student program (FSMD), we keep track of the number of mismatched

1.6 Contributions of the thesis 33

variables, Nv say, and the number of mismatched paths, Np say. The marks M given

to a student out of the full marks F is calculated based on the formula. In addition,

the marks obtained can be increased or decreased by another factor which we term as

leniency, since from our experience we have found that teachers tend to award marks

more generously during semester examinations than class tests.

In the block diagram of figure 1.9, the sequence of invoking various modules has

been shown. The student’s program is checked for violation of order of precedences

of conditional construct such as if- else if. The program not meeting the precedence

is then informed to the student, who can submit his program later, after correcting the

precedences. The student’s program having the correct precedences and the golden

program are then subjected for C to FSMD conversion, thereby generating the respec-

tive FSMDs. The two FSMDs thus obtained cannot be subjected to equivalence check-

ing just at this stage, because the student’s program may use a different set of variable

names than the golden program. The variables in the FSMD of student’s program

have therefore to be renamed first and then we can have the equivalence checked. The

current implementation supports the variable renaming as a separate module, how-

ever, it can be modified to do variable renaming and equivalence checking hand in

hand, as it proceeds with the equivalence checking, starting from the start states of

both the FSMDs. In the current implementation, however, equivalence checking is to

be followed by variable renaming. In equivalence checking, if it is found that the two

FSMDs are equivalent, then the student’s program is correct, however if such is not

the case then the containment analysis is done to find out how much of the correct

code has been written by the student. As a result of first time containment checking,

the student’s FSMDs is declared to have one of the four types of containment as com-

pared with the golden program, thus indicating some error, which is informed to the

student for correction. After first correction, the student may submit again for subse-

quent equivalence checking, and to find out the next error. This loop may be continued

till the student’s program is free from all errors. The loop may be mechanized in the

future work. The current implementation assumes the student to be in the loop, do-

ing the correction and resubmitting, if needed and hence such a loop is not shown in

the block diagram. The evaluation then can be done on the basis on the number of

times the errors were have to be corrected. Presently we rely on a variable mapping

and path equivalence based evaluation of the programs, which has been found to give

satisfactory results, as discussed in chapter 4.

34 Chapter 1 Introduction

Inform the student
to correct and

resubmit

Check precedence of
conditions

in student’s program

C Programs (student and golden)

student’s program
in

Variable renaming

C to FSMD conversion

of both the programs

with golden program
of student’s program

Equivalence checking NO

student’s program
error analysis of program

Marking the student’sContainment analysis
and

Figure 1.9: Block diagram for automated assessment

1.7 Thesis organization

The organization of the thesis, based on our research work, is as follows.

Chapter 1 Introduction

This chapter discusses state of the art, the need, motivation and objectives of

our research work.

Chapter 2 Containment analysis of students’ programs through equivalence checking

This chapter provides discussion on a modified equivalence checking algorithm,

by introducing the notion of containment checking. Using the containment

checking algorithm the path-containment of FSMD of a student’s program can

be categorized into one of the three broad categories. These categories of con-

tainment, mentioned in the previous section 1.6, can be mapped to various types

of errors in the programs with respect to the golden model, which may creep in

1.8 Assumptions in the thesis 35

while programming. The details of these errors and the methods for detecting

and reporting them are described in this chapter.

Chapter 3 Methods to reconcile dissimilarities between FSMDs arising from students’ pro-

grams

This chapter includes at first the discussion on constructs like if-else-if, which

require the conditions to follow a precedence order. If there is a violation of

precedence in occurrence of conditions, then the program can be immediately

declared to be erroneous. This chapter further has a discussion on variable map-

ping problem. This problem is important as the equivalence checking method

requires that the names of the variables used must be the same, in the programs

whose equivalence is to be established. The programs written by students, how-

ever, cannot be expected to have the same naming of variables as in the instruc-

tor’s program. The issue of mapping the variables in two programs is addressed

in detail in this chapter.

Chapter 4 Supporting techniques for checking and evaluation of students’ programs

The first topic covered in this chapter is the automated checking of equivalence

of expressions, as a student may write in his program an expression, which is

approximately equivalent to the one in the instructor-supplied program. The

expression checking method is a randomised simulation based method, capable

of establishing whether two given expressions are approximately equivalent in

the given range of interest, with a high probability or confidence. The next topic

in this chapter is an automated evaluation scheme for student programs.

Chapter 5 Conclusion and scope for future work

This chapter concludes the thesis and indicates the scope of future work in the

area of automated assessment.

1.8 Assumptions in the thesis

The assumptions in the thesis are as follows:

1. The programs have no structures, pointers, arrays, function calls, classes. Though,

in principle, the fields of a structure can be enumerated as distinct variables.

36 Chapter 1 Introduction

2. The programs may have loop constructs and branching constructs like for,

do-while, if-else etc. Switch-case construct is not considered.

3. The student and golden programs must have same variable names when sub-

jected to equivalence checking. (This is assumed in entire Chapter 2).

4. More than one golden programs are available with different approaches.

5. The programming language used is C, but no particular language is assumed.

However, a block structured language 1 is assumed, so that the FSMD obtained

is structured.

6. Use of block structured language 1 lets us assume goto less programming.

7. All variables are global.

8. The programs are syntactically correct.

9. Programs errors include the errors like dependency violation, skipping parenthe-

sis, missing code, precedence in constructs like if-else if and approximate

equivalence of mathematical expressions.

10. Advanced data structures are not considered.

11. Only programs which can be subjected to basic equivalence checking method

are considered.

1.9 Conclusion

In this chapter we have introduced the work done in the thesis. Our literature sur-

vey has motivated our work towards automatic evaluation of students’ programs us-

ing FSMD equivalence checking, as FSMDs can conveniently be used as program

representation model. The programs of the students are compared with the golden

models provided by the instructor by obtaining their respective FSMDs, first by the

equivalence checking method. For this reason, we introduced the FSMD equivalence

checking and the related terminology and presented an example of the working of

path-extension based equivalence checking. A brief overview of the various topics

1.9 Conclusion 37

undertaken in the thesis was subsequently presented. The organization of this thesis

was given at the end of the chapter.

Path-extension based equivalence checking is a powerful method to determine

equivalence of two FSMDs. Once the equivalence checker fails to find the equiva-

lence between the student’s faulty program and the golden program, the reason for

non-equivalence is to be detected automatically. A subsequent run of containment

checker is carried out to find the containment of paths of the student’s FSMD in the

FSMD of golden model; error type can be diagnosed based on the report of contain-

ment checking. The next chapter is all about the containment checking mechanism.

Chapter 2

Containment analysis of students’
programs through equivalence
checking

2.1 Introduction

In the previous chapter, an introduction to equivalence checking was provided, which

forms the basis of our work in this chapter and the most of the thesis. This chapter

aims at extending this method for checking the correctness of a student program and

also tries to implement an automated correction system for some cases of faulty pro-

grams. Actually, the method of equivalence checking of two given FSMDs involves

some code transformation in the form of normalization of the computations as given

in paper by Sarkar and De Sarkar [75], in order to achieve some consistency in their

representation. The FSMDs with the normalized computations are then compared for

establishing the equivalence. Cut-points are introduced in the FSMDs for equivalence

checking. For every path between a cut-point to the next cut-point in one FSMD,

the equivalence checker looks for an equivalent path in the other FSMD. This pro-

cess is then repeated with the FSMDs interchanged, in case one way equivalence is

established. Once this method reports that both FSMD are different, then our method

further checks the containment of the reported non-equivalent path of one FSMD in

the other, as there may still be an equivalence because the equivalence checking mech-

39

40 Chapter 2 Containment analysis

anism in itself is sound but not complete. A path p1 in an FSMD M1 is said to contain

some path p2 in another FSMD M2, if all the statements on the path p2 are also present

in p1. A formal definition of containment is given in the next section. This contain-

ment checking is done in order to look for errors in the FSMD of a student program

and do the correction appropriately. This method is discussed in further detail in this

chapter.

The remaining of this chapter is organized as follows. In section 2.2, we explain

containment checking mechanism with the help of an example and interpretation of

its output. In section 2.3 through 2.3.4, we describe the strategies for various types

of errors. Finally we conclude the chapter with results.

2.2 Containment checking

In this section we will see the working of containment checking mechanism. The

containment checking mechanism is invoked after equivalence checker fails to find

equivalence between two FSMDs. Equivalence checker reports before exiting, the

last correct state (LCS), which is the state beyond which the equivalence checker

fails to find equivalence because of various errors in the code such as dependency

violation, missing code, skipping parenthesis, discussed in detail in section 2.3. The

containment types are broadly of the categories as follows (discussed at length in

section 2.2.2): i) unordered path-wise both way contained, ii) path-wise one way

contained, iii) path-wise un-contained

Containment checking is required separately, because equivalence checker cannot

diagnose why an equivalent path can not be found in the other FSMD, for which it

has failed. When the equivalence checker fails, it reports , the complete path from the

LCS to the last state (cut-point) it encountered after (exploring all the possible exten-

sions of the paths in a depth first search manner), the maximum possible extension of

the last path it did in the search. With the help of containment checking mechanism,

we are able to analyze the reason by finding the containment of the initial portion of

the failing path, for which equivalence is not found in the other FSMD. The initial

portion of the failing path is the path between the LCS and the next cut-point state.

An error lies on the initial portion of a failing path, i.e., between the LCS and the

2.2 Containment checking 41

next cut-point. Containment checking is started at the LCS and it checks the contain-

ment of the initial portion of the failing path i.e., the path between the last correct

state and the next cut-point state, inside the path on the correct FSMD which starts

from the corresponding state on the correct FSMD of the LCS and the next state on

the correct FSMD. If containment is not found then the path selected on the correct

FSMD is further extended up to the next cut-point state. Again containment checking

is done for the initial portion of the failing path inside the extended path on the correct

FSMD. Again on failure, the path on the corrected FSMD is extended to the next state,

containment is checked and the process is repeated till the path on the correct FSMD

can be extended in a depth first manner, if required backtracking and further exten-

sion is done on the other branch till the containment is ascertained to exist or not. In

case there are more than one branches emanating from the LCS, then containment is

checked for the initial paths (from the LCS to the next state) on all the branches in a

depth first manner as described above, i.e., first checking the containment inside the

correct FSMD on the path from the state on the correct FSMD corresponding to the

LCS to the next state, extending this path to further next state on the correct FSMD in

case the containment was not found and so on. If one of the branches from the LCS

on the incorrect FSMD were found equal and the remaining were only contained, then

such a case is termed as unordered path-wise both way contained and path-wise one

way contained for faulty branching in this chapter. Unordered path-wise both way

contained means all the data transformations and conditions are equal on both the FS-

MDs, their order of occurrence may be different. Path-wise one way contained means

that all the data transformation and conditions in the incorrect FSMD are also present

in the correct FSMD, (which has some more of them) their order of occurrence may

be different. Path-wise un-contained means none of the the data transformations and

conditions beyond LCS to the next cut-point are equal on both the FSMDs. Detailed

examples of above cases are given further in this section.

The algorithm used for containment checking has been given later in this section. Be-

fore that the following definitions are in order.

Definition 8 (Last correct state (LCS) and its corresponding state). Last correct state

(LCS) is defined as the cut-point state in Ms, from which there is a path, for which the

equivalence checker could not find an equivalent path (in Mg).

The cut-point state in the correct FSMD Mg, which corresponds to the LCS, is

42 Chapter 2 Containment analysis

called the corresponding state of the last correct state (CSLCS).

For containment checking we may have to extend paths. We now motivate the

definition of an extended path. Suppose we are trying to find the containment of all

the statements of a program, say Ms, which are along the path ξs, within the path χg.

In other words, we want to find whether all the program statements along the path ξs

are also present on the path χg or not. Suppose the containment was not found. We

then extend χ to χe, such that χe = χ•χ′ where χ′ is a next concatenated path such

that, χ′s = χ f and (χ′) f is a cut-point. Extending this way several times, we may find

that χe contains ξs.

Definition 9 (Containment of a path from a given cut point). A path ps of an FSMD

Ms from its LCS= ps
s, is said to be contained in a path or an extended path pg of the

FSMD Mg with ps
g=CSLCS, if for every transition ts,i : 〈Ci/li ← ei(v)〉 in ps, there

exists a transition tg, j : 〈C j/l j ← e j(v)〉 in pg, such that (li = l j)∧ (ei(v)∼= e j(v)).

Equivalently, pg is said to contain ps.

It may be noted that containment is of a syntactic nature only, but not with respect

to the symbolic data transformation, on account of which the equivalence checker

reports failure, in the first place.

Illustrative examples for various types of containment

In the following example the case of unordered path-wise both way contained and

path-wise one way contained for faulty branching occurs. This case is applicable

when the closing parenthesis is wrongly put beyond its proper place in the code by the

student. For example, if the closing parenthesis of the first if-else block has been put at

the end of the second if-else block in a program where two consecutive if-else blocks

are present. An error like this in the code causes one of the transitions emanating from

the starting state of first if-else block, to skip meeting the final state of this block and

instead be incident on the final state of the next if-else block. We refer to this type of

error as that of skipping parenthesis. This example discusses such a case.

Example 2.1. Let us consider the two FSMDs given in the figures 2.1 and 2.2. Their

equivalence checking starts with the respective starting states, qa and q00, assumed

2.2 Containment checking 43

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

qb

qa

qc

qd

qe

q f

(s < n)/−

(b%2 == 1)/s = s+a

(s >= n)/s = s−n

!(i <= 15)/sout = s

qg

LCS

(b%2! = 1)/−

ξ4

ξ0

ξ6
ξ1

ξ5 ξ′5ξ′3ξ3

ξ2 ξ′2

Figure 2.1: FSMD of student’s program

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

(b%2 == 1)/s = s+a

(s >= n)/s = s−n

!(i <= 15)/sout = s

q00

CSLCS

q06 q01

q02

q03

q04

q05

(b%2! = 1)/−

(s < n)/−
χ3

χ4

χ2 χ′2

χ′3

χ6

χ5 χ′5

χ0

χ1

Figure 2.2: FSMD of golden program

to be corresponding states. Starting from this pair of corresponding states, the paths

to the next cut-point in both the FSMDs are checked and found to be equivalent,

i.e., qa → qb
∼= q00 → q01. Now qb and q01 become corresponding states. The path

qb→ qg (corresponding transition ξ6) is checked next and found to have an equivalent

path q01 → q06 (χ6). The other path from qb viz., qb → qc (ξ1) is found to have

an equivalent path q01 → q02 (χ1) making qc and q02 corresponding states. Let the

next path chosen from qc be qc→ qd (ξ2) which is found to have the equivalent path

q02→ q03 (χ2) in the FSMD of figure 2.2. The next path from qc is qc→ q f (ξ′2ξ4).

No equivalent paths from the corresponding cut-point state q02 is found for (ξ′2ξ4).

The path qc→ q f (ξ′2ξ4) is further extended to the next cut-point qb. As q f has two

transitions emanating from it, the extension is done through both. In both cases, i.e.,

ξ′2ξ4ξ5 and ξ′2ξ4ξ′5, the equivalence checker fails to find equivalent paths in the FSMD

of figure 2.2. The two paths qc → qb (ξ′2ξ4ξ5 and ξ′2ξ4ξ′5) are now extended in turn

to the next cut-point qc as ξ′2ξ4ξ5ξ1 and ξ′2ξ4ξ′5ξ1; in both the cases, no equivalent

path is found in the FSMD of figure 2.2. The extended paths have their start state and

final state same viz., state qc, indicating a loop. Hence they are not extended through

qc → qd or qc → qe → q f . The two paths qc → qb i.e., ξ′2ξ4ξ5 and ξ′2ξ4ξ′5, are then

extended in turn to the next cut-point qg as ξ′2ξ4ξ5ξ6 and ξ′2ξ4ξ′5ξ6. In this case also, no

equivalent path is found in the FSMD of figure 2.2. As no more extension of the path

is possible and as all the possible paths emanating from qc have been checked with

extension applied in case of failures, the equivalence checker terminates reporting the

extended path qc → qg, for which equivalence could not be detected. As qc is the

starting state of the failed path qc→ qg, the state qc is fed to the containment checker,

44 Chapter 2 Containment analysis

which then takes over to discover the containment type.

Now we explore the containment checking scenario in the two figures starting

from the state qc and the state having correspondence with the state qc. In containment

checker parlance the state qc is referred to as LCS and the corresponding state q02 is

referred to as CSLCS. Again assume that the containment checker starts with checking

the containment of the path qc→ qd (ξ2) in the FSMD of figure 2.2 and finds that this

path is statement-wise equivalent to the path q02→ q03 (χ2) in the FSMD of figure 2.2.

Then the containment checker picks up the other path qc→ q f (ξ′2ξ4), from qc to the

next cut-point q f . It first compares this path with the two paths emanating from q02

to the next cut-point q03 (χ2 and χ′2), one by one and finds that none of them contains

it. Hence, the containment checker extends the paths further to the next cut-point q05

and this time it finds that the path q02
χ′2χ′3χ4−−−−→ q05 actually contains the path qc

ξ′2ξ4−−→ q f

with the transition equalities ξ′2 = χ′2 and ξ4 = χ4.

As the containment checker found that one of the paths emanating from it has

an equal path (ξ2 ≡ χ2) in the FSMD of figure 2.2 and the other emanating path is

contained (χ′2χ′3χ4 contains the path ξ′2ξ4) in the FSMD of figure 2.2, we call this

type of containment as “unordered path-wise both way contained and path-wise one

way contained for faulty branching”, which occurs in case of parenthesis skipping.

This example may also be used to understand the case “unordered path-wise both

way contained” and the case “path-wise one way contained”, which occur in case of

error of dependency violation and the error of missing code respectively. We briefly

introduce the notion of dependency violation here, although it is discussed at length

with an example in the section 2.3.1. A student program is said to have dependency

violation error, if two statements in which a statement that has dependency on the

other, is written before the statement on which it depends. In case of dependency

violation, the containment is “unordered path-wise both way contained”. The error

handling, in case of dependency violation is done by reordering the statements in

the code according to their order in the golden model. This case has been described

later in this thesis. The containment obviously is “path-wise one way contained”

in this case of missing code. The case of missing code is handled by introducing

missing states and transitions one at a time, again finding the mismatch by equivalence

checking and containment checking, and correcting further by introducing other states

and transitions and so on till the golden and the student FSMDs become similar. We

saw in this example that in the case of just the error of parenthesis skipping, there

2.2 Containment checking 45

need be no dependency violation or an instance of missing code, yet the containment

is “unordered path-wise both way contained and path-wise one way contained ”. The

containment for parenthesis skipping is therefore written as “unordered path-wise both

way contained and path-wise one way contained for faulty branching”. We conclude

the discussion by observing that the modified FSMD structure (i.e., the FSMD of

student’s program) in the two errors of dependency violation and a case of missing

code is similar in part to the case presented in this example.

Another example having the outline of containment checking is given below. This

example is an example of the case where containment is “path-wise one way con-

tained”.

Example 2.2. We consider two FSMDs as in the figures 2.3 and 2.4,

q00

q01

q02

q04

q03

−/sum = n

sum = sum+ t

sum = 0

sum > 9/n = sum

n > 9/−

!n > 9/sum = sum+ n

!sum > 9/−

−/t = n%10

n = n/10

Figure 2.3: Mg, path-wise one way con-

tained example

qa

qb

qc

qd

−/sum = n

−/t = n%10
sum = sum+ t
n = n/10

!n > 9/sum = sum+ n

n > 9/−

Figure 2.4: Ms, path-wise one way

contained example

Clearly, the FSMDs are not equivalent. The equivalence checker reports them

to be not equivalent. The LCS and CSLCS are reported to be the states qa and q00

respectively as the equivalence checker finds no equivalence when it starts to examine

equivalence from these start states and tries to find the equivalent paths from these

start states to the next cut-points in the respective FSMDs.

Now we explore the containment checking scenario in the two figures. The path

p1 : qa → qb → qc of the incorrect FSMD Ms of figure 2.4 has its starting state ps
1

= qa. p1 is a path starting from the cut-point qa to the next cut-point qc. The path

46 Chapter 2 Containment analysis

p0 : q00→ q01→ q02→ q03 on the correct FSMD Mg of figure 2.3, which is actually

an extended path on Mg, as it has been extended beyond the cut-point q01. p0 has its

starting state ps
0 = q00. There are only two transitions in p1, t1,0 : qa→ qb and t1,1 :

qb→ qc. Transition t1,0 of p1 matches the transition t0,0: q00→ q01 of p0; similarly

the transition t1,1 of p1 matches the transition t0,2: q02→ q03 of p0. Hence, p1 of Ms

is contained in the extended path p0 of Mg. As there are only two transitions in p1 and

three transitions in p0, p0 has one extra transition. We have referred to this type of

containment as “path-wise one way contained”. This containment indicates that there

is some extra code in the correct FSMD of figure 2.3, which is missing in the incorrect

FSMD of figure 2.4 and the error may be because of this. The extra code between the

states q01 and q02 is informed to the student as the missing code in his program. Later

in sections 2.3.3 to 2.3.8, we discuss the details of the schemes to insert the missing

code of various types in student’s program and correcting the student FSMD in steps

to make it equivalent to the golden FSMD.

The following example explains the path-wise un-contained case. Here there are

two possibilities

i) If the result of containment checking is path-wise un-contained, while check-

ing the containment of incorrect FSMD within the correct FSMD, then it means that

incorrect code has got some extra code which is not present in the correct code.

ii) If the result of containment checking is path-wise un-contained, while check-

ing the containment of correct FSMD within the incorrect FSMD, then it means that

incorrect code has some code missing.

Example 2.3. This example depicts the case “path-wise un-contained“ with the help

of figures 2.5 and 2.6. The FSMDs in this case are shown such that the incorrect

FSMD has some code extra.

The equivalence checker fails in this case and the start state of the failed path is q03

in the incorrect FSMD (Ms) and the corresponding state in the correct FSMD (Mg) is

qc. Containment checker starts comparing the path q03
b%2 == 1/s = s+a−−−−−−−−−−−→ q04 with the

path qc
s >−n/s = s−n−−−−−−−−−→ qd in the other FSMD. The path qc→ qd is then extended and

containment is not found. All the possible extensions of the path result in failure. Now

containment checker starts comparing path q03
b%2! = 1/−−−−−−−−→ q04 with the path qc

s < n/−−−−−→
qd in the other FSMD. The path qc → qd is then extended and containment is not

2.2 Containment checking 47

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

Figure 2.5: Ms, path-wise un-contained ex-

ample

!i <= 15/−
−/s = 0

a >= n/a = a− n, sout = s

qbqg

qa

a < n/sout = s

qf

s >= n/s = s− n s < n/−

qc

qd

qe

i <= 15/i = i+ 1

−/b = b/2

−/a = a ∗ 2

Figure 2.6: Mg, path-wise un-contained ex-

ample

found. All the possible extensions of the path result in failure. Once again containment

checker fails. The containment checker in this case reports “path-wise un-contained”

and so extra code is detected between the states q03 and q04, which has to be removed.

The paths q03→ q04 are now removed, merging the states q03 and q04, thus, making

the two FSMDs equivalent. The student is informed that the code between the states

q03 and q04 is extra in his program.

Definition 10 (Un-containment of a path from a given cut-point). A path ps, starting

from LCS, inside the FSMD Ms, is said to be un-contained in the golden FSMD Mg, if

all of the transitions of ps are not found on any path starting from the CSLCS on the

golden FSMD Mg.

2.2.1 Outline of containment checking algorithm

For every path in the incorrect FSMD Ms between the last correct state and the next

cut-point, but excluding the path which have been successfully handled by the equiva-

lence checker, the algorithm tries to find if that path is syntactically contained in any of

the paths of the golden FSMD Mg starting from CSLCS, the state that corresponds to

the last correct state. In order to find out this containment, at first, any one transition

starting from the corresponding state of the last correct state is chosen in the correct

FSMD and attempt is made to find the containment. If the containment as desired

48 Chapter 2 Containment analysis

above is not found, then the algorithm tries to find the containment by consecutively

extending the path which starts with the transition that was chosen in the previous step

until the containment is discovered in a depth first search manner. This may require

backtracking (as is done in a depth first search) from terminal state to a previous state

and selecting the other transition, if any, from the backtracked state. This method

ensures that all the paths to all the reachable states are covered. The containment is

established by the fact that the condition and data-transformation in the contained path

is a subset of the condition and data-transformation in the containing path. Finding

containment for the path qc → qd of Ms is shown in Figures 2.7 and 2.8. Finding

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

qb

qa

qc

qd

qe

q f

(b%2! = 1)/−

(s < n)/−

(b%2 == 1)/s = s+a

(s >= n)/s = s−n

!(i <= 15)/sout = s

qg

LCS

Figure 2.7: Ms: path qc → qd

shown with a dashed line, for

which containment is to be found

in Mg.

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

(b%2! = 1)/−(b%2 == 1)/s = s+a

(s >= n)/s = s−n (s < n)/−

!(i <= 15)/sout = s
q06

q00

q01

q02

q03

q04

q05

CSLCS

Figure 2.8: Mg: both ways con-

tainment of path qc → qd of Ms

found in path q02 → q03, shown

with a dashed line.

containment for the path qc→ q f of Ms is indicated in Figure 2.9. Extending the path

q02→ q03 of Mg for finding containment is shown stepwise in Figures 2.10, 2.11 and

2.12.

After containment checking, the type of coding error is identified and then that is

handled by a method specific to that error. In the following, handling of dependency

violation error is described. In case of dependency violation, the equivalence checker

does not find the FSMD of the program having dependency violation, equivalent to the

golden program. Subsequently, the containment checker reports unordered path-wise

both way contained, as there is only a reordering of statements in this case, however,

no statement is found missing in the paths along which dependency is violated. The

2.2 Containment checking 49

−/s = 0, i = 0

(i <= 15)/i = i+1

(a >= n)/a = a−n

!(a >= n)/−

qb

qa

qc

qd

qe

q f

(b%2! = 1)/−

(s < n)/−

(b%2 == 1)/s = s+a

(s >= n)/s = s−n

!(i <= 15)/sout = s

qg

−/b = b/2,a = a∗2

LCS

Figure 2.9: Ms: path qc → q f

is shown with a dashed line, for

which containment is to be found

in Mg.

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

(b%2! = 1)/−(b%2 == 1)/s = s+a

(s >= n)/s = s−n (s < n)/−

!(i <= 15)/sout = s
q06

q00

q01

q02

q03

q04

q05

CSLCS

Figure 2.10: Mg: start with path

q02 → q03, shown with a dashed

line.

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

(b%2! = 1)/−(b%2 == 1)/s = s+a

(s >= n)/s = s−n (s < n)/−

!(i <= 15)/sout = s
q06

q00

q01

q02

q03

q04

q05

CSLCS

Figure 2.11: Mg: extend the path

to q04, shown with dashed lines.

−/s = 0, i = 0

(i <= 15)/i = i+1

−/b = b/2,a = a∗2
(a >= n)/a = a−n

!(a >= n)/−

(b%2! = 1)/−(b%2 == 1)/s = s+a

(s >= n)/s = s−n (s < n)/−

!(i <= 15)/sout = s
q06

q00

q01

q02

q03

q04

q05

CSLCS

Figure 2.12: Mg: finally contain-

ing path q02...q05 obtained, shown

with dashed lines, by extending to

q05.

50 Chapter 2 Containment analysis

containment is thus, a both way containment between the paths of the student program

having dependency violation and the path of golden program.

Main steps of containment checking:

1. Run the equivalence checker and find the LCS.

2. Choose a path (which has not been checked earlier) starting from the LCS and

going up to the next cut-point and execute the following searching steps. Ini-

tialize the stacks, i) pathCovered (this stack is used to store the subsequently

visited transition while proceeding along a path to find the containment and pop

the transition while backtracking) and ii) visited (this stack is used to store the

subsequently visited states while proceeding along a path to find the contain-

ment and pop the states while backtracking).

3. Find CSLCS, the state in the correct FSMD, which corresponds to the LCS and

push it into the stack visited.

(a) If a path is remaining in correct FSMD starting from the state at the top of

the stack visited, pick it up and push it to pathcovered and go to step 3b. If

not, pop the stack visited, go to step 3d (the backtracking step).

(b) Push the state at the other end of this path into visited and check whether

the path chosen currently from the incorrect FSMD is contained in the path

pathCovered. If so, go to step 4 (exit step). If it is none of the above then

go to step 3c.

(c) Pop the stack visited. If the popped out state is already present in the stack

visited or it is the end state of FSMD then go to step 3d, else push the

popped out state into the stack visited and go to step 3a.

(d) Pop the stack pathCovered. If the stack visited is empty goto step 5, else

go to step 3a.

4. Here we check the containment in the reverse direction to establish the equality

of paths by checking whether the path pathCovered is contained in the path

chosen currently from the incorrect FSMD. If so, the paths are equal; hence,

report the path chosen in incorrect FSMD as unordered path-wise both way

contained, else report path-wise one way contained. If some path is remaining

between LCS and next cut point in incorrect FSMD then go to step 2, else exit.

2.2 Containment checking 51

5. Report the path chosen in incorrect FSMD as path-wise un-contained. If some

path is remaining between LCS and next cut point in incorrect FSMD then go

to step 2, else exit.

Working of containment checking algorithm with an example

We explain the working of the containment checking algorithm with the following

example.

Example 2.4. We consider parts of two FSMDs Mg and Ms as given in the Figure 2.13

from LCS and CSLCS onwards. In the Figure, the conditions and data-transformations

along the transitions are shown as cond and dtrans with appropriate subscripts. it may

be noted that some of the conditions and data-transformations are identical in Ms and

Mg. Those conditions and data-transformations, which are not the same have been

shown with different subscripts. The cut-point to cut-point paths are shown as ps and

pg with appropriate subscripts.

The containment checking proceeds as follows. The containment checker tries to

find containment of the path ps,1, i.e., qc→ qd of Ms, which is from LCS to the next

cut-point, inside the path pg,1 i.e., q02→ q03 of Mg, which is from CSLCS to the next

cut-point. As the condition and data-transformations along the two paths are same,

hence containment is found. The containment checker reports ps,1 “Unordered path-

wise both way contained” in path pg,1. Both these paths are now excluded for further

checking by the containment checker. Now the containment checker backtracks from

q03 to q02 and tries to find the containment of the remaining path ps,2 from LCS, in the

remaining path pg,2 emanating from CSLCS, i.e., q02. This time containment is not

found due to different data-transformation expressions. The path pg,2 is, therefore,

extended to the next cut-point q05 along one of the paths emanating from q03 , say

pg,3. As none of the data-transformations along the path pg,3 is same as that of ps,1,

hence, the containment is not found. The containment checker now backtracks to

the state q03 to explore the other path emanating from it, by extending along pg,4.

This time again the containment is not found for the similar reason as before. The

containment checker, therefore backtracks to q03, and as there is no other path from it,

hence it further backtracks to q02. As all the paths from q02 have been explored and

as nowhere the containment was found, hence the containment checker reports ps,2 as

“path-wise un-contained”.

52 Chapter 2 Containment analysis

Algorithm 1: Containment_checker
Input: M1, FSMD of program 1 and M2, FSMD of program 2;

Output: Containment checking status;

L1 [Step 1:] Execute the equivalence checker with the following parameters: (i)M1 and (ii)M2

L2 if equivalence checker reports M1 6vM2 then let q1 be the LCS of FSMD M1 and q2 be the CSLCS in the FSMD M2;

L3 for each path p′2 of M2, starting from one cut-point to the next do
L4 marked[p′2]← False; traversed[p′2]← False;

/*Outer for loop for paths from M1 */

L5 for each path p1 of M1, starting from q1 do
L6 [Step 2:] Initialize the stacks, (i) pathCovered and (ii) visited

L7 for each cut-point qc2 of M2, starting from CSLCS do
L8 inVisited[qc2]← False;

L9 [Step 3:] visited← push(visited, q2); inVisited[q2]← True; /*push q2 into the stack visited*/

/*Inner while loop for paths from M2 */

L10 while notEmpty(visited) do
L11 [Step 3a:]
L12 if p2, a path of M2, starting from the state at the top of the stack visited, q2,visitedTop, is available s.t.

traversed[p2]==False && marked[p2]==False then
L13 traversed[p2]← True;

L14 if IsEmpty(pathCovered) then
L15 p2extended ← p2

L16 else
L17 p2extended ← top(pathCovered)•p2

L18 pathCovered← push(pathCovered, p2extended)

L19 else
L20 q2tm ← pop(visited); inVisited[q2tm]← False;

L21 for each path p2tm of M2, starting from q2tm to the next cut-point do
L22 traversed[p2tm]← False

L23 go to L33, step 3d (backtracking step)

L24 [Step 3b:] visited← push(visited, p f
2extended

); inVisited[p f
2extended

]← True, p f
2extended

is the state at the other

end of p2extended ;

L25 if the path p1 is contained in p2extended then
L26 break; /* go to L37, step 4 (exit step) */

L27 [Step 3c:] q2tmp ← pop(visited) ;

L28 if inVisited[q2tmp] == True∨q2tmp is an end state of M2 then
L29 inVisited[q2tmp]← False;

L30 else
L31 visited← push(visited,q2tmp); continue

L32 [Step 3d:]
L33 if IsEmpty(pathCovered) == False then
L34 p2tmp ← pop(pathCovered)

L35 if IsEmpty(visited) == True then
L36 go to L43, step 5 (exit step)

L37 [Step 4:] marked[p2i]← True, where p2i is the sub-path of p2extended , s.t. ps
2i
== q2 and p f

2i
is the cut-point next

to q2 along p2extended ;

L38 if p2extended is contained in p1 then
L39 the paths are equal; report the path p1, chosen in M1 as unordered path-wise both way contained, report

p2extended

L40 else
L41 report the path p1, chosen in M1, as path-wise one way contained, report p2extended

L42 continue;

L43 [Step 5:] report the path p1, chosen in M1, as path-wise un-contained.

2.2 Containment checking 53

qf

LCScond1 / dtrans1 !(cond1) / dtranss,2

cond2 / dtrans3 !(cond2) / dtrans4

− / dtrans5

qd

qe

ps,1 ps,2

ps,3 ps,4

qc

(a)

q02

q04

q05

CSLCScond1 / dtrans1 !(cond1) / dtransg,2

cond2 / dtrans3 !(cond2) / dtrans4

− / dtrans5

q03
pg,1 pg,2

pg,3 pg,4

(b)

Figure 2.13: Parts of FSMDs (a) Ms and (b) Mg shown from LCS and CSLCS on-

wards.

The step-by-step containment checking procedure according to the containment

checking algorithm is as follows. The evolution of stacks in the example run of the

algorithm for containment checking is also shown in each step, where necessary.

Step 1:

LCS: qs← qc;

CSLCS: qg← q02;

∀p′g ∈Mg,marked[pg]← False;

∀p′g ∈Mg, traversed[pg]← False;

Beginning of for loop:

ps← ps,1

Step 2:

Initialize the stacks pathCovered and visited;

∀ cut-points qcg of Mg, starting from CSLCS, inVisited[qcg]← False.

– pathCovered – visited

54 Chapter 2 Containment analysis

Step 3:

visited← push(visited,q02)

inVisited[q02]← True

– pathCovered q02 visited

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

pg← pg,1

traversed[pg,1]← True

IsEmpty(pathCovered) == True

pgextended ← pg,1

pathCovered← push(pathCovered, pg,1)

pg,1 pathCovered q02 visited

Step 3b:

p f
gextended ← q03;

visited← push(visited,q03);

inVisited[q03]← True;

ps is contained in pg,1, so

ps is contained in pgextended , goto step 4

2.2 Containment checking 55

pg,1 pathCovered
q03

q02
visited

Step 4:

marked[pg,1]← True

pg,1 is contained in ps,1, so

pgextended is contained in ps

Report: ps,1 is unordered path-wise both way contained

continue;

pg,1 pathCovered
q03

q02
visited

Beginning of for loop:

ps← ps,2

Step 2:

Initialize the stacks pathCovered and visited.

∀ cut-points qcg of Mg, starting from CSLCS, inVisited[qcg]← False.

– pathCovered – visited

Step 3:

visited← push(visited,q02)

inVisited[q02]← True

– pathCovered q02 visited

56 Chapter 2 Containment analysis

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

Now pg← pg,2; // as pg,1 is already marked previously in step 4.

traversed[pg,2]← True;

IsEmpty(pathCovered) == True;

pgextended ← pg,2;

pathCovered← push(pathCovered, pg,2)

pg,2 pathCovered q02 visited

Step 3b:

p f
gextended ← q03;

visited← push(visited,q03);

inVisited[q03]← True;

ps,2 is not contained in pg,2,

pg,2 pathCovered
q03

q02
visited

Step 3c:

qgtmp← q03← pop(visited);

The else part is executed in this case.

visited← push(visited,q03); continue

The stacks at the end of the operations in this step are shown as follows.

2.2 Containment checking 57

pg,2 pathCovered
q03

q02
visited

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

q03← top(visited);

Let pg← pg,3;

traversed[pg,3]← True;

IsEmpty(pathCovered) == False;

pgextended ← pg,2, pg,3;

pathCovered← push(pathCovered,{pg,2, pg,3})

pg,2, pg,3

pg,2
pathCovered

q03

q02
visited

Step 3b:

p f
gextended ← q05;

visited← push(visited,q05);

inVisited[q05]← True;

ps,2 is not contained in pg,2, pg,3,

pg,2, pg,3

pg,2
pathCovered

q05

q03

q02

visited

58 Chapter 2 Containment analysis

Step 3c:

qgtmp← q05← pop(visited);

q05 is end state, so if part is executed

inVisited[q05]← False;

q05 is end state, so go to step 3d

pg,2, pg,3

pg,2
pathCovered

q03

q02
visited

Step 3d:

IsEmpty(pathCovered) == False;

pgtmp ← pg,2, pg,3← pop(pathCovered)

IsEmpty(visited) == False, so while loop continues

pg,2 pathCovered
q03

q02
visited

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

q03← top(visited);

pg← pg,4;

traversed[pg,4]← True;

IsEmpty(pathCovered) == False; so, else part is executed and path extended

pgextended ← pg,2, pg,4;

2.2 Containment checking 59

pathCovered← push(pathCovered, pg,2, pg,4)

pg,2, pg,4

pg,2
pathCovered

q03

q02
visited

Step 3b:

p f
gextended ← q05;

visited← push(visited,q05);

inVisited[q05]← True;

ps,2 is not contained in pg,2, pg,4,

pg,2, pg,4

pg,2
pathCovered

q05

q03

q02

visited

Step 3c:

qgtmp← q05← pop(visited);

inVisited[q05]← True also, q05 is end state, so if part is executed

inVisited[q05]← False;

next is step 3d

pg,2, pg,4

pg,2
pathCovered

q03

q02
visited

Step 3d:

IsEmpty(pathCovered) == False;

pgtmp ← pg,2, pg,4← pop(pathCovered)

IsEmpty(visited) == False, so loop again in while loop

60 Chapter 2 Containment analysis

pg,2 pathCovered
q03

q02
visited

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

q03← top(visited);

traversed[pg,3] == True,marked[pg,3] == False,

also traversed[pg,4] == True,marked[pg,4] == False,

hence, for none of the paths from q03, the if part is to be executed.

Hence, else part is executed.

q03← pop(visited);

inVisited[q03]← False;

traversed[pg,3] == False; traversed[pg,4] == False;

go to step 3d;

pg,2 pathCovered q02 visited

Step 3d:

IsEmpty(pathCovered) == False;

pgtmp ← pg,2← pop(pathCovered)

IsEmpty(visited) == False

– pathCovered q02 visited

2.2 Containment checking 61

Beginning of while loop:

notEmpty(visited) == True

Step 3a:

q02← top(visited);

traversed[pg,1] == True,marked[pg,1] == True,

also traversed[pg,2] == True,marked[pg,2] == False,

hence, for none of the paths from q02, the if part is to be executed.

Hence, else part is executed.

q02← pop(visited);

inVisited[q02]← False;

traversed[pg,1] == False; traversed[pg,2] == False;

go to step 3d;

– pathCovered – visited

Step 3d:

IsEmpty(pathCovered) == True;

IsEmpty(visited) == True

go to step 5;

– pathCovered – visited

Step 5:

Report: ps,2 is path-wise both way un-contained.

62 Chapter 2 Containment analysis

End

– pathCovered – visited

2.2.2 Interpretation of the results of containment checking

We interpret the results of containment checking through the following cases.

1. Unordered path-wise both way contained: If all paths from the LCS to the

next cut-point are found unordered path-wise both way contained in their cor-

responding paths in the correct FSMD as in figures 2.14 and 2.15 and still

equivalence checking failed, then this would mean there is dependency viola-

tion in the incorrect program.

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.14: Unordered path-wise both way contained Part-I: FSMD on fig (a) con-

tains the dotted path which is equal to the dotted path shown in the fig (b).

2.2 Containment checking 63

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

a < n/sout = s

b%2! = 1/−b%2 == 1/a = a+ 1; s = s+ a

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

(b)

Figure 2.15: Unordered path-wise both way contained Part-II: FSMD on fig (a) con-

tains the dotted path which is equal to the dotted path shown in the fig (b).

2. Path-wise un-contained: This case is depicted in the figure 2.16. Here there are

two possibilities

(a) If the result of containment checking is path-wise un-contained, while

checking the containment of incorrect FSMD within the correct FSMD,

then it means that incorrect code has got some extra code which is not

present in the correct code.

(b) If the result of containment checking is path-wise un-contained, while

checking the containment of correct FSMD within the incorrect FSMD,

then it means that incorrect code is missing some code.

3. Path-wise one way contained: If the result of containment checking is path-

wise one way contained, while checking the containment of incorrect FSMD

within the correct FSMD, then it means that some extra code before this LCS is

missing in the incorrect program. The missing code, therefore, has to be inserted

in the incorrect program. The use of correction vector is made in such cases.

64 Chapter 2 Containment analysis

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

(a)

!i <= 15/−
−/s = 0

a >= n/a = a− n, sout = s

qbqg

qa

a < n/sout = s

qf

s >= n/s = s− n s < n/−

qc

qd

qe

i <= 15/i = i+ 1

−/b = b/2

−/a = a ∗ 2

(b)

Figure 2.16: Path-wise un-contained: FSMD in fig (a) contains the dotted paths which

are not found in the fig (b) by containment checker.

Following figures 2.17 and 2.18 show two examples in which figures on left

hand side show paths, which are path-wise one way contained in the FSMD on

the right.

4. Unordered path-wise both way contained and path-wise one way contained for

faulty branching: This case arises when parenthesis is skipped and the resulting

edge goes to a state which is not a cut-point. Following figures 2.19 and 2.20

show an example of this case. In the figure 2.19 the path shown in figure (a) is

equal to the path shown in figure (b), whereas in the figure 2.20 the path shown

in figure (a) is contained in the path shown in figure (b).

2.2 Containment checking 65

!i <= 15/−
−/s = 0

a >= n/a = a− n, sout = s

qbqg

qa

a < n/sout = s

qf

s >= n/s = s− n s < n/−

qc

qd

qe

i <= 15/i = i+ 1

−/b = b/2

−/a = a ∗ 2

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

(b)

Figure 2.17: Path-wise one way contained - I: FSMD in fig (a) show paths which are

path-wise one way contained in the FSMD in the fig (b).

!i <= 15/−
−/s = 0

a >= n/a = a− n, sout = s

qbqg

qa

a < n/sout = s

qf

s >= n/s = s− n

qc

qd

qe

i <= 15/i = i+ 1

−/b = b/2

−/a = a ∗ 2

s < n/−

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

a < n/sout = s

q01

q03

q04

q05

q06

s < n/−

(b)

Figure 2.18: Path-wise one way contained - II: FSMD in fig (a) show paths which are

path-wise one way contained in the FSMD in the fig (b).

