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Abstract

The paper describes a verification method of data-path
and controller generation phase of high-level synthesis
(HLS) process. The goal is achieved in two steps. In step
1, the generated RTL description is analyzed to obtain the
register transfer (RT) operations executed in the data-path
for a given control assertion pattern in each control step
and in step 2, an equivalence checking method is proposed
to verify the correctness of the controller. The method is im-
plemented and integrated with an existing HLS tool, called
SAST. The experimental results on several HLS benchmarks
prove the effectiveness of the proposed method.

1 Introduction

High-level synthesis (HLS) is the process of generat-
ing the register transfer level (RTL) design from the be-
havioural description. The synthesis process consists of
several inter-dependent sub-tasks such as, scheduling, allo-
cation and binding and data-path and controller generation.
The operations in the behavioural description are assigned
time steps through scheduling process. The allocation and
binding process binds the variables to a set of registers and
the operations to a set of functional units (FUs) in each con-
trol step. The next task is to set the data-path by providing
a proper interconnection path from the source register(s) to
the destination register for every register transfer (RT) oper-
ation. This process of interconnection generation is called
data-path generation. The objective of this step is to max-
imize the sharing of interconnection units and hence min-
imize the interconnection cost, while supporting conflict-
free data transfers required by the RT-operations. The data-
path generation task, in general, consists in identifying the
scope of sharing interconnection paths among data trans-
fer operations which do not take place simultaneously. The

minimum number of control signals required to control all
the data transfers in each control step is found next. Then,
the functionality of each control signal is defined. Finally,
the control assertion pattern needed in each control step is
found. These processes are collectively called controller
generation. The controller, represented as an FSM, assigns
a value to each control signal, that is, invokes a control as-
sertion pattern, in each control step to execute all the re-
quired data-transfers and proper operations in the FUs. As
aresult, a set of arithmetic operations as well as a set of rela-
tional operations are performed in the data-path. The results
of the relational operations are stored in single bit registers
whose outputs (status signals) are inputs to the controller.
The state transitions in the controller FSM depend on these
status signals. Finally, a high-level synthesis (HLS) tool
produces an RTL with distinct control-path and data-path
(CP-DP). The schematic of the RTL produced by any HLS
tool is shown in figure 1.

The objective of this work is to ensure the correctness of
the RTL design generated by HLS process, i.e., to ensure the
correctness of both the data-path interconnections and the
controller FSM. The goals are accomplished in two steps as
shown in figure 2. First, finite state machine with data-path
(FSMD) [5] ! M5 is constructed from the data-path intercon-
nection information and the controller FSM.The synthesis
results after allocation and binding phase is represented as
FSMD M. In the next step, equivalence between the FS-
MDs M; and M, is established to verify the correctness of
the controller.

The works reported in [10], [11], [4] try to establish the
equivalence between the input behavioural description and
the output RTL description of HLS process. The end-to-
end HLS verification techniques, however, are not efficient
enough as it is not only error prone but also unable to find

' An FSMD is an universal specification model, proposed by Gajski et
al. in [5], which can represent all hardware designs. This model is used in
the present work for encoding the designs to be verified.



the exact sub-task in which the error occurs. In contrast,
several works have been reported in the literature to verify
certain phases of HLS process. As for example, verification
of scheduling process of HLS was reported in [9], [3], [6].
The correctness of allocation and binding phases of HLS
are treated in [2], [1], [8]. In this paper, we propose an effi-
cient verification technique for the data-path and controller
generation phase.

Status sigpals

Data-path Controller

Contral signals

Figure 1. The structure of the RTL description
produced by any HLS tool

This paper is organized as follows. The construction of
FSMD from data-path and controller is discussed in section
2. The construction process is explained with an example in
section 3. In section 4, verification during rewriting process
is discussed. The equivalence checking method has been
given in section 5. Some experimental results have been
given in section 6. The paper is concluded in section 7.