66 Chapter 2 Containment analysis

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/a = a ∗ 2

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

(b)

Figure 2.19: Unordered path-wise both way contained and path-wise one way con-

tained for faulty branching - I: FSMD in fig (a) shows the path, which is equal to the

path shown in the FSMD in fig (b).

2.2 Containment checking 67

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/a = a ∗ 2

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

(b)

Figure 2.20: Unordered path-wise both way contained and path-wise one way con-

tained for faulty branching - II: FSMD in fig (a) shows the path, which is contained in

the path shown in the FSMD in fig (b).

Definition 11 (Containment equivalence of paths). Two paths ps in an FSMD Ms and

pg in an FSMD Mg, from a cut-point to the next cut-point are said to be contain-

ment equivalent, if containment checker finds them to contain same statements, the

statements may occur in different order in the two paths.

In this section we saw the working of containment checking mechanism. The

containment checking mechanism is invoked after the equivalence checker fails to find

equivalence. As the equivalence checker cannot find the reason why an equivalent path

cannot be found in the other FSMD, because of which then it fails; so, a containment

checking mechanism was required. In this section, we analyzed, with the help of

containment checking mechanism, the reason of failure of equivalence checking, by

finding the containment of the failing path for which equivalence was not found in

the other FSMD. In the next section, we give examples of implementations of such

analysis with which we are able to differentiate between various types of errors and

suggest corrections for them.

We now state some of the limitations of the containment checking algorithm.

Firstly, the algorithm for containment checking is an exponential algorithm in the

68 Chapter 2 Containment analysis

worst-case. The worst-case exponential nature is because of the cut-points. As a

cut-point has a minimum of two outward transitions, there are thus at least two possi-

bilities for search path for finding containment. The containment checking algorithm

is therefore exponential in the number of such cut-points, as for k cut-points there will

exist 2k paths for finding containment (see figure 2.21) in the worst-case.

cut-point 1

cut-point 2

cut-point 3

cut-point k

Figure 2.21: Worst-case exponential nature of the containment checking algorithm.

Secondly, as the equivalence checker does not work, when some loop is given in

unrolled form or any data-transformation that might cross loop boundary and as the

containment checker uses equivalence checker, so this approach will not work in the

cases of an unrolled loop or any data-transformation that might cross loop boundary.

2.3 Implementations of strategies for various types of

errors

In this section we have tried to classify some of the errors and implemented com-

mon strategies for the problems of various such classes. All the strategies given in

this chapter involve containment checking. The other strategies discussed are e.g.,

to adjust the incoming edges at a given state, applying correction vector to introduce

2.3 Implementations of strategies for various types of errors 69

missing code, introduction of new states and checking dependency list . At first we

identify the types of errors which are discussed below.

Identified types of error

• Dependency has been violated between instructions.

• Skipping Parenthesis

– Edge corresponding to skipped parenthesis goes to a cut-point state.

– Edge corresponding to skipped parenthesis goes to a non cut-point state.

– Edge belongs to loop.

• Some code is missing.

2.3.1 Error of dependency violation

The dependency is said to be violated in a student program, as compared to the golden

program, if it has the reverse occurrence of two statements, which should have a

precede-succeed ordering. As an example we see the following order of statements in

two programs as shown below.

Listing 2.1: code 1

void code()

{

.....

a=a+1;

s=s+a;

.....

}

Listing 2.2: code 2

void code()

{

.....

s=s+a;

a=a+1;

.....

}

Code in the two programs has reverse order of occurrence of statements, in which

s is dependent on value of a. In the first code a is updated first and then used for

updating s, whereas in the second code s is updated prior to updating a. Thus the

dependency is violated by the second code. All the dependency types, viz., read after

write, write after read and write after write can be taken care of by our scheme.

70 Chapter 2 Containment analysis

Below we define the dependency violation formally, in our context. This definition

applies to the FSMDs having equal number of transitions, which are same after nor-

malization, but occur in a different order in the other FSMD, so that some dependence

is violated.

Definition 12 (Dependency violation). Let pg be a path of Mg of the form 〈t1, . . . , tn〉;
let ps be a path of Ms which originates from the state having correspondence with the

start state ps
g and has the same set of transitions as pg but in different order. For some

i,2 ≤ i ≤ n, let ti have a dependence on ti−k , for some k,0 < k < i, in pg. The path

ps is said to have a dependence violation with respect to pg if ti corresponds to t j , for

some j,1≤ j ≤ n−1 and ti−k corresponds to t j+k′ for some k′,0 < k′ ≤ n− j.

Theorem 2 (Detection of dependency violation). i) Let there be a path or an ex-

tended path ps of the student program Ms for which the equivalence checker

could not find an equivalent path in the golden model Mg emanating from the

state of Mg corresponding to ps
s

ii) Let ps emanating from ps
s having correspondence with ps

g be identified to be

satisfying both way containment with pg.

Then, there exists a dependency violation in the path ps of Ms

Proof [by refutation]: Let the paths pg of Mg and ps of Ms be as indicated in the

theorem statement and pg � ps.

Let there be no dependency violation in ps with respect to pg. Hence, we have the

following two cases:

Case 1 [No dependence between any two transitions of pg]:

so the set of variables that are modified in pg are disjoint with the set of read

variables in pg; also no two transitions of pg write onto the same variable.

Hence, all the permutations of pg will have same condition of execution and data-

transformation and hence will be equivalent with each other. But ps is a permutation

of pg but not equivalent to pg. Thus, we have a contradiction.

Case 2 [Some transitions of pg have dependences]:

2.3 Implementations of strategies for various types of errors 71

Let i be the minimum value of i for which tg
i does not match with ts

i . So, over the

range [1, i− 1], all the transitions match and hence the dependences, if any, of the

subsequence of pg are retained in the corresponding subsequence ps.

So, pg[1, . . . , i−1]∼= ps[1, . . . , i−1].

Let tg
i match with ts

j for some j > i. Let ps be modified to pm
s by placing ts

j at

the ith position of pm
s and pm

s [i+ 1, . . . , j] be replaced by ps[i, . . . , j− 1]; that is, the

transitions in the subsequence 〈ts
i , . . . , t j−1〉 of ps are shifted right by one position. Let

any shifting step be referred to as step S. We claim that

i) ps ∼= pm
s and

ii) pg[1, . . . , i]∼= pm
s [1, . . . , i]

Now we have the following two sub-cases:

Sub-case 2.1 [tg
i has a dependence on tg

i−k]:

Since, tg
i−k = ts

i−k, the dependence tg
i−k→ tg

i corresponds to the dependence ts
i−k→

ts
j . Hence when ts

j is placed at ts
i−k in pm

s by the above step, the dependence is still not

violated. Thus, with the above change in placement of the transition, pg[1, . . . , i] =

pm
s [1, . . . , i]. Also since pm

s retains all the dependences of ps, ps ∼= pm
s .

Sub-case 2.2 [tg
i has no dependence on any transitions (preceding it)]:

Here the above step obviously attains the above two claims.

The shuffling step S is repeated over all the indexes of pg where mismatch occurs

at every stage retaining the equivalences depicted in claims C1 and C2. So, we have

the finally modified path ps ∼= pm
s
∼= pg. (Contradiction) �

Reporting dependency violation: an example with FSMDs

Dependency is violated in the following program segments. In the first one, which is

a correct program, the expression a = a + 1 follows the expression s = s + a. In s =

s + a, the variable a is dependent on the variable used for storing the input n. In the

72 Chapter 2 Containment analysis

second program segment, i.e., in the incorrect version, a = a + 1 precedes s = s + a.

Thus, the variable a in s = s + a is dependent on a = a + 1. This causes the violation

of dependency in the incorrect program. The corresponding FSMDs are given in the

figure 2.22 below.

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(b)

Figure 2.22: Example of dependency violation.

2.3 Implementations of strategies for various types of errors 73

When these two FSMDs are subjected to equivalence checking using the equiva-

lence checker, the latter reports that the two FSMDs are not equivalent, reporting the

path for which it was not able to find equivalence. The starting state of the failed path

in the incorrect program is the last correct state (LCS). The working of equivalence

checker on the two FSMDs is shown in the following figures 2.23 to 2.35.

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.23: Example of dependency violation: Working of equivalence checker I.

74 Chapter 2 Containment analysis

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.24: Example of dependency violation: Working of equivalence checker II.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.25: Example of dependency violation: Working of equivalence checker III.

2.3 Implementations of strategies for various types of errors 75

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.26: Example of dependency violation: Working of equivalence checker IV.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� !i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.27: Example of dependency violation: Working of equivalence checker V.

76 Chapter 2 Containment analysis

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� !i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.28: Example of dependency violation: Working of equivalence checker VI.

Now when it tries to find equivalent path for the edge shown by dotted line in

figure 2.32(a) and it does not find, it extends that path. Some of the steps showing

depth first search and backtracking are shown in the following figures 2.32(b) to 2.35.

Ultimately the equivalence checker fails.

2.3 Implementations of strategies for various types of errors 77

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.29: Example of dependency violation: Working of equivalence checker VII.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.30: Example of dependency violation: Working of equivalence checker VIII.

78 Chapter 2 Containment analysis

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�

�
�
�

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.31: Example of dependency violation: Working of equivalence checker IX.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.32: Example of dependency violation: Working of equivalence checker X.

2.3 Implementations of strategies for various types of errors 79

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.33: Example of dependency violation: Working of equivalence checker XI.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.34: Example of dependency violation: Working of equivalence checker XII.

80 Chapter 2 Containment analysis

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−

(b)

Figure 2.35: Example of dependency violation: Working of equivalence checker XIII.

While checking containment, all the corresponding paths between the LCS and

next cut-point are found unordered path-wise both way contained. The run of the

containment checker identifying the unordered path-wise both way contained paths is

shown in the following figures 2.36 and 2.37. It is to be noted that the equivalence

checker reports non-equivalence for a path starting at the LCS. The respective un-

ordered path-wise both way contained paths on the FSMD of student’s program and

their containing paths on the FSMD of golden program are shown with the help of

dark lines in figures 2.36 and 2.37 in figures (b) and (a) respectively. The algorithm

that has been used to detect dependency violation, is given later in this section. In

the following we discuss some preliminaries related with the detection algorithm for

dependency violation.

Dependency graph

A dependency graph is a directed partially ordered graph, in which along-with

the variable being defined, the statement number also appears at the nodes. Edges

represent the dependency relation between the statements at the two ends of the edge.

We introduce an edge from node for statement numbered 1 to node for statement

numbered 2, if the statement numbered 2 is dependent on statement numbered 1. The

idea of dependency graph is explained with the program codes shown below and the

2.3 Implementations of strategies for various types of errors 81

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

b%2 == 1/a = a+ 1; s = s+ a

a >= n/a = a− n, sout = s

a < n/sout = s

b%2! = 1/−

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

q02

q07

q08

s < n/−

q01

q03

q04

q05

q06

a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−b%2 == 1/s = s+ a; a = a+ 1

(b)

Figure 2.36: Example of dependency violation: Working of containment checker

showing the unordered path-wise both way contained paths I.

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qh

s < n/−

qa

a < n/sout = s

b%2! = 1/−b%2 == 1/a = a+ 1; s = s+ a

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q01

q03

q04

q05

q06

b%2 == 1/s = s+ a; a = a+ 1

(b)

Figure 2.37: Example of dependency violation: Working of containment checker

showing the unordered path-wise both way contained paths II.

82 Chapter 2 Containment analysis

corresponding directed acyclic graphs (DAG) of the golden and student’s programs in

figure 2.38 below, built as per the algorithm 9.2 for constructing a DAG described

in Aho et al. [6]. The numbers in brackets on the node labels in figure 2.38 are

the statement numbers in the golden program, where the variable shown on the node

label is defined. These numbers, which are from the golden program are used for

constructing both the DAGs in figure 2.38.

Listing 2.3: Golden program

void code()

{

1: a = a + b;

2: c = c + a;

3: d = d + a;

4: f = c + d;

}

Listing 2.4: Student’s program

void code()

{

1(4): f = c + d;

2(1): a = a + b;

3(2): c = c + a;

4(3): d = d + a;

}

+

+

+

+

+

+

a0 b d0c0

a (1)

c (2) d (3)

f (4)

(a)

+

+

+

+

+

a0 b d0c0

a (1)

c (2) d (3)

+ f (4)

(b)

Figure 2.38: DAGs of (a) golden program and (b) student’s program.

The dependency graphs of figures 2.39 and 2.40 may then be visualized from the

DAG representation of the golden and the student’s programs shown in figure 2.38.

The dependencies may also be depicted in a dependency graph derived from a

DAG as in Figure 2.38; an edge is present there, if a dependency is also present in

the DAG. In the dependency graph an edge is present between two nodes, m and

n, if statement numbered n depends on the statement numbered m in the DAG. The

dependencies in golden program are, 1≺ 2, 1≺ 3, 3≺ 4 and 2≺ 4. The dependencies

2.3 Implementations of strategies for various types of errors 83

1(a)

4(f)

2(c) 3(d)

Figure 2.39: Dependency graph of

golden program

1(a) 4(f)

2(c) 3(d)

Figure 2.40: Dependency graph of

student’s program

in student’s program are, 1≺ 2 and 1≺ 3.

Accordingly, figures 2.39 and 2.40 show the edges representing dependencies,

e.g., in figure 2.39, the statements with numbers 2 and 3 are dependent on the state-

ment numbered 1, the statement numbered 4 depends on the statements numbered 2

and 3. The figure 2.40 has the node numbered 4 alone, as no node depends on it.

Dependency violation is detected by comparing the dependency graphs in the two

programs, by picking up each edge in the dependency graph of golden program by

traversing it in a depth first manner and searching for it in the dependency graph

of student’s program. In case an edge is not found in the dependency graph of the

student’s program, then the two statements at the two ends of the edge are concluded

to violate dependency and both the violating statements (pairwise) are reported to the

student.

If the containment checker resorts to path extension, then basic blocks along the

extended path must be concatenated to obtain extended basic block for both the paths

in Mg and Ms and then those can be compared in a similar manner. It may be noted

that the path extension never goes beyond the loop entry point.

As the example for locating the occurrence of dependency violation, we once again

consider figures 2.39 and 2.40. We first select the edge 1→ 2 in figure 2.39, and

try to find whether it exists in figure 2.40, applying depth first search (DFS). We find

that the edge 1→ 2 is present in figure 2.40. It can, therefore, be concluded that the

dependency 1 ≺ 2 is preserved in the student’s program. The next edge is 2→ 4,

which is searched for in figure 2.40. As there is no outgoing edge from node 2, it is

84 Chapter 2 Containment analysis

concluded that the edge 2→ 4 is not present. There is, thus, a dependency violation

between statements 2 and 4 in the student’s program, which is reported to the student.

As we are searching for the edges in figure 2.39, and we have come to node 4, from

which there is no other outgoing edge, we backtrack up to the node 1, from where we

started. We then pick up the other outgoing edge from node 1, i.e., the edge 1→ 3.

We look out for this edge in figure 2.40, starting in a depth first manner from node 1.

The edge is found to be present in figure 2.40. The next edge 3→ 4, in figure 2.39,

is similarly searched in figure 2.40 and is not found there. The dependency violation

between statements 3 and 4 is thus located in the student’s program and is reported to

the student.

Implementation: In the implementation, the dependencies of statements which

are depicted in the DAG are represented as individual singly linked lists per state-

ment as given in the figures 2.1 and 2.2. The partial order captured by the DAG

representation is preserved in the singly linked list representation.

A dependency list here is a singly linked list of statements on which a particular

statement depends. The first node of the dependency list contains the statement num-

ber and subsequent nodes contain the number of the statements on which there is a

dependence. This is explained with a code and its dependency list below.

How it is made?

The making of dependency list for each statement s, extracted from the FSMD,

involves the following steps. For each variable v occurring on the rhs in s, if ls be

the last statement where v is defined (if such a statement exists) then s depends on ls.

Hence we add node ls to the dependency list of s.

We now define containment equivalence of paths, which has been used later in the

description of method of reporting dependency violation

2.3 Implementations of strategies for various types of errors 85

Listing 2.5: Golden program

void code()

{

1: a = a + b;

2: c = c + a;

3: d = a + f + c;

}

Listing 2.6: Student’s program

void code()

{

1(2): c = c + a;

2(1): a = a + b;

3(3): d = a + f + c;

}

1

2 1

3 21

Figure 2.41: Dependency list of

golden program

3 21

1

2

Figure 2.42: Dependency list of

student’s program

For reporting dependency violation, we compare the dependency lists for all the

statements in the FSMD Mg and the FSMD Ms, which have been found to be con-

tainment equivalent by the containment checker and the un-matching lists are used

to report dependency violation. The dependency information in the two un-matching

lists is reported as dependency violation.

The algorithm for detecting dependency violation is given in algorithm 2. The

details of the steps in the algorithm are as follows.

1. In step 1, equivalence checker is executed, followed by containment checker on

failure of equivalence checker and the output of containment checker is checked

in step 2. If the containment checker reports that all the paths between LCS and

the next cut-point are unordered path-wise both way contained then step 3 is

executed.

2. Details of step 3 are as follows. In this step a dependency list is made. Depen-

dency list has the dependency information of a statement in the path in terms

86 Chapter 2 Containment analysis

of previous statements. Individual statements are extracted from the FSMDs,

which lie on each path ps in Ms given in step 2 and it’s containment equiva-

lent path pg in Mg. Then statement numbers are annotated to the statements

extracted. A singly linked list of nodes with statement numbers of the previous

statements on which the statement s depends is made as follows. For each ex-

tracted statement s, corresponding to every variable v occurring on the rhs in s,

if ls be the last statement where v is defined (if such a statement exists), then s

depends on ls. A node ls is added to the dependency list of s.

3. Details of step 4 are as follows. In this step, the dependency lists of the two pro-

grams are compared for each statement s obtained from the FSMD of golden

program in step 2. If dependency violation is detected on comparing the depen-

dency lists for the statement s in the two FSMDs, it is reported as follows. Let

the dependency lists for the statement s in the two FSMDs be listsg and listss.

Let listsg = {s1,s2, . . . ,sk}, listss = {s′1,s′2, . . . ,s′k′}. If ∃si 6∈ {s′1,s′2, . . . ,s′k′},1≤
i ≤ k′ OR ∃s′i 6∈ {s1,s2, . . . ,sk},1 ≤ i ≤ k, then the two lists listsg and listss are

reported.

2.3 Implementations of strategies for various types of errors 87

Algorithm 2: Detect_dependency_violation
Input: Ms, FSMD of student’s program and Mg, FSMD of teacher’s program;

Output: Report dependency violation, if any;

L1 Begin;

/*Step 1: Execute equivalence checker followed by containment checker on failure */

L2 execute the equivalence checker with the following parameters: (i)Ms and (ii)Mg

L3 if equivalence checker reports Ms 6vMg then
L4 execute the containment checker with the following parameters: (i)Ms and (ii)Mg

/*Step 2: Check the output of containment checker */

L5 if the containment checker reports that all the paths between LCS and the next cut-point are unordered path-wise both
way contained then

L6 go to L9, step 3

L7 else
L8 exit the dependency violation checker

/*Step 3: Make dependency list. Dependency list has the dependency information of a

statement in the path in terms of previous statements. */

L9 for each path ps in Ms given in step 2 and it’s containment equivalent path pg in Mg do
L10 extract individual statements from the path

L11 annotate statement numbers to the statements extracted

/*make a singly linked list of nodes with statement numbers of the previous statements on

which the statement s depends */

L12 for each statement s extracted do
L13 for each variable v occurring on the rhs in s do
L14 if ls be the last statement where v is defined (if such a statement exists) then

/*s depends on ls */

L15 add node ls to the dependency list of s

/*Step 4: Compare the dependency lists of the two programs. If dependency violation is

detected, report it and exit */

L16 for each statement s obtained from the FSMD of golden program in the previous step do
L17 Compare the dependency lists listsg and listss for the statement s in the two FSMDs

L18 Let listsg = {s1,s2, . . . ,sk}, listss = {s′1,s′2, . . . ,s′k′}
L19 if ∃si 6∈ {s′1,s′2, . . . ,s′k′},1≤ i≤ k′ OR ∃s′i 6∈ {s1,s2, . . . ,sk},1≤ i≤ k then
L20 report listsg, listss

L21 End

2.3.2 Reporting errors of parenthesis skipping

The case of error in the student’s program when the closing parenthesis is wrongly put

beyond its proper place in the code by the student causes parenthesis skipping error.

For example, if the closing parenthesis of the first if-else block has been put at the

end of the second if-else block in a program where two consecutive if-else blocks are

present. An error like this in the code causes one of the transitions emanating from

the starting state of first if-else block, to skip meeting the final state of this block and

88 Chapter 2 Containment analysis

instead becomes incident on the final state of the next if-else block. We refer to this

type of error as that of skipping parenthesis. In this case the containment checker

reports unordered path-wise both way contained and path-wise one way contained for

faulty branching. As an example of parenthesis skipping error, consider the following

code. The corresponding FSMDs are shown in Figures 2.1 and 2.2 respectively.

In the FSMD of student’s program in Figure 2.1, the edge from the state qc skips

meeting at state qd and instead meets the next state qe due to wrong placement of

closing parenthesis of the first if block.

Listing 2.7: Golden program
void main()
{
int s = 0, i = 0;
while (i <= 15){

i = i + 1;
if (b % 2 == 1){

s = s + a;
}
if (s >= n){

s = s - n;
}
b = b / 2;
a = a * 2;
if (a >= n){

a = a - n;
}

}
sout = s;

}

Listing 2.8: Student’s program
void main()
{
int s = 0, i = 0;
while (i <= 15){

i = i + 1;
if (b % 2 == 1){

s = s + a;
if (s >= n){

s = s - n;
}

}
b = b / 2;
a = a * 2;
if (a >= n){

a = a - n;
}

}
sout = s;

}

From the angle of our analysis, the parenthesis skipping may be of two types.

1. Skipping parenthesis does not belong to any loop.

2. Skipping parenthesis belongs to a loop.

1. Skipping parenthesis does not belong to any loop

There are two possibilities in this type of error.

2.3 Implementations of strategies for various types of errors 89

Case I: The edge, which is skipping parenthesis, meets a cut-point.

In this case, the cut-point where the skipping edge meets, is reported as the

LCS. The containment checker will report that the incorrect path starting from

the LCS to the next cut-point is path-wise one way contained in the correct

FSMD. However, this fact has not been exploited in the algorithm for this case,

as this portion of incorrect FSMD does not contain any error. The error lies

in incorrect FSMD above the LCS, which is handled by the algorithm for this

case. Actually, the error lies between the LCS and the least numbered state,

from which transition is coming to LCS; as this transition corresponds to the

maximum possible portion of the erroneous code, which includes the skipping

of parenthesis error. This case is explained with the help of following simulation

for the FSMDs shown in figure 2.43.

!i <= 15/−

i <= 15/i = i+ 1

s >= n/s = s− n

−/b = b/2

s < n/− a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−b%2 == 1/s = s+ a

q00

−/s = 0

q01

q02

q03

q04

q05

q06

q07

c == d/a = a ∗ 2!c == d

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

c == d/a = a ∗ 2!c == d/−

(b)

Figure 2.43: Case I: Figures showing (a) Mg and (b) Ms

In the execution of equivalence checker shown in figure 2.44(a), the dark edges

and states indicate that the execution of equivalence checker has found their

equivalence in the incorrect FSMD. The figure 2.44(b) shows the path with the

90 Chapter 2 Containment analysis

help of dark dotted line, for which equivalence checker fails to find an equiva-

lence. Also the dark edges and states in this figure are the corresponding equiv-

alents of their counterparts in the correct FSMD in figure 2.44(a).

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

!i <= 15/−

i <= 15/i = i+ 1

s >= n/s = s− n

−/b = b/2

s < n/− a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−b%2 == 1/s = s+ a

q00

−/s = 0

q01

q02

q03

q04

q05

q06

q07

c == d/a = a ∗ 2!c == d

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

!i <= 15/−

i <= 15/i = i+ 1

s >= n/s = s− n

−/b = b/2

s < n/− a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−b%2 == 1/s = s+ a

q00

−/s = 0

q01

q02

q03

q04

q05

q06

q07

c == d/a = a ∗ 2!c == d

(b)

Figure 2.44: Case I: Figures showing equivalent states in (a) Mg and (b) Ms

Case II: The edge which is skipping parenthesis does not meet a cut-point.

In this case, the edge which is skipping parenthesis, meets a state which is not a

cut-point. The cut-point state where the skipping edge started is reported as the

LCS. The containment checker will report that the incorrect path, starting from

the LCS to the next cut-point, is path-wise one way contained in the correct

FSMD. This case is explained with the help of the following simulation of the

equivalence checker on the FSMDs in figure 2.45.

In the following figure 2.46, the path shown by dotted line, is the path for which

equivalence checker fails to find equivalence. Also the dark edges and states in

this figure are the corresponding equivalents of their counterpart in the correct

FSMD of figure 2.45(a).

2.3 Implementations of strategies for various types of errors 91

!i <= 15/−

i <= 15/i = i+ 1

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2

s < n/− a < n/sout = s

a >= n/a = a− n, sout = s

b%2! = 1/−b%2 == 1/s = s+ a

q00

−/s = 0

q01

q02

q03

q04

q05

q06

q07

(a)

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/a = a ∗ 2

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

(b)

Figure 2.45: Case II: (a) Mg and (b) Ms

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/a = a ∗ 2

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

Figure 2.46: Case II: Equivalence found for the dark edges but not for the dotted edges

of Ms

Algorithm for case I

The state in correct FSMD, reported to be corresponding to the LCS by the equiva-

92 Chapter 2 Containment analysis

lence checking mechanism, may not be the actual corresponding state, due to the error

of skipped parenthesis. Under this error, the edge corresponding to skipped parenthe-

sis may possibly be incident on the LCS. To detect the possibility of such an error, if

any, the following algorithm is used. This algorithm is capable of detecting the error

in question, if there were an error. If the error of skipping parenthesis is not there,

the execution of the algorithm will not come in the way of detecting further errors.

Hence in both the cases of error, whether there is skipping of parenthesis or not, the

following algorithm 3 is executed.

2.3 Implementations of strategies for various types of errors 93

Algorithm 3: Skipping_Edge_Meets_a_Cut_Point
Input: Ms, FSMD of student’s program and Mg, FSMD of teacher’s program;

Output: Missing or extra incoming edge on states starting from the least

numbered state in FSMD of student’s incorrect program;

L1 Begin;

/*Step 1: Identify the least numbered state. The state

number is given by equivalence checker in the order in which

they are created. */

L2 Find the least numbered state among the states from which the transitions are

coming to the LCS;

/*Step 2: Find the corresponding state of the least numbered

state */

L3 Find from the correct FSMD the state corresponding to the least numbered state

found in the above step;

/*Step 3: Run the algorithm to find out the missing or extra

incoming edge on the states starting from the least numbered

state in incorrect FSMD and exit there after. */

L4 Call the algorithm to find out the missing or extra incoming edge on the states

starting from the least numbered state in incorrect FSMD and exit there after.

The algorithm has been given below.

L5 End

Main steps

1. Find the least numbered state among the states from which the transitions are

coming to the LCS. The state number is given by equivalence checker in the

order in which they are created.

2. Find from the correct FSMD the state corresponding to the least numbered state

found in the above step.

94 Chapter 2 Containment analysis

3. Run the algorithm to find out the missing or extra incoming edge on the states

starting from the least numbered state in incorrect FSMD and exit there after.

The algorithm has been given below.

Algorithm 4: Finding_missing_or_extra_incoming_edge
Input: (i) State from the FSMD of incorrect student’s program, from where the algorithm should find out the missing

or extra incoming edge, (ii) its corresponding state on the other FSMD, (iii) Ms, the FSMD of student’s program

and (iv) Mg, the FSMD of teacher’s program;

Output: The incorrect code segment and the corresponding correct code segment;

/*This is an algorithm to find out the missing or extra incoming edge incident on the states

starting from given state in incorrect FSMD */

L1 Begin;

/*Step 1: Create a list of incoming edges for each state */

L2 for each FSMD do

L3 for each state do

L4 create a linked list of incoming edges

/*Step 2a: initial push on stack1 */

L5 Find out the set difference of incoming edges on the given state (in the incorrect FSMD) and its corresponding state (in

the correct FSMD).

L6 Push all the edges in the set difference on stack1.

/*Step 2b: initial push on stack2 */

L7 Find out the set difference of incoming edges on the corresponding state (in the correct FSMD of the given state) and

those on the given state (in the incorrect FSMD).

L8 Push all the edges in the set difference on stack2.

/*Step 3: Popping the stack if their top have the same entry */

L9 if the content of both the stacks are not empty and the top of both the stacks are the same then

L10 we pop both the stacks;

L11 else

L12 select minimum numbered state among the states on which transitions from the given state are incident;

L13 goto L5, step 2a with the minimum numbered state as the given state;

/*Step 4: Output the Incorrect code and correct code segments */

L14 Output the code from incorrect file between the two end point states of the popped out edge from stack2 as incorrect

portion of the code;

L15 Output the correct portion of code is the code from correct file between the two end point states of the popped out edge

from stack1;

L16 End

2.3 Implementations of strategies for various types of errors 95

Main steps to find out the missing or extra incoming edge incident on the

states starting from given state in incorrect FSMD

1. A linked list of incoming edge for each state is created for both the FSMDs.

2. (a) Find out the set difference of incoming edges on the given state (in the

incorrect FSMD) and its corresponding state (in the correct FSMD). Push

all the edges in the set difference on stack1.

(b) Find out the set difference of incoming edges on the corresponding state

(in the correct FSMD of the given state) and those on the given state (in

the incorrect FSMD). Push all the edges in the set difference on stack2.

3. If the content of both the stacks are not empty and the top of both the stacks

are the same, then we pop both the stacks, else select minimum numbered state

among the states on which transitions from the given state are incident and goto

step 2a with the minimum numbered state as the given state.

4. Output the code from incorrect file between the two end point states of the

popped out edge from stack2 as incorrect portion of the code. The correct por-

tion of code is the code from correct file between the two end point states of the

popped out edge from stack1.

Algorithm for case II

The algorithm for this case is given in algorithm 5. It works as follows. Run the

algorithm to find out the missing or extra incoming edge incident on the states start-

ing from the LCS reported by the equivalence checker as the given state in incorrect

FSMD.

After the execution of the above algorithm the entry corresponding to the highlighted

edges are stored on stack1 and stack2 (figure 2.47).

96 Chapter 2 Containment analysis

Algorithm 5: Skipping_Edge_Does_not_Meet_a_Cut_Point
Input: Ms, FSMD of student’s program and Mg, FSMD of teacher’s program,

Last Corrected State;

Output: Missing or extra incoming edge on states starting from the least

numbered state in FSMD of student’s incorrect program;

L1 Begin;

/*Step 1: */

L2 Run the algorithm to find out the missing or extra incoming edge incident on

the states starting from the LCS reported by the equivalence checker as the

given state in incorrect FSMD.

/*Step 2: */

L3 After the execution of the above algorithm the entry corresponding to the

highlighted edges are stored on stack1 and stack2.

L4 End

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n s < n/−

−/a = a ∗ 2

−/b = b/2

a < n/sout = s

a >= n/a = a− n, sout = s

qb

qc

qd

qe

qf

qg

qa

qh

(a)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

!i <= 15/−

i <= 15/i = i+ 1

−/s = 0

b%2 == 1/s = s+ a b%2! = 1/−

s >= n/s = s− n

−/a = a ∗ 2

−/b = b/2
a >= n/a = a− n, sout = s

q02

q07

q08

s < n/− a < n/sout = s

q03

q04

q05

q06

q01

(b)

Figure 2.47: Figures showing the output of algorithm for case II. Dark edges are the

entry present in stack1 and stack2.

2.3 Implementations of strategies for various types of errors 97

2. Skipping parenthesis belongs to a loop

Consider a case of a for loop, where the parenthesis is skipped beyond the for

loop, in incorrect code. As a result, the code that was outside the for loop in the

correct code, becomes a part of the for loop in the incorrect code. Our job is to find

out this extra piece of code inside the loop and move it outside the loop. Because of

the skipped parenthesis and the resulting introduction of extra code inside the loop

body, the start state of the for loop in the correct FSMD, has got two corresponding

states in the incorrect FSMD, one of which is obviously the start state of the for loop

in the incorrect FSMD. The other corresponding state is the LCS.

The FSMDs in the following figure 2.48 show an example of above discussed case.

−/sum = 0, i = 2

!(i < n)/−

!sum == n/out = 0sum == n/out = 1

i < n/−

−/i = i+ 1

n%i! = 0/−(n%i == 0)/sum = sum+ i

q03

q04

q05

q00

q02

q01

(a)

qa

−/sum = 0, i = 2

!(i < n)/−

!sum == n/out = 0sum == n/out = 1

i < n/−

n%i! = 0/−(n%i == 0)/sum = sum+ i

−/i = i+ 1

−/−

qc

qd

qe

qf

qb

qg

(b)

Figure 2.48: Figures showing (a) Mg and (b) extension of loop in Ms due to skipping

parenthesis.

In the above figure 2.48, the simulation of equivalence checker results in the

following dotted edges and darkened states in figure 2.49, showing that the execution

of equivalence checker has found their equivalence / correspondence in the incorrect

FSMD. The figure 2.49(b) on the right hand side shows the path with the help of a

98 Chapter 2 Containment analysis

dark line, for which the equivalence checker fails to find an equivalence. Also, the

dotted edges and darkened states in this figure are the equivalents / correspond to their

counterparts in the correct FSMD of figure 2.49(a).

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

−/sum = 0, i = 2

!(i < n)/−

!sum == n/out = 0sum == n/out = 1

i < n/−

−/i = i+ 1

n%i! = 0/−(n%i == 0)/sum = sum+ i

q03

q04

q05

q00

q02

q01

(a)

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

−/sum = 0, i = 2

!(i < n)/−

!sum == n/out = 0sum == n/out = 1

i < n/−

n%i! = 0/−(n%i == 0)/sum = sum+ i

−/i = i+ 1

−/−

qc

qd

qe

qf

qb

qg

qa

(b)

Figure 2.49: Figures showing (a) Mg and (b) Ms, showing equivalence checker failing

for path shown with dark line

Algorithm for moving the extra code away from the loop

The paths between the LCS and the start state of the loop is reported contained in the

correct FSMD by the containment checker. Suggest the code corresponding to the

paths between the LCS and the start state of the loop as extra code in the loop; this

code should be moved away from the loop.

2.3.3 Error of missing block of code

In this case as the two FSMDs will not be equivalent, we verify this fact by checking

the equivalence in both the directions, as checking equivalence only in one direc-

tion may sometimes give misleading result about equivalence. When equivalence is

2.3 Implementations of strategies for various types of errors 99

checked in both the directions, then non-equivalence will be reported in at least one

direction. The LCS is obtained from that run of equivalence checker, among the two

runs as suggested above, in which non-equivalence was reported. In case of missing

block of code, the containment checking may give two types of results. Both of which

are treated in the same way by the algorithm. Discussion of the three cases of missing

block of code, two cases in which code block is missing in student’s program and one

case of block of code found missing in golden program as student’s program may have

some extra block of code (which has to be removed subsequently as golden program

is considered to be correct and anything extra in student’s program has therefore to be

discarded), is given below.

1. The first case is when the equivalence checker reports computational contain-

ment of the FSMD of student’s program with the FSMD of golden program.

However, as the two FSMDs are not equivalent, so the equivalence checker is

executed again, in the other direction, to find the computational containment of

the FSMD of golden program with the FSMD of student’s program. This time

non-computational containment will be reported and so will be the LCS. Now

if the containment checker is executed to find the containment of all paths from

the reported LCS to the next cut-point of the FSMD of golden program inside

the FSMD of student’s program and it reports path-wise un-contained, then

this would mean that there is some code missing in the FSMD of student’s pro-

gram. Moreover, the missing portion of the code is at least the code between

the reported LCS and the next cut-point. However, this reported LCS is situated

in the FSMD of golden program. By our convention LCS should be from the

FSMD of student’s program. So, we take the corresponding state (in the FSMD

of student’s program) of the reported LCS as the LCS. The algorithm executed

after this step is given later in this section.

2. In the second case, the equivalence checker reports non-computational contain-

100 Chapter 2 Containment analysis

ment of the FSMD of student’s program with the FSMD of golden program,

along with the LCS. The containment checker reports the path between the LCS

and the next cut-point of the FSMD of student’s program as path-wise one way

contained in the FSMD of golden program. As the equivalence checker reports

equivalence of the FSMDs from the starting state up to the LCS in the FSMD of

student’s program and the corresponding state of LCS in the FSMD of golden

program; moreover, as the code after LCS is found contained in the FSMD of

golden program, this means that there is some code extra in the FSMD of golden

program which precedes the code that was found contained in the FSMD of

golden program. This extra code of the FSMD of golden program lies between

CSLCS, the state that is corresponding to LCS and the state on the FSMD of

golden program where the contained code begins. The extra code, therefore,

needs to be introduced in the FSMD of student’s program. The mechanism for

which is same as the mechanism for the first case, after removing extra code, if

any, after LCS in Ms.

3. In the case where the student’s program has some extra code, which needs to

be removed, the equivalence checker reports non-computational containment of

the FSMD of student’s program with the FSMD of golden program, along with

the LCS. The containment checker reports the path between the LCS and the

next cut-point of the FSMD of student’s program as path-wise un-contained in

the FSMD of golden program. As the equivalence checker reports equivalence

of the FSMDs from the starting state up to the LCS in the FSMD of student’s

program and the corresponding state of LCS in the FSMD of golden program;

moreover, as the code after LCS is found un-contained in the FSMD of golden

program, this means that there is some code extra in the FSMD of student’s

program which follows the LCS and spans at least upto the cut-point next to

LCS. This extra code block needs to be removed from the student’s program.

2.3 Implementations of strategies for various types of errors 101

Examples of cases 1-3

In the figures 2.50 to 2.53, a, a′, b, b′, c, c′, d and d′ represent the sets of data-

transformations along the respective transitions/edges between the states.

Mg

a a′

b b′

c c′

q00

q01

q02

q03

LCS

Ms

a a′

b b′

qa

qb

qc CSLCS

at least

reported LCS in Mg

Case 1 : Mg has extra block of code

(i) Ms vMg

Mg 6vMs

(ii) reversing roles of Ms and Mg

(iii) c− c′ of Mg is PWUC in Ms

PWUC: Path-wise un-contained

v : Computational containment

Figure 2.50: Mg and Ms, Ms has a missing block of code

102 Chapter 2 Containment analysis

Mg

a a′

b b′

c c′

q00

q01

q02

q03

LCS

Ms

a a′

b b′

qa

qb

qc

CSLCS

Case 1 Example 2: Mg has extra block of code

(i) Ms vMg, i.e., computational containment found

(iii) c− c′ of Mg PWUC in Ms

PWUC: Path-wise un-contained

if statements in b− b′ are independent of
code of blocks which are missing in Ms and

Mg 6vMs

(ii) reversing roles of Ms and Mg

are above it in Mg

Figure 2.51: Mg and Ms, Ms has a missing block of code

Mg

a a′

b b′

c c′

q00

q01

q02

q03

CSLCS

Ms

a a′

b b′

qa

qb

qc

LCS

Case 2: Mg has extra block of code

(i) Ms 6vMg, i.e., no computational containment

(ii) b− b′ of Ms PWOWC in Mg

PWOWC: Path-wise one way contained

if statements in b− b′ depend on
code of blocks which are above it but
below CSLCS in Mg.

Figure 2.52: Mg and Ms, Ms has a missing block of code

2.3 Implementations of strategies for various types of errors 103

Mg

a a′

b b′

c c′

q00

q01

q02

q03

CSLCS

Ms

a a′

d d′

qa

qb

qc

LCS

Case 3: Ms has extra block of code

(i) Ms 6vMg

(ii) d− d′ of Ms PWUC in Mg

PWUC: Path-wise un-contained

Figure 2.53: Mg and Ms, Ms has extra block of code

Example of combined cases 1-3

In the figures 2.54 to 2.57, a, a′, b, b′, c, c′, d and d′ represent the sets of

data-transformations along the respective transitions/edges between the states. These

figures show how removing the extra code block is done. The missing code blocks

will then be located as discussed in case 1 or 2, as the case may be. The missing

blocks are then introduced using the procedure given subsequently in this section.

104 Chapter 2 Containment analysis

Mg

a a′

b b′

c c′

q00

q01

q02

q03

CSLCS

Ms

a a′

d d′

c c′

qa

qb

qc

qd

LCS

Figure 2.54: Mg and Ms, Ms has a missing block and an extra block of code

Mg

a a′

b b′

c c′

q00

q01

q02

q03

CSLCS

Ms

a a′

c c′

qa

qb

qc

qd

LCS

Figure 2.55: Mg and Ms, removing code from extra block in Ms

2.3 Implementations of strategies for various types of errors 105

Mg

a a′

b b′

c c′

q00

q01

q02

q03

CSLCS

Ms

a a′

c c′

qa

qb, qc

qd

LCS

Figure 2.56: Mg and Ms, merging the states at the two ends of extra block in Ms

Mg

a

b b′

c c′

q01

q02

q03

LCS

a′

q00

Ms

a a′

c c′

qa

qb, qc

qd

CSLCS

Figure 2.57: Mg and Ms reversed, equivalence check finds Mg 6vMs

We present below the definition of correction vector, as the term has been used in

several places in the following discussion.

Definition 13 (Correction vector). The correction vector for each state Si of an FSMD

106 Chapter 2 Containment analysis

is an n-tuple ti = 〈ti,1, ti,2, . . . , ti,n〉, where n is the number of outgoing transition from

the state, each ti,k,1≤ k ≤ n is an outgoing transition from the state Si.

Definition 14 (Incoming vector). The incoming vector for each state Si of an FSMD

is an n-tuple ti = 〈ti,1, ti,2, . . . , ti,n〉, where n is the number of incoming transition to the

state, each ti,k,1≤ k ≤ n is an incoming transition to the state Si.

Steps for introducing extra code

(i) The correction vector Cv, for each state on FSMDs Mg and Ms, are stored in a

2-dimensional correction vector array, one each for Mg and Ms.

(ii) The incoming vector Iv, for each state on FSMDs Mg and Ms, are stored in

incoming vector linked lists, one each for Mg and Ms.

(iii) Find LCS (last correct state) and CSLCS (the corresponding state of the last

correct state in the correct FSMD).

(iv) If the correction vector of the CSLCS, Cv [CSLCS], is the same as the outgoing

transitions from the LCS, then exit. Let the node v in the FSMD be the CSLCS,

then it’s correction vector is Cv. If Cv is the same as the outgoing transitions

from the LCS, then exit.

(v) Introduce a state above LCS and make the outgoing transitions of the newly

introduced state, the same as the ougoing transitions of CSLCS. The transitions

previously incident on LCS will now be made incident on newly introduced

state. The outgoing transitions from the newly introduced state will be made

incident on the LCS. Now the new corresponding state of LCS will be the state,

which is immediately below the CSLCS.

(vi) Find out the set difference of incoming edges on the CSLCS and those on the

LCS. Push all the edges in the set difference on stack1.

2.3 Implementations of strategies for various types of errors 107

(vii) Find out the set difference of incoming edges on the LCS and those on the

CSLCS. Push all the edges in the set difference on stack2.