2 Construction of the FSMD from CP-DP In-
formation

Construction of the FSMD M, consists of following steps:

e Analyze the data-path vis-a-vis the control signal as-
sertion pattern in each state of the controller FSM to
construct the concurrent RT-operations in that state.

e Replicate the control flow of the controller FSM for the
FSMD M,.

The following two informations have to be extracted from
the CP-DP description in order to find the register transfer
(RT)-operations in each state of the FSMD M.

1. The set of all possible micro-operations in the data-
path. Let this set be denoted as .#. A data move-
ment from a data-path component y to another data-
path component x is encoded by the micro-operation
x < y. The data-path components essentially are stor-
age elements (registers), the functional units and the
interconnection components (buses, muxes, de-muxes,
switches, etc.).

2. The control signal assertion pattern for every micro-
operation in 4. A control signal assertion pattern

needed for any micro-operation is represented as an
ordered n-tuple of the form {u;, uy,..., u,), where u;
represents the value of the control signal ¢; and n is the
number of control signals; u; € {0, 1, X}, 1 <i<n,
is the required value of ¢;. u; = X implies that the con-
trol signal ¢; is not required (relevant) for a particu-
lar micro-operation. Let .2/ be the set of all possible
control assertion patterns. So, a function f,. is con-
structed from the set .# of all micro-operations possi-
ble in the given data-path to the set .7 of control signal
assertion patterns. The DP interconnection is achieved
by common signal naming. Thus, the data-path struc-
ture, in its entirety, is captured by the function f,..

In each state of the FSM, the controller generates a
control signal assertion pattern to execute a set of micro-
operations in the data-path to accomplish a set of register
transfer operations concurrently. So, the next task is to ob-
tain the set of micro-operations .#4 (C .#) for a given con-
trol assertion pattern A. It is, however, not possible to obtain
the set .#4 of micro-operations directly from the control
signal assertion pattern A by examining its individual con-
trol signals in isolation, because a micro-operation may be
accomplished by a set of control signals rather than an indi-
vidual control signal. There is no information available in
an assertion pattern to group the control signals so that each
group defines a micro-operation around a data-path compo-
nent. The following definition is in order.

Definition 1 Superposition of Assertion patterns:

Let Ay and A> be two arbitrary control signal assertion
patterns. Let T;(A) denote the i-th projection of an assertion
pattern A which is the asserted value u; of the control signal
ci. The assertion pattern, A1 0 Ay, obtained by superposi-
tion 0 of A and A», satisfies the following conditions. For
all i,

(A1 0 Ay) = mi(Ar), for mi(A1) =7i(Az)
= mi(A1), for mi(Ar) # mi(A2)
and TT; (A]) =X
= undefined (U), for mi(A1) # mi(A2)
and TC[(A]) 75 X.

Using the above definition and the function f,, it is
possible to construct .#, from the assertion pattern A by
the following definition of #a: M= {ui | fuc (i) 6 A=
Sfme(ui) }. The superposition of the assertion pattern of each
micro-operation in .# and A will be checked one by one to
select each member of .#4.

Each RT operation that appears in the RTL behaviour
is accomplished by a set of concurrent micro-operations.
So, in order to find the concurrent RT-operations accom-
plished by a control assertion pattern, it is necessary to find
the operations realized by the set .# of concurrent micro-
operations.
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Figure 2. The steps of data-path and controller verification

Finding an RT-operation from a given set of micro-
operations is also not trivial because of two reasons. First,
there may be more than one RT-operation in that particular
state of the FSM. Secondly, there is a spatial sequence of
concurrent micro-operations needed to accomplish an RT-
operation but these are available in an unordered manner in
Mp.