(viii) If the content of both the stacks are not empty and the top of both the stacks are

the same, then we pop both the stacks. The popped out edge is the edge which

is to be correctly placed on the modified incorrect FSMD, as it is placed in the

golden program’s FSMD. Also output the code starting from the start state of

popped out edge, to the state at the other end of the popped out edge, as the code

which should be properly placed as per the golden program.

(ix) Add the incoming edges of the newly introduced state and the newly introduced

state itself to the incoming vector table for Ms. Go to step (iii).

Note: When the missing condition is not nested inside another condition, then

the same mechanism discussed above will work except for manipulations of

stack1 and stack2, they will not play any role.

The FSMD of golden program having all the blocks is shown in the Figure 2.58.

In the Figure 2.59, the FSMD of student’s incorrect program is shown. The student’s

program is missing a block of code, which is to be inserted.

108 Chapter 2 Containment analysis

q00

q01

q02

q03

q04

q05

q06

q07

q08

−/s = 0

!(i <= 15)/−

i <= 15/i = i+1

b%2 == 1/s = s+a b%2! = 1/−

s >= n/s = s−n

s < n/−

!(i == m)/− i == m/a = a+b

!(a == b)/− a == b/a = a∗2

−/b = b/2

a >= n/a = a−n,sout = s a < n/sout = s

Figure 2.58: Figure showing Mg with several blocks of code.

2.3 Implementations of strategies for various types of errors 109

qa

qb

qc

qd

qe

q f

qi

−/s = 0

!(i <= 15)/−

i <= 15/i = i+1

b%2 == 1/s = s+a b%2! = 1/−

!(a == b)/− a == b/a = a∗2

−/b = b/2

a >= n/a = a−n,sout = s a < n/sout = s

Figure 2.59: Figure showing Ms with missing block of code.

As per the equivalence checker’s report, the LCS is found at qd and CSLCS at q03

in the step 3. In step 4, comparison of the outgoing transitions of reveals that they are

not the same. In step 5 a state q′03 is introduced above qd , the LCS, with its outgoing

transitions being the same as those of CSLCS, and they are made incident on LCS.

This is shown in the Figure 2.60.

110 Chapter 2 Containment analysis

qa

qb

qc

q′03

qd

qe

q f

qi

−/s = 0

!(i <= 15)/−

i <= 15/i = i+1

b%2 == 1/s = s+a b%2! = 1/−

s >= n/s = s−n s < n/−

!(a == b)/− a == b/a = a∗2

−/b = b/2

a >= n/a = a−n,sout = s a < n/sout = s

Figure 2.60: Figure showing Ms with application of correction vector.

In the second iteration, step 3 finds that now q04 has become the CSLCS, LCS is

the same. Their outgoing transitions are not the same so a new state q′04 is introduced

above qd , the LCS giving the following FSMD in the Figure 2.61.

2.3 Implementations of strategies for various types of errors 111

qa

qb

qc

q′03

q′04

qd

qe

q f

qi

−/s = 0

!(i <= 15)/−

i <= 15/i = i+1

b%2 == 1/s = s+a b%2! = 1/−

s >= n/s = s−n s < n/−

!(i == m)/− i == m/a = a+b

!(a == b)/− a == b/a = a∗2

−/b = b/2

a >= n/a = a−n,sout = s a < n/sout = s

Figure 2.61: Figure showing Ms with application of correction vector for the second

time.

112 Chapter 2 Containment analysis

Proper placement of the edges is visible in the next step after the execution of the

steps of computing the set difference of incoming edges and because of equal entries

at the top in stack1 and stack2, resulting in the proper positioning of the edges. This

is shown in the Figure 2.62

2.3 Implementations of strategies for various types of errors 113

qa

qb

qc

q′03

q′04

qd

qe

q f

qi

−/s = 0

!(i <= 15)/−

i <= 15/i = i+1

b%2 == 1/s = s+a b%2! = 1/−

s >= n/s = s−n

s < n/−

!(i == m)/− i == m/a = a+b

!(a == b)/− a == b/a = a∗2

−/b = b/2

a >= n/a = a−n,sout = s a < n/sout = s

Figure 2.62: Figure showing Ms becoming same as Mg after correction done for

skipping parenthesis.

114 Chapter 2 Containment analysis

The above mechanism to introduce code uses a 2-stack method, which works if the

structures, shown in the examples for various cases, is present. For other structures,

we have another mechanism to introduce code, which is given in sections 2.3.6 and

2.3.9.

Unified algorithmic steps for automated assessment

1. Execute the equivalence checker with the following parameters:

(a) Ms, FSMD file of student’s program and

(b) Mg, FSMD file of teacher’s program

2. If equivalence checker reports Ms 6vMg, then execute the containment checker

with LCS as a parameter.

3. Switch Case:

Case (Containment checker has reported unordered path-wise both way con-

tained):

check for dependency violation

Case (Containment checker has reported path-wise one way contained):

call the algorithm for missing code

Case (Containment checker has reported path-wise un-contained):

call the algorithm for removing code

Case (Containment checker has reported unordered path-wise both way con-

tained and path-wise one way contained for faulty branching):

call the algorithm for parenthesis skipping

4. If equivalence checker reports Ms vMg, then interchange the FSMDS Ms and

Mg and execute the equivalence checker again. If now the equivalence checker

2.3 Implementations of strategies for various types of errors 115

reports Mg 6vMs, then execute the containment checker with LCS as a parame-

ter. If the containment checker has reported path-wise un-contained, this means

there is missing code, call algorithm for missing code.

In these steps, Ms is transformed to M′s such that as much as possible of Ms is

retained.

Algorithm 6: Unified_algorithm_for_automated_assessment
Input: Ms, FSMD of student’s program and Mg, FSMD of teacher’s program;

Output: Transform Ms to M′s such that M′s ≡Mg

L1 Begin;

/*Step 1: Execute the equivalence checker with the following parameters: (i)Ms and (ii)Mg*/

L2 repeat

L3 if equivalence checker reports Ms 6vMg then

L4 execute the containment checker with LCS as a parameter;

L5 switch Report of containment checker do

L6 case Containment checker has reported unordered path-wise both way contained do

L7 check for dependency violation and incorporate corrections to remove dependency violations;

L8 case Containment checker has reported path-wise one way contained do

L9 call the algorithm for inserting the missing code in Ms;

L10 case Containment checker has reported path-wise un-contained do

L11 call the algorithm for removing code from Ms i.e.,;

L12 Remove all the data-transformations from ps and p′s (i.e., the extra block ps− p′s in Ms);

L13 Merge the two states at the two ends of both ps and p′s;

L14 case Containment checker has reported unordered path-wise both way contained and path-wise one

way contained for faulty branching do

L15 call the algorithm for parenthesis skipping;

L16 else

L17 interchange the FSMDs Ms and Mg and execute the equivalence checker again;

L18 if equivalence checker reports Mg 6vMs then

L19 execute the containment checker with LCS as a parameter;

L20 if the containment checker has reported path-wise un-contained then

L21 this means there is missing code, call the algorithm for inserting the missing code in Ms;

L22 until equivalence checker reports Ms vMg&&Mg vMs;

L23 End

Prior to line 13, the code in the if part corresponds to the condition Ms 6vMg. Line

116 Chapter 2 Containment analysis

13 comes under the else part (Ms vMg), where there are two possibilities,

1. either Mg vMs in which case Ms ≡Mg,

2. or Mg 6vMs.

The line 13 of the algorithm is to explore the latter possibility, which means that as

Ms vMg, but Mg 6vMs and thus Ms 6≡Mg, then it must be the case that transitions in

Mg are a superset of those in Ms. In other words the golden program has some ex-

tra code as compared to the student’s program, which means student’s code is missing

some lines of code. This is the way to ascertain missing code in the student’s program.

In other words, in line 2, Ms 6v Mg means that all computations in Ms are not

contained in Mg, but still there may be the case that all coputations in Mg are contained

in Ms. This possibility is explored in line 13.

2.3.4 Error of missing code in the nested cases

In this part of work, we have handled the case of missing code inside student code.

There can be many cases of errors of missing code in a program. If there is a nested

loop structure required in a program, a student is likely to miss some nested loop.

Other possibility of error is when there are many conditions to be checked in a pro-

gram, it is highly possible that student can miss some cases. Nested condition also

gives rise to possibility of missing code. Student’s errors are likely to miss some

nested condition and the associated code. In the subsection 2.3.5 given below, we

have discussed the implementation approach for missing loop. We consider the case

in which there are two nested loops but outer loop is missing. In subsection 2.3.8, we

have discussed the case, when a nested condition is missing. The steps for implemen-

tation of correction mechanism are given in subsection 2.3.9.

2.3 Implementations of strategies for various types of errors 117

2.3.5 Missing the code of nested loop

In this section we discuss the approach for handling the case of missing code of nested

loop. This case arises when there is nested loop in correct program but student has

missed out some nested loop in the program. This will make the FSMD of student

program different from teacher’s program. For handling this type of error we have

to introduce the loop in the program. Equivalence checker gives the path inside stu-

dent program for which it is failing. Starting of this path will be our LCS. Now the

containment checker reports the path in teacher’s FSMD, which contains the reported

path of equivalence checker. The output of containment checker gives us the intuition

that path of student’s FSMD for which equivalence checker is failing, is present in

teacher’s FSMD, but there is some extra code also along this path. So in order to

introduce extra code we need to know the correct state inside student’s FSMD, where

we can apply the correction vector. This state will be some state which generally

comes on some path after the LCS. Such a state is the state before which the equiv-

alence actually exists in the two FSMDs. This is so because as the LCS is the last

cut-point state up to which equivalence is established, there may still be some transi-

tions beyond LCS, which may be equivalently present on both the FSMDs examined

for equivalence. Thus, after LCS, there may be a non cut-point state, up to which the

two FSMDs will have equivalence. Such a non cut-point state will play an important

role in introducing the missing code of the nested loop, which we will see in the steps

for correction mechanism given later in this description. It may further be noted that

the state corresponding to such a non cut-point state found beyond LCS, may be a cut-

point state in the other FSMD. We present such a case in the discussion of correction

mechanism given below.

Below we have drawn FSMDs of programs which calculate the sum of digit and

again sum of digits of sum until we get a single digit number. First figure 2.63 shows

118 Chapter 2 Containment analysis

the FSMD corresponding to correct program (written below the figure 2.63). Second

figure 2.64 is the FSMD corresponding to student program. Student has missed one

outer while loop. He has calculated sum of the digit only once, making his program

incorrect. The corresponding to program is written below the figure 2.64.

q00

q01

q02

q04

q03

−/sum = n

sum = sum+ t

sum = 0

sum > 9/n = sum

n > 9/−

!n > 9/sum = sum+ n

!sum > 9/−

−/t = n%10

n = n/10

Figure 2.63: An Mg for digitsum program

digitsum_correct.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
do {

t =n % 10;
sum = sum + t;
n = n / 10;
} while (n > 9);

2.3 Implementations of strategies for various types of errors 119

sum = sum + n;
}
printf("%d", sum);

}

qa

qb

qc

qd

−/sum = n

−/t = n%10
sum = sum+ t
n = n/10

!n > 9/sum = sum+ n

n > 9/−

Figure 2.64: An Ms for digitsum program.

digitsum_incorrect.c
#include<stdio.h>
int main() {

int n, i, sum;
printf("enter the number");
scanf("%d", &n);
sum = n;
do {

sum = sum + (n % 10);
n = n / 10;

} while (n > 9);
sum = sum + n;
printf("%d", sum);

}

The correction mechanism

120 Chapter 2 Containment analysis

Equivalence checker fails to find equivalence and give us qa as the LCS. We, therefore,

select the path from qa to next cut point i.e., qa→ qb→ qc. We find the containment

of selected path, qa → qb → qc, in the correct FSMD with the help of containment

checker. Containment checker outputs path-wise one way contained and the con-

taining path is q00→ q01→ q02→ q03. This gives us the intuition that although the

contents of the path qa→ qb→ qc are present in correct FSMD, there is some extra

code also in the correct program, which is missing in the incorrect program on the

path qa→ qb→ qc. We have to introduce the missing code. We find the exact state in

incorrect FSMD, where we have to put that extra code. In order to find this, we first

check whether the equivalent path of the path from CSLCS to the next state, that is

q00→ q01, is present in the incorrect FSMD. It is found to be so. As the missing state

has not yet been found, we go further by checking presence of equivalent path of the

path from q01 to the next state, i.e., q01→ q02, inside the incorrect FSMD, which is

not found there. Hence, we conclude that the state corresponding to q01 is the missing

state in the incorrect FSMD, as up to q01 we could find that the corresponding paths

existed in the incorrect FSMD. We then check whether q01 is a state corresponding to

loop and we find that it is actually so, by using a DFS based mechanism. Simply intro-

ducing the loop won’t work, as we have to adjust the correct nesting of the loop. For

that, we keep on pushing the code below newly introduced loop, to the loop belong-

ing to the newly introduced loop state, until we get the loop-back transition coming

to newly introduced state, equivalent to loop-back transition coming to corresponding

state of newly introduced state.

2.3.6 Steps for correction mechanism

Let us use the following notations

(1) OutTrans: outward transition from a loop entry state going out of the loop,

(2) InTrans: inward transition from a loop entry state going inside the loop.

In a transition ti,e going from the state si to the state se, si is called the start state and

se is called the end state of the transition.

We use a structure having the following members.

2.3 Implementations of strategies for various types of errors 121

(1) OutTransEndState: to hold the end state of OutTrans,

(2) InTransEndState: to hold the end state of InTrans,

(3) StateCondition: to hold the loop condition at a loop entry state.

(4) StateMg: to hold the loop entry state of Mg.

(5) StateMs: to hold the loop entry state of Ms.

The stack StateStack is a stack containing each of its elements as a structure with

the members as stated above. StateStack is used in the steps given below.

The terms are clarified in the figure 2.65.

loop state

loop_condition / −

InTrans

OutTrans

of

of
end state

OutTrans

InTrans

end state

Figure 2.65: Outgoing transitions from loop state

(1) Run the equivalence checker on the FSMD Ms of student’s program and FSMD

Mg of teacher’s program. In case the programs are not equivalent, find the last

correct state (LCS) in Ms and the corresponding state CSLCS in Mg.

(2) Run the containment checker, let ps be the path of FSMD Ms (starting from

LCS) for which the containment checker yields “path-wise one way contained”;

this means there is a path pg (may be an extended path), starting from CSLCS

in Mg, which contains some extra transitions in addition to all the transitions of

ps.

122 Chapter 2 Containment analysis

(3) Start from the LCS in Ms and CSLCS in Mg. Find the first transition tg in pg

which is not matching with ps. The first state in ps from which the tg did not

match will henceforth be called an unmatched state (US). The state in pg, which

corresponds to the state US, is called the corresponding state of the unmatched

state (CSUS).

The following cases are possible.

(i) CSUS is not a cut-point, let sg be the only successor state of CSUS.

(ii) CSUS is a cut-point, but not a loop entry state, let sg be the successor state

on either of the outgoing transitions from CSUS.

(iii) CSUS is a cut-point and also a loop entry state, let sg be the successor state

of CSUS along the transition leading inside the loop.

Initially, let ss be same as US. We have the following action for the above cases.

(4) Repeat:

Switch Case:

Case (CSUS is not a cut-point):

let sg be the only successor state of CSUS

call the function for case I

Case (CSUS is a cut-point, but not a loop entry state):

let sg be the successor state on either of the outgoing transitions from

CSUS

call the function for case II

Case (CSUS is a cut-point and a loop entry state):

let sg be the successor state of CSUS along the transition leading inside

the loop

call the function for case III

Until (there is no state after sg)

(1) Function for case I: The CSUS is neither a cut-point nor a loop entry state.

(I) Let ChainMg be the sequence of all the transitions from sg to the next

cut-point;

2.3 Implementations of strategies for various types of errors 123

(II) Let ChainMs be the sequence of all the transition from ss to the next cut-

point;

(III) Let chain = Equate_chain(ChainMg, ChainMs) // ChainMs will become

same as ChainMg;

Push chain to at ss. The end state of chain will be ss and end state of ChainMg

will be sg.

(2) Function for case II: If CSUS is a cut-point, but not a loop entry state.

Execute the copy mechanism for non-loop cut-points, given at the end of

this section, with sg and ss as CSLCS and LCS respectively. The last states

acted upon by executing the copy mechanism are the states of Mg and Ms

where the correction vector (outgoing transitions) were found equal. These

states will be now sg and ss in Mg and Ms respectively.

(3) Function for case III: The CSUS is a cut-point and also a loop entry state.

(I) Introduce a self-loop entry state sn before US, with loop condition of

CSUS.

• Loop condition at sn will be same as the loop condition at CSUS.

• The condition for outward transition from sn will be the negation of

loop condition at CSUS. The outward transition from sn will be inci-

dent on US.

• Incoming transition on sn will be the one which was earlier incoming

transition at US.

(II) Push the following information into StateStack.

• OutTransEndState = US

• InTransEndState = US

• StateCondition = Loop condition of CSUS.

(III) Repeat

Switch Case:

Case (If sg is a loop entry state and ss is also a loop entry state and loop

condition at sg and loop condition at ss matches):

(A) Push the following information to StateStack

• OutTransEndState = OutTrans of ss

124 Chapter 2 Containment analysis

• InTransEndState = InTrans of ss

• StateCondition = Condition of ss

(B) Introduce a self loop entry state, st , inside the loop of sn. The loop

condition of st will be the loop condition of ss.

• The incoming transition on st will be the inward transition of

sn.

• The condition of outward transition from st will be the negation

of loop condition of sg. The outward transition from st will be

incident on sn.

• Set sn = st , ss = InTransEndState of top(StateStack).

Case (If sg is a loop entry state and ss is also a loop entry state and loop

condition at sg and loop condition at ss does not match):

(A) Introduce a self loop entry state, sn, before ss

• Loop condition at sn will be same as the loop condition at sg.

• The condition for outward transition from sn will be the nega-

tion of loop condition at sg. The outward transition from sn will

be incident on ss.

• Incoming transition on sn will be the one which was earlier

incoming transition at ss.

(B) Push the following information into StateStack.

• OutTransEndState = ss

• InTransEndState = ss

• StateCondition = Loop condition of sg.

Case (If sg is cut-point but not a loop entry state):

Execute the copy mechanism for non-loop cut-points, given at the

end of this section, with sg and ss as CSLCS and LCS respectively.

The last states acted upon by executing the copy mechanism are

the states of Mg and Ms where the correction vector (outgoing

transitions) were found equal. These states will be now sg and ss

in Mg and Ms respectively.

Case (If sg is neither a cut-point nor a loop entry state):

(A) Let us use the following notations

• scondStack,g be the state of Mg at StateMg of top(StateStack)

2.3 Implementations of strategies for various types of errors 125

• scondStack,s be the state of Ms at StateMs of top(StateStack)

• ChainMg: The sequence of all the transition from scondStack,g to

the next cut-point in the loop at scondStack,g.

• ChainMs: The sequence of all the transition from scondStack,s to

the next cut-point in the loop at scondStack,s.

(B) chain = Equate_chain(ChainMg, ChainMs) // ChainMs will be-

come same as ChainMg

(C) Push chain to the loop at sn. The end state of chain will be ss and

end state of ChainMg will now be sg.

Case (If feedback of sn becomes equal to the feedback of sg):

• sg = OutTrans of sn.

• ss = OutTransEndState of top(StateStack).

Pop StateStack.

Until StateStack is not empty

The chain copy mechanism function Equate_Chain

The steps of the mechanism are as follows.

Given a state sg of Mg and a state ss of Ms

If sg and ss are not cut-points

Make ChainMg

Make ChainMs

ForAll states st of ChainMg starting from sg

ForAll states stc of ChainMs starting from ss

If st == stc

continue

Else

Search st in ChainMs

If st is found in ChainMs

Place it as it corresponds to sg

126 Chapter 2 Containment analysis

Else sg not found

Introduce a state similar to sg at ss

Copy mechanism for non-loop cut-points

1. Find LCS and CSLCS. In case CSLCS is cut-point, not a loop start state, corre-

sponding to if - else condition do the following.

2. If the correction vector of the CSLCS, Cv [CSLCS], is the same as the outgoing

transitions from the LCS, then exit.

3. Introduce a state above LCS and make the outgoing transitions of the newly in-

troduced state, the same as the outgoing transitions of CSLCS. The two transi-

tions will correspond to a condition and its negation. The transitions previously

incident on LCS will now be made incident on newly introduced state. The out-

going transitions from the newly introduced state will be made incident on the

LCS.

4. Find out the end-point state of the if-else by finding out the common meet-

ing state starting from the two transitions emanating from CSLCS, and doing a

depth-first traversal. The common meeting state will be the end of the if-else

condition starting at CSLCS. Let us call it Qt . Let the cut-point next to Qt be

qctnext .

5. Using chain copy mechanism described in earlier subsection, do a cut-point to

cut-point copy of the contents along the two transitions emanating from CSLCS

up to qctnext into Ms starting from the newly introduced state along its outgoing

transitions as per the condition or its negation along the outgoing transitions.

This will ensure the introduction of the entire if-else part on Ms, same as that

starting at CSLCS. Go to step 1.

A formal definition of unmatched state is given below.

Definition 15 (Unmatched state (US) and its corresponding state). Let χu denote the

mismatched path from LCS. Let χ
(i)
u be the longest prefix of χu such that it has matched

2.3 Implementations of strategies for various types of errors 127

with a prefix ξ
(j)
s of some path ξ from CSLCS (in the golden FSMD Mg). The final state

of the prefix χ
(i)
u is called the unmatched state (US). It may be noted that i may be zero,

indicating that LCS itself is the unmatched state. The state in the FSMD of student’s

program Ms, which corresponds to US is referred to as the corresponding state of the

unmatched state (CSUS).

2.3.7 Simulation of correction mechanism on example problems

Example 2.5. The FSMDs and codes of teacher’s and student’s programs for cal-

culating the tables for n numbers are reproduced below (Figures 2.66 and 2.67).

The teacher’s program for this problem requires two for loops. In student program

the outer for loop is missing, making the student program inconsistent with teacher’s

program. We discuss below the simulation of the mechanism.

Table_correct.c
#include <stdio.h>
int main(){

int n, i, num, j;
printf("Enter an integer: ");
scanf("%d",&n);
for(j=0; j<n; j++){

for(i=1; i<=10; ++i){
num = n*i;
printf("%d * %d = %d ", n, i, num);

}
}
return 0;

}

Table_incorrect.c
#include <stdio.h>
int main(){

int n, i, num, j;
printf("Enter an integer: ");
scanf("%d",&n);
for(i=1; i<=10; ++i){

num = n*i;

128 Chapter 2 Containment analysis

Figure 2.66: Mg, generate tables program Figure 2.67: Ms, generate tables program

2.3 Implementations of strategies for various types of errors 129

printf("%d *%d = %d ", n, i, num);
}
return 0;

}

Execution of equivalence checker on these two FSMDs gives us qq1001 as the

LCS. The CSLCS is the state qq1001. Containment checker takes the path qq1001→
qq1998LB→ qq1999, starting from qq1001 to next cut point i.e qq1999 in Ms. It tries

to find whether this path is present in Mg or not. Containment checker outputs the path

qq1001→ qq1995LB→ qq1996→ qq1998LB→ qq1999 of Mg, which is containing

this path. After the execution of step (3), we get the state qq1998LB in Ms as un-

matched state, which is also ss. The corresponding state, CSUS, in Mg is qq1995LB,

thus sg is also qq1995LB in Mg. DFS visit of Mg with qq1995LB (i.e., sg) as root gives

that qq1995LB is neither the starting of loop, nor this is a cut-point. Hence, ChainMg

is constructed from sg to the next cut-point qq1996, in Mg. ChainMs is constructed

from US to the next cut-point qq1999, in Ms. The chain copy mechanism now works

on Ms as follows. Both the chains are compared and found unequal by Equate_chains

function. ChainMg is, therefore, introduced before US in step 6 (not shown, see fig-

ure 2.68). Now sg moves down to the next state i.e., qq1996, in Mg. ss remains at

the same position, implying that the two FSMDs are the same upto ss and sg. Next,

as sg is a cut-point and a loop start state, so a self-loop loop1 is introduced before ss

in step (3) in Ms. The condition of the self-loop is made the same as the condition at

sg. Now sg is moved down to the next state qq1998LB in Mg. ss remains at the same

place implying that the two FSMDs are the same upto ss and sg. The FSMD Ms after

this step is shown in figure 2.68. The unmatched state in this figure is numbered as

qq1998LELB. The modified code of the student’s program now becomes as follows.

#include <stdio.h>
int main(){

int n, i, num, j;
printf("Enter an integer: ");
scanf("%d",&n);
for(j=0; j<n; j++){
}

for(i=1; i<=10; ++i){
num = n*i;
printf("%d * %d = %d ", n, i, num);

}
return 0;

130 Chapter 2 Containment analysis

}

Figure 2.68: Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for generate tables program.

As the next statement after sg is a single assignment leading to a cut-point, which

2.3 Implementations of strategies for various types of errors 131

is also the same as the next statement after ss, so a trivial chain copy mechanism

described earlier makes a copy of the assignment into the self-loop loop1. sg now

moves down to the next state qq1999 in Mg. Also the ss moves down to the next state

in Ms, implying that the two FSMDs are the same upto ss and sg. As sg is now a

loop start state, so a self-loop, loop2, is introduced inside loop1. The loop loop2 is

shown introduced at the state qq1003 in the figure 2.69 for the modified FSMD Ms.

The condition of loop2 is kept the same as the condition at sg. Now sg moves to the

next state qq1002 in Mg. ss also moves down to the next state, implying that the two

FSMDs are the same up to ss and sg. The modified code of the student’s program now

becomes as follows.

#include <stdio.h>
int main(){

int n, i, num, j;
printf("Enter an integer: ");
scanf("%d",&n);
for(j=0; j<n; j++){

for(i=1; i<=10; ++i){
}

}
num = n*i;
printf("%d * %d = %d ", n, i, num);
return 0;

}

132 Chapter 2 Containment analysis

Figure 2.69: Modified incorrect FSMD after introducing loop2 inside loop1 in Ms for

generate tables program.

Check the state sg, as it is not a cut-point, so make a chain from sg to the next cut-

point. Also make a chain from ss to the next cut-point. Using chain copy mechanism,

copy the chain inside the loop loop2. This makes the FSMD Ms same as the FSMD

Mg. The resulting Ms is shown in figure 2.70 and the resulting code of student’s

program is as shown below.

#include <stdio.h>
int main(){

int n, i, num, j;
printf("Enter an integer: ");
scanf("%d",&n);

2.3 Implementations of strategies for various types of errors 133

for(j=0; j<n; j++){
for(i=1; i<=10; ++i){

num = n*i;
printf("%d * %d = %d ", n, i, num);

}
}
return 0;

}

Figure 2.70: Modified incorrect FSMD after introducing chain in loop 2 in Ms for

generate tables program.

134 Chapter 2 Containment analysis

2.3.8 Missing code of nested condition checking

In this case as the two FSMDs will not be equivalent, we verify this fact by checking

the equivalence in both the directions. It is so because checking equivalence only in

one direction may sometimes give misleading result. The LCS is obtained from the

run of equivalence checker in which non-equivalence was reported. In this case the

containment checking may give two types of results as given in section 2.3.3 for three

cases of missing code. Both of the results of containment checking are treated by the

following correction mechanism.

Given below are the two FSMDs (figures 2.71, 2.72). Assume the first FSMD

as correct FSMD and second FSMD as incorrect FSMD. There are two nested condi-

tions missing in the incorrect FSMD, which are nested inside another condition, in the

correct FSMD. The portion of FSMD Mg between the states q06 to q10 , is missing in

incorrect FSMD, Mg. This will make the equivalence checker fail.

Correction mechanism

The idea for finding the state from where we have to introduce the code is same

as discussed in section 2.3.5. Introduce a node above LCS and add those transitions

to newly introduced state which form the correction vector of corresponding state of

LCS. The transitions previously incident on LCS will now be incident to newly in-

troduced state. The outgoing transitions from the newly introduced state will now

be incident on the LCS. We find out the end state of the if-else code, where the the

branches of if and else meet. We make the outgoing branches from the new state have

the same contents as the branches of if and else starting at CSLCS, using chain copy

mechanism described earlier. Again we find the new LCS and CSLCS and keep on

adding new states and copying the transitions until the correction vectors of CSLCS

and transitions of LCS are not same. This will introduce the conditions and data

transformations correctly in Ms.

2.3 Implementations of strategies for various types of errors 135

q01

q02

q03

q04

q05

q06

q07

q08

q00

q09

q10

q11

q12

q13

q14

−/s = 0

i <= 15/−

−/i = i+1

b%2 == 1/−

−/s = s+a

s >= n/−

−/s = s−n

i == m/−

i == a/−

−/s = n

−/a = a∗2

−/b = b/2

q17

q15

q16

a >= n/−

−/−

!(a >= n)/−

!(i <= 15)/−

!(b%2 == 1)/−

!(s >= n)/−

!(i == m)/−

−/−

q18 q19

q20

q21

−/s = s−a

−/s = s+n

−/a = b

!(i == a)/−
−/a = a−b

−/s = s−n

−/i = 0

Figure 2.71: Mg having nested conditions.

136 Chapter 2 Containment analysis

qb

qc

qd

qe

q f

qg

qh

qi

qa

−/s = 0

i <= 15/−

−/i = i+1

b%2 == 1/−

−/s = s+a

−/i = 0
qn

!(i <= 15)/−

!(b%2 == 1)/−

!(i == a)/−

qp

qo

−/s = s−a

q j

−/b = b/2
qk

a >= n/−

!(a >= n)/−

ql

qm

−/− −/−
−/s = n −/s = s−n

i == a/−

−/a = a∗2

Figure 2.72: Ms missing nested conditions.

2.3 Implementations of strategies for various types of errors 137

2.3.9 Steps for correction mechanism

Following steps will be executed after executing first four steps of correction mecha-

nism in section 2.3.6

1. Find LCS and CSLCS. In case CSLCS is cut-point, not a loop start state, corre-

sponding to if - else condition do the following.

2. If the correction vector of the CSLCS, Cv [CSLCS], is the same as the outgoing

transitions from the LCS, then exit.

3. Introduce a state above LCS and make the outgoing transitions of the newly

introduced state, the same as the ougoing transitions of CSLCS. The two transi-

tions will correspond to a condition and its negation. The transitions previously

incident on LCS will now be made incident on newly introduced state. The out-

going transitions from the newly introduced state will be made incident on the

LCS.

4. Find out the end-point state of the if-else by finding out the common meet-

ing state starting from the two transitions emanating from CSLCS, and doing a

depth-first traversal. The common meeting state will be the end of the if-else

condition starting at CSLCS. Let us call it Qt . Let the cut-point next to Qt be

qctnext .

5. Using chain copy mechanism described in earlier subsection, do a cut-point to

cut-point copy of the contents along the two transitions emanating from CSLCS

up to qctnext into Ms starting from the newly introduced state along its outgoing

transitions as per the condition or its negation along the outgoing transitions.

This will ensure the introduction of the entire if-else part on Ms, same as that

starting at CSLCS. Go to step 1.

138 Chapter 2 Containment analysis

2.3.10 Simulation of above mechanism

We have simulated the above mechanism for two FSMDs. We are assuming the first

FSMD as correct FSMD, Mg and second FSMD as incorrect FSMD, Ms. Incorrect

FSMD is missing two nested conditions, which are nested inside another condition.

The FSMDs Mg and Ms, are shown in figures 2.71 and 2.72. The portion of FSMD

Mg between the states q06 to q10 , is missing in incorrect FSMD, Mg. This will make

the equivalence checker fail.

From the execution of the equivalence checker on the above two FSMDs we find

state qg as LCS and q06 as the CSLCS. We introduce the new state q′06 in Ms, be-

fore LCS, and make the two outgoing transitions from it have the conditions same as

the correction vector (outgoing transitions) of CSLCS. These outgoing transition are

made incident on LCS. In the following figure 2.73, the new state and its outgoing

transitions have been shown.

Now chain copy mechanism is invoked in the two outgoing branches from q′06.

This introduces the state q′19 and the subsequent transition in the branch corresponding

to the negation of condition. This makes the entire branch copied. In the other branch,

corresponding to the condition being true, the state q′07, the subsequent transition and

the next cut-point state q′08 is introduced. This is shown in the figure 2.74.

The chain copy mechanism is applied now in the outgoing branches from q′08.

As a result the states q′09 and q′20 are introduced and the relevant transitions are also

introduced, giving the modified FSMD Ms, which is same as the golden FSMD Mg.

Figure 2.75 shows the modified Ms as a result of these steps.

Summary
In this sub-section we have discussed the implementation of correction mechanism

when one loop, out of two nested loops, is missing. We have simulated the correction

mechanism on a student program to calculate sum of digits of input number and sum

of digits of sum until a single digit number is obtained. We have also discussed the

implementation of correction mechanism when nested conditions are missing. We

have simulated the mechanism on an FSMD, in which incorrect FSMD is missing two

nested conditions, which are nested inside another condition.

2.3 Implementations of strategies for various types of errors 139

qb

qc

qd

qe

q f

q′06

qa

qg

qh

qi

q j

qk

−/s = 0

i <= 15/−

−/i = i+1

b%2 == 1/−

−/s = s+a

i == a/−

−/s = n

−/a = a∗2

−/b = b/2

−/i = 0
qn

ql

qm

a >= n/−

−/−

!(a >= n)/−

!(i <= 15)/−

!(b%2 == 1)/−

−/−

qo

qp

−/s = s−a !(i == a)/−

−/s = s−n

!(s >= n)/− s >= n/−

Figure 2.73: After introduction of missing state q′06 in Ms.

140 Chapter 2 Containment analysis

qb

qc

qd

qe

q f

q′06

q′07

q′08

qa

qg

qh

qi

q j

−/s = 0

i <= 15/−

−/i = i+1

b%2 == 1/−

−/s = s+a

s >= n/−

−/s = s−n

i == a/−

−/s = n

−/a = a∗2

−/b = b/2
ql

qm

a >= n/−

−/−

!(a >= n)/−

!(b%2 == 1)/−

!(s >= n)/−

−/−

qo q′19

qp

−/s = s−a !(i == a)/−

−/s = s−n

−/i = 0
qn

qk

!(i <= 15)/−

−/s = s+n

!(i == m)/−i == m/−

Figure 2.74: After introduction of missing states q′07, q′08 and q′19 in Ms.

2.3 Implementations of strategies for various types of errors 141

qb

qc

qd

qe

q f

q′06

q′07

q′08

qa

q′09

qg

qh

qi

q j

−/s = 0

i <= 15/−

−/i = i+1

b%2 == 1/−

−/s = s+a

s >= n/−

−/s = s−n

i == m/−

i == a/−

−/s = n

−/a = a∗2

−/b = b/2
ql

qm

a >= n/−

−/−

!(a >= n)/−

!(b%2 == 1)/−

!(s >= n)/−

!(i == m)/−

−/−

qo q′19

q′20

qp

−/s = s−a

−/s = s+n

−/a = b

!(i == a)/−
−/a = a−b

−/s = s−n

−/i = 0
qn

qk

!(i <= 15)/−

Figure 2.75: Corrected Ms, after introduction of missing states q′09 and q′20.

142 Chapter 2 Containment analysis

2.4 Summary of the strategies applicable for all the

cases discovered so far

We now summarize the algorithms for the correction strategies to be applied in order

to do automated assessment of programs.

1. At first we discuss the algorithm for dependency violation. Dependency vio-

lation can be detected due to the fact that if the equivalence checker fails to

find the equivalence between the incorrect and the correct FSMDs and a sub-

sequent execution of containment checking mechanism reports unordered path-

wise both way contained, then there must be a dependency violation inside the

incorrect FSMD as per theorem 2. Failure of equivalence checker occurs as the

equivalence checker cannot escape to account for a dependency violation as it

incorporates forward substitution. In forward substitution the latter definition

of a variable is substituted in place of the occurrence of variable subsequent to

the new definition. This is why the equivalence checker is not able to detect

the dependency violation. The containment checker is not sensitive to depen-

dency violation, as it only tries to match the occurrence of a data-transformation

among several of them, but does not bother in which order it encounters each

data-transformation. For example, we see that dependency is violated in the

following program segments. In the first one, which is a correct program, the

expression a = a + 1 follows the expression s= s + a. In s = s + a, the

variable s is dependent on the variable a. In the second program segment, i.e.,

in the incorrect version, a = a + 1 precedes s = s + a. Thus the variable a

in s = s + a is dependent on a = a + 1. This causes the violation of depen-

dency in the incorrect program. Due to forward substitution the equivalence

checker converts the subsequent statement of the incorrect program into the fol-

lowing statement: s = s + a + 1. Thus the equivalence checker is able to

differentiate between the values of s in the two programs, the correct one com-

putes s = s + a, whereas the incorrect one computes s = s + a + 1. Thus

equivalence checker will report the two programs as not equivalent. The con-

tainment checker, however, will only look for the existence of the two data

transfer statements of the correct program, a = a + 1 and s = s + a in the

incorrect program and it finds them there, reporting unordered path-wise both

2.4 Summary of the strategies 143

way contained.

2. We now discuss how a check for parenthesis skipping is done. This error arises

if the student does not put the closing parenthesis at the end of a block, where

it should be placed. Instead of this he puts it after some more code, which may

belong to the next block of code. This will cause the corresponding edge to

skip the state on which it should be incident in the FSMD of golden program.

The skipped edge will thus be incident on some state beyond the original state,

causing change in the FSMD structure.

Parenthesis skipping is of following types i) parenthesis skipping to a cut point,

ii) parenthesis skipping to a non cut point and iii) edge corresponding to skipped

parenthesis belongs to a loop. Here we discuss the first case, as the algorithm

for this case is applied to all incorrect programs for the reasons of automating

the process. In this case, equivalence checking fails and the equivalence checker

reports a path below LCS, from LCS to the next cut point, as the faulty path.

This path as indicated by the equivalence checker, however, is not actually hav-

ing the error. The error lies in the path above LCS, which is to be reported and

the corresponding correct code needs to be informed to the user. The algorithm

for this case employs pushing the set difference of number of incoming edges on

the corresponding states of the FSMDs of the correct and the incorrect program

on two stacks, stack1 and stack2. Stack1 is pushed with the set difference of in-

coming edges of a state on the FSMD of the correct program and the incoming

edges of the corresponding state on the FSMD of the incorrect program, start-

ing from a state and then going down to the next state below, till LCS. Stack2

is pushed with similar set difference of a state on the incorrect FSMD and the

corresponding state on the correct FSMD. The state from which this mechanism

is started is the least numbered state on the other ends of the edges incident on

the LCS, as the edge for skipped parenthesis started from this state. We keep

popping and moving to the states below till we find the top of the stacks have

the same edge (i.e., same condition and data-transformation and the start states

are also corresponding ones). This edge is popped from both the stacks. The

states at the two ends of the popped edge in the incorrect program are the states

between which there lies faulty code causing skipping of edges. The correct

code is the code between the corresponding states in the correct program, which

are respectively corresponding to the states at the two ends of the popped edge

144 Chapter 2 Containment analysis

in the FSMD of the incorrect program. In actual algorithm, this mechanism is

started at the start state of the program so that this algorithm can be applied in all

cases, in order to automate the mechanism, as given a program we do not know

which error will it have. It is to be noted that containment checker in this case

will report path-wise one way contained. The containment checker also reports

path-wise one way contained in case of missing code in the incorrect program.

The algorithm for missing code is dealt with later in this section.

3. Next we discuss how we check for the error of parenthesis skipping, such that

the skipping edge meets a non cut point state in the FSMD of incorrect program.

In this case after the equivalence checker fails, the containment checker reports

partially equal and partially contained. This step is, therefore, executed only if

the containment checker reports unordered path-wise both way contained and

path-wise one way contained. The error reporting mechanism is the same as that

in the above case, but here the algorithm starts pushing into the stack starting

from the state LCS on the FSMD of incorrect program and its corresponding

state, CSLCS on the FSMD of correct program. The pushing continues with the

subsequent states as in the previous step, continuing as before till the top of both

the stacks is the same. Once the edge on the top is the same on both the stacks,

it is popped and used to report the correct and incorrect code as in the previous

step.

4. Edge corresponding to skipped parenthesis belongs to a loop.

Because of the skipped parenthesis and resulting introduction of extra code in-

side the loop body, the start state of the loop in the correct FSMD will have two

corresponding states in the incorrect FSMD. One of which is the start state of the

for loop in the incorrect FSMD. The other corresponding state is the last correct

state. The paths between LCS and start state of the loop is reported contained in

the correct FSMD by the containment checker. The code corresponding to the

paths between LCS and start state of the loop is suggested as extra code in the

loop, this code should be moved away from the loop.

5. Missing code of nested condition checking - The unmatched state does not be-

long to loop.

The term unmatched state is introduced in the discussion below. In this step we

check for two cases of missing code of nested condition checking. i) In one case

the equivalence checker gives a no answer and the containment checker reports

2.4 Summary of the strategies 145

path-wise one way contained. ii) In the other case the equivalence checker when

executed with incorrect FSMD as the first argument, shows up equivalence but

when the arguments are reversed, it gives a no answer. The containment checker

in this case reports path-wise un- contained. As the error reporting mechanism

is the same in both the cases, so we proceed as follows. At first the equivalence

checker is run with incorrect FSMD as the first argument. If the report is "not

equivalent" then we proceed with the containment checker, which should report

path-wise one way contained; but if it reports equivalent, then the arguments

are reversed. If now the report is "not equivalent", then containment checker is

run, which should report path-wise un- contained. If the containment checker

output is as just mentioned for the two cases, then only we proceed with this

mechanism as the other cases of containment checking have been handled in

previous steps. The LCS lies on the correct FSMD in the case where we had to

reverse the arguments for equivalence checking. The mechanism in these cases

is basically to find out the path starting from CSLCS, which contains the path

from LCS to next cut point. Comparing cut point to cut point we find out the

unmatched state on the path from LCS. Unmatched state is the state up to where

the FSMDs match and after that code is missing. To insert the missing code, cor-

rection vector is used and new states are introduced and list of corresponding

states is updated until the correction vectors of the corresponding states match.

In order to ensure correct nesting the method described earlier with two stacks

is used.

6. Missing code belongs to loop - The Unmatched State belongs to loop.

First, the unmatched state (US) and the corresponding state of unmatched state

(CSUS) are found in a manner similar to the previous step. The mechanism in

these cases is basically to find out the path starting from CSLCS, which contains

the path from LCS to next cut point. Comparing cut point to cut point, we find

out the US on the path from LCS. CSUS is then found from the correct FSMD.

It is then checked whether CSUS is the starting state of a loop, in which case, a

new state is introduced in the incorrect FSMD before the unmatched state and a

loop is introduced with the newly introduced state as the start state of the loop.

Actually, the correction vector (the only outgoing edge, in this case) of the start

state of the loop in the correct FSMD (which is the CSUS also) is added to the

newly introduced state, as the loop-back edge. Code is added in the incorrect

FSMD, from the loop previously present in the incorrect FSMD to the newly

146 Chapter 2 Containment analysis

introduced loop, until it is found that the the feedback coming to the newly

introduced state has become equal to the feedback coming to CSUS, the starting

state of loop in the correct FSMD. For checking, this it is to be ascertained

that the loop-back edge is coming from the corresponding states in both the

FSMDs and the condition and data transfer are the same on the loop-back edges

in both the FSMDs. Further, we intend to push the entire remaining code of the

already existing loop to the newly introduced loop. For this, single statements

are pushed one after the other, and a block of code (e.g. loop, conditions or

nested conditions etc.) is pushed in its entirety at one time. Every time we

push some code, we check whether the feedback edge has become equivalent

to the feedback edge in the correct FSMD. After pushing the entire already

existing loop’s code to the newly introduced loop may give us the situation that

the state from which feedback is coming to the newly introduced state is the

corresponding state of the state from which feedback is coming in the correct

FSMD, condition of the feedback is also the same but data-transformation may

be different. This may further require pushing the next data-transformation or a

block of code (which lies outside the previously existing loop) inside the newly

introduced loop. This will give us the FSMD which is the same as the correct

FSMD.

2.5 Results and discussions

The following table 2.1 shows the results of containment analysis for various cases

identified for 10 samples of each case. In most of the cases, the error has been detected

correctly. Table 2.1 thus summarizes the various error cases handled so far and the

reports of equivalence checker and the containment checker for each case. The reports

of equivalence checker and the containment checker are same for cases 2,4,5 and 7

in the table. Case 2 occurs when the parenthesis is misplaced in such a way that

the corresponding branch in FSMD becomes incident on a cut-point state, which lies

beyond the actual state on which it should have been incident. Case 4 occurs when

due to wrongly putting the closing parenthesis of a loop body, the code beyond the

loop body also becomes a part of loop. Cases 5 and 7 are under the category of error

of missing code. Case 5 occurs when there is missing code causing a non-nested cut-

point missing in the FSMD. Case 7 is when there are two nested cut-points missing.

2.5 Results and discussions 147

In all these cases, the containment is found after doing path extension, as in the case

of path-wise one way contained. These cases can be distinguished based on the facts

that i) in case of faulty branching due to misplaced closing parenthesis, at least two

states will have different number of incident branches when compared with the golden

FSMD and ii) in case of faulty branching from inside the loop body to some state

outside the loop, resulting in extra code inside loop, there is always a loop and the

start state of the loop gets two corresponding states in the incorrect FSMD. The case

of missing code will not have these two situations. The three cases are thus separable.

In this chapter the cases missing nested loops and missing nested conditions were

also aimed at. Schemes were suggested and have been found to work on the example

problems as summarized in table 2.2. The results of our study in the table 2.2 suggest

that in case the student’s program has code which is in order with the golden program,

then the correct code can be recovered and no duplicate code will be inserted in the

recovered code. Some of the example codes mentioned in table 2.2 are are given in

the appendix B.

We can thus summarize the result of our work in this chapter as follows.

1. The equivalence of programs can be effectively checked using an additional

containment checking approach. Incorporation of containment checking is re-

quired for identifying the type of of errors, e.g., dependency violation etc. as in

the table 2.1.

2. Program errors which lead to alteration in the FSMD structure may be classified

broadly into various categories according to the resulting FSMD structure as

outlined in item 2 of the work done section above and the ones that we studied

are given in the table 2.1.

3. Strategies were developed for diagnosing errors as above and for reporting the

faulty portion of the code. Some results are in table 2.1, from which it is evident

that error diagnosis is being correctly done in most of the program FSMDs.

148 Chapter 2 Containment analysis

Case Error type Equivalence

checker

output

Containment checker

output

#tested #detected

1 Dependency

violation

Not con-

tained

Unordered path-wise

both way contained

10 7

2 Parenthesis

skipping to

cut point

Not con-

tained

Path-wise one way con-

tained

10 10

3 Parenthesis

skipping

to non cut

point

Not con-

tained

Unordered path-wise

both way contained

and path-wise one way

contained for faulty

branching

10 10

4 Skipping

parenthesis

belonging

to a loop

Not con-

tained

Path-wise one way con-

tained

10 7

5 Code

missing

(missing

non-nested

cut-point)

Not con-

tained

Path-wise one way con-

tained

10 10

6 Code

missing

(missing

cut-point

is nested

inside an-

other cut

point)

contained,

not con-

tained

when

reversed

Path-wise un-contained 10 10

7 Code miss-

ing (two

nested cut

points are

missing)

Not Equiv-

alent

Path-wise one way con-

tained

10 10

Table 2.1: Table of cases of error diagnosis of program FSMDs

2.5 Results and discussions 149

Program Error type Nature of

code in Ms

Applicability

of scheme

Result

Tables missing

outer loop

in-order yes restores missing loop,

no duplicate code re-

sulted

Conditions missing

nested

conditions

in-order yes restores missing condi-

tions, no duplicate code

resulted

Digitsum missing

outer loop

in-order yes restores missing loop,

no duplicate code re-

sulted

Digitsum missing in-

ner loop

in-order yes restores missing loop,

no duplicate code re-

sulted

Diamonds missing

both outer,

inner loops

in-order yes restores missing loops,

no duplicate code re-

sulted

Simple missing

some

transitions

in-order yes restores missing transi-

tions in order, no dupli-

cate code resulted

Table 2.2: Table of cases of error handling of program FSMDs for missing nested or

in-line code

150 Chapter 2 Containment analysis

2.6 Conclusion

In this chapter we have modified the equivalence checking by adding containment

checking to it in order to be able to detect faults in the programs while checking

their equivalence with model programs. Four cases of containment types have been

checked and the results have been found to be satisfactory in the sense that we have

been able to find out the fault and report remedial suggestions for them. In future we

propose to enhance the work by incorporating error detection for multiple errors and

error correction strategies.

This chapter assumed firstly that the FSMD of student’s program has the condi-

tional constructs in the proper order, thus there is no dead code in the student’s pro-

gram due to improper ordering of conditional constructs. The second assumption was

that the FSMDs being compared have the same variable names. The two assumptions

are not true for actual student’s programs. We describe our methods to handle the

cases, where the student’s programs may have the above two deficiencies, in the next

chapter.

Chapter 3

Methods to reconcile dissimilarities
between FSMDs arising from
students’ programs

3.1 Introduction

In this part of the work, pre-processing requirements of programs have been aimed

at. The research objectives for this part of the work were identified as (i) developing

methods to support automated evaluation, in cases where programs have conditional

constructs, which should obey precedences and (ii) to develop a scheme for variable

mapping in programs. Work done in this chapter is introduced below.

The first aspect mentioned above is due to the fact that logic in programs de-

mands that in a nesting of if statements there are conditions that have to be evaluated

in a certain order, but the students may violate that order. Before thorough equiv-

alence checking is done, the student’s program, therefore, has to be subjected to a

pre-processing step. The objective of pre-processing is that a mapping of the names

of variables have to be evolved and that the nested conditions should conform to some

rule of precedence. In the following section we first describe variable mapping and

then the problem of identifying the precedence order.

The second aspect is due to the fact that since the students will be using variable

151

152 Chapter 3 Methods to reconcile dissimilarities between FSMDs

names different from those in the golden program, we will have to evolve a map-

ping or an association of the variables used in the student’s program, with the ones

used in the golden model. An algorithm has been developed for variable mapping be-

tween two programs. This is done as the FSMD based equivalence checking assumes

the variable names to be the same in the two programs under examination, without

which the equivalence checking is not possible. The variable mapping algorithm is

an FSMD driven algorithm in the sense that it prepares the FSMD models of both the

programs, compares their paths for similarity of conditions and data-transformation

in a depth first manner and tries to establish a mapping between the variables, which

assume equivalent symbolic values after traversing a path from a cut point to the next.

Presently variable mapping is done as a pre-processing step. This may be enhanced in

the future to work hand-in-hand with the equivalence checking steps.

3.2 Programs with constraints in ordering of condi-

tions

A construct that appears frequently in programs is the else-if block. The condition

that appears in a subsequent else-if block should not be stronger (i.e., less general)

than any of its preceding conditions, otherwise this block will never be executed (in

other words, this block qualifies as dead code). Such wrong ordering of conditions

in else-if blocks are often introduced by novice student programmers. It is to be

noted that such violation of precedence of conditions in else-if constructs qualify

as logical errors which are not detected by standard compilers, such as gcc [2]. In this

work, we tabulate different cases to identify the correct and the incorrect precedence

of conditions in else-if constructs and thereby, automatically report such errors in

students’ programs and also provide feedback towards error correction.

Recently, an automated evaluation scheme based on equivalence checking of the

finite state machine with data-path (FSMD) model [33] has been proposed in [77].

Specifically, FSMD based equivalence checking was first proposed in [45], which is

later developed to handle uniform and non-uniform code motion based optimization

techniques in [44, 47, 54]. This method is general enough for checking equivalence

of digital circuits as well [46]. A further enhancement of this method can be found

3.2 Programs with constraints in ordering of conditions 153

in [11] and [12], which can additionally handle code motions across loops. Thus,

by adopting the FSMD based equivalence checking method, the method of [77] can

handle a wide range of supported code optimization techniques that may be applied

by a student.

The method of [77] relies on the resemblance of the control flow of the student pro-

gram with that of the golden model program supplied by the instructor/teacher. Note

that there may be many ways to correctly order the conditions of an else-if construct

and a student should be awarded full marks for following any one of these correct or-

derings; however, to achieve the same, the method of [77] needs to be supplied with all

the possible correct permutations of the conditions of the else-if construct by the in-

structor. Thus, the instructor, theoretically, may need to supply an exponential number

of golden programs (in terms of the number of conditions in an else-if construct)

and hence the method of [77] is not viable. Therefore, we tabulate different cases to

identify the correct and the incorrect precedence of conditions in else-if constructs

and thereby, automatically report such errors in students’ programs and also provide

feedback towards error correction.

The following description is organized as follows. Section 3.2.1 describes the

problem in detail and explains the basic technique for identification and correction of

precedence of conditions in else-if constructs in students’ programs. Section 3.2.2

describes the basic algorithm of our automated checking method; a formal treatment

of the worst case time complexity of our algorithm is also provided in this section.

3.2.1 Identification and correction of precedence of conditions in

else-if constructs

Algorithms with nested conditional branches are generally implemented using the

else-if constructs in high-level languages, such as C and Java. The conditions that

appear in the else-if blocks need to be in a well defined order; specifically, the con-

dition that appears in a subsequent else-if block should not be stronger than any

of its preceding conditions. Violation of such ordering occurs when a programmer

wrongly places a condition, which should be checked in a latter block, in an earlier

block – such cases are often encountered while checking novice students’ programs.

These errors are adjudged as logical errors which are not checked by the standard

154 Chapter 3 Methods to reconcile dissimilarities between FSMDs

compilers, such as gcc. Hence, while checking the students’ programs, we need to

carefully examine that in the else-if blocks, the conditions have been placed in the

proper order. If a condition which should be checked latter is kept in an earlier block

and the condition which was to be checked earlier is put in a latter block, then at

the time of execution of the program, the first placed condition will be checked and

the corresponding code shall be executed but the latter placed condition will never

be checked and thus the corresponding code-block will never get executed. Thus, we

arrive at a piece of code which is analogous to dead-code. The reason for this is the

fact that the test for every condition corresponds to a set of values of the variables in

question and if this set, as determined by the first condition, happens to be a superset

of the set corresponding to the subsequent condition, then the subsequent condition

will never be checked because a superset of the condition has already been checked.

As an example, we consider the following code:

if (x > 30)
sum = sum + 1;

else if (x > 25)
sum = sum + 2;

else if (x > 20)
sum = sum + 3;

else if (x > 15)
sum = sum + 4;

else
sum = sum + x;

In the above code all the else-if blocks get a chance to get executed for some

value of x > 15. If x ≤ 15 then the else part is executed.

Now, let us take a look at the following code:

if (x > 15)
sum = sum + 1;

else if (x > 20)
sum = sum + 2;

else if (x > 25)
sum = sum + 3;

else if (x > 30)
sum = sum + 4;

else
sum = sum + x;

3.2 Programs with constraints in ordering of conditions 155

In the above code if x > 15 then the first block is executed, otherwise the else part

is executed. For no value of x, the blocks corresponding to the conditions x > 20, or

x > 25, or x > 30 ever get executed. The reason here is violation of the ordering of

the conditions.

From the discussion above, it is evident that the ordering of the test conditions

in a code with else-if statement has to follow some rules of precedence; we have

tabulated different such cases as shown in Table 3.1. Note that the column “Precon-

dition” in this table enlists the relationship between the participating conditions in the

else-if blocks; the entry c1⇒ c2 in this column indicates that c1 is a stronger con-

dition than c2, i.e., whenever c1 is satisfied, c2 must also be satisfied. It is important

to note that although we show at most two conjuncts (e.g., c1&&c2) and two disjuncts

(e.g., c1 ‖ c2) in Table 3.1.

The entries in Table 3.1 can be understood as follows. Given a precondition, if the

program has code in the form depicted under the column for the “incorrect sequence”,

then the correct version would be as is written under the column “correct sequence”.

For example, in the case 1 as c1⇒ c2, hence check for c1 should not be used after the

check for c2 in an if-else if block, as c1 being a stronger condition, the else if part

will never be executed, when both c1 and c2 hold, because the execution of if (c2)

will result in the execution of if part. The rules in Table 3.1 are not comprehensive. In

cases, where none of the rules hold, our system will not be able to give any indication.

The rules of table 3.1 may be extended through careful analysis. Some examples

of extension have been shown in the table 3.2. However, if two conditions are such

that there is no containment relationship between them, then the ordering of these con-

ditions is inconsequential. For example, if the conditions have different independent

variables, then there cannot be any containment relationship.

Steps of the procedure automated precedence checker - for checking violation
of precedence of conditions

For any nested if-else if statement s

Step 1: Let {C1,C2, . . .Ck} be the conditions associated with each if-clause in the

order in which they occur in s;

156 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Table 3.1: Examples for else-if constructs

Case Precondition Correct sequence Possible Incorrect sequence

1 c1⇒ c2 if (c1) {...} if (c2) {...}

else if (c2) {...} else if (c1) {...}

2 c3⇒ c1 or c3⇒ c2 if (c3) {...} if (c1 ‖ c2) {...}

else if (c1 ‖ c2) {...} else if (c3) {...}

3 c1⇒ c3 or c2⇒ c3 if (c1&&c2) {...} if (c3) {...}

else if (c3) {...} else if (c1&&c2) {...}

4 c1⇒ c3 and c2⇒ c4 if (c1&&c2) {...} if (c3 ‖ c4) {...}

else if (c3 ‖ c4) {...} else if (c1&&c2){...}

5 c1⇒ c3 and c2⇒ c4 if (c1 ‖ c2) {...} if (c3 ‖ c4) {...}

else if (c3 ‖ c4) {...} else if (c1 ‖ c2) {...}

6 c1⇒ c3 and c2⇒ c4 if (c1&&c2) {...} if (c3&&c4) {...}

else if (c3&&c4) {...} else if (c1&&c2) {...}

Step 2: For any i,1 ≤ i < k, for any j > i, if C j ⇒ Ci then there is a violation of

precedence.

3.2.2 Implementation

In this section, we present the procedure that we have devised to detect violation of

precedence of conditions in else-if constructs of student’s programs. The procedure

consists of steps as elaborated below; we provide relevant examples in each step for

clarification.

Step 1: If there are nested else-if constructs in a program, then we extract the con-

ditions from the innermost else-if block and gradually move outwards; for example,

consider the following program snippet:

if (c1) { ... }

else if (c2)

3.2 Programs with constraints in ordering of conditions 157

Ta
bl

e
3.

2:
E

xt
en

de
d

ex
am

pl
es

fo
re

ls
e-

if
co

ns
tr

uc
ts

C
as

e
Pr

ec
on

di
tio

n
C

or
re

ct
se

qu
en

ce
Po

ss
ib

le
In

co
rr

ec
ts

eq
ue

nc
e

1
c 1
⇒

c 2
⇒

..
.⇒

c n
if

(c
1)

{.
..}

if
(c

n)
{.

..}

el
se

if
(c

2)
{.

..}
el

se
if

(c
n−

1)
{.

..}

..
.

..
.

el
se

if
(c

n)
{.

..}
el

se
if

(c
1)

{.
..}

2
c n
⇒

c 1
or

c n
⇒

c 2
or

if
(c

n)
{.

..}
if

(c
1
‖c

2
‖.

..
‖c

n−
1)

{.
..}

..
.

or
c n
⇒

c n
−

1
el

se
if

(c
1
‖c

2
‖.

..
‖c

n−
1)

{.
..}

el
se

if
(c

n)
{.

..}

3
c 1
⇒

c n
or

c 2
⇒

c n
or

if
(c

1&
&

c 2
&

&
..
.&

&
c n
−

1)
{.

..}
if

(c
n)

{.
..}

..
.

or
c n
−

1
⇒

c n
el

se
if

(c
n)

{.
..}

el
se

if
(c

1&
&

c 2
&

&
..
.&

&
c n
−

1)
{.

..}

4
c 1
⇒

c n
+

1
an

d
c 2
⇒

c n
+

2
an

d
if

(c
1&

&
c 2

&
&
..
.&

&
c n

){
...

}
if

(c
n+

1
‖c

n+
2
‖.

..
‖c

2n
){

...
}

..
.

an
d

c n
⇒

c 2
n

el
se

if
(c

n+
1
‖c

n+
2
‖.

..
‖c

2n
){

...
}

el
se

if
(c

1&
&

c 2
&

&
..
.&

&
c n

){
...

}

5
c 1
⇒

c n
+

1
an

d
c 2
⇒

c n
+

2
an

d
if

(c
1
‖c

2
‖.

..
‖c

n)
{.

..}
if

(c
n+

1
‖c

n+
2
‖.

..
‖c

2n
){

...
}

..
.

an
d

c n
⇒

c 2
n

el
se

if
(c

n+
1
‖c

n+
2
‖.

..
‖c

2n
){

...
}

el
se

if
(c

1
‖c

2
‖.

..
‖c

n)
{.

..}

6
c 1
⇒

c n
+

1
an

d
c 2
⇒

c n
+

2
an

d
if

(c
1&

&
c 2

&
&
..
.&

&
c n

){
...

}
if

(c
n+

1&
&

c n
+

2&
&
..
.&

&
c 2

n)
{.

..}

..
.

an
d

c n
⇒

c 2
n

el
se

if
(c

n+
1&

&
c n

+
2&

&
..
.&

&
c 2

n)
{.

..}
el

se
if

(c
1&

&
c 2

&
&
..
.&

&
c n

){
...

}

158 Chapter 3 Methods to reconcile dissimilarities between FSMDs

{

if (c_1) { ... }

else if (c_2) { ... }

...

...

else { ... }

}

else if (c3) { ... }

...

...

else { ... }

For this program snippet, we shall first resolve the precedence of conditions of the

inner else-if construct (comprising c_1, c_2, etc.) before resolving those of the

outer else-if construct (comprising c1, c2, c3, etc.). Note that choosing the outer

else-if construct first and then the inner one would have resulted in the same output;

however, since a mechanized algorithm has to follow a specific order, we have decided

to resolve the inner construct earlier.

Step 2: In order to compare two conditions, one needs to convert these conditions to

normalized expressions first which makes them amenable to application of symbolic

reasoning; this step explains how we convert a condition in an else-if construct to

its corresponding normalized form.

(a) Each condition is parsed by delimiters “&&”, “‖”, “(” and “)”.

(b) If the condition contains nesting of &&’s and ‖’s, then we distribute ‖’s over &&’s

to convert the condition into conjunctive normal form, for example, c1 ‖ (c2 && c3)

will be converted into (c1 ‖ c2) && (c1 ‖ c3).

(c) Each arithmetic clause (i.e., clause without any && or ‖) is converted to the form:

expression 〈relational operator〉 zero, eg., x == y is converted into x - y == 0.

Note that the expressions on the left hand side of the relational operator are normal-

ized following the normalization technique described in detail in [47, 75]; here we

enlist the rules of the normalization grammar and explain them briefly.

Normalization grammar:

1. S→ S+T
∣∣cs, where cs is an integer.

3.2 Programs with constraints in ordering of conditions 159

2. T → T ∗P
∣∣ct , where ct is an integer.

3. P→ abs(S)
∣∣(S)mod(Cd)

∣∣ f (list S)
∣∣S÷Cd

∣∣v∣∣cm, where v is a variable, and cm is

an integer.

4. Cd → S÷Cd
∣∣(S)mod(Cd)

∣∣S,

5. list S→ list S,S
∣∣S.

In the above grammar, the nonterminals S, T , P stand for (normalized) sums, terms

and primaries, respectively, and Cd is a divisor primary. The terminals are the variables

belonging to the set of input and storage variables, the interpreted function constants

abs, mod and ÷ and the user defined uninterpreted function constants f . An example

of user defined uninterpreted function constant is f (v1,v2,4), which will be normal-

ized as f (1∗v1+0,1∗v2+0,4). In addition to the syntactic structure, all expressions

are ordered as follows: any normalized sum is arranged by lexicographic ordering

of its constituent subexpressions from the bottom-most level, i.e., from the level of

simple primaries assuming an ordering over the set of variables; among the function

terminals, abs≺÷≺mod≺ uninterpreted function constants. (The symbol ≺ stands

for the ordering relation “precedes”.) As such, all function primaries, including those

involving the uninterpreted ones, are ordered in a term in an ascending order of their

arities.

(d) If the relational operator is < or <=, then it will be converted to > and >=,

respectively, eg., x < 20 will converted to 20 - x > 0.

As a stronger condition should always precede a weaker condition in a construct
like if-else if-else, violation of such precedence is detected using the rules given
in Table 3.1. Let us consider the following example:

if (x > 15 || y < 10)
sum = sum + 1;

else if (x > 15)
sum = sum + 2;

else if (x > 20)
sum = sum + 3;

else if (x > 45 && y < 15)
sum = sum + 4;

else
sum = sum + x;

160 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Our automated precedence checker will compare the normalized conditions and detect

the following violations in the code mentioned above:

(i) condition x > 20 should precede condition x > 15 (vide Rule 1),

(ii) condition x > 15 should precede condition x > 15 ‖ y < 10 (vide Rule 2).

(iii) condition x > 45 && y < 15 should precede condition x > 15 (vide Rule 3), and

(iv) condition x > 45 && y < 15 should precede condition x > 20 (vide Rule 3).

We output such violations, if any, to the user to aid him/her in error correction.

Data structure for normalization

Actually, the method of equivalence checking of two given FSMDs involves some

code transformation in the form of normalization of the computations as given in the

paper by Sarkar and De Sarkar [75], in order to achieve some consistency in their

representation.

The above paper suggests a data structure for normalized form (a normalized cell),

called NCell for storing the normalized expressions. The equivalence checker works

on the expressions stored in NCell.

struct normalized_cell
{

NC *list;
char type;
int inc;
NC *link;

};

Representation of the normalized expressions :

All normalized expressions are represented by tree structure which is implemented

by linked lists [75]. Each node in the tree is a normalized cell consisting of the fol-

lowing four fields :

1. A LIST-pointer, which points to the entries at the same level of the tree or equiv-

alently, at the same hierarchal level of an expression.

3.2 Programs with constraints in ordering of conditions 161

LIST

TYPE

LINK

INC

Figure 3.1: Depicting a normalized cell

2. A TYPE-field, which indicates the type of the cell. Some typical examples of

the types are ‘S’ for normalized sum, ‘T’ for normalized term, ‘R’ for rela-

tional literal, etc. TYPE = ‘v’ indicates a program variable or more generally a

symbolic constant.

3. An integer field INC, the meaning of which varies from type to type. For ex-

ample, TYPE = ‘S’, INC = 4 means that the integer constant in the normalized

sum is 4.

4. A LINK-pointer, which points to the leftmost successor of the node in question

in the next level of the tree or equivalently, in the next syntactic level of the

expression.

The difference between the LIST-pointer and the LINK-pointer is noteworthy. For

example, the non-constant terms of a sum are connected by LINK-ing the first term

to a normalized cell of TYPE ‘S’ and LIST-ing the other terms starting from the first

term onwards.

Normalized sum: A normalized sum is a sum of terms with at least one constant

162 Chapter 3 Methods to reconcile dissimilarities between FSMDs

term. Each term is a product of primaries with a non-zero constant primary. Each

primary is a storage variable, an input variable.

Example of a normalized sum:

3 + 2 * a + 5 * x * y.

S

3

T
2

v
const-val (a)

v v
const-val (x) const-val (y)

T
5

Figure 3.2: Depicting the expression 3 + 2 * a + 5 * x * y with list of normalized cells

3.2.3 Complexity analysis

In this subsection, we formally compute the worst case time complexity of finding

the violation of precedence of conditions in else-if constructs as computed by our

procedure mentioned above. The time complexity of our procedure is in the order of

product of the following two terms: (i) the complexity of comparing two normalized

(conditional) expressions, and (ii) the number of times such comparisons has to be

done. If ‖F‖ be the length of the normalized formula (in terms of the number of

variables along with that of the operations in F), then the complexity of normalization

3.2 Programs with constraints in ordering of conditions 163

of F is O(2‖F‖) due to multiplication of normalized sums [12]. Since comparison of

two normalized expressions involves a single traversal of the data structures of these

two normalized expressions, the complexity of comparing two normalized expressions

is also of order O(2‖F‖). Let the number of conditions in an else-if construct be m;

therefore, the number of comparisons that ought to be carried out is mC2 (i.e., the

number of ways 2 objects can be chosen from a group of m distinct objects), which is

O(m2). Thus, the overall time complexity of our procedure is O(m2 ·2‖F‖).

Theorem 3 (Identification of redundant code). Let there be a nested if-else-if state-

ment of the form

if (C_1) {B_1}

else if (C_2) {B_2}

...

else if (C_i) {B_i}

...

else if (C_j-1) {B_j-1}

else if (C_j) {B_j}

else if (C_j+1) {B_j+1}

...

else {B_k}

for which the procedure reports that B j is redundant; then, the following two if else-if

statements are indeed equivalent

if (C_1) {B_1}

else if (C_2) {B_2}

...

164 Chapter 3 Methods to reconcile dissimilarities between FSMDs

else if (C_i) {B_i}

...

else if (C_j-1) {B_j-1}

else if (C_j) {B_j}

else if (C_j+1) {B_j+1}

...

else {B_k}

and

if (C_1) {B_1}

else if (C_2) {B_2}

...

else if (C_i) {B_i}

...

else if (C_j-1) {B_j-1}

else if (C_j+1) {B_j+1}

...

else {B_k}

(i.e., the checking of the condition C j and the block B j can be dropped).

Proof: The procedure must have detected in step 2 some i < j, such that C j⇒Ci.

By contra position ∼Ci⇒∼C j.

The else-if C j{B j} occurs in the C j = F exit and since Ci = F⇒C j = F , the block

B j, which is executed for C j = T will never execute. �

3.2 Programs with constraints in ordering of conditions 165

3.2.4 Results

The screen shots of results for various programs are shown below. Some of the results

for the programs under the case 1 is shown in the figures 3.3 and 3.4. Some of the

results for the programs under the case 2 is shown in the figures 3.5 and 3.6. Some of

the results for the programs under the case 3 is shown in the figures 3.7 and 3.8. Some

of the results for the programs under the case 4 is shown in the figures 3.9 and 3.10.

Some of the results for the programs under the case 5 is shown in the figures 3.11 and

3.12. Some of the results for the programs under the case 6 is shown in the figures

3.13 and 3.14.

Figure 3.3: An example of case 1 Figure 3.4: Another example of case 1

Figure 3.5: An example of case 2 Figure 3.6: Another example of case 2

The table 3.3 summarizes the results of detecting incorrect order of sequences

of the conditional construct. 10 sample programs for each of the cases were tested.

Each of the sample program was chosen to have wrong sequencing of the conditional

166 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Figure 3.7: An example of case 3 Figure 3.8: Another example of case 3

Figure 3.9: An example of case 4 Figure 3.10: Another example of case 4

Figure 3.11: An example of case 5 Figure 3.12: Another example of case 5

Figure 3.13: An example of case 6 Figure 3.14: Another example of case 6

3.3 Variable mapping 167

construct. Our program was able to diagnose wrong ordering in test samples and

suggest the correct ordering.

Table 3.3: Results for else-if constructs

Case Precondition Correct sequence Incorrect sequence # tested # correct

1 c1⇒ c2 if (c1) {...} if (c2) {...} 10 10

else if (c2) {...} else if (c1) {...}

2 c3⇒ c1 or c3⇒ c2 if (c3) {...} if (c1 ‖ c2) {...} 10 10

else if (c1 ‖ c2) {...} else if (c3) {...}

3 c1⇒ c3 or c2⇒ c3 if (c1&&c2) {...} if (c3) {...} 10 10

else if (c3) {...} else if (c1&&c2) {...}

4 c1⇒ c3 and c2⇒ c4 if (c1&&c2) {...} if (c3 ‖ c4) {...} 10 10

else if (c3 ‖ c4) {...} else if (c1&&c2){...}

5 c1⇒ c3 and c2⇒ c4 if (c1 ‖ c2) {...} if (c3 ‖ c4) {...} 10 10

else if (c3 ‖ c4) {...} else if (c1 ‖ c2) {...}

6 c1⇒ c3 and c2⇒ c4 if (c1&&c2) {...} if (c3&&c4) {...} 10 10

else if (c3&&c4) {...} else if (c1&&c2) {...}

3.3 Variable mapping

Our objective is to find a mapping between variables in the student’s program and

the golden program, so that the variables of the student’s program can be given the

same name as those in the golden program. It is to be noted that equivalence checker

168 Chapter 3 Methods to reconcile dissimilarities between FSMDs

works if the names of variables are same in the two FSMDs. We present below some

examples to illustrate the variable mapping. Later an algorithm for variable mapping

is provided.

3.3.1 Illustrative examples

Mapping dissimilar variables in two programs is explained with some examples given

below.

Example 3.1. In this example we take two programs, in which the variables are as-

signed values in different steps. The two programs are as follows:

Listing 3.1: code 1
#include<stdio.h>
void main() {

int a = 101, b = 2;
if (a > 100) {

a = a - 10;
}
if (b < 80) {

b = b + 10;
}

}

Listing 3.2: code 2
#include<stdio.h>
void main() {

int x = 101, y;
if (x > 100) {

x = x - 10;
}
y = 2;
if (y < 80) {

y = y + 10;
}

}

The FSMDs are given in the figures 3.15 and 3.16.

The steps of mapping variable names of the two FSMDs in the figures 3.15 and

3.16 are as follows.

1. In both the FSMDs, paths from the start state to the next cut-point are matched.

Both paths involve an assignment operation but assign variables a,b in the first

and x in the second FSMD. Hence, variable a is mapped with variable x, as both

of them get same values.

2. Next, the condition (a > 100) in the first FSMD is tried to match with the condi-

tion (x > 100) in the second FSMD. This condition matches, so the variable val-

3.3 Variable mapping 169

(b < 80)/b = b+10

q01

q02

q03

!(a > 100)/−

!(b < 80)/−

(a > 100)/a = a−10

−/a = 101,b = 2

q00

Figure 3.15: FSMD 1 of example 3.1

q01

q02

q03

!(x > 100)/−(x > 100)/x = x−10

−/x = 101

q00

q04

!(y < 80)/−(y < 80)/y = y+10

−/y = 2

Figure 3.16: FSMD 2 of example 3.1

ues at the final state of the paths from the state where conditions were checked,

are compared. The values at the respective final states of the paths are a = 91

and b = 2 in the first FSMD and x = 91 and y = 2 in the second FSMD. As a

is already mapped with x, so nothing is to be done for them. As the values of b

and y match, so they are mapped.

Mapping obtained as a result of above steps is as follows:

i) a 7→ x, where the symbol a 7→ x is read as “a maps to x”.

ii) b 7→ y,

Example 3.2. In this example we take two programs which have different conditions.

The two programs are as follows:

170 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Listing 3.3: code 1
#include<stdio.h>
void main() {

int a, b, c;
printf("Enter a=");
scanf("%d", &a);
if (a == 0) {

scanf("%d", &b);
b++;

}
else {

scanf("%d", &c);
c--;

}
}

Listing 3.4: code 2
#include<stdio.h>
void main() {

int x, y, z;
printf("Enter z=");
scanf("%d", &z);
z++;
if (z != 0) {

scanf("%d", &x);
x--;

}
else {

scanf("%d", &y);
y++;

}
}

The FSMDs are given in the figures 3.17 and 3.18.

Figure 3.17: FSMD 1 of example 3.2 Figure 3.18: FSMD 2 of example 3.2

Steps of mapping variable names of the two FSMDs in the figures 3.17 and 3.18

are as follows.

3.3 Variable mapping 171

1. In both the FSMDs, paths from the start state to the next cut-point are matched.

Both involve a read operation to read variables a and z, respectively in the two

FSMDs. Hence, variable a is mapped with variable z.

2. Next, the condition (a == 0) is tried to match with the condition (z! = 0) in the

second FSMD. This condition does not match, so the next condition, !(z! = 0),

is tried. This condition matches with (a == 0). Further, along the respective

paths in the two FSMDs, variables y and b are read and incremented, so y is

matched with b.

3. The condition !(a == 0) of first FSMD is compared with (z! = 0) in the second

FSMD and conditions are found to match. Here c will be mapped with x as

along the respective paths in the two FSMDs, variables y and b are read and

decremented.

Mapping obtained as a result of above steps is as follows:

i) a 7→ z,

ii) b 7→ y,

iii) c 7→ x.

Before we begin the next example we introduce the terms update vector and prop-

agate vector of a path. Update vector of a path is the set of expressions, modifying the

values of variables in a path, whereas, propagate vector is the set of conditions of exe-

cution and values of variables which are forwarded to the next path from the previous

path. The terms are also explained later in the section 4.2.3 “Preliminary concepts of

value propagation”

Example 3.3. In this example, we have taken FSMDs of two C programs as in figure

3.19. The first FSMD uses the variables sum, i, temp,out and n and the second one uses

the variables s, j, temp1,ou and n1. Given these two FSMDs we have to find mapping

of variables in them. The steps for mapping the variable names are as follows:

172 Chapter 3 Methods to reconcile dissimilarities between FSMDs

(a) (b)

Figure 3.19: Two FSMDs for example 3.3

3.3 Variable mapping 173

1. For initial path from the start state to the next cut-point state in the two FSMDs,

the path conditions α and β are both null. So conditions are matched and update

vectors are < sum = 1, i = 2,n = 3 > and < s = 1, j = 2,n1 = 3 > with V0 =

(−,< sum, i,n >) and V1 = (−,< s, j,n1 >) as the propagated vectors. Update

values for sum and s are 1 and neither sum nor s is mapped, so sum will be

mapped with s and similarly j,n1 will be mapped with i,n respectively.

2. For path condition α : (sum == n) which does not match with any condition β

and as the propagated vectors V0 = (−,−) and V1 = (−,−) are null, mapping is

not possible.

3. For path condition α : (!(sum == n)) which partially matches with β : (!(j <

n1)&&!(s == n1)) and V0 = (!(sum == n),< out >) and V1 = (!(j < n1)&&

!(s == n1),< ou >). The update values are out = 0 and ou = 0. Both have the

same update values and both are not mapped previously, so out is mapped with

ou.

4. For path conditions α : (temp == 1) and β : (temp1 == 1), no mapping is done

as temp1 is not yet defined.

5. For path conditions α : (!(temp == 1)) and β : (!(temp1 == 1)), no mapping

is done as temp1 is not yet defined.

6. For path condition α : (i < n) which matches with condition β : (j < n1) and

propagated vectors are V0 = ((i< n),< temp>) and V1 = ((j < n1),< temp1>

), The variable values are temp = n%i and temp1 = n1% j, thus the update

vectors are same, temp1 is now defined and hence temp1 is mapped with temp.

7. For path condition α : (!(i < n)) which matches with condition β : (!(j < n1)),

as the propagated vectors V0 = (−,<−>) and V1 = (−,<−>) are null, so no

mapping is done.

174 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Mapping obtained as a result of above steps is as follows:

i) s 7→ sum,

ii) i 7→ j,

iii) n 7→ n1,

iv) out 7→ ou, and

v) temp 7→ temp1.

3.3.2 Variable mapping algorithm

Given two FSMDs say Ms = 〈Qs,qs,0, Is,Vs,Os,τs : Qs×2Ss→Qs, hs : Qs×2Ss→Us〉,

and Mg = 〈Qg,qg,0, Ig,Vg,Og,τg : Qg×2Sg→Qg, hg : Qg×2Sg→U〉, variable mapping

tries to obtain a mapping between the variables of Ms and Mg. The variable map is

thus a mapping between the variables of the sets Is and Ig, Vs and Vg and Os and

Og. Algorithm 7 obtains the variable map M : Vs→ Vg={〈vs,vg〉|vs ∈ (Vs ∪ Is ∪Os),

vg ∈ (Vg∪ Ig∪Og)}.

The step 4(a) is elaborated as follows.

[Step 4(a)] If Cs and Cg, the conditions of path ps and pg respectively, are equal

after applying the map established so far, then add all the transitions of ps and pg

in ATs and ATg respectively and then find mapping between the two lhs variables of

statements (aka “actions” here) from ATs and ATg, according to the function Map_-

variable(), where ATs and ATg stand for action tables for student and golden programs

respectively and they are used to store actions from the paths ps and pg respectively

of the two programs.

Then every statement in ATg is compared with statements from ATs, beginning with

3.3 Variable mapping 175

Algorithm 7: Variable mapping
Input: Ms, FSMD of student’s program and Mg, FSMD of teacher’s program;

Output: Map M ={〈vs,vg〉|vs ∈ (Vs∪ Is∪Os),vg ∈ (Vg∪ Ig∪Og)}

L1 [Step 1] Initialize Vs, Vg for storing statements of Ms, Mg.

/*Step 2 is implemented by the function Find_path(), which is

a depth first search based function described later.

Find_path() uses Divide_path() and Store_path(), which are

described later */

L2 [Step 2] Insert cut-points in Ms and Mg and construct the respective path covers,

Ps for Ms and Pg for Mg using function Find_path().

L3 [Step 3] M ← φ (Null set)

/*Step 4 is implemented by the function Propagate(), which

uses the functions Check(), Check_condition(),

Map_variable(), Map_assign_variable(),

Relation_equivalence() to implement the steps 4(a) & (b).

All these functions are described later */

L4 [Step 4] Select a path ps and pg from Ps and Pg respectively.

L5 [Step 4(a)] If Cs and Cg, the conditions of path ps and pg respectively, are equal

after applying the map M established so far, then add all the transitions in Vs

and Vg and find mapping between them according to the function Map_variable

and Map_assign_variable (see the respective algorithms).

L6 M ←M ∪{vs,vg}

L7 [Step 4(b)] Else select next Csi such that Cg and Csi are the same and go to L5,

step 4(a).

L8 [Step 5] Output M .

176 Chapter 3 Methods to reconcile dissimilarities between FSMDs

the statement at the start of ATs, till a match was found.

For this, the function Map_variable will take two statements called action1 and action2

from ATs and ATg respectively as input. It will map the variables of action1 and action2

as per the following cases.

Case 1: If rhs of both action1 and action2 are read statements and variables of action1

or action2 are not mapped , then map the rhs variables.

Case 2: Else, if the variables at the lhs of action1 or lhs of action2 are not mapped,

then map the variable in the lhs of action1 to the variable in the lhs of action2, only if

rhs expressions are equivalent after applying the map established so far.

/* Mapping the already mapped variable */

Case 3: The function Map_assign_variable will take a statement from ATs and map

the lhs variable of the statement with a variable ‘v’ of the golden program, in case the

variable at rhs is already mapped with variable ‘v’.

M ←M ∪{vs,vg}

An inherent limitation of variable mapping is that it is not final and correct in all cases,

but it is still to be done as variable mapping enables us to start equivalence checking,

which would not be possible if the two programs have different variable names.

Theorem 4 (Support for variable mapping). If 〈vs,i,vg, j〉 ∈M , then there exists at

least one pair of paths ps of FSMD Ms and pg of FSMD Mg such that the value of vs,i

computed by ps is equal to the value of vg, j computed by pg.

Proof: Let there exist a pair of M , 〈vs,i,vg, j〉 ∈M for which there are no paths ps

and pg, which compute their values equally. Since pairs are put in M in step 4(a) on

finding at least one pair of paths which compute equal values for the variables, such

pairs cannot occur in M . �

In the proof of theorem 4, the second sentence assumes that pairs will be put in

M . What is the guarantee that this will happen? There is no guarantee. M can be

empty (which is not desirable, but may happen if one or both the programs do not use

3.3 Variable mapping 177

input or program variables). The second sentence asserts that pairs are put in M in

step 4a. Note that step 4a is a conditional statement; if the condition does not hold for

any path Ps and Pg, then M can be empty and hence, the theorem holds vacuously.

The proof concerns itself with the non-vacuous cases.

Important modules in the program for variable mapping

The steps of the variable mapping algorithm given above have been implemented as

various modules, a brief description of the important modules is given below.

Find paths in FSMD

The function Find_path will take an FSMD as an input and will find all the paths of

FSMD and store them into PathList[]. It may be noted that a path is a sequence of

states from one cut-point to the next, represented in the program by a structure Path.

PathList[i] will contain the i-th Path. Steps of function Find_path are as follows.

Step 1: For all the states State in the FSMD, if State is a cut-point, then push it into

Stack.

Step 2: For all the outgoing transitions from State do the following: push the state

at the other end of the transition (called TransitionEndState) into Stack and call

the function Divide_path.

Divide path

The function Divide_path will take an FSMD, State, PathList[] and Stack as an input,

where State will act as the current state from which a path of FSMD will be generated

178 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Algorithm 8: Find paths in FSMD

L1 Function Find_path (FSMD, PathList[])

L2 forall states State in FSMD do

L3 if State is a cut-point then

L4 push State into Stack;

L5 forall outgoing transitions from State do

L6 push TransitionEndState into Stack;

L7 Divide_Path(FSMD, TransitionEndState, PathList[], Stack);

L8 return;

by Divide_path. Eventually, Stack will hold all the states of a path, where the bottom

most entry of Stack will contain the starting state of the path and the top most entry

of Stack will contain the final state of the path. Function Divide_path will generate

all the possible paths from the current state. Steps of the function Divide_path are as

follows:

Step 1: If State is a cut-point, then the function Store_path is called.

Step 2: Otherwise, for all the TransitionEndStates of State, the TransitionEndState is

pushed into Stack and Divide_path is called recursively.

Store path

Store_path will pop all the states from Stack and put them in Path. Then Path will

then be added to PathList[].

3.3 Variable mapping 179

Algorithm 9: Divide path

L1 Function Divide_path(FSMD, State, PathList[], Stack)

L2 if State is a cut-point then

L3 Store_path(PathList[], Stack);

L4 else

L5 forall outgoing transitions from State do

L6 push TransitionEndState into Stack;

L7 Divide_path(FSMD, TransitionEndState, PathList[], Stack);

L8 return;

Algorithm 10: Store paths in path node

L1 Function Store_path(PathList[], Stack)

L2 forall states in Stack do

L3 store state in Path;

L4 add Path to PathList[NumberOfPaths + 1] ;

L5 NumberOfPaths = NumberOfPaths + 1;

L6 return;

180 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Map variables

First we describe here the mapping operation, which will be used in the subsequent

cases:

Mapping operation : In this part, we consider that a path from golden program

and a path from student program have been selected such that the condition at their

starting states have matched. All the statements from golden program are placed in

ActionTable_G[], all the statements from student program are stored in ActionTable_-

S[]. Variable count1 is assigned the number equal to the number of statements appear-

ing in golden program. Similarly, the variable count2 is assigned the number equal to

the number of statements appearing in the student program. Then, every statement in

the ActionTable_G[] is compared with the statements from the ActionTable_S[], be-

ginning with the statement at the start of the ActionTable_S[], till a match was found.