The concurrent RT-operations accomplished by the set
My of micro-operations are identified using a rewriting
method. The method also reveals the spatial sequence of
data flow needed for an RT-operation in a reverse order
(from the destination register back to the source registers).
The basic rewriting method consists in rewriting terms one
after another in an expression. The micro-operations in
which a register occurs in the left hand side (lhs) are found
first. Such a micro-operation has the form r <= r_in, where
r is a register and r_in is its input terminal. Next, the
right hand side (rhs) expression “r_in” is rewritten by look-
ing for a replacement (micro-operation) in .#4 of the form
“r_in< s’ or “r_in < s <op > s3”. So, after rewriting
“r_in”, we have the rhs expression, either of the form “s” or
of the form “s; < op > s2”. In the next step, s (or s; and s
for the latter case) are rewritten provided they are not reg-
isters. When the expression in hand is of the form “s; <
op > s2” (and sy, sp are not registers), then rewriting takes
place from left to right in a breadth-first manner. Thus, at
any point of time, the expression in hand can be of the form
“((s1 <op1> $2) <op2> s3) <op3>4 ...”, where
the pointer indicates the signal to be rewritten next. The pro-
cess terminates successfully when all s;’s in the expression
in hand are registers. Assuming that there are n DP com-
ponents, the total number of edges can be n%. Since in con-

structing each RT-operation no edge is traversed more than
once, the complexity of constructing each RT-operation is
o(n?).

The control structure of the FSMD M, can be obtained
from the controller FSM and the RT-operations of each con-
trol state as constructed by the mechanism described above.

3 Construction of the FSMD M,: An Exam-
ple

Let us consider the data-path shown in the fig-
ure 3. In this figure, r1,72,r3 are registers, M1,M?2
are multiplexers, FU is a functional unit and
rl_out, r2_out, r3_out, fLin, fRin, fOut are inter-
connection wires. The control signal names start with CS.
The functionalities of the control signals are as follows:

fLin<rl_out :CS.M1{=0ACSMlp=0

fLin<=r2_out :CS.M1 =0ACSMly=1

fLin<r3_out :CS.M1; =1
fRin<r2_out :CS.M2=1
fRin < r3_out :CS.M2=0

fOut < fLin+ fLin : CS.FU =0

fOut <= fLin— fRin : CS_FU =1

rl < fOut :CS_rlLd =1

r3 < fOut : CS_r3Ld = 1.

The interpretation of the statement fLin < rl_out
CSM1; =0 A CS_M1y=0is as follows: “if CS_M1; =0
and CS_M1¢ = 0, then the micro-operation fLin < rl_out
occurs in the data-path”. Other statements are interpreted
likewise.

The set of all micro-operations .# possible in the data-
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Figure 3. Data-path with control signals

path of figure 3 is as follows:
M = {rl_out <= rl, r2_out < r2, r3_out < r3,
fLin < rl_out, fLin <= r2_out, fLin < r3_out,
fRin < r2_out, fRin < r3_out,
fOut < fLin+ fRin, fOut < fLin — fRin,
rl < fOut, r3 < fOut}.

Let the order of the control signals in a control signal
assertion pattern be

CSM1; <CSMly <CS.M2<CSFU <CS_rlLd <
CS_r3Ld. It may be noted that the micro-operations fLin <
rl_out and fLin < r2_out depend on more than one control
signal (on both CS_M1; and CS_M1y).

The function f,,. from the set of micro-operations .# to
the set of all possible control assertion patterns & is given
in table 1. This function can be obtained from the output of
any HLS tool containing the RTL behaviour of each com-
ponent used in the data-path.

|| Micro-operations || Corresponding control assertion pattern ||

rlout <rl X, X, X, X, X, X)
r2_out <= r2 X, X, X, X, X, X)
r3_out <=r3 X, X, X, X, X, X)
fLin < rl_out 0, 0, X, X, X, X)
fLin < r2_out o, 1, X, X, X, X)
fLin < r3_out {1, X, X, X, X, X)
[fRin < r2_out X, X, 1, X, X, X)
[fRin < r3_out X, X, 0, X, X, X)
fOut < fLin+ fRin X, X, X, 0, X, X)
FOut <= fLin— fRin X, X, X, 1, X, X}
rl < fOut X, X, X, X, 1, X)