While comparing the statements, the following cases may be encountered:

Case 1 : If the function Check has returned true for the ActionTable_G[i] and Ac-

tionTable_S[j], then the function Map_variable is called to map the variables of

the statements i, j of ActionTable_G[i], ActionTable_S[j].

Case 2 : If the RHS of ActionTable_S[j] is term (assignment statement) and have

only one variable which is initialized with a constant value different from golden

program and if the variable at RHS is already mapped and the variable on the

LHS is not, then map the LHS variable using the function Map_assign_variable.

This completes our description of the mapping operation, which is referred in the

description of function propagate below.

For the two inputs to function propagate, i) PathList_G[] of golden program and

3.3 Variable mapping 181

ii) PathList_S[] of student program, created by function Find_path, the function prop-

agate will create an ActionTable. The ActionTable will contain ActionTable_G[] for

the golden program and ActionTable_S[] for the student’s program, for every path in

both the PathLists . The ActionTable_G[] and ActionTable_S[] are used to hold all the

statements appearing in the golden and student programs, respectively. Other inputs

for function propagate are symbol tables from golden program (SymbolTable_G) and

student program (SymbolTable_S). Symbol table will contain all the variable names

and their information (variable name, data type, variable values etc.). Function propa-

gate will output all possible variable mappings between both, the golden program and

the student program. Steps of the function propagate are as follows:

Case 1 : The starting state of the first path of an FSMD does not have any condition,

hence, we need not use the function Check_condition before mapping variable.

The variable mapping operation as described above, can be done in this case

straight away.

Case 2 : In case the path under consideration is not starting from the starting state of

FSMD, such a path must have originated from a cut point, due to some condition

or its negation. Mapping of variables is done only if the paths of golden and the

student program have originated under the same conditions. Hence, at first,

the condition of the two paths are checked before proceeding with previously

described mapping operation.

Check action type

This module will check whether two given actions are of same type or not. following

are the cases:

• Types of actions are ‘r’, ‘w’, ‘C’, where ‘r’ stands for ‘READ’(scanf), ‘w’ for

182 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Algorithm 11: Map variables based on propagation vector

L1 Function Propagate(PathList_G[], SymbolTable_G, PathList_S[], SymbolTable_S)

L2 MappedVars=0;

L3 forall i = 0 to NumberOfPaths in PathList_G[] do

L4 if i==0 then

L5 forall Transition actions in Path at PathList_G[i] do

L6 push transition action in ActionTable_G[];

L7 forall Transition actions in Path at PathList_S[i] do

L8 push transition action in ActionTable_S[];

L9 forall j=0 to all actions in ActionTable_G[] do

L10 forall k=0 to all actions in ActionTable_S[] do

L11 if Check(ActionTable_G[j], ActionTable_S[k]) return true then

L12 Map_Variable(ActionTable_G[j], ActionTable_S[k]);

L13 MappedVars++;

L14 else if the RHS of ActionTable_S[j] is a term having only one variable which is initialized with a

constant value then

L15 if the variable at RHS is already mapped and the LHS variable is not then

L16 Map_assign_variable(ActionTable_S[k]);

L17 MappedVars++;

L18 else

L19 C1 = condition at the starting state of Path at PathList_G[i];

L20 forall Transition actions in Path at PathList_G[i] do

L21 push transition action in ActionTable_G[];

L22 forall j=1 to all paths in PathList_S[] do

L23 C2 = condition at the starting state of Path at PathList_S[j];

L24 if Check_Condition (C1, C2) return true then

L25 forall Transition actions of Path at PathList_S[j] do

L26 push transition action in ActionTable_S[];

L27 forall l=0 to all actions in ActionTable_G[] do

L28 forall m=0 to all actions in ActionTable_S[] do

L29 if Check(ActionTable_G[l], ActionTable_S[m]) return true then

L30 Map_Variable(ActionTable_G[l], ActionTable_S[m]);

L31 MappedVars++;

L32 else if the RHS of ActionTable_S[j] is a term having only one variable which is

initialized with a constant value then

L33 if the variable at RHS is already mapped and the variable on the LHS is not

then

L34 Map_assign_variable(ActionTable_S[m]);

L35 MappedVars++;

L36 return;

3.3 Variable mapping 183

‘WRITE’(printf) and ‘C’ for ‘CONSTANT’(initialization with a value). If both

the actions are of same type, it will return true.

• If the left hand side and the right hand side of both the actions is the same, then

also it will return true.

Algorithm 12: Check action type

L1 Function Check(ActionTable_G[i], ActionTable_S[j])

L2 if both ActionTable_G[i] and ActionTable_S[j] are of type ‘r’ then

L3 return true;

L4 else if both ActionTable_G[i] and ActionTable_S[j] are of type ‘w’ then

L5 return true;

L6 else if both ActionTable_G[i] and ActionTable_S[j] are of type ‘C’ then

L7 if initialized value of variable at ActionTable_G[i] is equal to initialized

value of variable at ActionTable_S[j] then

L8 return true;

L9 else

L10 return false;

L11 else if left hand side of ActionTable_G[i] and ActionTable_S[j] is equal then

L12 if right hand side of ActionTable_G[i] and ActionTable_G[j] is equal then

L13 return true;

L14 else

L15 return false;

L16 else

L17 return false;

L18 return;

It may be noted that the symbol tables S and G are generated as part of parser code

184 Chapter 3 Methods to reconcile dissimilarities between FSMDs

for generating the FSMD. Symbol tables S and G will simply be used as reference to

keep track of all the variables used in the program. S and G here stand for student’s

program and golden program respectively.

The word “action” here refers to a statement in the program.

The action types are used in algorithm 12 to find out whether the expressions in the

programs being compared are same or not. Action types are ‘r’, ‘w’, ‘C’, where

‘r’ stands for ‘READ’(scanf), ‘w’ for ‘WRITE’ (printf) and ‘C’ for ‘CONSTANT’

(initialization with a value).

Check condition

This function is used to check whether two conditions are equivalent or not. Function

Check_condition will take two conditions (C1 and C2) as input. The conditions may

be compound. Conditions and expressions are stored in normalized form to ensure that

the same condition written in different forms, will eventually be converted to a unique

form. For programming convenience, different operators are given integer values. 74,

76, 77 are for NOT, AND, OR respectively, where OR and AND are logical operators.

There are several cases, where two conditions will be equal as follows:

1. If the normalized form of both the conditions are equivalent and all the constant

values used in expression are also equal.

2. If one of C1 or C2 is of type 76 or 77, it means both the conditions are not

perfectly matched, but partial condition matching is possible.

3. If both the conditions are of opposite types, then there may arise several cases:

(a) If the normalized value of type of C1 is 74, then there are relational op-

erators in conditions, hence, we check for relational operator equivalence

with function Relation_equivalence.

3.3 Variable mapping 185

i. If the function Relation_equivalence returns true, then if type of C2 is

74, it shows that the condition is composite. Hence, compare the tree

of normalized cells (NC) structure of both the conditions and return

result accordingly.

ii. If type of C2 is 76 or 77, then sub parts of C2 will be checked with

C1, using function Check_condition.

(b) If the normalized value of type of C2 is 74, then there are relational op-

erators in conditions, hence, we check for relational operator equivalence

with function Relation_equivalence.

i. If the function Relation_equivalence returns true, then if type of C1 is

74, it shows that the condition is composite. Hence, compare the tree

of normalized cell (NC) structure of both the conditions and return

result accordingly.

ii. If type of C1 is 76 or 77 then, sub parts of C1 will be checked with

C2, using function Check_condition.

Explanation for line 25 algorithm 13 is as follows. A condition will be divided

into sub-parts if it is composite condition having multiple && or || conjuncts.

Mapping the variables in the statements

Function Map_variable will take two actions (action1 and action2) from ActionTable_-

G[] and ActionTable_S[] respectively as an input. It will map variables of action1 and

action2. Cases where mapping between variables of action1 and action2 is possible

are as follows:

Case 1: If RHS of both action1 and action2 are read statements and variables of action1

or action2 are not mapped, then map variable.

186 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Algorithm 13: Check conditions

L1 Function Check_condition (Condition1 C1, Condition2 C2)

L2 if types of both C1 and C2 are same and value of normalized expression type in both conditions are same then

L3 if value of normalized actions of both conditions are equal then

L4 return true;

L5 else if value of normalized action in any of condition C1 or C2 is 76 or 77 then

L6 partial checking of Condition1 and Condition2;

L7 return true;

L8 else if If either of C1 or C2 is of type ‘O’ then

L9 if value of normalized action in C1 is 74 then

L10 if Check_Relation_Equi (C1, C2) then

L11 if C2 type is 74 and both normalized conditions are equivalent then

L12 return true;

L13 else if C2 type is 76 or 77 then

L14 Check_condition(sub part of C1, sub part of C2);

L15 else

L16 if normalized values of both C1 and C2 are equivalent then

L17 return true;

L18 else

L19 return false;

L20 else if Value of normalized action in C2 is 74 then

L21 if Check_Relation_Equi(C1, C2) then

L22 if C1 type is 74 and both normalized conditions are equivalent then

L23 return true;

L24 else if C1 type is 76 or 77 then

L25 Check_condition(sub part of C1, sub part of C2);

L26 else

L27 if normalized values of both C1 and C2 are equivalent then

L28 return true;

L29 else

L30 return false;

L31 else if Both conditions are NULL then

L32 return true;

L33 else

L34 return false;

L35 return;

3.3 Variable mapping 187

Case 2: variable at the LHS of action1 or LHS of action2 is not mapped then map vari-

able in the LHS of action1 to the variable in the LHS of action2.

Algorithm 14: Map variables

L1 Function Map_variable (ActionTable_G[i], ActionTable_S[j])

L2 if RHS of both ActionTable_G[i] and ActionTable_S[j] are read statements then

L3 if Variables of ActionTable_G[i] are not mapped or variables of

ActionTable_S[j] are not mapped then

L4 map the variable read in ActionTable_G[i] to the variable read in

ActionTable_S[j];

L5 else if the variable in LHS of ActionTable_G[i] or LHS of ActionTable_S[j] is

not mapped then

L6 map the variable in the LHS of ActionTable_G[i] to the variable in LHS of

ActionTable_S[j];

L7 return;

Mapping with the already mapped variable

Function Map_assign_variable will take a statement from ActionTable_S[] and map

the variable of that statement with already mapped variable of ActionTable_G[]. It

will search the variable at RHS of action of student program with already mapped

variable list of golden program. If such a variable is found, map that variable at LHS

of ActionTable_S[i] to variable which is found mapped with golden program.

Check equivalent relational operators

Function Check_Relation_Equi will take two relational operators as an input. If both

the operators are same, it will return true.

188 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Algorithm 15: Map variable of assignment statement

L1 Function Map_assign_variable(ActionTable_S[i])

L2 if variable at RHS of ActionTable_S[i] is already mapped with a variable ‘v’ of

golden program then

L3 map the variable at LHS of ActionTable_S[i] to ‘v’.

Algorithm 16: Relation equivalence

L1 Function Check_Relation_Equi(Relational operator C1, Relational operator

C2)

L2 if Relational operator C1 == C2 then

L3 return 1;

L4 else

L5 return 0;

L6 return;

3.3 Variable mapping 189

3.3.3 Demonstration of the algorithm

In this section we first demonstrate the working of variable mapping algorithm for

the following programs. The FSMDs of the two programs are shown in the figure

3.20.

Listing 3.5: code 1
#include <stdio.h>
int main() {
int a, b, c;
int t;
printf("Enter a and b: ");
scanf("%d%d", &a, &b);
c = a + b;
t = t + 5;
printf("Addition: %d", c);
return 0;
}

Listing 3.6: code 2
#include <stdio.h>
int main() {
int x, y, z;
int temp;
printf("Enter x and y: ");
scanf("%d%d", &x, &y);
z = x + y;
temp = temp + 5;
printf("Addition: %d", z);
return 0;
}

(a) (b)

Figure 3.20: Two FSMDs: demonstration of variable mapping program

We present below the output of the variable mapping program.

190 Chapter 3 Methods to reconcile dissimilarities between FSMDs

C1=NULL and C2=NULL
Trying to map P1=read(a)= P1=read(x)
Mapping var =2 to var=2
C1=NULL and C2=NULL
Trying to map P0=read(b)= P0=read(y)
Mapping var =3 to var=3
C1=NULL and C2=NULL
Trying to map c=a+b= z=x+y
Mapping var =4 to var=4
C1=NULL and C2=NULL
Trying to map t=t+5= temp=temp+5
C1=NULL and C2=NULL
Trying to map t=t+5= P0=write(z)
C1=NULL and C2=NULL
Trying to map P0=write(c)= temp=temp+5
C1=NULL and C2=NULL
Trying to map P0=write(c)= P0=write(z)
Mappings are as follows
a=x
b=y
c=z

Explanation of the execution: As a and x are input variables, read using scanf

function, so they are mapped first. Similarly, the variables b and y are mapped for be-

ing the input variables, which get their values now. The variables c and z are mapped

next as in c=a+b, both a and b have been assigned values, similarly in z=x+y, both

x and y have been assigned values. Next it tries to map t and temp by comparing

t=t+5 and temp=temp+5. Mapping is not possible as both t and temp are unini-

tialized. Algorithm further tries to map them by comparing them with the remaining

statements, while traversing the FSMD. However they cannot be mapped as they re-

main uninitialized. The mapping done thus is as follows.

a 7→ x

b 7→ y and

c 7→ z

3.3 Variable mapping 191

3.3.4 Various cases of variable mapping

As explained above, the mapping can be done for variables in two programs. Different

cases can be possible for mapping as follows.

• When the condition of two programs is not the same.

• A program has more variables than the other program.

• Program may contain an uninitialized variable.

• Wrong variable display at the output.

• Wrong input data is used in one program.

• Missing loops.

• Independent variables can be mapped anywhere.

We discuss some of the cases with an example of each below.

I. When the condition of two programs is not the same

Two programs with different conditions are as follows:

Listing 3.7: code 1
#include<stdio.h>

void main() {
int a,b,c;
printf("Enter a value");
scanf("%d",&a);
if(a == 0) {

scanf("%d", &b);
b++;

}
else {

scanf("%d", &c);
c--;

}
}

Listing 3.8: code 2
#include<stdio.h>
void main() {

int x,y,z;
printf("Enter a value");
scanf("%d", &z);
z++;
if(z != 0){

scanf("%d", &x);
x--;

}
else {

scanf("%d", &y);
y++;

}
}

192 Chapter 3 Methods to reconcile dissimilarities between FSMDs

The FSMDs are given in the figure 3.21 given below.

(a) (b)

Figure 3.21: Two FSMDs: Case I, variable mapping

Evaluation steps

1. Path 0 of both path-covers are matched. Both are read operations, so we can say

that variable a will map with variable z.

2. Path 1 of first path-cover tries match condition with path 1 of second path-cover

but, condition is not matched. So, next path condition of second path-cover tries

3.3 Variable mapping 193

to match. The condition is matched and y is matched with b.

3. Path 2 of first path-cover tries to match condition with path 1 and condition

matched. So c will map with x.

Final mappings of the given programs are as follows: a 7→ z

b 7→ y

c 7→ x

II. A program has more variables than the other program

Let the two programs be as follows:

#include <stdio.h>

/* Problem 3
* Friendly Numbers are those which have same abundancy.
* Abundancy of a number is the ratio of sum of its divisors and
* the number itself.
* For Ex : Abundancy of 6 is (1+2+3+6)/6=2
* Abundancy of 28 is (1+2+4+7+14+28)/28=2
* So, 6 and 28 is a friendly number pair.
* Write a program takes two numbers as input and decides whether
* they are friendly numbers or not.
*/

int main()
{
int x, y, sumx, sumy,count0=0,count1=1;
double abunx, abuny;
int i;

printf("Enter two numbers:");
scanf("%d%d",&x,&y);

sumx = 0;
for(i = 1; i <= x; i++)
{

194 Chapter 3 Methods to reconcile dissimilarities between FSMDs

if((x%i) == 0)
sumx = sumx + i;

}

sumy = 0;
for(i = 1; i <= y; i++)
{
if((y%i) == 0)
sumy = sumy + i;

}

abunx=(sumx)/x;
abuny=(sumy)/y;

if(abunx == abuny)
{
printf("%d",count1);

}
else
{
printf("%d",count0);

}
//printf("Abundunancy for x=%d and y=%d",abunx,abuny);
return 0;

}

#include<stdio.h>
int main()
{

int i,a,b,sa,sb,cou0=0,cou1=1;
printf("Enter 2 nos\n");
scanf("%d%d",&a,&b);

sa=0;sb=0;
for(i=1; i<=a; i++){

if((a%i)==0){
sa+=i;

}
}
for(i=1; i<=b; i++){

if((b%i)==0){
sb+=i;

}
}
sa=sa/a;
sb=sb/b;
if(sa==sb) {

3.3 Variable mapping 195

printf("%d",cou1);
}
else {

printf("%d",cou0);
}
return 0;

}

The FSMDs are given in the following figures, 3.22 and 3.23.

Evaluation steps

1. Path 0 of first path-cover it finds count0 and cou0 are initialized, so they are

mapped.

2. Path 0 of first path-cover it finds count1 and cou1 are initialized, so they are

mapped.

3. Path 0 of first path-cover it finds x and a are read statements, so they are mapped.

4. Path 0 of first path-cover it finds y and b are read statements, so they are mapped.

5. Path 0 of first path-cover it finds sumx and sa are initialized, so they are mapped.

6. Path 0 of first path-cover it finds i and i are initialized, so they are mapped.

7. Path 0 of first path-cover it finds sumy and i are initialized, so they are mapped.

So, the mappings are as follows:

count0 7→ cou0

count1 7→ cou1

x 7→ a

y 7→ b

sumx 7→ sa

i 7→ i

sumy 7→ i

196 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Figure 3.22: FSMD 1: Case II, variable mapping

3.3 Variable mapping 197

Figure 3.23: FSMD 2: Case II, variable mapping

198 Chapter 3 Methods to reconcile dissimilarities between FSMDs

III. Program may contain uninitialized variables and have wrongly displayed
output

Program for the above condition is given as follows:

#include <stdio.h>
//Problem 2
//Goes on adding the sum of digits until a single digit result is
//found, e.g.: 12345 --> 1+2+3+4+5 = 15 --> 1+5 = 6
int main() {

unsigned int n, sum;
printf("\n Input number:");
scanf("%d", &n);
while (n > 9) {

sum = 0;
while (n > 0) {

sum = sum + n % 10;
n = n / 10;

}
n = sum;
}
printf("\n %d", sum);
return 0;

}

#include<stdio.h>
int main() {

int n, i, sum;
printf("enter the number");
scanf("%d", &n);
sum = 0;
do{

sum = sum + (n % 10);
n = n / 10;

} while (n / 10 != 0);
sum = sum + n;
n = sum / n;
printf("the sum is : %d", i);

}

The FSMDs are given as in the figure 3.24.

3.3 Variable mapping 199

(a) (b)

Figure 3.24: Two FSMDs: Case III, variable mapping

200 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Evaluation steps

1. In path 0 of P1 and P2 we find n 7→ n and sum 7→ sum. So, no further checking

is required.

2. Then we check output variables, which are sum and i, so we can say that wrong

output has been displayed.

3.3.5 Results

The results of variable mapping between various pairs of programs belonging to each

of the different cases are given in this section. Table of results for each class has been

prepared by running the variable mapping algorithm. The tables are given below.

Code Name #Variable Code Name #Variable #Mapped

Table.c 3 Table1.c 3 0

V1.c 3 V2.c 3 3

max3.c 3 max3_1.c 3 3

Table.c 3 Check_Alphabet.c 1 1

Table.c 3 Factorial.c 3 2

Factorial.c 3 V1.c 1 1

Max3.c 3 Check_Alphabet.c 1 1

Max3.c 3 N_Sum.c 3 1

Table.c 3 N_Sum.c 3 2

fct.c 3 v1.c 3 1

Table 3.4: Condition not matched

In the table 3.4 “Condition not matched”, means that some condition of a condi-

tional construct in one FSMD does not match with the condition of the conditional

construct in the other FSMD.

In the tables 3.4 to 3.9 we chose some random programs. The corresponding

program for each program of column #1 appear in column #2; these were modified to

test the working of variable mapping algorithm. In table 3.4 we have presented the

3.3 Variable mapping 201

Code Name #Variable Code Name #Variable #Mapped

Swap.c 3 Swap1.c 4 4

Swap.c 3 Swap2.c 2 3

Swap1.c 4 Swap2.c 2 4

Factorial.c 3 V1.c 1 1

N_Sum.c 3 V1.c 1 1

Swap1.c 4 Check_Alphabet.c 1 1

Swap1.c 4 Factorial.c 3 1

N_Sum.c 3 Swap1.c 4 2

Swap.c 3 Check_Alphabet.c 1 1

Swap.c 3 Factorial.c 2 1

Table 3.5: More variables

Code Name #Variable Code Name #Variable #Mapped

Abd.c 5 Abd.c.c 5 4

Max3.c 3 Max31.c 3 3

sumd.c 3 SumD.c 3 2

Swap.c 3 Sw.c 2 3

Swap1.c 4 Sw1.c 4 4

Table.c 3 Tab.c 3 2

Table1.c 3 Tab2.c 4 3

V1.c 3 V2.c 3 3

z1.c 3 z2.c 3 2

mx.c 4 mx1.c 4 4

Table 3.6: Different output

202 Chapter 3 Methods to reconcile dissimilarities between FSMDs

Code Name #Variable Code Name #Variable #Mapped

Abd.c 5 Abd.c.c 5 4

Max.c 3 Max3.c 3 3

mx.c 3 Max31.c 3 3

Palindrom.c 4 Pndrm.c 4 3

sumd.c 3 sm.c 3 2

sw.c 3 Swap.c 3 3

Table.c 3 Tab.c 3 2

V1.c 3 Tab.c 3 1

pel2.c 4 Pndrm.c 4 3

pel.c 4 Pndrm.c 4 3

Table 3.7: Wrong output

Code Name #Variable Code Name #Variable #Mapped

Ams.c 5 Amstrng.c 5 1

dia.c 4 diamond.c 4 3

ams2.c 5 Amstrng2.c 5 1

ams3.c 6 Amstrng2.c 5 1

ams4.c 6 Amstrng2.c 5 1

ams5.c 6 Amstrng2.c 5 3

ams5.c 6 Amstrng3.c 5 3

dia1.c 4 Diamond.c 4 4

dia2.c 4 Diamond.c 4 4

dia2.c 4 Diamond2.c 4 4

Table 3.8: Missing loop

3.3 Variable mapping 203

Code Name #Variable Code Name #Variable #Mapped

Swap.c 3 SwU.c.c 3 1

Table.c 3 Tab.c 3 2

z1.c 3 z2.c 3 2

UnV.c 3 UnV1.c 3 2

v1.c 3 v2.c 3 2

sw.c 3 Swap.c 3 3

sw1.c 6 Swap1.c 6 3

tab.c 5 tbl.c 5 2

tab1.c 5 tbl1.c 5 5

v11.c 3 v12.c 3 3

Table 3.9: Uninitialized variables

variable mapping in programs in which some condition does not match. For example,

in table 3.4, the program Table.c has its corresponding program Table 1.c, which has

been structured so that variable mapping algorithm will target the code part which

is most related to handle situations, where conditions do not match. All other tables

were similarly made. Respective number of variables in both the codes and number

of variables mapped have also been shown in the tables.

Some of the codes were indeed included in final result processing. We have used extra

sets of codes, including these for automated marking.

The integration of variable mapping with equivalence and containment checking re-

mains as our future work, which we have mentioned in the Chapter 5.

Discussion

The following has been observed from the results of our work in this chapter.

1. The suggested approach is useful in ensuring the correct order of precedences

of conditions in the if-else if constructs in the programs as suggested in [81].

2. The algorithm developed for variable mapping has been successfully tested on

various programs having different variable names.

204 Chapter 3 Methods to reconcile dissimilarities between FSMDs

3.4 Conclusion

The growing number of students in academic institutions has naturally raised a con-

cern regarding fast and consistent evaluation of student submissions. Research on

designing automated program evaluators has received impetus in recent years to meet

this growing demand. A construct that appears frequently in programs is the else-if

block. While writing programs it has to be ensured that the condition that appears

in a subsequent else-if block is not weaker than any of its preceding conditions,

otherwise this block will never be executed. However, wrong ordering of conditions

in else-if blocks are often introduced by novice student programmers. It is to be

noted that such violation of precedence of conditions in else-if constructs qualify as

logical errors which are not detected by standard compilers, such as gcc. Existing au-

tomated evaluation schemes, such as [77], also fail to handle such errors. In this work,

we have identified various cases of incorrect precedence of conditions in else-if

constructs and have accordingly prescribed rules to correct such constructs. Our auto-

mated checker detects violation of precedence of conditions in else-if constructs in

students’ programs and also provides feedback towards error correction based on the

supplied rules.

Thus, in this chapter, we discussed the pre-processing requirements for the stu-

dent’s programs, so that further evaluation can be done, using the corrected FSMD of

the student’s program. The corrected FSMD can be subjected to equivalence check-

ing, modified with containment analysis as discussed in chapter 2. The problem of

detecting proper ordering of conditional constructs was thus important to check for

possibility of dead code in a student’s program. Variable mapping was necessary, as

the basic equivalence checking mechanism requires the programs being compared to

have the same variable names. The results of our schemes for the two cases have

established the importance of such an exercise. In future, we shall incorporate imple-

mentation for more such cases. Moreover, in our future work, we shall try to general-

ize the techniques and make them more versatile so that programs with larger number

of features like pointers, user-defined data-types, etc. are also covered.

Another important aspect of program evaluation is the ability for equivalence

checking of approximately or nearly equal expressions. Once such a scheme is in

place, the task of automated evaluation can be taken up. These aspects provide the

3.4 Conclusion 205

scope for the contents of the next chapter, where the goal eventually is to design an

FSMD based automated marking scheme.

Chapter 4

Supporting techniques for checking
and evaluation of students’ programs

In this chapter we describe supporting techniques for checking and evaluation of stu-

dents’ programs such as i) checking equivalence of approximately equivalent expres-

sions and ii) develop a marking scheme for the programming exercises. In the first

part of this chapter we discuss about checking equivalence of approximately equiv-

alent expressions. Comparison of approximately equivalent functions [78, 79] may

be required as an aid to equivalence checking discussed earlier. This may be because

equivalence checking is not able to determine such equivalences, where two expres-

sions which are approximately equivalent are to be examined for equivalence. In this

work, therefore, we have used various approaches including a randomised simulation

based approach in which a function is examined at random points in the domain of

the other function. The closeness in their values at most of the points may indicate

their approximate equivalence. In the later part of this chapter we present a marking

scheme for the programming exercises. an algebraic formula has been suggested to

compute marks for the student’s program, using some constants, which need to be

empirically established.

207

208 Chapter 4 Supporting techniques for evaluation

4.1 Approximate equivalence checking of expressions

4.1.1 Introduction

In the earlier chapters it was assumed that the equivalence of expressions could be

checked via normalization [75]. There are cases where this method of normalization

does not work. Some of such cases have been discussed in this part of the chap-

ter. A fundamental problem in computer science is to decide if two expressions are

equivalent [28, 31, 34, 95]. Checking equivalence of two arbitrary functions is an

undecidable problem. Both the forms of equivalence checking mentioned in the the-

sis, the path extension based and the value propagation based equivalence checking,

demand canonical representation of expressions, in order to compare two given ex-

pressions. FSMD based equivalence checking uses a normalized form, which is for

integer arithmetic [75] and it is not a canonical form. Integer arithmetic does not have

canonical form. If it had a canonical form, it would be decidable, but we know integer

arithmetic is undecidable. Although not unique, we still use normalization of [75],

because it maximizes the possibility of two equivalent expressions becoming syntac-

tically identical. Thus, normal form is not a canonical form, it is only an attempt to

bring the different representations of an expression together. Whether they will be

same or not, cannot be claimed. All equivalent expressions, therefore, do not become

syntactically identical after normalization. The normal form is unique (i.e., canoni-

cal) for polynomials, so equivalence of two polynomials can be checked using FSMD

based equivalence checking. Switching algebra expressions have canonical forms,

such as the sum of products or the product of sums forms. In the absence of a canon-

ical representation, due to commutative property, an expression having n terms can

be represented in 2n forms [95]. For the expressions which can be normalized, such

as expressions involving algebraic polynomials, this problem of exponential number

of possible representations may be handled, as all the forms will have the same nor-

mal form. Those expressions, for which normalization cannot be done, or those ex-

pressions whose various representations have different normal forms, various ways of

representing the same expression gives rise to problem in establishing their equiva-

lence. Equivalence checking of expressions, both algebraic as well as transcendental,

e.g., trigonometrical identities, is thus not trivial, because there is no known canonical

form of representation for them. In case of algebraic polynomial fractions, we know

4.1 Approximate equivalence checking of expressions 209

they can be decomposed into partial fractions. The fractions before decomposition

and after decomposition have different forms, and their normalized form may not be

unique. FSMD based equivalence checking will not be possible due to the existence

of different normal forms. That is to say that in the absence of a canonical form, their

equivalence cannot be established by representing them in some common form of rep-

resentation in an FSMD. Hence, there is a need for establishing their equivalence by

computing their values at various points of interest and checking that the values of

equivalent expressions are equal at those points. In case the values at all points could

be checked to be equal, it could be said that one expression overlays the other. Doing

this, however, is not possible as this may require evaluation at uncountable number of

points. The equivalence, thus, can only be established in a probabilistic sense, which

means that if the evaluation of two equivalent expressions at a very large number of

points results in equal values at all the points, then with a high confidence we can

say that they are equivalent. We, thus, cannot claim the equivalence with 100% con-

fidence, yet a high confidence value may be achieved by taking a very large number

of sample points. We can, therefore, rely upon this way of randomised simulation

to achieve equivalence. Checking for approximate equivalence may be motivated by

the following discussion. Apparently, floating point numbers can be treated in the

same way as real numbers or bit-vectors; however, it is not so. In usual mathematics,

addition and multiplication of real numbers (and bit-vectors) obeys law of associativ-

ity. By contrast, in computer science, the addition and multiplication of floating point

numbers is not associative, as rounding errors are introduced when dissimilar-sized

values are joined together. This is illustrated by an example 1. It may be noted that

techniques exist to minimize rounding errors, such as, Kahan summation algorithm

[35, 42]. In such cases checking for approximate equivalence may be useful, where

the normal forms are not equivalent, yet the values computed for the two expressions

are approximately equal. In the cases where normalization is not possible, yet the

values computed for the two expressions are approximately equal, the checking for

approximate equivalence is useful.

Approximate equivalence of expressions has been aimed only at those expressions,

1, consider a floating point representation with a 4-bit mantissa:

(1.0002×20 +1.0002×20)+1.0002×24 = 1.0002×21 +1.0002×24 = 1.0012×24 . . . (i)

1.0002×20 +(1.0002×20 +1.0002×24) = 1.0002×20 +1.0002×24 = 1.0002×24 . . . (ii)

Clearly, the values computed by equations (i) and (ii) are different even though they involve the same

operands.

210 Chapter 4 Supporting techniques for evaluation

where canonical forms are not achievable through normalization, as FSMD based

equivalence checking will not be possible in absence of a canonical form, due to exis-

tence of different normal forms. In such cases, checking for approximate equivalence

may be useful, where the normal forms are not equivalent, yet the values computed for

the two expressions are approximately equal. In the cases where canonization using

normalization is not possible, yet the values computed for the two expressions are ap-

proximately equal, the checking for approximate equivalence is useful. This method is

useful in the cases where algebraic simplification, which is an incomplete procedure,

is needed to establish equivalence. Supporting examples are given in the thesis. In

this method of establishing equivalence, no algebraic simplification is required.

4.1.2 Example of approximate equivalence checking

We consider the following well known identity

sin 2θ = 2 sinθ cosθ

The LHS of the identity can be treated as one function and the RHS as the other.

The range of θ for evaluation can be conveniently chosen from 0 to π.

We can start with choosing 10 points randomly, generated using rand function, the

values of the two functions can be computed at those points and their difference is also

computed at each point. At all the points there will be no difference in the computed

values of the expressions. This suggests that at all these points, the functions may be

equal.

4.1.3 Equivalence checking with randomised simulations with some

known properties

The equality of two functions has been defined as follows [36]: “Two functions f :

A→ B and g : A→ D are equal if f (x) = g(x) for every x ∈ A.”

The co-domains of f and g need not be the same in order that f = g holds. For the

functions f : Z→ N and g : Z→ Z defined as f (x) =| x |+2 and g(x) =| x |+2, even

4.1 Approximate equivalence checking of expressions 211

their co-domains are different, the functions are equal because f (x) = g(x) for every

x in the domain.

In actual engineering problems, where floating point numbers and expressions on

those are used, often some approximate solutions, within an acceptable error, are ad-

missible. Thus, in student’s program a student may use an expression which evaluates

approximately equal to the values yielded by the expression in the golden program. In

order to check the approximate equivalence in such cases, we need to define approxi-

mately equal functions, which evaluate approximately equal values, within acceptable

error. Such functions will not have the same normal form and are thus to be dealt

with differently for checking their approximate equivalence. Approximate equality of

functions is to be checked where checking by way of normal forms of expressions will

not work, on expressions over floating point variables. Thus checking via approximate

equality is to be used in lieu of checking via normalization in such cases.

To start with, we define approximately equal univariate functions within a given

range as follows:

Definition 16 (Approximately equal functions over a range). Let f1 : A→ B and f2 :

A→ B be two univariate functions. Let ∀x ∈ A, f1(x) = f2(x)+ ε, | ε |> 0, where

x1 ≤ x≤ x2. We call f1 and f2 as approximately equal within ε in the range from x1 to

x2 of the variable x. The range x1 . . .x2 is known as the range of approximate equality

(within ε) for the functions f1 and f2.

According to our notion of approximate equality as stated above, it may be easier

to automatically establish approximate equality in case of polynomials, if the roots of

the polynomial are known. In cases, where the range of interest is given, the approx-

imate equality may be established by evaluating the two functions at a large number

of randomly chosen points in the range. In case of a periodic function, we should

empirically check whether the other function is also periodic and has values same as

the golden function, within ε at a large number of randomly chosen points from the

range. From periodicity, the range can be manually found out for the the function

in the golden program. We give below some examples of establishing approximate

equality of functions (in these examples the functions in the golden program are such

that their normalization is not possible). It will be observed that the checking proce-

dure is not symmetric, as the instructor has the advantage of annotating the golden

program with additional information to facilitate the checking.

212 Chapter 4 Supporting techniques for evaluation

Example 4.1. Consider checking the expression (x+ 1.5)(x+ 2), in the golden pro-

gram, denoted as expressiong, and the expression x2 + 3.5x + 2.99, in the student

program, denoted as expressions. The roots of expressiong are x= -1.5, -2, as it is a

polynomial of degree 2, in the factored form. expressions is also a polynomial of

degree 2, which evaluates nearly to 0, at the roots of expressiong, suggesting that the

two polynomials have nearly the same roots and degree. Thus, expressiong is approx-

imately equal to expressions within the given error bound ε = .01(say).[by the factor

theorem [73]]

Steps of the computational procedure

Step 1: Check the nature of expressions and find the roots of the expression in
golden program
If both the expressions in the pair 〈expressiong,expressions〉 are polynomials,

check if the expressiong is in the form of a factored polynomial. Check that

expressiong and expressions are of the same degree. Use the roots of the fac-

tored form polynomial expressiong.

Step 2: Check if the expression in the student’s program also vanishes at the
roots of the expression in golden program
For all roots of expressiong, if

∣∣∣expressiong− expressions

∣∣∣
roots
≤ ε, then both

expressiong and expressions are approximately equal within ε.

Example 4.2. Consider the expression having only one term, sin2θ in the golden pro-

gram. Let us denote it as expressiong. The student program may have 2sinθcosθ as

the corresponding expression, let us denote it as expressions. Note that the expressiong

is periodic with period of θ = π, which is manually annotated in the golden program.

Finding that the expressions is also periodic with the same period, is done by evalu-

ating the expressions at a large number of randomly chosen points from the period of

expressiong, i.e., from 0 to π. It is observed that the expressions evaluates approxi-

mately equal, within ε, to the values of the function at the randomly chosen values of

θ, from the period. Thus the expressions may be inferred to be approximately equal,

within ε, to the expressiong.

Steps of the computational procedure

4.1 Approximate equivalence checking of expressions 213

Step 1: Check the nature of expressions and the periodicity of the expression in
golden program
Let 〈expressiong,expressions〉 be the corresponding pair of expressions to be

checked for approximate equality, check that expressiong is periodic. Manually

annotate the periodicity of expressiong with the period 0 to T .

Step 2: Check if the expression in the student’s program also equals the expres-
sion in golden program in the same period
For n randomly chosen samples of x∈ [0 . . .T], if

∣∣∣expressiong−expressions

∣∣∣
x
≤

ε, where n is a large number annotated manually in the golden program, then

both expressiong and expressions are approximately equal within ε. For each

of the previously chosen n random samples of x ∈ [0 . . .T], let x = x + T :

x ∈ [T . . .2T]. To check the periodicity of the expressions, if
∣∣∣expressiong−

expressions

∣∣∣
x∈[T ...2T]

≤ ε, then both expressiong and expressions are approxi-

mately equal within ε and expressions is also periodic with the same period as

that of expressiong.

To find the approximate location of a root, we can make use of the Matijasevik’s

theorem [84], which states that:

Given a polynomial c1xn+c2xn−1+ ...+cnx+cn+1 with a root at x = x0. Let cmax

be the largest absolute value of a ci and c1 be the coefficient of the higher order term,

then |x0| < (n+ 1)cmax
|c1| , i.e., the roots of the polynomial must lie between the values

±k cmax
c1

, where k is the number of terms in the polynomial.

Matijasevik’s theorem shows that calculating such bounds for multivariate poly-

nomials is impossible [84].

Approximate equality checking for functions in x in the golden program, with
another function in x in the student’s program.

Example 4.3. Consider the expression
1

1− x
, | x |< 1, in the golden program.

The student may employ the series expansions to approximately evaluate the algebraic

expression as 1+ x2 + x3 + x4 + . . ., | x |< 1 .

He may approximate the infinite series by retaining the terms upto some degree in

their respective series. Thus we may have the following expressions. expressiong =

214 Chapter 4 Supporting techniques for evaluation

1
1− x

, | x |< 1, the expression in the golden program and expressions = 1+x2+x3+x4,

| x |< 1, the expression in the student’s program.

When evaluated at various randomly chosen values of x in the range −1 < x < 1

(given), we will find that the values of expressiong and expressions are close to each

other. We can thus establish that expressiong and expressions are approximately equal

within a permissible error of ε.

Steps of the computational procedure

Step 1: Check the nature of expressions and for the function in x in the golden
program, manually annotate the range of x

Let 〈expressiong,expressions〉 be the corresponding pair of expressions to be

checked for equality, check that expressiong is not a polynomial in factored

form and is not a periodic function.

Annotate manually the range of variable x of expressiong.

Step 2: Check if the expression in the student’s program also equals the expres-
sion in golden program at the chosen number of random samples
For all x ∈ range, if

∣∣∣expressiong− expressions

∣∣∣
x
≤ ε, where x is chosen ran-

domly n number of times, n being a large number annotated manually in the

golden program, then both expressiong and expressions are approximately equal

within ε.

Approximate equality checking for trigonometric expressions using their power
series expansions

In case the LHS and RHS of a trigonometric identity can be reduced to approxi-

mate polynomials, then we can establish the equality of the RHS and LHS by evaluat-

ing the polynomials at sufficiently large number of points compared to the degree of

polynomial. We take an example below:

Example 4.4. Consider the expression
1− tanx
1+ tanx

in the golden program.

We explore the following possibilities of expressions written by the student in his pro-

gram. The student may write either the form same as above or may write the following

identical expression
cosx− sinx
cosx+ sinx

. The student may also employ the Maclaurin series

4.1 Approximate equivalence checking of expressions 215

expansions to approximately evaluate the trigonometric functions. The trigonometric

ratios sinx, cosx and tanx may be represented by their infinite series expansions as

follows.

sinx = x− x3

3!
+

x5

5!
− ... for every x

cosx = 1− x2

2!
+

x4

4!
− ... for every x

tanx = x+
x3

3!
+

2x5

15
+ ... for |x|< π/2

He may approximate the infinite series by retaining the terms up to the fifth degree

in their respective polynomials. Thus the following expansions result for the expres-

sion in the golden program and the expression
cosx− sinx
cosx+ sinx

. The series expansions for

the expression in the golden program

=
(1− x− x3

3! − 2x5

15)

(1+ x+ x3

3! +
2x5

15)

and the series expansion for the expression
cosx− sinx
cosx+ sinx

=
(1− x− x2

2! +
x3

3! +
x4

4! − x5

5!)

(1+ x− x2

2! − x3

3! +
x4

4! +
x5

5!)

For x = 0 all the above expressions evaluate to 1.

When evaluated at various values of 0 < x < π/2, we will find that the values of

all the above expressions are close to each other. We can thus establish that they are

equivalent within a permissible error of ε.

In the following we consider an example of approximate equivalence checking,

in which the golden program and the student’s program have a statement which is

equivalent, but cannot be normalized. We note that the equivalence checker finds two

paths equivalent, if the conditions and the data-transformations on both match.

Example 4.5. Let us consider the two FSMDs given in figure 4.1. In the figure,

216 Chapter 4 Supporting techniques for evaluation

the conditions and data-transformations along the transitions are shown as cond and

dtrans with appropriate subscripts. It may be noted that some of the conditions and

data-transformations are identical in Ms and Mg. The data-transformations are as-

sumed to be in the normalized form, except for one in each of the FSMDs, which

cannot be normalized and it’s equality checking will be explained further. The cut-

point to cut-point paths are shown as ps and pg with appropriate subscripts. The

equivalence checking starts with the respective starting states, qa and q01, assumed

to be corresponding states. Starting from this pair of corresponding states, the paths

to the next cut-point in both the FSMDs are checked and found to be equivalent, i.e.,

qa→ qb
∼= q01→ q02. Now qb and q02 become corresponding states. The path qb→ qc

(corresponding transition ps,1 in Mg) is checked next and found to have an equivalent

path q02→ q03 (pg,1 in Mg). The other path from qb viz., qb→ qc (ps,2 in Ms) is found

to have an expression x = 2sinθcosθ, which cannot be normalized. Hence the equiv-

alence checking for this expression is to be done to ascertain approximate equality.

The expression in the next path to be checked in Mg, viz., the path q02→ q03 (pg,2), is

sin2θ, which is annotated to be a periodic expression in the golden program with the

period of θ from 0 to π. Hence, the approximate equality checking is done for the ex-

pressions expressiong = sin2θ and expressions = 2sinθcosθ as per the steps given in

the computation procedure for approximate equality of expressions when the golden

program has a periodic function. The two expressions are evaluated at an annotated

number of random sample points for θ in the range [0 . . .π], in the golden program

and the difference in the values is checked to be within an already annotated ε. The

periodicity of expressions is established by repeating the trial in the range θ = π to

2π. As all the values are found within ε, the approximate equality of expressions is

established with expressiong, resulting in equivalence of the paths ps,2 and pg,2. Thus,

qc and q03 become corresponding states. Let the next path chosen from qc be qc→ qd

(ps,3 in Ms) which is found to have the equivalent path q03→ q04 (pg,3 in Mg). The

next path from qc is qc→ qd (ps,4 in Ms). This path is found to be equivalent to the

path q03→ q04 (pg,4 in Mg). The states qd and q04 now become corresponding states.

As no more paths remain to be checked, the two FSMDs are asserted to be one way

equivalent. Now the equivalence of paths in both the FSMDs is also checked by re-

versing the roles of the FSMDs Mg and Ms. It will be seen that the FSMDs will again

be found to be equivalent as the paths are exactly the same. Hence the FSMDs are

equivalent both ways.

4.1 Approximate equivalence checking of expressions 217

qa

cond1 / dtrans2 !(cond1) / x = 2 sin θ cos θ

cond2 / dtrans3 !(cond2) / dtrans4

− / dtrans1

qc

qd

ps,1 ps,2

ps,3 ps,4

qb

ps,0

(a)

q01

q04

cond1 / dtrans2 !(cond1) / x = sin 2θ

cond2 / dtrans3 !(cond2) / dtrans4

q03
pg,1 pg,2

pg,3 pg,4

q02

− / dtrans1pg,0

(b)

Figure 4.1: FSMDs (a) Ms and (b) Mg.

In the following we present an example of containment checking, which involves

the approximate equality checking of functions. We note that in containment check-

ing, a path ps is said to be contained in another, say pg, if the data transformations in

ps are also present in pg, irrespective of their conditions.

Example 4.6. We consider parts of two FSMDs Mg and Ms as given in figure 4.2 from

LCS and CSLCS onwards. In the figure, the conditions and data-transformations along

the transitions are shown as cond and dtrans with appropriate subscripts. It may be

noted that some of the conditions and data-transformations are identical in Ms and Mg.

The data-transformations are assumed to be in the normalized form, except for one in

each of the FSMDs, which cannot be normalized and it’s equality checking will be

explained further. Those conditions and data-transformations, which are not the same,

have been shown with different subscripts. The cut-point to cut-point paths are shown

as ps and pg with appropriate subscripts.

The containment checking proceeds as follows. The containment checker tries to

find containment of the path ps,1, i.e., qb→ qc of Ms, which is from LCS to the next

cut-point, inside the path pg,1 i.e., q02→ q03 of Mg, which is from CSLCS to the next

cut-point, as per the following discussion.

The path from qb viz., qb → qc (ps,1 in Ms) is found to have an expression

x = 2sinθcosθ, which cannot be normalized. Hence the equivalence checking for

this expression is to be done to ascertain approximate equality. The expression in the

path to be checked in Mg, viz., the path q02 → q03 (the path pg,1, is sin2θ, which

is annotated to be a periodic expression in the golden program with the period of θ

from 0 to π. Hence, the approximate equality checking is done for the expressions

218 Chapter 4 Supporting techniques for evaluation

expressiong = sin2θ and expressions = 2sinθcosθ as per the steps given in the com-

putation procedure for approximate equality of expressions when the golden program

has a periodic function. The two expressions are evaluated at a large number of ran-

dom points in the range of θ, which is already annotated in the golden program and the

difference in the values is checked to be within an already annotated ε. The periodic-

ity of expressions is established by repeating the trial in the range θ = π to 2π. As all

the values are found within ε, the approximate equality of expressions is established

with expressiong, resulting in equivalence of the paths ps,1 and pg,1. Thus, qc and q03

become corresponding states.

As the sets of data-transformations along the two paths as above are now found

to be the same, hence containment is asserted. The containment checker reports ps,1

“Unordered path-wise both way contained” in path pg,1. Both these paths are now ex-

cluded for further checking by the containment checker. Now the containment checker

backtracks from q03 to q02 and tries to find the containment of the remaining path ps,2

from LCS, in the remaining path pg,2 emanating from CSLCS, i.e., q02. This time

containment is not found due to different data-transformation expressions. The path

pg,2 is, therefore, extended to the next cut-point q05 along one of the paths emanating

from q03 , say pg,3. As none of the data-transformations along the path pg,3 is same

as that of ps,1, hence, the containment is not found. The containment checker now

backtracks to the state q03 to explore the other path emanating from it, by extending

along pg,4. This time again the containment is not found for the similar reason as

before. The containment checker, therefore backtracks to q03, and as there is no other

path from it, hence it further backtracks to q02. As all the paths from q02 have been

explored and as nowhere the containment was found, hence the containment checker

reports ps,2 as “path-wise un-contained”.

In the following we present an example of checking and correcting the error in a

student program using approximate equivalence checking of the FSMDs of student’s

program and the golden program.

Example 4.7. The FSMDs of the student’s program and the golden program are

shown in figure 4.3. We note that the equivalence checker finds two paths computa-

tionally equivalent, if the conditions and the data-transformations on both match. We

also note that in containment checking, a path ps is said to be contained in another,

say pg, if the data transformations in ps are also present in pg, irrespective of their

4.1 Approximate equivalence checking of expressions 219

qa

cond1 / x = 2 sin θ cos θ !(cond1) / dtranss,2

cond2 / dtrans3 !(cond2) / dtrans4

− / dtrans1

qc

qd

ps,1 ps,2

ps,3 ps,4

qb

qe

− / dtrans5

LCS

ps,0

(a)

q01

q04

cond1 / x = sin 2θ !(cond1) / dtransg,2

cond2 / dtrans3 !(cond2) / dtrans4

q03
pg,1 pg,2

pg,3 pg,4

q02

− / dtrans1

q05

− / dtrans5

CSLCS

pg,0

(b)

Figure 4.2: FSMDs (a) Ms and (b) Mg.

conditions. The checking and correction process is executed in the following steps.

qa

cond1 / dtrans2
!(cond1) / z = x + y,

cond2,s / dtrans3 !(cond2,s) / dtrans4,

− / dtrans1

qc

qd

ps,1 ps,2

ps,3 ps,4

qb

ps,0

x = 2 sin θ cos θ,

(a)

q01

q04

cond1 / dtrans2

!(cond1) / c = a + b,

cond2,g / dtrans3 !(cond2,g) / dtrans4

q03
pg,1 pg,2

pg,3 pg,4

q02

− / dtrans1pg,0

x = sin 2θ,
z = x + y

(b)

Figure 4.3: FSMDs (a) Ms and (b) Mg.

• Equivalence checker is executed in the beginning. It finds the path qa→ qb (path

ps,0 in Ms), equivalent to the path q01 → q02 (path pg,0 in Mg), as they have

the same condition (-) and data-transformation (dtrans1). qb and q02 become

corresponding states.

• Equivalence checker then finds the equivalence of the paths qb→ qc (path ps,1 in

Ms), equivalent to the path q02→ q03 (path pg,1 in Mg), as they have the identical

condition of execution (cond1) and identical data-transformation (dtrans2).

• After this, the equivalence checker fails to find the equivalence of the path

qb → qc (path ps,2 in Ms), with the path q02 → q03 (path pg,2 in Mg), as they

220 Chapter 4 Supporting techniques for evaluation

have the same condition of execution, !(cond1), but not the same set of data-

transformations along the two paths, even after doing path extensions ps,2 with

ps,3 and also ps,2 with ps,4. Moreover the data-transformations, x = 2sinθcosθ

in Ms and x = sin2θ in Mg, cannot be normalized, for which approximate equal-

ity checking is used, before equivalence checker fails.

• As a result, qb becomes LCS and q02 becomes CSLCS, from where the con-

tainment checker starts checking. It finds ps,1 contained in pg,1, as the data-

transformation along them are identical (dtrans2).

• The containment of ps,2 is then found in pg,2, as the set of data-transformations

in ps,2 is a subset of the set of data-transformations in pg,2. Here also, as the

data-transformations, x = 2sinθcosθ in Ms and x = sin2θ in Mg, cannot be

normalized, for which approximate equality checking is used.

• As the correction step, the extra statement statement c = a+b in pg,2 is copied

to ps,2. As the equivalence checker failed but containment checker succeeded,

so the two dependent data-transformations are interchanged in the ps,2, making

the two paths equivalent, which will be seen in the next step.

• Again, equivalence checker is executed to check the extent of equivalence of

the two FSMDs. This time equivalence checker is able to find equivalence of

both the paths ps,1 and ps,2 emanating from qb and meeting at qc with the paths

pg,1 and pg,2 emanating from q02 and meeting at q03. Thus qc and q03 become

corresponding states.

• Equivalence checker starts to explore the paths emanating from the recently

established corresponding states qc and q02, but it fails to check further due to

mismatch in the conditions of execution. Thus qc becomes new LCS and q03

becomes new CSLCS.

• The containment checker is now called and it starts finding containment of

path ps,3 from LCS to qd in the path pg,3 from CSLCS to q04. The data-

transformation being the same along the two paths, containment is asserted.

As the conditions are different, so the condition of execution of the path ps,3 is

replaced with the condition of the path pg,3 of golden program.

• The containment checker now checks containment of path ps,4 from LCS to qd

in the path pg,4 from CSLCS to q03. After finding the containment the condition

4.1 Approximate equivalence checking of expressions 221

of execution of the path ps,4 is made same as that in the golden program, as done

in previous step.

• Finally the equivalence checker is executed to establish that both the FSMDs

are equivalent.

In the above example we have observed the following:

1. ps,1 ' pg,1 is also checked by the equivalence checker in its first run, before it

failed, but this check is not reported. The containment checker again checks it.

2. If containment is found, the order of statements can still be different. So the

order is to be restored as per the golden program.

3. As correcting step, the missing statements in the student’s program are copied

from the golden program, in the order in which they occur in the golden pro-

gram. Also the condition of execution in the golden program at the cut-point

state, is copied to the student program as a correcting step.

Conclusion, discussion and future work:
We may thus arrive at a notion of the ε-cover of a given expression.

Definition 17 (ε-cover). ε-cover of an expression may be defined as the function whose

value when evaluated differs by at most ε, from the value of the given expression, at a

large fraction of points chosen at random.

Definition 18 (Probably equivalent expressions). If two expressions lie within ε-cover,

then they are said to be probably equivalent within the permissible error of ε.

Our problem is that we want to be able to state the probable equivalence with high

confidence value, and find out what should be the number of samples to be chosen for

this. As it turns out, the relation of sample size with confidence interval may be given

by Chernoff bound. In doing so we would also like to use as less sampling points as

possible.

Chernoff bound approach for finding minimum number of samples in check-
ing approximate equality of functions is given below with an example.

222 Chapter 4 Supporting techniques for evaluation

In order to check the approximate equality of two functions, say f1(x) and f2(x), in

a given interval, say [x1, x2], we may have two cases. In case the functions are approxi-

mately equal then the two given functions have approximately equal values at the most

of uniformly distributed samples in the interval [x1, x2], i.e., | f1(xi)− f2(xi) |≤ ε, ε be-

ing the maximum allowable error. In case the functions are not approximately equal,

they will differ significantly, i.e., | f1(xi)− f2(xi) |≥ ε, at most of the points xi in the

interval [x1, x2]. It will be of interest to know, in order to minimize the computational

effort, what is the minimum number of sample points, which will be sufficient to es-

tablish the approximate equality of two given functions with a high confidence value.

The minimum number of samples is to be determined for the two cases, the first be-

ing the case that f1(x) and f2(x) are approximately equal and the other in which the

two functions are not approximately equal. We discuss below the Chernoff bound

approach for the first case, the approach for the other case may be taken similarly.

Let ε ∈ (0,1) be the margin of absolute error and δ ∈ (0,1) be the confidence pa-

rameter. To determine the approximate value of the error bound, we have the following

expression

Pr(|L̃n−L| ≤ ε)≥ 1−δ (4.1)

where L is the probability that | f1(xi)− f2(xi) |≤ ε, where xi is chosen randomly from

[x1, x2] and L̃n is used to denote the output of a random sampling (for estimating L).

Using the above formula, we can use Chernoff bound [8, 16, 23, 62, 82, 92], which is

used extensively in computer science. In the random sampling techniques, Chernoff

bounds are used to determine the upper limit of the significant difference between two

objective functions. By considering the Chernoff bound, we get more accurate bounds

for tail probability of sum of Bernoulli random variables. Next, we state the Chernoff

bound for average of the sum of Bernoulli random variables as follows.

Pr
[

X
n
> (1+ ε)p

]
≤ exp(− pnε2

3
),Pr

[
X
n
< (1− ε)p

]
≤ exp(− pnε2

2
) (4.2)

Using the bound given above, we can calculate several formulas for sample size. In the

following, we give the formula to obtain the sample size to find approximate equiv-

alence of two functions using the two equations 4.1 and 4.2 [92], where X = ∑
n
i=1 Xi

and n is the minimum sample size. If sample size n satisfies one of the following

inequalities, then it satisfies the bound (4.1).

n >
1

2ε2 ln(
2
δ
) (4.3)

4.1 Approximate equivalence checking of expressions 223

and

n >
3L
ε2 ln(

2
δ
). (4.4)

Example 4.8. Application of Chernoff bound

As an example of application of Chernoff bound we have the following minimum

sample sizes n, for various desired values of δ and ε, according to the inequality 4.4

given above, assuming L = 1 (most desirable case).

δ = 0.1 ε = 0.2 n≥ 225

δ = 0.01 ε = 0.2 n≥ 397

δ = 0.001 ε = 0.2 n≥ 570

δ = 0.001 ε = 0.2 n≥ 742

We observe from the above data that for the same error tolerance (ε), if the confi-

dence parameter (δ) is reduced, the number of minimum samples required increases

monotonically but slowly.

We next present the data for minimum sample size, where the confidence parame-

ter (δ) is fixed, but the error tolerance (ε) is increased.

δ = 0.1 ε = 0.2 n≥ 225

δ = 0.1 ε = 0.02 n≥ 22468

δ = 0.1 ε = 0.002 n≥ 2246799

We observe that for the same confidence parameter (δ), if the error tolerance (ε) is

reduced, the number of minimum samples required increases rapidly.

Reducing the sample points may be possible in a case where e.g. if the reference

function is well behaved, e.g., piecewise linear or piecewise smooth between corner

points. Checking equivalence only at corner points may suffice, reducing the number

of sample points. However as the reference function may be well behaved but as there

may not be any knowledge about the function being compared, so it may be required

224 Chapter 4 Supporting techniques for evaluation

to test at all points. In such a case where there is none but the only way to sample at

a large number of points, we may need to look for randomly finding out the sample

points, such that when tested over those points, the equivalence can be established

with some high confidence.

Reducing number of sample points may be possible if we can reduce the given

functions to some polynomials with some finite terms and if we can find the roots of

the polynomials, then the points for evaluating the polynomials could be just at the

roots. So for a degree n polynomial, as it has n roots, checking at n points could be

sufficient, all the points being the roots of the polynomials.

4.1.4 Obtaining the range of evaluation from the conditions in the

program

At times, it may be possible to obtain the range from the conditions given in the

program. In case, the condition for evaluation is in sum of products form, each product

term may yield a range of computation, as shown in the following example.

Example 4.9. Let there be following conditions in a given program in which the

expression given below is valid.

(x < 10 && x > 5) || (x < 20 && x > 15) || (x < 50 && x > 40)

(x−1)(x+1)
x2 +1

Let another program have the same conditions under which the same expression is

written in a different form as follows.

(x < 10 && x > 5) || (x < 20 && x > 15) || (x < 50 && x > 40)

(x2−1)
x2 +1

That the expressions in the two programs are equivalent, is obvious from the basic

algebra, but the equivalence checker cannot check their equivalence as their normal

forms for the two expressions will not be the same. In such a case the equivalence

may be suggested by actually evaluating the two expressions in the range obtained

from the conditions given in the two programs and then comparing the values at every

4.1 Approximate equivalence checking of expressions 225

point in the range. If the difference in the values at every point is the same, then the

two expressions may be equivalent. The range for evaluating the expression may be

obtained from the conditions as values of x from 6 to 9, 16 to 19 and 41 to 49.

We bring another example from trigonometric identities as follows.

Example 4.10. Let there be following conditions in a given program in which the

expression given below is valid.

(θ < π/2 && θ > 0) || (θ < 3π/2 && θ > π)

1− tanθ

1+ tanθ

Let another program have the same conditions under which the same expression is

written in a different form as follows.

(θ < π/2 && θ > 0) || (θ < 3π/2 && θ > π)

cosθ− sinθ

cosθ+ sinθ

That the expressions in the two programs are equivalent, is obvious from the basic

trigonometry, but the equivalence checker cannot establish their equivalence as the

two expressions are syntactically not the same. In such a case the equivalence may

be suggested by actually evaluating the two expressions in the range obtained from

the conditions given in the two programs and then comparing the values at every

point in the range. If the difference in the values at every point is the same, then the

two expressions may be equivalent. The range for evaluating the expression may be

obtained from the conditions as values of θ vary from 0 to π/2 and from π to 3π/2.

4.1.5 The decision procedure

We present below the decision procedure in algorithm 17 to check the equivalence of

two expressions, in case they are univariate and cannot be normalized or have different

(not equivalent) normal forms. In algorithm 17, the check in line 3 is about deciding

whether expressions can be normalized? Normalization is a well defined procedure.

Normalization is a sound but not complete mechanism for checking equivalence of

arithmetic expressions. The normalization scheme used here is adapted from [43].

226 Chapter 4 Supporting techniques for evaluation

In the golden program and the student program, i) Cg, Cs stand for the conditions

in the path, ii) expressiong and expressions stand for the expressions .

Steps for the decision procedure for equivalence checking in a range

A range [start, end] has two values, i) starting value of range, start and ii) End

value of range, end.

SOP (range1 OR range2 OR ... OR rangen)

(1) Let a structure pair have two fields

(I) pair.first will hold start value of a range.

(II) pair.second will hold end value of a range.

Let SOP_pairs[] be the array to hold all pairs of a SOP.

Let CG[][] be the array to hold all SOP_pairs of golden program Mg.

Let CS[][] be the array to hold all SOP_pairs of student program Ms.

(2) Let stmt[] be the array to hold statements of a SOP.

Let stmtG[][] be the array to hold all stmt of Mg.

Let stmtS[][] to be the array to hold all stmt of Ms.

(3) Let ResultG[i][j] be the array to store result for ith SOP condition and jth state-

ment of Mg.

Let ResultS[i][j] be the array to store result for ith SOP condition and jth state-

ment of Ms.

Steps are as follows:

(1) Parse the code

(I) For all conditions Ci in Mg

(A) If Ci is in SOP form Extract SOP_pairs[] of SOP for Ci and store at

CG[i][].

Extract all statements of Ci to stmt[] and store at stmtG[i][]

4.1 Approximate equivalence checking of expressions 227

(II) For all conditions Ci in Ms

(A) If Ci is in SOP form Extract SOP_pairs[] of SOP for Ci and store at

CS[i][].

Extract all statements of Ci to stmt[] and store at stmtS[i][]

(2) Compare SOPs and Results

(I) For all i in CG[i][]

(A) For all j in CS[j][]

(i) If SOP_pairs[i] of CG[i][] is equal to SOP_pairs[j] of CS[j][]

(a) For all k of CG[i][k]

(1) For all l of CS[j][l]

(I) ResultG[i][k] = Evaluate statement stmtG[i][k]

(II) ResultS[j][l] = Evaluate statement stmtG[j][l]

(a) For all k of ResultG[i][k]

(1) For all l of ResultS[j][l]

(I) If ResultG[i][k] is equal to ResultS[j][l] then stmtG[i][k]

is equal to stmtS[j][l]

4.1.6 Results

1. We did a simulation for the following well known identity using Matlab: sin2θ=

2sinθcosθ. The LHS of the identity was treated as one function and the RHS

as the other. The range of θ for evaluation was chosen from 0 to π. To start with

10 points were chosen randomly, generated using rand function, the values of

the two functions were computed at those points and their difference was also

computed at each point. At all the points there was no difference in the com-

puted values of the expressions. This proves that at all these points the functions

are equal.

2. The results obtained by running the algorithm 17 for various expressions are

given in the table 4.1. From the table it is evident that the method is capable of

differentiating between the equivalent and non equivalent expressions.

228 Chapter 4 Supporting techniques for evaluation

Algorithm 17: Decision procedure for approximate equivalence checking

L1 forall paths in FSMD do
L2 forall expressions in the path do
L3 if (expressiong and expressions cannot be normalized || expressiong

and expressions have not equivalent normal forms) then
L4 if Cg and Cs are in sum of products form then
L5 Find the range of variable x from each clause of Cg (or Cs)

L6 forall x in the range do

L7 if (expressiong− expressions)
∣∣∣
x
< ε then

L8 Output expressions may be equivalent

L9 else
L10 Output expressions are not equivalent

L11 else
L12 Ask for range of variable x and number of samples n

L13 for 1 to n do
L14 Pick x randomly

L15 if (expressiong− expressions)
∣∣∣
x
< ε then

L16 Output expressions may be equivalent

L17 else
L18 Output expressions are not equivalent

4.2 Automated evaluation of programs 229

Expression1 Expression2 Range #Samples Result
(x−1.1)(x+1.1)

x2 +1.2
x2−1.21
x2 +1.21

∗ 5 Equivalent

x2 +1.2
(x−1.1)(x+1.1)

,x 6=±1.1
x2 +1.21
x2−1.21

,x 6=±1.1 ∗ 5 Equivalent

a % 2 a & 1 2 ≤ a≤ 10 5 Equivalent

sin2θ 2 sin θ cos θ 0 to π 10 Equivalent
1− tanθ

1+ tanθ

cosθ− sinθ

cosθ+ sinθ
† 10 Equivalent

sin θ cos θ 0 to π 10 Not Equiv.

x=printf(str) y=str.length() various strings 10 Equivalent
(x2 +3.5x+2.99)
(x2−3.5x+3)

,x 6= 1.5,2
(x+1.5)(x+2)
(x2−3.5x+2.99)

,x 6= 1.5,2 ∗ 5 Equivalent

(x−1.5)(x−2)(x−3)
(x+1.5)(x+2)(x+3)

(x2−3.5x+3)(x−3)
(x2 +3.5x+2.99)(x+3)

∗ 5 Equivalent

x2−1.21
x2 +1.21

x2 +1.21
x2−1.21

,x 6=±1.1 ∗ 5 Not Equiv.

∗ (x < 10 && x > 5) || (x < 20 && x > 15) || (x < 50 && x > 40)

† (θ < 90 && θ > 0) || (θ < 270 && θ > 180)

Table 4.1: Checking expression equivalence

In the expression “a & 1” in the above table, the symbol & stands for bitwise

AND operator. Also, as in the above table x=printf(str), y=str.length(), in

which case x and y will be equal.

4.2 Automated evaluation of programs

Automatically evaluating the student’s programs is a challenging task, because every

student uses his own set of variable names and there may be several golden solutions

to the problem.

A marking scheme for the programming exercises has been developed and has

been tested to perform well. Based on FSMD equivalence checking, using propa-

gation vectors, we have also suggested an improved method [77], which is given in

section 4.2.4.

230 Chapter 4 Supporting techniques for evaluation

4.2.1 An automated program evaluation scheme

The task of evaluation module is to evaluate the student’s program, based on the sim-

ilarity with the golden model. For marking scheme the evaluation module uses two

constants c1 and c2, which are empirically taken from the teacher, who based on his

experience can provide them. The constant c1 is used as a weight for number of vari-

ables successfully mapped and the constant c2 is for the weight for the number of

paths matched with the golden program. The total marks obtained by a student is thus

the weighted sum of the proportions of the variables mapped and the paths matched.

The complete formula for evaluation is as follows.

Marks = c1× Totalnumbero f variablesmapped
Totalvariablesinmodel program + c2× Totalnumbero f pathsmatched

Totalnumbero f pathsinmodel program

Whenever all the variables of student’s program match with all variables of model

program and all paths of the model program match with all the paths of student’s

program, the student is awarded full marks.

MappedVars is total number of variable matched between golden and student pro-

gram by the function propagate.

Algorithm 18: Evaluation of student program

L1 Function Evaluation (Pathlist1, Pathlist2, MappedVars, C1, C2)
L2 pathMatched = 0

L3 forall path i in golden program do
L4 forall path j in student program do
L5 if all statements of path i are there in path j then
L6 pathMatched ++

L7 Marks = (MappedVars/TotalVar) * C1 + (pathMatched/Total paths in golden

program) * C2

L8 return

4.2 Automated evaluation of programs 231

Code Name Marks Obt. TA Marks

1.c 5.1 5

2.c 6.9 7

3.c 9.3 9

4.c 8.7 9

5.c 8.1 8

6.c 8.7 9

7.c 9.3 9

8.c 8.7 9

9.c 6.1 6

10.c 5 5

Table 4.2: Automatic evaluation vs TA’s evaluation for Coordinate.c, C1=3, C2=7

Code Name Marks Obt. TA Marks

1.c 8.7 9

2.c 8 7

3.c 9.6 9

4.c 9.3 9

5.c 9.6 9

6.c 8.9 9

7.c 7.3 8

8.c 7.3 7

9.c 9.6 9

10.c 9.6 9

Table 4.3: Automatic evaluation vs TA’s evaluation for Friend.c, C1=3, C2=7

232 Chapter 4 Supporting techniques for evaluation

Code Name Marks Obt. TA Marks

1.c 9.3 9

2.c 8.1 8

3.c 10 10

4.c 10 10

5.c 8.9 9

6.c 8.9 9

7.c 6.5 7

8.c 4.6 5

9.c 8.1 8

10.c 7.3 7

Table 4.4: Automatic evaluation vs TA’s evaluation for Equal0_1.c, C1=3, C2=7

Code Name Marks Obt. TA Marks

1.c 9.3 9

2.c 10 10

3.c 10 10

4.c 9.4 9

5.c 10 10

6.c 10 10

7.c 9.4 9

8.c 8.7 8

9.c 8.1 8

10.c 9.4 9

Table 4.5: Automatic evaluation vs TA’s evaluation for GCDBenchmark.c, C1=3,

C2=7

4.2 Automated evaluation of programs 233

Code Name Marks Obt. TA Marks

1.c 9.0 9

2.c 7.6 8

3.c 10 10

4.c 8.6 9

5.c 7.2 7

6.c 4.4 5

7.c 5.3 6

8.c 10 10

9.c 10 10

10.c 2 2

Table 4.6: Automatic evaluation vs TA’s evaluation for LCM.c, C1=3, C2=7

Code Name Marks Obt. TA Marks

1.c 8.0 8

2.c 8.6 9

3.c 7.9 8

4.c 8.6 9

5.c 8.6 9

6.c 10 10

7.c 10 10

8.c 7.4 8

9.c 1.8 2

10.c 7.4 8

Table 4.7: Automatic evaluation vs TA’s evaluation for GCD.c, C1=3, C2=7

234 Chapter 4 Supporting techniques for evaluation

Code Name Marks Obt. TA Marks

1.c 6.7 7

2.c 6.7 7

3.c 6.8 7

4.c 7.3 8

5.c 7.2 7

6.c 7.2 7

7.c 7.2 7

8.c 7.1 7

9.c 5.6 6

10.c 7.2 7

Table 4.8: Automatic evaluation vs TA’s evaluation for BarCode.c, C1=3, C2=7

Code Name Marks Obt. TA Marks

1.c 4.0 5

2.c 2.0 2

3.c 3.0 3

4.c 10 10

5.c 3.0 3

6.c 3.0 3

7.c 1.5 2

8.c 8.5 9

9.c 1.5 2

10.c 3.0 3

Table 4.9: Automatic evaluation vs TA’s evaluation for Swap.c, C1=3, C2=7

4.2 Automated evaluation of programs 235

4.2.2 Results

In the tables 4.2 to 4.9, codes were taken from the set of benchmark programs. For

example, GCDBenchmark.c is a program from the set of benchmark programs. 1.c,

2.c etc. are the students’ programs.

In the following we explain the concept of value propagation and its use in the

marking scheme that is given in the next subsection 4.2.4.

4.2.3 Preliminary concepts of value propagation

The FSMD model, similar to a flowchart, captures the control and data-flow of a pro-

gram; a detailed description of the model can be found in [47]. Since it is impossible

to compare two FSMDs (programs) in totality, they are broken down into smaller seg-

ments by introducing cut-points so that each loop in an FSMD is cut in at least one

cut-point, thereby permitting any computation of the FSMD to be viewed as a com-

bination of paths. A path α in an FSMD model is a finite alternating sequence of

states and connecting edges, starting and ending in cut-points without containing any

intermediate cut-point. Two FSMDs M1 and M2 are said to be equivalent if for any

computation ν1 (viewed as a combination of paths) in M1, there is an equivalent com-

putation ν2 in M2 and vice versa. Therefore, establishing equivalence at the path-level

suffices to determine equivalence of FSMDs. It is worth noting that in this work, the

initial state, the final state and the states with more than one outgoing transitions in

an FSMD are considered as cut-points. Next, we explain the basic concepts related

to value propagation based equivalence checking method for FSMDs as described

in [11, 12] which is latter illustrated with an example.

The basic method of value propagation consists in identifying the mismatches in

the (symbolic) values of the live variables at the end of two paths taken from two dif-

ferent FSMDs; if mismatches in the values of some live variables are detected, then

the variable values (stored as a vector) are propagated through all the subsequent path

segments. Repeated propagation of values is carried out until an equivalent path or a

path ending in the final state is reached. In the latter case, any prevailing discrepancy

in values indicates that the original and the transformed behaviours are not equiva-

236 Chapter 4 Supporting techniques for evaluation

−

y⇐ a+100

q2,l

q2,n

q2, j

(b) M2

(〈T,〈..,a,a+100, t〉〉,q2, j)

(〈T,〈..,a,a+100, t〉〉,q2, j)

〈T,〈..,a,y, t〉〉

(a) M1

(〈T,〈..,a,a+100,50〉〉,q1,i)

y⇐ y+ t

t⇐ 50
y⇐ a+50,

q1,i

q1,m

q1,k

(〈T,〈..,a,a+50,50〉〉,q1,i)

〈T,〈..,a,y, t〉〉

Figure 4.4: An example of value propagation.

lent; otherwise they are. Propagation of values from a path α1 to the next path α2 is

accomplished by associating a propagated vector at the end state of the path α1 (or

equivalently, the start state of the path α2). A propagated vector ϑ through a path

α1 is an ordered pair of the form 〈C ,〈e1,e2, · · · ,ek〉〉, where k is the number of dis-

tinct variables from both the FSMDs. The first element C of the pair represents the

condition that has to be satisfied at the start state of α1 to traverse the path and reach

its end state with the upgraded propagated vector. The second element, referred to as

value-vector, consists of ei, 1≤ i≤ k, which represents the symbolic value attained at

the end state of α1 by the variable vi. To start with, for the initial state, the propagated

vector is 〈>,〈v1,v2, · · · ,vk〉〉, where > stands for true and ei = vi,1≤ i≤ k, indicates

that the variables are yet to be defined. Let Cα(v) and sα(v) represent respectively

the condition of execution and the data transformation of a path α when there is no

propagated vector at the start state αs of α. In the presence of a propagated vector,

ϑαs = 〈c1,e〉 say, at αs, its condition of execution becomes c1(v)∧Cα(v){e/v} and

the data transformation becomes sα(v){e/v}, where {e/v} is called a substitution; the

expression τ{e/v} represents that all the occurrences of each variable v j ∈ v in τ is

replaced by the corresponding expression e j ∈ e simultaneously with other variables.

In the following we present a vivid example for value propagation based checking of

equivalence.

Example 4.11. Let us consider the example given in Figure 4.4 where y and a are

common variables2 and t is an uncommon variable and all the states shown in the

figure are cut-points. Let the states q1,i and q2, j be corresponding states, i.e., the val-

2A variable is said to be common if it appears in both the FSMDs, whereas it is said to be uncommon

if it appears in either of the FSMDs but not both.

4.2 Automated evaluation of programs 237

ues of all the live variables match at these states – consequently, we have identical

propagated vectors 〈T,〈..,a,y, t〉〉 at q1,i and q2, j; the ellipsis is used to represent other

variables that might be occurring (and whose values also match) in these FSMDs. Af-

ter the paths q1,i � q1,m in M1 and q2, j � q2,n in M2 are traversed, mismatches in the

values of the live variables y and t are found and consequently these two paths are

considered to be conditionally equivalent with the hope that the mismatches would

disappear in the respective subsequent path segments from q1,m and q2,n. The prop-

agated vectors at q1,m and q2,n are computed accordingly and shown in the figure.

With these propagated values, it is easy to check that the values of y (that is, all live

variables – assuming t is no further used in FSMD M1) match at the end of the paths

q1,m � q1,k and q2,n � q2,l . Therefore, these two paths are declared to be equivalent.

�

We have suggested a symbolic value propagation based scheme below for evalu-

ation of student’s programs. In the symbolic scheme, we check live variables at each

cut point in the two programs and find equivalence. The value propagation based al-

gorithm for variable mapping has been designed to handle the following situation, if

there is an unmapped live variable in path cover. For the two programs, whose vari-

ables are to be mapped, the update vectors are checked. If update vectors for both the

programs have the same operations, then we can say that both variables will behave in

program similarly. For example, let us say x = y%10 and z = r%10 are two statements

prior to any given cut points in the two programs. So, x and z are live variables and

〈y%10,r%10〉 is an update vector. We assume that in the previous path cover y and r

have been mapped. Then, x and z will have correspondence in both programs. Hence,

the mapping between x and z is true. This is how the variable mapping will work, in a

nutshell. Some cases and the basic scheme are explained in detail in next sections.

4.2.4 A value propagation based automated program evaluation

scheme

The objective of this work is to evaluate a student’s program with respect to a model

program (supplied by the instructor). Both of these programs are converted into their

corresponding FSMD models and subjected to an automated evaluator which develops

upon the FSMD based equivalence checker of [12]. An overview of the scheme is as

238 Chapter 4 Supporting techniques for evaluation

−/z⇐ x+ y

−/x⇐ 50,y⇐ 20

(b)

−/x⇐ x+50

qs,1

qs,2

qs,3

qs,4

qs,5

−/z⇐ x+ y

−/x⇐ 100,y⇐ 30

(a)

qm,1

qm,3

qm,2

qm,4

qm,5

〈T,〈..,50,20,z〉〉

〈T,〈..,100,20,z〉〉

〈T,〈..,100,20,120〉〉

〈T,〈..,x,y,z〉〉

〈T,〈..,100,30,z〉〉

〈T,〈..,100,20,130〉〉

〈T,〈..,100,30,z〉〉

〈T,〈..,x,y,z〉〉

Figure 4.5: (a) Model FSMD, Mg. (b) Student FSMD, Ms for example 4.12.

follows.

The evaluation scheme consists of two passes:

(i) ALAP (as late as possible) pass: In this pass, variables with mismatches at the final

states of two conditionally equivalent paths, one from the model FSMD and other

from the student FSMD, are given ample scope to eventually attain identical values at

some latter states to account for code motions.

(ii) ASAP (as soon as possible) pass: In this pass, variables in the student FSMD

which never attain identical values as those of the model FSMD after the first pass

are assigned the same value as that of the model FSMD after the paths containing

mismatched definitions are traversed; this is done to determine the difference between

the two programs as explained in the following example.

The ASAP and ALAP strategies are based on the observation that a student may

have apparently missed out some code in the initial part of his program, which he may

have included at a later stage in the program. Hence, a student program should not be

penalized for some apparent error in the beginning, which might have been taken care

of in the later part of the program.

Example 4.12. Figure 4.5(a) shows the model FSMD and Figure 4.5(b) shows a stu-

dent FSMD. Our task is to find the difference between the two programs; if no dif-

ference is found then the student is awarded full marks, otherwise he is to be marked

commensurately based on some metrics.

4.2 Automated evaluation of programs 239

Pass 1: Initially, when the operations x⇐ 100,y⇐ 30 in the model FSMD is com-

pared with the operations x⇐ 50,y⇐ 20 in the student FSMD; we find that definitions

of both x and y mismatch. However, these mismatches may be later on compensated

by some valid code motions applied by the student – so, we optimistically proceed

with the respective values in each FSMD. Eventually, when the paths qm,3 � qm,4 and

qs,3 � qs,4 are compared, we find that the values for the variable x finally match in

both the FSMDs. Upon considering the final paths qm,4 � qm,5 and qs,4 � qs,5, we

find the values of the two variables y and z mismatch.

Pass 2: In this pass, we replace the definitions of the mismatched variables (i.e., vari-

ables whose mismatches are retained after the entire first pass) in the student FSMD

with those from the model FSMD. Consequently, we replace the operation y⇐ 20 by

y⇐ 30 in the path qs,1 � qs,2 after this path is compared with qm,1 � qm,2. The rest

of the pass 2 proceeds in a similar fashion as that of pass 1 except when the final paths

qm,4 � qm,5 and qs,4 � qs,5 are compared; presently, we find that the values of the

variable z also match in the two FSMDs. This happens because the difference in the

values of y is also reflected when the values of z were computed. Thus, pass 2 helps

in eliminating those mismatches which occur as a ripple effect of some other earlier

mistake(s). �

Note that we rely on the propagated vectors not only for checking equivalence but

also for replacing variable values in the student FSMD during the second pass. These

propagated vectors, albeit in a more human-readable form, is also output to the stu-

dent and the instructor to aid him/her in correcting the programs. While evaluating

the student program (FSMD), we keep track of the number of mismatched variables,

Nv say, and the number of mismatched paths, Np say. The marks M given to a student

out of the full marks F is calculated based on the following formula:

M = c1× Tv−Nv
Tv

+c2× Tp−Np
Tp

, where the coefficients c1 and c2 are presently supplied by

the instructor. Tv and Tp are the total number of variables and paths in the golden pro-

gram. In addition, the marks obtained can be increased or decreased by another factor

which we term as leniency, since from our experience we have found that teachers

tend to award marks more generously during semester examinations than class tests.

It is to be noted that further automation is possible if the values of c1 and c2 are pre-

determined empirically, thereby reducing the burden on the instructor and increasing

fairness in gradation.

240 Chapter 4 Supporting techniques for evaluation

−/N⇐ (b×b)− (4×a× c)

−/R⇐−b/(2×a)

x2⇐ R

qm,5

qm,8

−/x1⇐ R, −/x1⇐ R+ sqrt(N)/(2×a),

qm,1

qm,2

qm,3

qm,4

qm,7qm,6

N 6= 0/−

x2⇐ R− sqrt(N)/(2×a)

−/x1⇐ R+‘i’×sqrt(−N)/(2×a),
x2⇐ R−‘i’×sqrt(−N)/(2×a)

N < 0/−N ≥ 0/−

N = 0/−

(a)

x2⇐ R

qs,9

−/x1⇐ R, −/x1⇐ R+ sqrt(N)/(2×a),

qs,1

qs,2

qs,5

qs,8qs,7

N 6= 0/−

x2⇐ R− sqrt(N)/(2×a)

−/x1⇐ R+‘i’×sqrt(−N)/(2×a),
x2⇐ R−‘i’×sqrt(−N)/(2×a)

N = 0/−

−/N⇐ (b×b)− (3×a× c)

qs,3 qs,4

N < 0/−N ≥ 0/−

qs,6

−/R⇐−b/(2×a)

(b)

−/R⇐−b/(2×a)

Figure 4.6: An example to illustrate automated program evaluation scheme. (a) Model

FSMD, Mg. (b) Student FSMD, Ms.

4.2.5 An illustrative example

In this section, we illustrate the working of our evaluation mechanism outlined in the

previous section with the help of a more vivid example.

Example 4.13. Let us consider the assignment where the students have been asked

to write a program to find the roots of a quadratic equation using Sridhar Acharya’s

formula, i.e., if the equation is a×x2+b×x+c = 0, then the two roots for x are given

by the formula −b±
√

b2−4×a×c
2×a . The model FSMD for computing the roots is shown

in Figure 4.6(a), the student FSMD is shown in Figure 4.6(b). Note that we have used

sqrt to represent the function that computes the square root of a number; we have

also used the symbol ‘i’ to indicate that this i is output as a character (to highlight the

imaginary part of the root) and has no numerical value associated with it.

Let us begin the equivalence checking procedure.

Pass 1: Initially, the paths qm,1 � qm,3 and qs,1 � qs,2 are compared and we find mis-

match in the values of the variables R and N. On comparing the paths qm,3 � qm,4

and qs,2 � qs,5 we find that the mismatch in R has been resolved, however, mismatch

in N persists. A similar situation occurs when the paths qm,3 � qm,5 and qs,2 � qs,6

are compared. Finally, when the following pair of paths are compared we find mis-

matches in three variables namely, N, x1 and x2: 〈qm,4
N=0−−−−� qm,8,qs,5

N=0−−−−� qs,9〉,
〈qm,4

N 6=0
−−−−� qm,8, qs,5

N 6=0
−−−−� qs,9〉 and 〈qm,3 � qm,8,qs,2 � qs,9〉.

4.3 The benchmark programming assignment suite 241

Pass 2: Initially, the paths qm,1 � qm,3 and qs,1 � qs,2 are compared and we again

find mismatch in the values of the variables R and N. However, this time we know

that the values of N never match, hence we set the value of N to b×b−4×a×c in the

student FSMD. Subsequently, we find a match in the values of all the variables along

all the paths. Thus, we conclude that the only mistake that the student has made is in

the computation of N in the path qs,1 � qs,2. �

As borne out by the above example, the mismatch in the values of R was resolved

because we followed an ALAP strategy, while the mismatches for x1 and x2 got re-

solved due to our ASAP strategy; the student is finally penalized only for computing

N wrongfully which is indeed the only mistake he had made. Considering full marks

to be 10, c1 = 5 and c2 = 5, the student is awarded (5× 3
4 +5× 4

5) = 7 marks.

Discussion

We have observed the following based on the results of our work in this chapter.

1. Approximate equivalence can be established in many cases where normalization

does not help, by using randomised simulation similar to as reported in [79].

2. Automated assessment algorithm may be used, as the results for evaluation of

programs using the above discussed formula show close resemblances to the

manual checking of programs, as is evident from the tables 4.2 to 4.9.

4.3 The benchmark programming assignment suite

In this section, we present the programming assignments designed for evaluation of

novice programmers. Benchmark programs [80] have been identified for collecting

student programs. Since the assignments should test only the introductory concepts in

programming, the solutions to these assignments require preliminary knowledge, such

as conditionals, loops, etc., and not of any advanced programming feature. Note that

one probable solution for each of the benchmark problems are provided in Appendix

A, however, some solutions are neither the most conventional nor most efficient. For

242 Chapter 4 Supporting techniques for evaluation

example, the lowest common multiple (LCM) of two integers is conventionally com-

puted by dividing the product of the two numbers by their greatest common divisor;

however, in the presented solution (Solution for assignment 8), we have not taken con-

ventional approach, rather we first store the maximum of the two integers in a variable

lcm and then keep on incrementing the value stored in the variable lcm by one in each

step until we reach a value which is divisible by both the integers – this value is output

as the LCM of the two integers; such unconventional solutions are often presented

by young programmers and hence should be kept in mind during evaluation. On the

other hand, the most efficient solution is often not expected from novice programmers

and therefore we have not attempted to include most efficient programs in our given

solutions. It is important to note that depending on the level of sophistication of an

automated evaluator, a representative solution may be required for each of the pos-

sible algorithms which may be employed to solve a given problem, i.e., for a given

assignment, different model solutions may be provided by the instructor to encom-

pass a wide range of programs which may be submitted by participating students. The

benchmark programming assignments are now given below with sample inputs and

outputs to help the students; since our primary aim is to aid in the development of

automatic evaluators, clearly specifying the format of an expected output actually re-

stricts the range of different outputs which may have to be parsed otherwise by the

automated evaluator – imposition of such a restriction is necessary for better evalua-

tion by an automated tool; examples are also provided for some of the assignments for

clarification.

Assignment 1. A set of four 2D coordinates (xi,yi), i = 1,2,3,4, is given; (x1,y1)

is the top left corner and (x2,y2) is the bottom right corner of a rectangle, similarly

points with i = 3,4 form another rectangle. Find the top left and bottom right corners

of the region of intersection of the two given rectangles. If there is no intersection,

print −1.