3 < fOut (X, X, X, X, X, 1)

Table 1. The function f,. from the set .#
to the set &. The order of the control sig-
nals is CS. M1y < CS. M1y < CSM2 < CSFU <
CS_rlLd < CS_r3Ld

Let A= (1, 0, 1, 1, 1, 0) be the control assertion pat-

tern in a particular state of the controller FSM. The set of
micro-operations .#4 for this control assertion pattern A is
determined by superposition of the control assertion pattern
of each micro-operation and the pattern A is checked one
by one to decide whether to include that particular micro-
operation in .#, or not. In particular, #4 = { rl_out <
rl, r2_out < r2, r3_out < r3, fLin <= r3_out, fRin <
r2_out, fOut < fLin — fRin, r1 < fOut} for this exam-
ple.

The micro-operation in which a register occurs in the left
hand side is r1 <= fOut. The sequence of rewriting steps for
this micro-operation is as follows:
rl < fOut

< fLin— fRin [by the micro-opn. fOut <= fLin— fRin]

< r3_out — fRin [by the micro-opn. fLin < r3_out]

< r3_out — r2_out [by the micro-opn. fRin < r2_out]

< r3 — r2_out [by the micro-opn. r3_out < r3]

< r3 — r2 [by the micro-opn. r2_out < r2]

So, the RT-operation r1 < r3 —r2 is executed by the
given control assertion pattern A of a state of the FSM and
the forward spatial sequence of the micro-operations for this
RT-operation is the reverse order in which they are used
in the above rewriting steps; more specifically, therefore,
the forward sequence is r2_out <= r2, r3_out <= r3, fRin <
r2_out, fLin < r3_out, fOut <= fLin— fRin, r1 < fOut.

The RT-operations for all other states of the FSM can be
found out in a similar manner.

4 Verification During Construction of FSMD
M;

Several inconsistencies in the data-path interconnections
and in the control signal assertion patterns that can be de-
tected during construction of the FSMD M. are as follows.

e [nadequate set of micro-operations performed by a
control assertion pattern: It occurs when no micro-
operation is selected by the rewriting rule in a certain
step of the rewriting process before the terminating
condition (that is, all the terms in the rhs expression
are registers) is reached. This situation arises due to
either of following two reasons: (i) interconnection be-
tween two data-path components is not actually set by
the control pattern but is required to complete an RT-
operation and (ii) the control signals are asserted in a
wrong manner which leads to a situation where the re-
quired data transfer is not possible in the data-path.

e Data conflict: It occurs when more than one replace-
ment are found for a non-register term in any step of
the rewriting process. It means that more than one
data from different data-path components try to pass
through a single data-path component which obviously



causes a data conflict. It arises due to wrong control
assertion pattern.

e One non-register data-path component can be assigned
by only one value in a particular control step. If a non-
register term is rewritten twice during the rewriting
process, then it implies an improper control assertion
pattern resulting in setting up a loop in the data-path
without having any register.

5 Verification by Equivalence Checking

In the data-path and controller generation phase, the be-
haviour represented by the FSMD M| is mapped to hard-
ware. The number of states and the control structure of the
behaviour are not modified in this phase. Hence, there is
a one-to-one correspondence between the states of FSMDs
M and M>. Let the mapping between the states of M| and
those of M, be represented by a function fi12: Q1 < 0».
The state ¢o; (€ Q) of the FSMD M is said to be the cor-
responding state of ¢1; (€ Q1) if fi2(q11) = qai-

A set of RT-operations are formed for each state tran-
sition of the FSMD M, from the corresponding control
assertion pattern. Now, the question is whether all the
RT-operations corresponding to each state transition of the
FSMD M, is captured by the controller or not. In other
words, it is required to verify that all the RT-operations in
each state transition in FSMD M) are also present in the
corresponding state transition in FSMD M, and no extra
RT-operation occurs in the transition of the FSMD M;. A
transition go; — g2y of the FSMD M3, is said to be the corre-
sponding transition of a transition g 7 qu of the FSMD
M, if fia(q1k) = qox> f12(q11) = g21 and the condition c is
equivalent to the condition ¢’. In the following, a state based
equivalence checking algorithm is given as algorithm 1 to
establish the equivalence between the FSMDs M| and M.