Sample:

Input:

0 4

4 0

2 6

6 2

Output:

4.3 The benchmark programming assignment suite 243

2 4

4 2

Assignment 2. Given a number, you have to find the sum of digits in this number and

keep on obtaining the sum of digits of the resulting number until you get a single digit;

output that single digit.

Example:

Sum of Digits of 12345 = 1+2+3+4+5 = 15.

Sum of Digits of 15 = 1+5 = 6.

Sample:

Input:

12345

Output:

6

Assignment 3. Abundancy of a number is the ratio of sum of its divisors and the num-

ber itself. Friendly numbers are those which have same abundancy.

Example:

Abundancy of 6 is (1+2+3+6)/6 = 2.

Abundacy of 28 is (1+2+4+7+14+28)/28 = 2.

So, 6 and 28 is a friendly number pair. Write a program takes two numbers as input

and decides whether they are friendly numbers or not.

Sample:

Input:

6 28

Output:

Yes

Input:

5 25

Output:

No

244 Chapter 4 Supporting techniques for evaluation

Assignment 4. Write a program to find out the roots of a quadratic equation: a.x2 +

b.x+c = 0, where a,b and c are real numbers; take a,b,c as input and output the roots

of the equation.

Sample:

Input:

1 -1 -12

Output:

-3 4

Assignment 5. Given a number as input, output whether it has same number of 1’s

and 0’s in its binary representation.

Sample:

Input:

2

Output:

Yes

Input:

15

Output:

No

Assignment 6. Write a program to check whether an integer taken as input is a power

of 2 or not.

Sample:

Input:

32

Output:

Yes

Input:

256

Output:

No

4.3 The benchmark programming assignment suite 245

Assignment 7. Write a program to find the greatest common divisor of two integers.

Sample:

Input:

18 30

Output:

6

Input:

75 84

Output:

3

Assignment 8. Write a program to find the lowest common multiple of two integers.

Sample:

Input:

15 21

Output:

105

Input:

14 70

Output:

70

4.3.1 Possible future extensions

There are several areas which are not represented by the above set of benchmark pro-

grams, as the suggested benchmarks are for introductory exercises. A next higher

level could be introduction of arrays and automatic checking of programs using ar-

rays. The FSMD method of equivalence checking has been improvised for inclusion

of arrays in [14] by introducing an extended model namely, finite state machine with

data-path having arrays (FSMDA). Automated assessment of array based programs

by FSMDA method would therefore be possible and a set of benchmark programs can

246 Chapter 4 Supporting techniques for evaluation

be accordingly suggested.

A domain for further possible extension is object oriented programming (OOP),

which is a universally practised paradigm of programming. Some institutions also in-

troduce programming by using some object oriented language, usually C++ or Java.

Though they support many common object oriented features, such as data abstraction,

classes and objects, etc., there are differences in the way object orientation is sup-

ported in one language than it is done in the other, e.g., C++ supports multiple base

classes, Java allows single base class. The object oriented features are thus language

or implementation specific, hence development of a common suite of benchmark pro-

grams poses challenge.

Parallel algorithms and parallelizing code is the emerging trend in programming

which is soon going to find widespread use with the availability of multi core and

multi-processor CPUs. The programming paradigms, such as MPI, OpenMP and Java

threads will become commonplace and might become part of introductory program-

ming. Suggesting benchmark programs for such needs is a challenge for the future, as

they are again language specific with widely varying constructs to support paralleliza-

tion, e.g., while OpenMP uses compiler directives for simple parallel programming,

MPI uses library routines for achieving high level of parallelization.

4.3.2 Conclusion

Equivalence checking of expressions, both algebraic as well as transcendental, is not

trivial as there cannot be any canonical form of representation for them. In this chapter

we proposed that establishing equivalence in such cases can be done by computing

their values at various points of interest and checking that the values of equivalent

expressions are equal at those points. Simulation can however be done only in the

range of interest and that too, at a finite number of points. Equivalence, thus, can not

be claimed with 100% confidence.

In this work we chose algebraic as well as trigonometric functions. We will take

up exponential, logarithmic functions as well as improve upon the notion of ε-cover

in our future work.

4.3 The benchmark programming assignment suite 247

Translation validation of programs using FSMD based equivalence checkers has

received attention over the years and hence these equivalence checkers can currently

handle a plethora of code motions. Leveraging the expertise of the FSMD based equiv-

alence checking method, we aspire to provide a platform for automated evaluation of

programming assignments that can account for a wide range of code transformations

that has never been targeted before by any automated evaluator. A student program is

graded in comparison with a model program supplied by the instructor. Both the pro-

grams are converted into corresponding FSMDs before being fed to our system. Our

evaluation scheme consists of two passes – an ALAP pass followed by an ASAP pass.

The first pass intends to find out all the mistakes made by the student; however, in the

process, it does not adjudge a dissimilarity between the student and the model FSMDs

as a mistake immediately upon discovery because we cannot rule out the possibility

that the student may have taken care of it subsequently in the program. Penalizing the

student for all the mismatches that are identified after the first pass may not be a wise

choice because a single mistake may cause many mismatches in variable valuations

as side effects; the second pass intends to resolve such cases.

Since marking of programming assignments involves human experience which

cannot be always quantified as precise mathematical formulas, a lot of empirical stud-

ies are required in developing automated program evaluators which we are currently

pursuing. A drawback of our method is that it performs well if the control structures

of the programs being compared are similar. However, we have found that novice pro-

grammers often make such mistakes that may alter the control structure of a program

substantially, such as skipping or misplacing parenthesis. Improving our method to

attend to such mistakes as well remains as our future goal.

This chapter also presents a suite of benchmark programming assignments to eval-

uate novice programmers. The assignments and one probable solution for each of

these assignments are given in C language. We expect that these benchmarks will

contribute towards further advancement of the automated program evaluation com-

munity. We have additionally discussed some future challenges involved in extending

this suite to address advanced programming courses.

Chapter 5

Conclusion and scope for future work

In this thesis, an attempt has been made to explore the automated assessment of stu-

dent’s programming exercises. This work tends towards categorizing the errors in the

submitted program into one of the four possible categories and then tries to identify

the errors, correct them and evaluate the program for grading. We conclude the thesis

by drawing the attention to the fact that in this work, in most of the places, we have

tried to present the proof-of-the concept. The necessary theoretical contributions have

been discussed at length, with suitable examples, and the prototypes have been tested

using computer programs, which were also developed.

5.1 Summary of contributions

The major contributions of this work are: i) extension of equivalence checking method

of FSMDs, by checking containment, for the diagnosis of errors in student programs,

ii) identification of classes of some errors in programs, iii) detecting flaws in spe-

cial constructs such as if-else-if, iv) variable mapping for the preprocessing of student

programs, v) approximate equivalence checking of mathematical expressions, vi) sug-

gesting a scheme for automated marking of student programs. The detailed summary

of the contributions in this thesis are given in the following sub-sections 5.1.1 - 5.1.3.

249

250 Chapter 5 Conclusion and future work

5.1.1 Containment analysis of students’ programs through equiv-

alence checking

In this part of the work the research objectives were identified as i) developing a

scheme for containment analysis of students’ programs through equivalence checking,

ii) classifying the errors in programs into broad categories and iii) devising strategies

for error diagnosis for each class of errors in the programs. Contributions as a result

of work done for this part are described below.

The existing path extension based FSMD equivalence checking approach, which

compares two given FSMDs having same variable naming and does a depth first anal-

ysis for equivalence of paths from one cut point to the next in the two FSMDs, was

modified to incorporate a statement containment checking approach. In statement

containment checking, it is examined whether the assignment statements in a path

are contained in the other FSMD or not. The containment checking mechanism was

incorporated along with the equivalence checking and the subsequent experiments

for checking the programs were successfully performing containment checking in all

cases as expected, thus aiding in the error diagnosis.

Using the above approach of containment checking of the FSMDs based on com-

parison between cut-point to cut-point path pairs in them, the containment could be

divided into following broad categories, viz., i) unordered path-wise both way con-

tained, ii) path-wise one way contained, and iii) path-wise un-contained. These cate-

gories of containment can be mapped to various types of errors in the programs with

respect to the golden model, which may creep in while programming viz., i) depen-

dency violation, ii) parenthesis skipping of various types and iii) error of missing code

segment. The details of these errors and their associated type of containment have

been shown in table 2.1. It is evident from this table that in the experiments con-

ducted, containment checking is helpful in identifying the correct error-type.

Algorithms have been developed for reporting the type of error in the student’s pro-

gram and suggesting the correct portion of the code from golden program, correspond-

ing to the erroneous code of student’s program. These algorithms have been applied

to several test programs and the results have been tabulated in table 2.1. Scheme was

proposed for missing nested loop and nested conditions, which also works for code

5.1 Summary of contributions 251

with no loop and conditions as a trivial case. In table 2.2, the schemes for missing

nested codes have been shown to be working with the help of simulation examples

given in chapter 2 and appendix B.

5.1.2 Methods to reconcile dissimilarities between FSMDs arising

from students’ programs

In this part of the work preprocessing requirements of programs were aimed at. The

research objectives for this part of the work were identified as i) developing methods

to support automated evaluation, in cases where programs have conditional constructs,

which should obey precedences and ii) to develop a scheme for variable mapping in

programs. Work done for this part is described below.

The first aspect mentioned above is due to the fact that logic in programs demands

that in a nesting of if statements, there are conditions that have to be evaluated in a

certain order, but the students may violate that order. The student’s program, there-

fore, has to be subjected to a preprocessing step, before equivalence checking is done.

The objective of preprocessing is that the nested conditions should conform to some

rule of precedence and that a mapping of the names of variables has to be evolved.

The complexity and soundness of our method was proved formally. The results of

detecting incorrect order of sequences of the conditional construct are summarized in

table 3.3. Various sample programs for each of the cases were tested. Each of the

sample program was chosen to have wrong sequencing of the conditional construct.

With our program we have been able to diagnose wrong ordering in test samples and

suggest the correct ordering.

Another contribution in this part of work is the development of algorithms for vari-

able mapping. The path extension based equivalence checking requires that in order

to establish the equivalence of two programs, the two programs should have the same

variable names. This is a major requirement for checking equivalence, particularly in

the automatic assessment of programming assignments, because the student programs

will not necessarily have the same naming of variables as given in the model program.

Our work in this direction has enabled automated mapping of the corresponding vari-

ables in the two programs, which use different variable names and whose equivalence

needs to be established.

252 Chapter 5 Conclusion and future work

Since the students will be using variable names different from those in the golden

program, we have evolved a method for finding mapping or an association of the

variables used in the student’s program, with the ones used in the golden model. An

algorithm has been developed for variable mapping between two programs. This is

done as the FSMD based equivalence checking assumes the variable names to be the

same in the two programs under examination, without which the equivalence checking

is not possible. The variable mapping algorithm is an FSMD driven algorithm in

the sense that it prepares the FSMD models of both the programs, compares their

paths for similarity of conditions and data-transformation in a depth first manner and

tries to establish a mapping between the variables, which assume equivalent symbolic

values after traversing a path from a cut point to the next. The results of variable

mapping between various pairs of programs belonging to each of the different cases

have been presented in chapter 3, which shows that in most of the cases the results are

satisfactory.

5.1.3 Supporting techniques for checking and evaluation of stu-

dents’ programs

The research objectives in this part of the work were to develop supporting techniques

for checking and evaluation of students’ programs such as i) checking equivalence

of approximately equivalent expressions and ii) develop a marking scheme for the

programming exercises.

To address the above research questions, in this work, additional supporting tech-

niques for handling the student programs have been focused. A description of this

work is given below.

Checking equivalence of approximately equivalent expressions

Comparison of approximately equivalent functions [78, 79] may be required as

an aid to equivalence checking discussed earlier. This may be because equiva-

lence checking is not able to determine such equivalences, where two expres-

sions which are approximately equivalent are to be examined for equivalence.

An example of two equivalent expressions could be sin2θ and 2sinθcosθ. The

equivalence checker cannot find out that these two expressions are equivalent.

5.1 Summary of contributions 253

In this work, therefore, we have used a randomised simulation based approach

in which a function is examined at random points in the domain of the other

function. The closeness in their values at most of the points may indicate their

approximate equivalence. A randomised decision procedure has been presented

to establish the equivalence and the results obtained have established the suit-

ability of the method. The results obtained by running the algorithm 17 for

various expressions are given in the table 4.1. From the table it is evident that

the method is capable of differentiating between the equivalent and non equiva-

lent expressions.

Marking scheme for the programming exercises

A marking scheme for the programming exercises has been developed and tested

to preform well. Based on FSMD equivalence checking, using propagation vec-

tors, we have also suggested an improved method [77]. This method also sug-

gests the ASAP and ALAP marking strategies; they are based on the observation

that a student program should not be penalized for some apparent error as it may

have been taken care of at a later stage in the program.

An algebraic formula has been suggested to compute marks for the student’s

program, using some constants, which need to be empirically established. While

evaluating the student program (FSMD), we keep track of the number of mis-

matched variables, Nv say, and the number of mismatched paths, Np say. The

marks M given to a student out of the full marks F is calculated based on the for-

mula. In addition, the marks obtained can be increased or decreased by another

factor which we term as leniency, since from our experience we have found that

teachers tend to award marks more generously during semester examinations

than class tests. Automated assessment algorithm may be used, as the results

for evaluation of programs using the above discussed formula show close re-

semblances to the manual checking of programs, as is evident from the tables

4.2 to 4.9.

Next, we summarize the overall flow for automated assessment. In the block dia-

gram of figure 1.9, the sequence of invoking various modules has been shown. The

student’s program is checked for violation of order of precedences of conditional con-

struct such as if- else if. The program not meeting the precedence is then informed to

the student, who can submit his program later, after correcting the precedences. The

254 Chapter 5 Conclusion and future work

student’s program having the correct precedences and the golden program are then

subjected for C to FSMD conversion, thereby generating the respective FSMDs. The

two FSMDs thus obtained cannot be subjected to equivalence checking just at this

stage, because the student’s program may use a different set of variable names than

the golden program. The variables in the FSMD of student’s program have therefore

to be renamed first and then we can have the equivalence checked. The current im-

plementation supports the variable renaming as a separate module, however, it can be

modified to do variable renaming and equivalence checking hand in hand, as it pro-

ceeds with the equivalence checking, starting from the start states of both the FSMDs.

In the current implementation, however, equivalence checking is to be followed by

variable renaming. In equivalence checking, if it is found that the two FSMDs are

equivalent, then the student’s program is correct, however if such is not the case then

the containment analysis is done to find out how much of the correct code has been

written by the student. As a result of first time containment checking, the student’s

FSMDs is declared to have one of the four types of containment as compared with

the golden program, thus indicating some error, which is informed to the student for

correction. After first correction, the student may submit again for subsequent equiv-

alence checking, and to find out the next error. This loop may be continued till the

student’s program is free from all errors. The loop may be mechanized in the future

work. The current implementation assumes the student to be in the loop, doing the

correction and resubmitting, if needed. The evaluation then can be done on the basis

on the number of times the errors were have to be corrected. Presently we rely on a

path equivalence and variable mapping based evaluation of the programs, which has

been found to give satisfactory results, as discussed in chapter 4.

5.2 Future work

Elaborate implementation of all the concepts in the form of a software, thus developing

a unified framework has not been attempted, which is a direction for our work in the

future.

Another direction of work for the future is the enhancement of the FSMD model

for inclusion of pointers, structures, functions etc. In future we intend to incorporate

more errors and test our method further with an enhanced set of test programs and real

5.2 Future work 255

life programs as well.

5.2.1 Enhancement of FSMD for I/O statements, Pointers

In Chapters 2 and 3, we have presented a path-extension based method and a sym-

bolic value propagation based method for the FSMD model for different purposes.

A significant deficiency of this method is its inability to handle the other important

classes of programs, namely those involving pointers, functions, structures and arrays.

In this chapter we enhance the formal model of FSMD for incorporating the aforesaid

features. We enhance the grammar for inclusion of necessary normalization and thus

suggest the enhancements in the data structure to include new features of pointers,

functions, structures and arrays. We also propose the enhancement in the equivalence

checking and for these features and prove the correctness of such enhancements.

The data flow analysis for programs using pointers is notably more complex than

those involving no indirection. To illustrate the fact, let us consider two statements,

the first from a student’s program written as c = ∗a+ ∗b and the other one in the

model program, written as ∗c = ∗a+ ∗b. Clearly in the first statement, c is not a

pointer variable, whereas this is not the case in the model program. We first address

the problem of deriving a succinct representation of expressions involving pointers

so that the computation of the conditions and data transformations of paths can avoid

case analysis.

The rest of this discussion is as follows:

Pointers

Pointers are inevitable components of C program. In this section we first describe

the modification in the normalization grammar for inclusion of pointers. A pointer is

a special kind of a variable. we have modified the grammar for inclusion of pointers

as follows:

Traditionally the normalization technique described in [75] has been used to rep-

resent arithmetic and logical expressions e.g. in [11, 14, 44, 47, 54]. The equivalence

determination problem of two arbitrary arithmetic expressions over integers is unde-

cidable. Normalization of arithmetic expressions targets the structural similarity of

256 Chapter 5 Conclusion and future work

two such expressions as the first step; in the process, many equivalent formulae be-

come syntactically identical.

It is possible to convert any arithmetic expression, on application of the grammar

rules in [75], involving integer variables and constants into its normalized form. The

set of grammar rules has been revised by updating the rule (3) and incorporating the

new rules (6) and (7), as given below, to accommodate pointers.

Extended grammar:

1. S→ S+T
∣∣cs, where cs is an integer.

2. T → T ∗P
∣∣ct , where ct is an integer.

3. P→ abs(S)
∣∣(S)mod(Cd)

∣∣ f (listS)
∣∣S÷Cd

∣∣v∣∣(∗(Sp))
∣∣cm, where v is a variable,

and cm is an integer.

4. Cd → S÷Cd
∣∣(S)mod(Cd)

∣∣S,

5. list S→ list S, S
∣∣S.

the following rules have been added to separate the pointer arithmetic from the

integer arithmetic in the expression for a normalized sum.

6. Sp→ Dp +1∗ (&v)

7. Dp→ 0+cs∗Isz
∣∣0, where cs is a +ve integer constant and Isz is the size of integer

pointer

In the above grammar, the non-terminals S, T , P stand for (normalized) sums,

terms and primaries, respectively, A is an array primary, and Cd is a divisor primary.

The nonterminal Sp stands for normalized sum in an expression involving pointers. Sp

produces the normalized expression for the index of a variable or that of an indexed

location (latter one is for future use, in case arrays are incorporated). The terminals

are the variables belonging to I
⋃

V , the interpreted function constants abs, mod and

÷ and the user defined uninterpreted function constants f . In addition to the syntactic

structure, all expressions are ordered as follows: any normalized sum is arranged by

lexicographic ordering of its constituent subexpressions from the bottom-most level,

i.e., from the level of simple primaries assuming an ordering over the set of variables

5.2 Future work 257

I
⋃

V ; among the function terminals, abs ≺ ÷ ≺ mod ≺ uninterpreted function con-

stants. As such, all function primaries, including those involving the uninterpreted

ones, are ordered in a term in an ascending order of their arities.

An example of use of above grammar is as follows

Example 5.1. Consider the following lines of code

int y, *x;

........

y = *x + y;

the rhs expression of this assignment operator will appear as 0+1*(*x)+1*y - note

that the * occurring within the parenthesis with x is a primary in the normalized sum

corresponding to the rhs expression.

Explanation of rule 6:

An example of use of rule 6 is as follows

Example 5.2. In the following code

int v, *x;

x = &v;

the rhs “&v” will appear as the normalized sum “(0+1*(&v))”. Note that “(0+1*(&v))”

will be parsed as “Sp” using rule 6, with DP as 0, as shown in figure 5.1.

Input and output statement representation in NCell

While finding the equivalent path for a path, it is required to check the equivalence

of the respective conditions as well as the data transformations of the paths. Since

the condition of execution and the data transformation of a path involve the whole of

integer arithmetic, checking equivalence of paths reduces to the validity problem of

first order logic which is undecidable; thus, a canonical form does not exist for integer

arithmetic.

258 Chapter 5 Conclusion and future work

Sp

+Dp

0

∗1 &(v)

Figure 5.1: Parse tree for &v

The normalization process reduces many computationally equivalent formulas syn-

tactically identical as it forces all the formulas to follow a uniform structure. In the

following, the normal form chosen for the formulas and the simplification carried out

on the normal form during the normalization phase are briefly described.

A condition of execution (formula) of a path is a conjunction of relational and

Boolean literals. A Boolean literal is a Boolean variable or its negation. A relational

literal is an arithmetic relation of the form s R 0, where s is a normalized sum and

R belongs to <=,>=,==, . The relation >(<) can be reduced to >=(<=) over

integers. For example, x− y > 0 can be reduced to x− (y−1) >= 0.

The data transformation of a path is an ordered tuple 〈ei〉 of algebraic expressions

such that the expression ei represents the value of the variable vi after execution of the

path in terms of the initial data state. So, each arithmetic expression in data transfor-

mation can be represented in the Normalized Sum form. A normalized sum is a sum

of terms with at least one constant term; each term is a product of primaries with a

non-zero constant primary; each primary is a storage variable, an input variable or of

the form abs(s), mod(s1,s2), exp(s1,s2) or div(s1,s2), where s, s1, s2 are normalized

sums. These syntactic entities are defined by means of production of the following

grammar.

Grammar of the normalized sum

1. S→ S+T | cs, where cs is an integer.

5.2 Future work 259

NC *list;

char type;

int inc;

NC *link;

type

list

inc

link

struct normalized_cell{

};
Symbol Table

S, T, V, O, R, r, w

Figure 5.2: Data Structure used for NCell

2. T → T ∗P | cs,where cs is an integer

3. P→ abs(S) | (S)mod(S) | S/Cd | v | cm, where v and cm are an integer.

4. Cd → S/Cd | S.

Thus, the exponentiation and the (integer) division are depicted by infix notation

and all functions have arguments in the form of normalized sums. In addition to

the above structure, any normalized sum is arranged by lexicographic ordering of its

constituent sub expressions from the bottom-most level, i.e., from the level of simple

primaries.

Data structure used for NCell The data structure to implement an NCell can be

viewed in figure 5.2.

Representation of the normalized expressions

All normalized expressions are represented by NCell, the tree structure, which is

implemented by linked lists [75]. Each node in the tree is a normalized cell consisting

of the following four fields :

• A LIST-pointer , which points to the entries at the same level of the tree or

260 Chapter 5 Conclusion and future work

equivalently, at the same hierarchical level of an expression.

• A TYPE-field which indicates the type of the cell. Some typical examples of

the types are ‘S’ for normalized sum, ‘T’ for normalized term, ‘R’ for rela-

tional literal, etc. TYPE = ‘v’ indicates a program variable or more generally a

symbolic constant.

• An integer field INC , the meaning of which varies from type to type. For ex-

ample, TYPE = ‘S’, INC = 4 means that the integer constant in the normalized

sum is 4.

• A LINK-pointer , which points to the leftmost successor of the node in question

in the next level of the tree or equivalently, in the next syntactic level of the

expression.

The difference between the LIST-pointer and the LINK-pointer is noteworthy. For

example, the non-constant terms of a sum are connected by LINK-ing the first term

to a normalized cell of TYPE ‘S’ and LIST-ing the other terms starting from the first

term onwards.

It may be noted that the equivalence checker works on the expressions stored in

NCells.

Grammar used to represent I/O statement in NCell The modified grammar that

represent an I/O statement in FSMD using NCell is given as follows:

1. S→ S+T | cs | r | w, where cs is an integer, r is used for read / scanf statement

and w is used for write / printf statement.

2. T → T ∗P | cs,where cs is an integer

3. P→ abs(S) | (S)mod(S) | S/Cd | v | cm, where v and cm are an integer.

4. Cd → S/Cd | S.

Data transition for read write statement can be viewed in FSMD as in figure 5.3.

5.2 Future work 261

type

list

inc

link

Symbol Table

Assign

lhsrhs

r, w

Figure 5.3: Data Structure used for read/ write

5.2.2 Future work in variable mapping

Presently variable mapping is done as a pre-processing step. This may be enhanced

in the future to work hand-in-hand with the equivalence checking and containment

checking steps.

5.2.3 Future work in approximate equivalence checking: Exten-

sion of containment checking by both ways path extension

for approximate equivalence checking

In the following we present an example of checking and correcting the error in a

student program using approximate equivalence checking of the FSMDs of student’s

program and the golden program. Here we use an improved version of containment

checker, capable of extending paths in both the FSMDs, in order to establish contain-

ment of extended paths.

Example 5.3. The FSMDs of the student’s program and the golden program are

shown in figure 5.4. We note that the equivalence checker finds two paths computa-

tionally equivalent, if the conditions and the data-transformations on both match. We

262 Chapter 5 Conclusion and future work

also note that in containment checking, a path ps is said to be contained in another,

say pg, if the data transformations in ps are also present in pg, irrespective of their

conditions. The checking and correction process is executed in the following steps.

qa

cond1 / dtrans2

!(cond1) / z = x + y,

cond2,s / dtrans3
!(cond2,s) / dtrans4,

− / dtrans1

qc

qd

ps,1 ps,2

ps,3 ps,4

qb

ps,0

x = 2 sin θ cos θ,
r = s + t

c = a + b

(a)

q01

q04

cond1 / dtrans2

!(cond1) / c = a + b,

cond2,g / dtrans3 !(cond2,g) / dtrans4

q03
pg,1 pg,2

pg,3 pg,4

q02

− / dtrans1pg,0

x = sin 2θ,
z = x + y

(b)

Figure 5.4: FSMDs (a) Ms and (b) Mg.

Equivalence checker is executed in the beginning. It finds the path qa → qb (path

ps,0 in Ms), equivalent to the path q01 → q02 (path pg,0 in Mg), as they have

the same condition (-) and data-transformation (dtrans1). qb and q02 become

corresponding states.

Equivalence checker then finds the equivalence of the paths qb → qc (path ps,1 in

Ms), equivalent to the path q02→ q03 (path pg,1 in Mg), as they have the same

condition (cond1) and data-transformation (dtrans2).

After this, the equivalence checker fails to find the equivalence of the path qb→ qc

(path ps,2 in Ms), with the path q02 → q03 (path pg,2 in Mg), as they have the

same condition (!(cond1)) but not the same set of data-transformations along

the two paths.

As a result, qb becomes LCS and q02 becomes CSLCS, from where the containment

checker starts checking. It finds ps,1 contained in pg,1, as the data-transformation

along them are equal (dtrans2).

The containment of ps,2 is not found in pg,2, even after extending the path pg,2 fur-

ther, as the set of data-transformations in ps,2 is not a subset of the set of data-

transformations in pg,2. The dead code r = s+ t is making the containment

check fail, so it once it is marked and ignored by the containment checker,

5.2 Future work 263

the containment of ps,2 is established in pg,2. Also the statement c = a + b

is not copied to ps,2 now as it may occur at a later stage. As the equivalence

checker failed but containment checker succeeded, so the two dependent data-

transformations are interchanged in the ps,2, making the two paths equivalent,

which will be seen in the next step.

Again, equivalence checker is executed to check the extent of equivalence of the

two FSMDs. This time equivalence checker is able to find equivalence of both

the paths ps,1 and ps,2 emanating from qb and meeting at qc with the paths

pg,1 and pg,2 emanating from q01 and meeting at q02. Thus qc and q02 become

corresponding states.

Equivalence checker starts to explore the paths emanating from the recently estab-

lished corresponding states qc and q02, but it fails to check further due to mis-

match in the conditions. Thus qc becomes new LCS and q02 becomes new

CSLCS.

The containment checker is now called and it starts finding containment of path ps,3

from LCS to qd in the path pg,3 from CSLCS to q03. The data-transformation

being the same along the two paths, containment is asserted. As the conditions

are different, so the condition of the path ps,3 is replaced with the condition of

the path pg,3 of golden program.

The containment checker now checks containment of path ps,4 from LCS to qd in the

path pg,4 from CSLCS to q03. The data-transformation being the same along

the two paths, containment is asserted, ignoring and removing the dead code

c= a+b over the path path ps,4. As the conditions are different, so the condition

of the path ps,4 is replaced with the condition of the path pg,4 of golden program.

Finally the equivalence checker is executed to establish that both the FSMDs are

equivalent.

5.2.4 Future work in FSMD to C conversion

Present work does not use an FSMD to C converter. The tools should have the capa-

bility to construct the C-code from a given FSMD. This is an important aspect having

many uses. This may be taken up as a future work.

264 Chapter 5 Conclusion and future work

5.2.5 Future work in debugging of evolving programs

An interesting study would be to check the applicability of the methods developed in

this thesis to establish equivalence of evolving programs [66].

5.2.6 Future work in debugging programs involving bit-vectors

A future work may be to check programs involving bit-vectors, e.g., the two equivalent

versions of shift-add multiplication algorithm coded in Verilog. Work done by our

research group to solve this problem [71], which adopts the notions of path covers and

symbolic value propagation; however, there remain many challenges still to explore.

Appendix A

Golden solution for each of the
programming assignments

In this section, we provide one golden solution for each of the programming assign-

ment given in Section 4.3 in C language. It is to be noted that obtaining the solutions

in other high-level languages, such as Java, is easy and straightforward from the pro-

grams given here, since the solutions involve preliminary programming constructs that

appear, almost identically, in other languages as well.

Solution for assignment 1

void main()
{
int x1, x2, x3, x4, y1, y2, y3, y4;
int left, right, top, bottom;
printf("\nEnter x1 and y1:");
scanf("%d%d",&x1,&y1);
printf("\nEnter x2 and y2:");
scanf("%d%d",&x2,&y2);
printf("\nEnter x3 and y3:");
scanf("%d%d",&x3,&y3);
printf("\nEnter x4 and y4:");
scanf("%d%d",&x4,&y4);
if((x1 > x4) || (x3 > x2) ||

(y1 < y4) || (y3 < y2))
printf("-1\n");

else
{
if(x1 > x3)

265

266 Chapter A Golden solution for each of the programming assignments

left = x1;
else
left = x3;

if(y1 < y3)
top = y1;

else
top = y3;

if(x2 < x4)
right = x2;

else
right = x4;

if(y2 > y4)
bottom = y2;

else
bottom = y4;

printf("%d %d\n",left,top);
printf("%d %d\n",right,bottom);

}
}

Solution for assignment 2

void main()
{

unsigned int n, sum;
printf("\nEnter number:");
scanf("%d",&n);
while(n > 9)
{
sum = 0;
while(n > 0)
{
sum = sum + n%10;
n = n/10;

}
n = sum;

}
printf("%d\n",n);

}

Solution for assignment 3

void main()
{

int x, y, sumx, sumy, i;
double abunx, abuny;

267

printf("\nEnter two numbers:");
scanf("%d%d",&x,&y);
sumx = 0;
for(i = 1; i <= x; i++)
{
if((x%i) == 0)

sumx = sumx + i;
}
sumy = 0;
for(i = 1; i <= y; i++)
{
if((y%i) == 0)

sumy = sumy + i;
}
abunx = ((double) sumx) / x;
abuny = ((double) sumy) / y;
if(abunx == abuny)
printf("Yes\n");

else
printf("No\n");

}

Solution for assignment 4

void main()
{
double a, b, c, d, root1, root2;
printf("\nEnter a, b and c where

a*x*x + b*x + c = 0:");
scanf("%d%d%d",&a,&b,&c);
d = b*b - 4*a*c;
if (d < 0)
{ //complex roots
printf("First root = %.2lf + j%.2lf\n",

-b/(double)(2*a), sqrt(-d)/(2*a));
printf("Second root = %.2lf - j%.2lf\n",

-b/(double)(2*a), sqrt(-d)/(2*a));
}
else
{ //real roots
root1 = (-b + sqrt(d))/(2*a);
root2 = (-b - sqrt(d))/(2*a);
printf("First root = %.2lf\n", root1);
printf("Second root = %.2lf\n", root2);

}
}

268 Chapter A Golden solution for each of the programming assignments

Solution for assignment 5

void main()
{

unsigned int n, r, count0, count1;
printf("\nEnter a number:");
scanf("%d",&n);
count0 = 0;
count1 = 0;
while(n > 0)
{
r = n % 2;
if(r == 0)
count0 = count0 + 1;

else
count1 = count1 + 1;

n = n / 2;
}
if(count0 == count1)
printf("Yes\n");

else
printf("No\n");

}

Solution for assignment 6

void main()
{

int n, flag = 0;
printf("\nEnter a number:");
scanf("%d",&n);
while(n != 1)
{
if(n%2 != 0)
{
flag=1;
break;

}
n = n / 2;

}
if(flag == 0)
printf("Yes\n");

else
printf("No\n");

}

Solution for assignment 7

269

void main()
{
int y1, y2, res, i;
printf("\nEnter two numbers:");
scanf("%d%d",&y1,&y2);
res = 1;
while(y1 != y2)
{
if(y1%2 == 0)
{

if(y2%2 == 0)
{
res = res * 2;
y1 = y1 / 2;
y2 = y2 / 2;

}
else
y1 = y1 / 2;

}
else if(y2%2 == 0)

y2 = y2 / 2;
else if(y1>y2)

y1 = y1 - y2;
else

y2 = y2 - y1;
}
res = res * y1;
printf("%d\n",res);

}

Solution for assignment 8

void main()
{
int x,y,lcm;
printf("\nEnter two integers:");
scanf("%d%d",&x,&y);
if(x>y)
lcm=x;

else
lcm=y;

while((lcm%x)!=0 || (lcm%y)!=0)
{
lcm++;

}
printf("%d\n",lcm);

}

270 Chapter A Golden solution for each of the programming assignments

Table
A

.1:Table
forcom

parison
ofvarious

features
ofbenchm

ark
program

s

Problem
no.B

enchm
ark

N
o

ofstatem
ents

#
if-else

#
loops

#
m

axim
um

nesting
#

assignm
entstatem

ents
#

basic
blocks

#
inputstatem

ents
#

outputstatem
ents

1
#

R
ectangle

intersections
23

5
0

0
8

12
8

4

2
Sum

ofdigits
9

0
1

2
4

5
1

1

3
Friendly

num
bers

18
3

2
1

6
8

2
1

4
Q

uadratic
roots

12
1

0
0

3
3

3
2

5
E

qual1s
and

0s
12

2
1

1
6

7
1

1

Appendix B

Examples for handling cases of
missing code of nested loops

As described in Chapter 2, further examples for handling the cases of missing code of

nested loops are given below in this appendix.

Example B.1. The FSMDs and codes of golden and student’s programs for calcu-
lating the sum of digits of the sum obtained until we get a single digit number are
reproduced below (Figures B.1 and B.2). The program for this problem requires
two loops. In student program the outer while loop is missing, making the student
program inconsistent with teacher’s program. We discuss below the simulation of the
mechanism.

digitsum_correct.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
while (n > 9) {

t =n % 10;
sum = sum + t;
n = n / 10;

}
sum = sum + n;

271

272 Chapter B Examples for handling cases of missing code of nested loops

Figure B.1: Mg, digitsum program Figure B.2: Ms, digitsum program

273

}
printf("%d", sum);
return 0;

}

digitsum_incorrect.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (n > 9) {

t =n % 10;
sum = sum + t;
n = n / 10;

}
sum = sum + n;
printf("%d", sum);
return 0;

}

Execution of equivalence checker on these two FSMDs gives us qq1999 as the

LCS. The CSLCS is the state qq1997. Containment checker takes the path ps =

qq1999 → qq1003 → qq1004 → qq1005 → qq1999, starting from qq1999 to next

cut point i.e qq1999 itself in Ms. It tries to find whether this path is present in Mg

or not. Containment checker outputs the path pg = qq1997→ qq1003→ qq1004→
qq1998→ qq1999→ qq1005→ qq1006→ qq1007→ qq1999 of Mg, which is con-

taining the path ps in Ms. After the execution of step (3), we get the state qq1999 in

Ms as US. The corresponding state in Mg, the state qq1997 is thus CSUS. We associate

the variable state names sg and ss with CSUS and US respectively. DFS visit of Mg

with sg i.e.,qq1997 as root gives that qq1997 is the starting of a loop. In step (3) it

introduces a self-loop, loop1, in Ms, corresponding to the loop at state qq1997 of Mg.

This self-loop is introduced at a new state qq1004 in Ms, just before qq1999, the US

(i.e., ss). The condition of self-loop is kept the same as that of sg. Now sg moves down

to the next state i.e., qq1003 in Mg. The ss remains at the US.

274 Chapter B Examples for handling cases of missing code of nested loops

Figure B.3: Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for digitsum program.

275

Now sg moves down to the next state i.e., qq1003. The ss remains at the US, this

indicates that the FSMDs are equivalent upto sg and ss. As sg is neither a loop nor

a cut-point, so a chain, ChainMg, is made upto the next cut-point i.e. qq1999. A

chain, ChainMs is made from ss to the next cut-point, which is also ss. The chain copy

mechanism copies the chain in the loop1. The modified loop1 is shown in B.4.

276 Chapter B Examples for handling cases of missing code of nested loops

Figure B.4: Incorrect FSMD after modifying loop1 in Ms for digitsum program.

277

The ss is still at US. Now the sg moves down to the state qq1999, which is a loop

start state. A self-loop, loop2, is therefore introduced inside loop1. The loop condition

of loop2 is made the same as the condition of sg. The conditions of sg and ss are same,

so both of them move down. sg further moves down in Mg to the state qq1005. Also ss

now moves down to the next state in Ms. As the next states of Mg and Ms are neither

cut-point nor loop start states, so the chain copy mechanism prepares the chain from

next state of sg to the next cut-point (which happens to be sg again). This chain is

copied to the loop2. The FSMD of modified student’s program is shown in figure

B.5.

278 Chapter B Examples for handling cases of missing code of nested loops

Figure B.5: Modified incorrect FSMD after introducing chain in loop2 in Ms for dig-

itsum program.

279

It is to be noted that sg is still at the state qq1999 in Mg and ss is still at US. Now

the next state from sg is qq1008, which is on the outward edge of loop2, and which

is along the loop1. The next state from ss is qq1008 in Ms in figure B.5. As qq1008

is a non cut-point state in both the FSMDs, so chain copy mechanism comes into

picture. It finds that there is only one transition 〈−,sum = sum+ n〉 from qq1008 to

the next cut-point qq1997 in Mg, which is also present after the next state qq1008 of

ss. This transition has to be copied to loop1 in Ms, hence it is removed from its present

occurrence and moved inside loop1. This completes the correction mechanism as we

get the resulting modified Ms same as the Mg. The figure B.6 shows the completely

corrected Ms.

280 Chapter B Examples for handling cases of missing code of nested loops

Figure B.6: Modified incorrect FSMD after completion of chain copy in loop1 in Ms

for digitsum program.

281

Example B.2. The FSMDs and codes of golden and student’s programs for calcu-
lating the points on a diamond are reproduced below (Figures B.7 and B.8). The
program for this problem requires two loops. In student program both the loops are
missing, making the student program inconsistent with teacher’s program. We discuss
below the simulation of the mechanism.

Figure B.7: Mg, diamond program Figure B.8: Ms, diamond program

diamond_correct.c
#include <stdio.h>
int main() {

int i, j, rows;
printf("Enter number of rows: ");
scanf("%d",&rows);

282 Chapter B Examples for handling cases of missing code of nested loops

for(i=1; i<=rows; ++i) {
for(j=1; j<=i; ++j) {

printf("%d", j);
}

}
printf("%d", i);
printf("%d", j);
printf("%d", rows);

return 0;
}

diamond_incorrect.c
#include <stdio.h>
int main() {

int i, j, rows;
printf("Enter number of rows: ");
scanf("%d",&rows);
printf("%d", i);
printf("%d", j);
printf("%d", rows);
return 0;

}

We refer to the FSMDs in figures B.7 and B.8 in the following discussion. Execution

of equivalence checker on these two FSMDs gives us qq1001 as the LCS. The CSLCS

is the state qq1001. Containment checker takes the path ps = qq1001→ qq1002→
qq1003→ qq1004→ qq1005, starting from qq1001 to next cut point i.e qq1005 in

Ms. It tries to find whether this path is present in Mg or not. Containment checker

outputs the path pg = qq1001→ qq1995LB→ qq1996→ qq1003LE → qq1004→
qq1005→ qq1006 of Mg, which is containing the path ps in Ms. After the execution

of step (3), we get the state qq1002 in Ms as US. The corresponding state in Mg, the

state qq1995LB is thus CSUS. We associate the variable state names sg and ss with

CSUS and US respectively. DFS visit of Mg with sg as root gives that it is neither

the starting of a loop, nor a cut-point. So a trivial chain copy mechanism copies the

transition 〈−, i = 1〉 before US in the Ms. Now the sg shifts down to the state qq1996

in Mg, which is the start of a loop state. In step (3) a self-loop, loop1, is introduced in

Ms, corresponding to the loop at state sg of Mg. This self-loop is introduced at a new

state in Ms, just before the US (i.e., ss). The condition of self-loop is kept the same as

that of sg. Now sg moves down to the next state i.e., qq1998LB in Mg. The ss remains

283

at the US. Figure B.9 shows the introduction of loop1.

Figure B.9: Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for diamond program.

The current state where sg is, is a state which is neither a cut-point nor a loop

start state. Hence the next transition 〈−, j = 1〉 is simply copied in the loop1 by the

chain copying mechanism, as only this transition lies between the state sg and the next

cut-point on Mg. sg then goes down to the next state qq1999, which is a loop start

state. Hence a new self-loop, loop2 is introduced in the loop1. The condition of loop2

284 Chapter B Examples for handling cases of missing code of nested loops

is same as the condition of sg, i.e., j <= i. Insertion of self-loop loop2 is shown in

figure B.10.

Figure B.10: Incorrect FSMD after inserting loop2 in Ms for diamond program.

sg now moves to the next state qq1002. As qq1002 is a non cut-point and non loop

start start state, so the path upto next cut-point qq1999 is put as ChainMg. This path

not being the same as ChainMs, will be copied inside the loop2, thus completing the

loop2 in Ms. This makes the modified Ms, the same as the FSMD Mg. The FSMD of

modified student’s program is shown in figure B.11.

285

Figure B.11: Modified incorrect FSMD after introducing chain in loop2 in Ms for

diamond program.

Example B.3. In this example we consider a program having no loops and no condi-

tions. The golden program simple_correct.c and the student’s program simple_incor-

rect are given below. Their respective FSMDs are shown in figures B.12 and B.13

respectively.

simple_correct.c
int main() {

int i, j, k;

286 Chapter B Examples for handling cases of missing code of nested loops

Figure B.12: Mg, a simple program Figure B.13: Ms, a simple program

287

i = 0;
j = 5;
k = 10;

i = j + k;
j = i + k;
k = k + j;

return 0;
}

simple_incorrect.c
#include <stdio.h>
int main() {

int i, j, k;
k = 10;
i = 0;

k = k + j;
i = j + k;

return 0;
}

Execution of equivalence checker on these two FSMDs gives us qq1001 as the

LCS in Ms. The CSLCS is the state qq1001 in Mg. Containment checker takes the

path qq1001 � qq1005, starting from qq1001 to next cut point i.e qq1005 in Ms. It

tries to find whether this path is present in Mg or not. Containment checker outputs

the path qq1001 � qq1007 of Mg, which is containing this path. After the execution

of step (3), we get the state qq1001 in Ms as unmatched state, which is also ss. The

corresponding state, CSUS, in Mg is qq1001, thus sg is also qq1001 in Mg. DFS

visit of Mg with qq1001 (i.e., sg) as root gives that qq1001 is neither the starting of

loop, nor this is a cut-point. Hence, ChainMg is constructed from sg to the next cut-

point qq1007, in Mg. ChainMs is constructed from US to the next cut-point qq1005,

in Ms. The chain copy mechanism now works on Ms as follows. Both the chains

are compared and found unequal by Equate_chains function. ChainMg is, therefore,

introduced in the Ms, transition after transition each time copying the transition if not

already present in Ms and copying and replacing those transitions which are already

288 Chapter B Examples for handling cases of missing code of nested loops

present in Ms, but are in a different sequence. This way the entire ChainMg is copied

to Ms, making Ms same as Mg.

Example B.4. The FSMDs and codes of golden and student’s programs for calculat-
ing the sum of digits of the sum obtained until we get a single digit number are given
below (Figures B.14 and B.15). The program for this problem requires two loops. In
student program the inner while loop is missing, making the student program incon-
sistent with teacher’s program. We discuss below the simulation of the mechanism.

digitsum_correct.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
while (n > 9) {

t =n % 10;
sum = sum + t;
n = n / 10;

}
sum = sum + n;

}
printf("%d", sum);
return 0;

}

digitsum_incorrect.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
sum = sum + n;

}
printf("%d", sum);
return 0;

}

289

Figure B.14: Mg, digitsum program Figure B.15: Ms, digitsum program

290 Chapter B Examples for handling cases of missing code of nested loops

Execution of equivalence checker on these two FSMDs gives us qq1005 as the

LCS. The CSLCS is the state qq1999. Containment checker takes the path ps =

qq1005→ qq1999, starting from qq1005 to next cut point i.e qq1999 in Ms. It tries to

find whether this path is present in Mg or not. Containment checker outputs the path

pg = qq1999→ qq1008→ qq1997 of Mg, which is containing the path ps in Ms. After

the execution of step (3), we get the state qq1005 in Ms as US. The corresponding

state in Mg, the state qq1999 is thus CSUS. We associate the variable state names sg

and ss with CSUS and US respectively. DFS visit of Mg with sg i.e.,qq1999 as root

gives that qq1999 is the starting of a loop. In step (3) it introduces a self-loop, loop1,

in Ms, corresponding to the loop at state qq1999 of Mg.

This self-loop is introduced at a new state qq1006 in Ms, in figure B.16, just

before qq1008, the US (i.e., ss). The condition of self-loop is kept the same as that of

sg. Now sg moves down to the next state i.e., qq1005 in Mg. The ss remains at the US.

The modified code after this step becomes as follows. The modified FSMD of Ms is

shown in figure B.16.

digitsum_innerloopmissingaddedselfloop.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
while (n > 9) {
}
sum = sum + n;

}
printf("%d", sum);
return 0;

}

291

Figure B.16: Modified incorrect FSMD after introducing loop1 before the unmatched

state in Ms for digitsum program.

Now sg is at the state qq1005 and the ss remains at the US, indicating that the

FSMDs are equivalent upto sg and ss. As sg is neither a loop nor a cut-point, so a

chain, ChainMg, is made upto the next cut-point i.e. qq1999. A chain, ChainMs is

292 Chapter B Examples for handling cases of missing code of nested loops

made from ss to the next cut-point, which is also ss. The chain copy mechanism copies

the chain in the loop1. The modified loop1 is shown in figure B.17, which makes Ms

same as Mg. The modified code of the student’s program becomes the following,

which is same as the golden program. The FSMD of this program is shown in figure

B.17.

digitsum_innerloopmissingfilledselfloop.c
#include<stdio.h>
int main() {

int n, i, sum, t;
printf("enter the number");
scanf("%d", &n);
sum = n;
while (sum > 9) {

n = sum;
sum = 0;
while (n > 9) {

t =n % 10;
sum = sum + t;
n = n / 10;

}
sum = sum + n;

}
printf("%d", sum);
return 0;

}

293

Figure B.17: Incorrect FSMD after modifying loop1 in Ms for digitsum program.

294 Chapter B Examples for handling cases of missing code of nested loops

Appendix C

Outlines of a new procedure for
correcting the student’s programs

In this appendix, we provide the outlines of pseudocodes for the algorithms used to

find out similarity of subgraphs in two given FSMDs and outline of an example to

correct student’s program by introducing missing code.

C.1 Introduction

The method presented here involves comparing the FSMDs of the golden and the stu-

dent’s program and correct the student’s program by altering the student’s program.

Our attempt to correct should be such that it retains as much of student’s code as pos-

sible. A program consists of loops, conditional constructs and straight line code. Our

method identifies existence of loops, if on traversing FSMDs, the same state is en-

countered again. The conditional constructs are identified by a cut-point node, whose

branches eventually meet at a common state, called join node. The notion of domina-

tors has been used to identify join node. The conditional block are separated once we

know the decision node and the join node. A backwards depth first traversal up to the

decision node in a conditional construct leads to identify the edges in the conditional

block. A conditional block can thus be segregated. In case of loops, back edges are

identified using depth first search. The edges in the loop body can be identified by

doing a reverse depth first traversal from the state at the tail of the back edge to the

295

296 Chapter C Outlines of a new procedure for correcting the student’s programs

state at the head of the back edge. Loops are segregated using this method. While

traversing a loop or a conditional construct, the respective handling functions are in-

voked, which are recursive in nature. Similarity between two paths in the two FSMDs

is treated as the edit-distance between the statements occurring on the two paths. If

same statements occur on the two paths, then the edit distance between the paths is

treated to be zero.

In this appendix, an attempt has been made to develop a method to compare two

FSMD’s. In future we can improve our methods to compare even more generalized

FSMD’s with many loops and conditionals. We can also work on improving the space

and time complexities of our methods.

C.2 Supporting procedures

The supporting procedures include the procedures for finding dominators, back-edges

and finding join state of a conditional block etc., among others. An introduction to

dominator node is as follows. A node d dominates a node n if every path from the

entry node to n must go through d. By definition, every node dominates itself. A node

d strictly dominates a node n if d dominates n and d does not equal n. The immediate

dominator or idom of a node n is the unique node that strictly dominates n but does

not strictly dominate any other node that strictly dominates n. Every node, except the

entry node, has an immediate dominator. The dominance frontier of a node d is the

set of all nodes n such that d dominates an immediate predecessor of n, but d does not

strictly dominate n. It is the set of nodes where d’s dominance stops. A dominator

tree is a tree where each node’s children are those nodes it immediately dominates.

Because the immediate dominator is unique, it is a tree.

Algorithm: findDominators

Input:startNode
Output:dom[]
Begin:
1: Set U;

2: dfs (U, startNode, NULL);

C.2 Supporting procedures 297

3: For each state v in U

4: Set V;

5: dfs (V, startnode, v); //exclude v

6: Set K = U - V; //v dominates all elements of K

7: For each k in K

8: dom[k] = v ∪ dom[k];

9: return dom[]

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph

data structures. The algorithm starts at the root node (selecting some arbitrary node as

the root node in the case of a graph) and explores as far as possible along each branch

before backtracking.

Algorithm: dfs

Input:D, node, v // node: startnode / current node, v: node to be excluded

Output:
Begin:
1: If v ! = NULL and v==node //if v to be excluded and v is the node node

2: return ;
3: Set D = D ∪ node;

4: For each successor x of node and x is not in D
5: dfs(D, x, v);

Back-edge

Using the DFS algorithm a back-edge is found as an edge from a node to one of

its ancestors in the dfs tree. For example in the FSMD shown in fig. C.1, only the

following edge will be a back edge: t10.

Example: findDominators

Step 1: Initialize a set U .

Step 2: Apply dfs on Figure C.1 with start node q0 and store all states in the set U .

U = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10};

298 Chapter C Outlines of a new procedure for correcting the student’s programs

Figure C.1: FSMD of Golden Program, in the figure t0..t11 are the set of statements,

e.g. t0={a=5;b=4;a=b+c;..}

C.2 Supporting procedures 299

Step 3: For each state qi , apply dfs from start node and store all nodes in Vi except

the nodes through qi .

Step 4: For each qi calculate, Ki = U - Vi. Here, Ki contains all nodes that are domi-

nated by qi .

Step 5: Store the dominators of each node qi in dom[qi].

Join state

Algorithm: findJoinState

Input: Sg

Output: Stemp

Begin:
1: Let tg be an outgoing transition from Sg and tg is not a backedge

2: If incoming transitions to tgf >1 and Sg in dominators(tgf)

3: return tgf;

4: Hashtable visited;

5: insert tgf to visited

6: Stemp = (tgf)

7: Let tg be an outgoing transition from Stemp and tg is not a backedge;

8: Stemp = (tgf)

9: Let tg be an outgoing transition from Stemp and tg is not a backedge;

10: For each x in visited and x not in dominators(Stemp)

11: insert Stemp to visited

12: Stemp = (tgf)

13: Let tg be an outgoing transition from Stemp and tg is not a backedge;

14: return Stemp

In FSMD, a path between two nodes is a possible ordering of execution of the

statements from start node to end node.

Algorithm: findAllPaths

Input:startState, endState, Path[],AllPaths[][]

Output:
Begin:

300 Chapter C Outlines of a new procedure for correcting the student’s programs

Table
C

.1:D
om

inatortable

q
i

V
i

K
i =U
−

V
i

dom
[q

i]

q0
ξ

q0,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10
q0

q1
q0

q1,q2,q3,q4,q5,q6,q7,q8,q9,q10
q0,a1

q2
q0,q1,q8,q9

q0,q2,q3,q4,q5,q6,q7,q10
q0,q1,q2

q3
q0,q1,q2,q8,q9

q3,q4,q5,q6,q7,q10
q0,q1,q2,q3

q4
q0,q1,q2,q3,q6,q7,q8,q9,q10

q4,q5
q0,q1,q2,q3,q4

q5
q0,q1,q2,q3,q4,q6,q7,q8,q9,q10

q5
q0,q1,q2,q3,q4,q5

q6
q0,q1,q2,q3,q4,q5,q7,q8,q9,q10

q6
q0,q1,q2,q3,q6

q7
q0,q1,q2,q3,q4,q5,q6,q8,q9

q7,q10
q0,q1,q2,q3,q7

q8
q0,q1,q2,q3,q4,q5,q6,q7,q9,q10

q8
q0,q1,q8

q9
q0,q1,q2,q3,q4,q5,q6,q7,q8,q10

q9
q0,q1,q9

q10
q0,q1,q2,q3,q4,q5,q6,q7,q8,q9

q10
q0,q1,q2,q3,q7,q10

C.2 Supporting procedures 301

1: If startState is equal to endState

2: add Path into allPaths

3: return ;
4: For each outgoing transition ti from startState

5: If ti not in Path

6: add ti to Path.

7: call recursively findAllPaths with input tif, endState, Path, AllPaths

8: delete ti from the Path

Edit-distance is the cost to convert a string to another string with minimal changes.

As string is the ordering of the characters, a path is the ordering of edges and in FSMD

each edge has some statement, so paths are the ordering of statements. Considering

each statement as a character, we can find the edit distance between two paths.

Algorithm: minEditDistanceDP

Input: str1[],str2[],m,n

Output: cost

Begin:
1: dp[m+1][n+1];//Create a table to store results of sub-problems

2: For i in range(0,m-1) //each character in str1

3: For j in range(0,n-1)//each character in str2

4: If i=0

5: dp[i]][j]=j

6: Else If j=0

7: dp[i][j] = i;

8: Else If str1[i-1] == str2[j-1]

9: dp[i][j] = dp[i-1][j-1];

10: Else
11: dp[i][j] = min (dp[i][j-1] + InsertCost, dp[i-1][j] + RemoveCost,

dp[i-1][j-1] + ReplaceCost);

12: cost=dp[m][n];

13: return cost;

302 Chapter C Outlines of a new procedure for correcting the student’s programs

a

qg1

qg2

qg3

qg4

b

c
qg10

qg11
qg7

qg8
qg5

qg6 qg12

qg9

qg13

qg14

qg15

qg16

qg17

qg18

qg19

qg22

qg20

qg21

qg23

qg24

FSMD of golden program

d

e

f

g

h

l

i

j

k

m

n
o

p

q
r

s t

u

v

w

x

y

z

a1

b1

c1

qs1

qs2

qs3

qs4

qs5

qs6

qs7

qs8

qs9

qs10
qs11

qs12

qs13

qs14

qs15
qg16

qs16

qs17 qs18

qs19

qs20

c′1

u′

v′

x′

y′

s′ t′

n′

p′

o′

q′

e′11

a11

b11

c11

m′
g′

f ′

d′

j′
h′

l′

b′

a′

FSMD of student’s program

Figure C.2: Figure with FSMDs for various examples.

segregate_loop

The pseudocode for this program is given as follows.

Listing C.1: segregate_loop program

Marked_loop_Transitions[] segregate_loop(sg, backedge tbg){

mark tbg and store it in an array Marked_loop_Transitions[];

if(sg == tbg_start){//tbg_start is tail node of the back edge.

return;

C.2 Supporting procedures 303

}

else{

For each incoming transition ti to tbg_start{

if(ti is not marked){

segregate_loop(sg, ti);

}

}//end_for

}//end_else

return Marked_loop_Transitions[];

}//end_fn

In the following description of steps of the above pseudocode, M stands for the

array Marked_loop_Transitions[]. The fig C.2 has been referred in the underlying

description.

FSMD of golden program

• sg = qg
16; backedge tbg = s;

• Mark tbg and store it in array M[]; M = {s};

• tbg_start = qg
17;

• For each incoming transition ti to tbg_start, if it is not marked, call

segregate_loop(qg
16, ti)

• It will terminate when sg will be equal to tbg_start.

• Finally M will contain edges s and t

M = {s, t}

• Return M.

FSMD of student’s program

• sg = qs
13; backedge tbg = s′;

• Mark s′ and store it in array M. M = {s′}.

304 Chapter C Outlines of a new procedure for correcting the student’s programs

• tbg_start = qs
16.

• For each incoming transition ti to tbg_start, if it is not marked, call

segregate_loop(qs
13, ti).

• It will terminate when sg will be equal to tbg_start.

• M = {s′, t ′}.

• Return M.

segregate_conditional

The pseudocode for this program is given as follows.

Listing C.2: segregate_conditional program

Marked_conditional_Transitions[] segregate_conditional(sg, sj){

//sg=entry state for conditional

//sj=current state(initially join state)

if(sg == sj){

return;

}

else{

For each incoming transition ti to sj{

if(ti is not marked){

mark ti and store it in an array

Marked_conditional_Transitions[];

segregate_conditional(sg, ti_start);

}

}//end_for

}//end_else

return Marked_conditional_Transitions[];

}//end_fn

In the following description of steps of the above pseudocode, M stands for the

array Marked_conditional_Transitions[]. The fig C.2 has been referred in the under-

lying description.

C.2 Supporting procedures 305

FSMD of golden program

• sg = qg
2; s j = qg

9 (join point).

• For each incoming transition ti to s j, if ti is not marked, mark it and store it in

M. M = {m}.

• Call segregate_conditional(qg
2, qg

9). M = {m, l}.

• Similarly, segregate_conditional() will be called recursively.

• Finally, M1 = {m, l, h, c, b, i, j, k, g, f , e, d}.

• M2 = {l, k, h, j}.

• M3 = {r, q, p, n, o}.

• M4 = {w, v, u, z, y, x, b1, a1}.

FSMD of student’s program

• M1 = {m′, l′, h′, b′, j′, g′, f ′, d′}.

• M2 = {l′, h′, j′}.

• M3 = {p′, n′, e′11, q′, o′}.

• M4 = {v′, u′, y′, x′}.

segregate_graph

The pseudocode for this program is given as follows.

Listing C.3: segregate_graph program

segregate_graph (State sg, Set backedges, visited) {

visited.insert(sg);

int loop_found = 0;

For each incoming transition ti on sg {

if(ti in backedges) {

306 Chapter C Outlines of a new procedure for correcting the student’s programs

segregate_loop(sg, ti);

loop_found = 1;

}

}

if (loop_found == 0) {

if (sg is a cut-point) {

State sj = find_join_state (sg);

segregate_conditional (sg, sj);

}

}

For each outgoing transition t_temp from sg {

if(t_temp_f not in visited)

segergate_graph(t_temp_f, backedges, visited);

}

}

• In the following description of steps of the above pseudocode, M stands for the

array Marked_conditional_Transitions[] and L stands for the array Marked

_loop_Transitions[].

• The function segregate_graph() will call the functions segregate_loop() and seg-

regate_conditional(), depending upon the node type.

• If the current node is a conditional, then it will call segregate_conditional() and

give FSMDs of all the conditionals and if node has backedges, then it calls

segregate_loop() and get FSMDs of all the loops within the given FSMD.

FSMD of golden program

We get the loops and conditionals as follows.

• Loops:

L1 = {s, t}.

• Conditionals:

C.2 Supporting procedures 307

– M1 = {l, k, h, j, i}

– M2 = {m, l, h, c, b, i, j, k, g, f , e, d}.

– M3 = {r, q, p, n, o}.

– M4 = {w, v, u, z, y, x, b1, a1}

FSMD of student’s program

We get the following loops and conditionals by applying segergate_graph on the

FSMD of student’s program.

• Loops:

L1 = {s′, t ′}.

• Conditionals:

– M1 = {m′, l′, h′, j′, g′, f ′, d′, b′}.

– M2 = {l′, h′, j′}.

– M3 = {p′, h′, e′11, q′, o′}.

– M4 = {v′, u′, y′, x′}.

FSMD of golden program

U = {qg
1, qg

2, qg
3, qg

4, qg
5, qg

6, qg
9, qg

13, qg
14, qg

16, qg
17, qg

18, qg
19, qg

23, qg
24, qg

22, qg
20, qg

21,

qg
15, qg

7, qg
8, qg

10, qg
11, qg

12}.

• After performing dfs on the golden FSMD, set U will contain all the possible

states.

• For each state s_temp in U and for every transition t_temp, check if t_temp_ f

is present in the dominator set of t_temp_s.

• In the given example, we can observe that the state qg
16 is present in the domi-

nator set of qg
17.

dom[qg
17] = {qg

1, qg
2, qg

9, qg
16}

qg
16 ∈ dom[qg

17]

308 Chapter C Outlines of a new procedure for correcting the student’s programs

• So, the edge s is a back-edge. Insert s in the set of back-edges and return.

FSMD of student’s program

U = {qs
1, qs

2, qs
3, qs

4, qs
5, qs

6, qs
9, qs

10, qs
11, qs

12, qs
13, qs

16, qs
17, qs

19, qs
20, qs

18, qs
14, qs

15,

qg
7, qg

8}.

• Proceeding in the same way as above, we can observe that q13 ∈ dom[qs
16].

dom[qs
16] = {qs

1, qs
2, qs

6, qs
9, qs

10, qs
11, qs

13}

q13 ∈ dom[qs
16]

• So, the edge s′ is a backedge.

C.3 Outline of an overall correction scheme

To illustrate the overall correction scheme, we consider the FSMDs shown in fig-

ure C.3. The scheme presented below is a recursive scheme and works as follows.

1. Find the back-edges in the two FSMDs and for each back-edge from golden

program, find its least cost counterpart in the FSMD of student’s program.(this

step is not shown in figure C.3.

2. Segregate loops attached to the pairs of back-edges found above, e.g., L1, L2 in

MG and L′1, L′2 in MS.

3. Make a copy of the loops L1, L2, L′1 and L′2.

4. Work on the copies to get the dissimilarity cost between the pairs (L1, L′1), (L′1,

L′2), (L2, L′1) and (L2, L′2).

5. Finally select the pairs for L1 and L2, which have the least cost, e.g., let us

assume (L1, L′2) and (L2, L′1) have maximum similarity (least cost of correction).

6. Similarly segregate the conditional blocks C1, C2, C′1 and C′2. Make their copies.

Using the copies, select the pairs for C1 and C2, which have maximum similarity,

e.g., let us assume (C1, C′2) and (C2, C′1) have the maximum similarity.

C.3 Outline of an overall correction scheme 309

7. Recursively correct the matched loops and the conditional blocks and obtain

the block correction cost CB. To correct loops L and L′, remove their back-

edges making their tail nodes corresponding states and then apply this algorithm

recursively on rest of the loop bodies of L and L′.

8. All the loop entry/exit states of the least cost pairs obtained as above, become

corresponding states.

9. All the branch entry/exit states of the least cost pairs obtained as above, become

corresponding states. In the figure C.3, states Si and S′i become the correspond-

ing states.

10. Each matched and corrected conditional block is replaced with a trivial edge

without any operation, between the block entry and exit states.

11. Each matched and corrected loop is removed leaving behind only the loop en-

try/exit node.

12. On the reduced FSMD obtained after the previous two operations, apply the

algorithm for finding all paths between successive corresponding points and

match up those paths according to their similarities and apply corrections ac-

cording to the minimum edit-distance computations. Let this cost of correction

be CW .

13. Total cost for correction is (CB +CW). This cost is returned.

The algorithm for measuring similarity is given below.

Algorithm: similarityMeasure

Input: Ns (start point in student’s FSMD)

NCs (Next cut-point in student’s FSMD)

Ng (start point in golden FSMD)

NCg (Next cut-point in golden FSMD)

Output: similarityCost

Begin:
1: for each path Ps between NCs and Ns do

2: for each path Pg between NCg and Ng do

310 Chapter C Outlines of a new procedure for correcting the student’s programs

3: similarityCost=minEditDistanceDP(Pg ,Ps);

The above outline of the correction procedure does not cover some corner cases

such as a missing block or missing loop, those have to be incorporated to make the

algorithm complete.

S0

S3

S7

L1 L2

C1 C2

S1 S2

S4 S5

S6

S8

a1 b1

a2 b2

a3 b3

a4 b4

(a) MG

FSMD of golden program

S′0

S′3

S′7

L′1 L′2

C′1 C′2

S′1 S′2

S′4 S′5

S′6

S′8

a′1 b′1

a′2 b′2

a′3 b′3

a′4 b′4

(b) MS

FSMD of student’s program

Figure C.3: Figure with FSMDs for finding similarity and overll correction.

Bibliography

[1] CVC4 - the smt solver. http://cvc4.cs.nyu.edu/web/.

[2] GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

[3] MOOC List. http://www.mooc-list.com/.

[4] Virtual Labs. http://www.vlab.co.in/.

[5] A. Adam and J.-P. H. Laurent. Laura, a system to debug student programs.

Artificial Intelligence, 15(1-2):75–122, 1980.

[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers principles, techniques, and

tools. Addison-Wesley, Reading, MA, 1986.

[7] K. M. Ala-Mutka. A survey of automated assessment approaches for program-

ming assignments. Computer Science Education, 15(2):83–102, 2005.

[8] C. Alippi. Randomized Algorithms, pages 53–93. Springer International Pub-

lishing, Cham, 2014.

[9] M. Amelung, K. Krieger, and D. Rosner. E-assessment as a service. IEEE

Transactions on Learning Technologies, 4:162–174, 2011.

[10] K. Banerjee. Translation Validation of Optimizing Transformations of Programs

using Equivalence Checking. PhD thesis, IIT Kharagpur, India, 2015.

[11] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. A value propagation based

equivalence checking method for verification of code motion techniques. In

ISED, pages 67–71, 2012.

311

http://cvc4.cs.nyu.edu/web/
https://gcc.gnu.org/
http://www.mooc-list.com/
http://www.vlab.co.in/

312 BIBLIOGRAPHY

[12] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. Verification of code motion

techniques using value propagation. IEEE Trans. on CAD of ICS, 33(8):1180–

1193, 2014.

[13] K. Banerjee, C. Mandal, and D. Sarkar. Extending the scope of translation vali-

dation by augmenting path based equivalence checkers with smt solvers. In VLSI

Design and Test, 18th International Symposium on, pages 1–6, July 2014.

[14] K. Banerjee, D. Sarkar, and C. Mandal. Extending the FSMD framework for

validating code motions of array-handling programs. IEEE Trans. on CAD of

ICS, 33(12):2015–2019, 2014.

[15] S. Benford, E. K. Burke, E. Foxley, and C. A. Higgins. The ceilidh system for

the automatic grading of students on programming courses. In Proceedings of

the 33rd annual on Southeast regional conference, pages 176–182. ACM, 1995.

[16] V. Bentkus. On HoeffdingâĂŹs inequalities. Ann. Probab., 32(2):1650–1673,

04 2004.

[17] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking with-

out BDDs. In Proceedings of the 5th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, TACAS ’99, pages 193–

207, Berlin, Heidelberg, 1999. Springer-Verlag.

[18] M. Blumenstein, S. Green, S. Fogelman, A. Nguyen, and V. Muthukku-

marasamy. Performance analysis of game: A generic automated marking en-

vironment. Computers & Education, 50(4):1203 – 1216, 2008.

[19] M. Blumenstein, S. Green, A. Nguyen, and V. Muthukkumarasamy. Game: a

generic automated marking environment for programming assessment. In Inter-

national Conference on Information Technology: Coding and Computing, 2004.

Proceedings. ITCC 2004., volume 1, pages 212–216 Vol.1, April 2004.

[20] A. R. Bradley and Z. Manna. The Calculus of Computation: Decision Proce-

dures with Applications to Verification. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 2007.

[21] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon. On automated grading of pro-

gramming assignments in an academic institution. Computers & Education,

41(2):121 – 131, 2003.

BIBLIOGRAPHY 313

[22] P. M. Chen. An automated feedback system for computer organization projects.

IEEE Transactions on Education, 47(2):232–240, May 2004.

[23] H. Chernoff. Conservative bounds on extreme P-values for testing the equality of

two probabilities based on very large sample sizes, volume Volume 45 of Lecture

Notes–Monograph Series, pages 250–254. Institute of Mathematical Statistics,

Beachwood, Ohio, USA, 2004.

[24] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction

and Analysis of Systems, pages 168–176, Berlin, Heidelberg, 2004. Springer

Berlin Heidelberg.

[25] L. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model check-

ing for embedded ansi-c software. In 2009 IEEE/ACM International Conference

on Automated Software Engineering, pages 137–148, Nov 2009.

[26] C. Daly and J. M. Horgan. An automated learning system for java programming.

IEEE Transactions on Education, 47(1):10–17, Feb 2004.

[27] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based assessment of

programming: A review. J. Educ. Resour. Comput., 5(3), Sept. 2005.

[28] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpres-

sion problem. J. ACM, 27(4):758–771, Oct. 1980.

[29] C. C. Ellsworth, J. B. Fenwick, Jr., and B. L. Kurtz. The quiver system. In

Proceedings of the 35th SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’04, pages 205–209, New York, NY, USA, 2004. ACM.

[30] E. Enström, G. Kreitz, F. Niemelä, P. Söderman, and V. Kann. Five years with

kattis - using an automated assessment system in teaching. In 2011 Frontiers in

Education Conference (FIE), pages T3J–1–T3J–6, Oct 2011.

[31] J. Ferrante and C. W. Rackoff. The computational complexity of logical theories,

volume 718. Springer, 2006.

[32] R. W. Floyd. Assigning meanings to programs. Proceedings of Symposium on

Applied Mathematics, 19:19–32, 1967.

314 BIBLIOGRAPHY

[33] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. High-Level Synthesis: Intro-

duction to Chip and System Design. Kluwer Academic, 1992.

[34] M. A. Ghodrat, T. Givargis, and A. Nicolau. Expression equivalence check-

ing using interval analysis. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 14(8):830–842, Aug 2006.

[35] D. Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Comput. Surv., 23(1):5–48, Mar. 1991.

[36] R. Hammack. Book of Proof. Virginia Commonwealth University, Math Depart-

ment, 2nd edition, 2013.

[37] C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas. The coursemarker cba

system: Improvements over ceilidh. Education and Information Technologies,

8(3):287–304, 2003.

[38] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. Review of recent systems

for automatic assessment of programming assignments. In Koli Calling, pages

86–93, 2010.

[39] D. Jackson and M. Usher. Grading student programs using assyst. In Proceed-

ings of the Twenty-eighth SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’97, pages 335–339, New York, NY, USA, 1997. ACM.

[40] M. Joy, N. Griffiths, and R. Boyatt. The boss online submission and assessment

system. ACM Journal of Educational Resources in Computing, 5(3), 2005.

[41] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman. Identifying stu-

dent misconceptions of programming. In Proceedings of the 41st ACM Technical

Symposium on Computer Science Education, SIGCSE ’10, pages 107–111, New

York, NY, USA, 2010. ACM.

[42] W. Kahan. Pracniques: further remarks on reducing truncation errors. Commun.

ACM, 8(1):40, 1965.

[43] C. Karfa. Hand-in-hand verification and synthesis of digital circuits. Master’s

thesis, IIT Kharagpur, India, 2007.

BIBLIOGRAPHY 315

[44] C. Karfa, C. Mandal, and D. Sarkar. Formal verification of code motion tech-

niques using data-flow-driven equivalence checking. ACM Trans. Design Autom.

Electr. Syst., 17(3):30:1–30:37, 2012.

[45] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade. A formal veri-

fication method of scheduling in high-level synthesis. In ISQED, pages 71–78,

2006.

[46] C. Karfa, D. Sarkar, and C. Mandal. Verification of datapath and controller

generation phase in high-level synthesis of digital circuits. IEEE Trans. on CAD

of ICS, 29(3):479–492, 2010.

[47] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An equivalence-checking method

for scheduling verification in high-level synthesis. IEEE Trans on CAD of ICS,

27:556–569, 2008.

[48] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal verification of schedul-

ing process using finite state machines with datapath (fsmd). In Quality Elec-

tronic Design, 2004. Proceedings. 5th International Symposium on, pages 110 –

115, 2004.

[49] J. C. King. A program verifier. PhD thesis, Pittsburgh, PA, USA, 1970.

[50] A. Kolawa and D. Huizinga. Automated Defect Prevention: Best Practices in

Software Management. Wiley-IEEE Computer Society Press, 2007.

[51] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for

recursive programs. In Proceedings of the 16th International Conference on

Computer Aided Verification - Volume 8559, pages 17–34, New York, NY, USA,

2014. Springer-Verlag New York, Inc.

[52] R. Könighofer and R. Bloem. Automated error localization and correction for

imperative programs. In Proceedings of the International Conference on Formal

Methods in Computer-Aided Design, FMCAD ’11, pages 91–100, Austin, TX,

2011. FMCAD Inc.

[53] J. P. Leal and F. Silva. Mooshak: a web-based multi-site programming contest

system. Software: Practice and Experience, 33(6):567–581, 2003.

316 BIBLIOGRAPHY

[54] C.-H. Lee, C.-H. Shih, J.-D. Huang, and J.-Y. Jou. Equivalence checking of

scheduling with speculative code transformations in high-level synthesis. In

ASP-DAC, pages 497–502, 2011.

[55] Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent development of automated

programming assessment. In 2009 International Conference on Computational

Intelligence and Software Engineering, pages 1–5, Dec 2009.

[56] N. P. Lopes and J. Monteiro. Automatic equivalence checking of UF+IA pro-

grams. In SPIN, pages 282–300, 2013.

[57] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in automatic assess-

ment on mass courses and issues for designing virtual courses. SIGCSE Bull.,

34(3):55–59, June 2002.

[58] A. K. Mandal, C. Mandal, and C. Reade. A system for automatic evaluation of

programs for correctness and performance. In J. A. M. Cordeiro, V. Pedrosa,

B. Encarnação, and J. Filipe, editors, WEBIST (2), pages 196–203. INSTICC

Press, 2006.

[59] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York,

1974.

[60] T. Matsumoto, H. Saito, and M. Fujita. Equivalence checking of c programs

by locally performing symbolic simulation on dependence graphs. In Quality

Electronic Design, 2006. ISQED ’06. 7th International Symposium on, pages 6

pp. –375, march 2006.

[61] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded model checking of C and

C++ programs using a compiler IR. In Proceedings of the 4th International Con-

ference on Verified Software: Theories, Tools, Experiments, VSTTE’12, pages

146–161, Berlin, Heidelberg, 2012. Springer-Verlag.

[62] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-

rithms and Probabilistic Analysis. Cambridge University Press, New York, NY,

USA, 2005.

[63] D. S. Morris. Automatic grading of student’s programming assignments: an

interactive process and suite of programs. In 33rd Annual Frontiers in Education,

2003. FIE 2003., volume 3, pages S3F–1–6 vol.3, Nov 2003.

BIBLIOGRAPHY 317

[64] K. A. Naudé, J. H. Greyling, and D. Vogts. Marking student programs using

graph similarity. Computers & Education, 54(2):545 – 561, 2010.

[65] V. Pieterse. Automated assessment of programming assignments. In Proceedings

of the 3rd Computer Science Education Research Conference on Computer Sci-

ence Education Research, CSERC ’13, pages 4:45–4:56, Open Univ., Heerlen,

The Netherlands, The Netherlands, 2013. Open Universiteit, Heerlen.

[66] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin: An approach to

debugging evolving programs. ACM Trans. Softw. Eng. Methodol., 21(3):19:1–

19:29, July 2012.

[67] K. Rahman, M. Nordin, and W. Che. Automated programming assessment using

the pseudocode comparison technique: Does it really work? In Information

Technology, 2008. ITSim 2008. International Symposium on, volume 3, pages 1

–4, Aug. 2008.

[68] K. A. Rahman, M. J. Nordin, and S. Ahmad. The design of an automated c

programming assessment using pseudo-code comparison technique. In paper

read at National Conference on Software Engineering and Computer Systems,

at University Malaysia Pahang,Malaysia, 2007., pages 1 –10. (available from

http://myais.fsktm.um.edu.my/1788/).

[69] K. A. Reek. The try system -or- how to avoid testing student programs. In Pro-

ceedings of the Twentieth SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’89, pages 112–116, New York, NY, USA, 1989. ACM.

[70] H. Rocha, H. Ismail, L. C. Cordeiro, and R. S. Barreto. Model checking C

programs with loops via k-induction and invariants. CoRR, abs/1502.02327,

2015.

[71] G. Roy. Techniques and algorithms for the design and development of a virtual

laboratory to support logic design and computer organization. Master’s thesis,

IIT Kharagpur, India, 2014.

[72] M. Rubio-Sánchez, P. Kinnunen, C. Pareja-Flores, and Á. Velázquez-Iturbide.

Student perception and usage of an automated programming assessment tool.

Computers in Human Behavior, 31:453 – 460, 2014.

318 BIBLIOGRAPHY

[73] P. Rudnicki. Little bezout theorem (factor theorem). FORMALIZED MATHE-

MATICS, 12:2004, 2004.

[74] R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic assessment of pro-

gramming exercises. In Proceedings of the 6th Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE ’01, pages 133–136,

New York, NY, USA, 2001. ACM.

[75] D. Sarkar and S. C. De Sarkar. A theorem prover for verifying iterative programs

over integers. IEEE Trans Software. Engg., 15(12):1550–1566, 1989.

[76] F. Shamsi and A. Elnagar. An intelligent assessment tool for students’ java sub-

missions in introductory programming courses. Intelligent Learning Systems and

Applications, 4(1):59–69, 2012.

[77] K. K. Sharma, K. Banerjee, and C. Mandal. A scheme for automated evaluation

of programming assignments using FSMD based equivalence checking. In I-

CARE, pages 10:1–10:4, 2014.

[78] K. K. Sharma, K. Banerjee, and C. Mandal. Determining equivalence of ex-

pressions: An automated evaluator’s perspective. In Technology for Education

(T4E), 2015 IEEE International Conference on, pages 35–36, 2015.

[79] K. K. Sharma, K. Banerjee, and C. Mandal. Establishing equivalence of expres-

sions: An automated evaluator designer’s perspective. In Mining Intelligence

and Knowledge Exploration - Third International Conference, MIKE 2015, Hy-

derabad, India, December 9-11, 2015, Proceedings, pages 415–423, 2015.

[80] K. K. Sharma, K. Banerjee, C. Mandal, and I. Vikas. A benchmark programming

assignment suite for quantitative analysis of student performance in early pro-

gramming courses. In MOOC, Innovation and Technology in Education (MITE),

2015 IEEE International Conference on, pages 199–203, 2015.

[81] K. K. Sharma, K. Banerjee, I. Vikas, and C. Mandal. Automated checking of

the violation of precedence of conditions in else-if constructs in students’ pro-

grams. In MOOC, Innovation and Technology in Education (MITE), 2014 IEEE

International Conference on, pages 201–204, 2014.

[82] G. Simons. Lower bounds for average sample number of sequential multihy-

pothesis tests. Ann. Math. Statist., 38(5):1343–1364, 10 1967.

BIBLIOGRAPHY 319

[83] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated semantic grading of

programs. CoRR, abs/1204.1751, 2012.

[84] M. Sipser. Introduction to the Theory of Computation. International Thomson

Publishing, 1st edition, 1996.

[85] S. Subramanian, M. Berzish, Y. Zheng, O. Tripp, and V. Ganesh. A solver for a

theory of strings and bit-vectors. CoRR, abs/1605.09446, 2016.

[86] G. Tremblay, F. Guérin, A. Pons, and A. Salah. Oto, a generic and extensible

tool for marking programming assignments. Softw. Pract. Exper., 38(3):307–

333, Mar. 2008.

[87] J.-B. Tristan and X. Leroy. Verified validation of lazy code motion. SIGPLAN

Not., 44(6):316–326, June 2009.

[88] M. Vujošević-Janičić and V. Kuncak. Development and Evaluation of LAV: An

SMT-Based Error Finding Platform, pages 98–113. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012.

[89] M. Vujošević-Janic̆ić, M. Nikolić, D. Tošić, and V. Kuncak. Software verifi-

cation and graph similarity for automated evaluation of students’ assignments.

Information and Software Technology, 55(6):1004 – 1016, 2013.

[90] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang. Ability-training-oriented auto-

mated assessment in introductory programming course. Computers & Educa-

tion, 56(1):220 – 226, 2011.

[91] T. Wang, X. Su, Y. Wang, and P. Ma. Semantic similarity-based grading of

student programs. Info. and Software Technology, 49(2):99 – 107, 2007.

[92] O. Watanabe. Sequential sampling techniques for algorithmic learning theory.

Theoretical Computer Science, 348(1):3 – 14, 2005. Algorithmic Learning The-

ory (ALT 2000).

[93] S. Xu and Y. S. Chee. Transformation-based diagnosis of student programs for

programming tutoring systems. Software Engineering, IEEE Transactions on,

29(4):360 – 384, April 2003.

320 BIBLIOGRAPHY

[94] Y. Yu, Z. Duan, C. Tian, and M. Yang. Model checking C programs with MSVL.

In S. Liu, editor, Structured Object-Oriented Formal Language and Method,

pages 87–103, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[95] Z. Zhou and W. Burleson. Equivalence checking of datapaths based on canonical

arithmetic expressions. In 32nd Design Automation Conference, pages 546–551,

1995.

[96] A. M. Zin, S. A. Aljunid, Z. Shukur, and M. J. Nordin. A knowledge-based

automated debugger in learning system. In AADEBUG, 2000.

Publications

1. Sharma, K. K., Banerjee, K., Mandal, C.: A scheme for automated evaluation
of programming assignments using FSMD based equivalence checking. In: I-
CARE, pp. 10:1–10:4 (2014). ACM Digital Library

2. Sharma, K. K., Banerjee, K., Vikas, I., Mandal, C.: Automated checking of the
violation of precedence of conditions in else-if constructs in students’ programs.
In: 2014 IEEE International Conference on MOOC, Innovation and Technology
in Education (MITE), pp. 201–204 (2014), ieeexplore.ieee.org

3. Sharma, K. K., Banerjee, K., Mandal, C.: Determining equivalence of ex-
pressions: an automated evaluator’s perspective. In: 2015 IEEE International
Conference on Technology for Education (T4E) (2015), pp. 35–36, ieeex-
plore.ieee.org

4. Sharma, K. K., Kunal Banerjee, and Chittaranjan Mandal. Establishing Equiv-
alence of Expressions: An Automated Evaluator Designer’s Perspective. In:
International Conference on Mining Intelligence and Knowledge Exploration
(MIKE), pp. 415–423. Springer International Publishing, (2015).

5. Sharma, K. K., Banerjee, K., Mandal, C., Vikas, I.: A benchmark program-
ming assignment suite for quantitative analysis of student performance in early
programming courses. In: 2015 IEEE International Conference on MOOC,
Innovation and Technology in Education (MITE) (2015), pp. 199–203, ieeex-
plore.ieee.org

321

About the author

K. K. Sharma is a research scholar in CSE Deptt. of IIT Kharagpur under QIP scheme
of Govt. of India. He holds a B.E. (Elecronics) from MNIT Jaipur, India and M.E.
(Computer Engg.) from SGSITS Indore, India. He has been working as Associate
Professor in the Information Technology Department at SGSITS Indore for about a
decade.

323

	Front cover
	Title Page
	Approval Page
	Certificate Page
	Declaration Page
	Acknowledgments
	Abstract
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Introduction
	Literature survey
	Automated suggestions for correction of errors: survey of various approaches
	Automated assessment of students' programs: survey leading to our formal method based approach
	Related work for determining equivalence of two expressions

	Motivation
	Objective of the thesis

	FSMD model
	Normalization
	Contributions of the thesis
	A scheme for statement containment analysis of students' programs through equivalence checking
	Methods to reconcile dissimilarities between FSMDs
	Supporting techniques for checking and evaluation of students' programs

	Thesis organization
	Assumptions in the thesis
	Conclusion

	Containment analysis
	Introduction
	Containment checking
	Outline of containment checking algorithm
	Interpretation of the results of containment checking

	Implementations of strategies for various types of errors
	Error of dependency violation
	Reporting errors of parenthesis skipping
	Error of missing block of code
	Error of missing code in the nested cases
	Missing the code of nested loop
	Steps for correction mechanism
	Simulation of correction mechanism on example problems
	Missing code of nested condition checking
	Steps for correction mechanism
	Simulation of above mechanism

	Summary of the strategies
	Results and discussions
	Conclusion

	Methods to reconcile dissimilarities between FSMDs
	Introduction
	Programs with constraints in ordering of conditions
	Identification and correction of precedence of conditions in else-if constructs
	Implementation
	Complexity analysis
	Results

	Variable mapping
	Illustrative examples
	Variable mapping algorithm
	Demonstration of the algorithm
	Various cases of variable mapping
	Results

	Conclusion

	Supporting techniques for evaluation
	Approximate equivalence checking of expressions
	Introduction
	Example of approximate equivalence checking
	Equivalence checking with randomised simulations with some known properties
	Obtaining the range of evaluation from the conditions in the program
	The decision procedure
	Results

	Automated evaluation of programs
	An automated program evaluation scheme
	Results
	Preliminary concepts of value propagation
	Value propagation based automated program evaluation
	An illustrative example

	The benchmark programming assignment suite
	Possible future extensions
	Conclusion

	Conclusion and future work
	Summary of contributions
	Containment analysis of students' programs through equivalence checking
	Methods to reconcile dissimilarities between FSMDs arising from students' programs
	Supporting techniques for checking and evaluation of students' programs

	Future work
	Enhancement of FSMD for pointers, I/O statements
	Future work in variable mapping
	Future work in approximate equivalence checking: Extension of containment checking by both ways path extension for approximate equivalence checking
	Future work in FSMD to C conversion
	Future work in debugging of evolving programs
	Future work in debugging programs involving bit-vectors

	Golden solution for each of the programming assignments
	Examples for handling cases of missing code of nested loops
	Outlines of a new procedure for correcting the student's programs
	Introduction
	Supporting procedures
	Outline of an overall correction scheme

	Bibliography