The successful completion of the algorithm ensures that
any RT-operation occurs in any state transition of M iff it
also occurs in the corresponding transition in M. It as-
sures that the control signal generation in each state is cor-
rect. The number of iterations of the algorithm mainly de-
pends on the number of transitions in the FSMD M. If the
number of transitions in M is e and the maximum possible
RT-operations in any transition is &, then the complexity of
the algorithm is O(ek).

6 Experimental Results

Our proposed verification mechanism has been imple-
mented in ‘C’ and integrated with an existing high-level
synthesis tool, SAST [7]. The tool has been run on an Intel
Pentium 4, 1.70 GHz, 256MB RAM machine on the out-
puts generated by SAST for several HLS benchmarks as

Algorithm 1 State based equivalence checking algorithm
FSMD M, M; and the function fi,.
"yes/no’ answer for “M is equivalent to M>”.

Input:
Output:
1: for each state ¢g1; of M| do
2:  Letgo;be f12(q1i); /* qoi is the corresponding state
of g1; */

3:  for each state transition ¢ from ¢; do
4: Find a transition ¢’ from ¢,; which has an equiva-
lent condition to that of #;
5: for each RT-operation opn in ¢t do
if opn does not occur in ' then
7: Report “opn is not present in transition ¢’;
hence not equivalent”; exit;
8: end if
: end for
10: if there is some RT-operation which occurs in ¢’
but not in ¢ then
11: Report “extra RT-operation occurs in ¢’; hence
not equivalent” exit;
12: end if
13:  end for
14: end for

shown in figure 4. The number of micro-operations pos-
sible in the data-path, the number of control signals used to
control the micro-operations in the data-path, the number
of RT-operations constructed and the number of states in
each FSMD for each benchmark problem have been shown
as bars in this figure. It might be noted that the number of
control signals for each benchmark is less than the number
of micro-operations in the data-path. It means that SAST
optimizes the number of control signals required to control
the micro-operations in the data-path and micro-operations
in the data-path do not depend on individual control sig-
nals. Our proposed method can successfully find the RT-
operations for this case. Furthermore, the number of RT-
operations constructed from the control assertion patterns is
much higher than the number of states in the FSMDs. It in-
dicates that more than one RT-operation are executed in the
data-path for a control assertion pattern. Again, our method
successfully finds the RT-operations from a given control
assertion pattern. It is also observed during experimenta-
tion that the time required to construct the FSMDs and the
execution time of the equivalence checking algorithm is not
very high and less than a second for most of the cases.

7 Conclusions

Advances in VLSI technology have enabled its deploy-
ment into complex circuits. Synthesis flow of such circuits
comprises various phases where each phase performs the
task algorithmically providing for ingenious interventions
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Figure 4. Experimental results of SAST tool for several high-level synthesis benchmarks

of experts. The gap between the original behaviour and the
finally synthesized circuit is too wide to be analyzed by any
reasoning mechanism. The validation tasks, therefore, must
be planned to go hand in hand with each phase of synthe-
sis. The present work concerns itself with the validation of
the data-path and controller generation phase of high-level
synthesis.

The verification task is performed in two steps. In the
first step, an FSMD M, is constructed from the data-path
information and the controller FSM. In the second step, a
state based equivalence checking methodology is used to
verify the correctness of the controller behaviour. A rewrit-
ing method is discussed which is used during the construc-
tion of the FSMD M,; the method finds the RT-operations
performed by a given control assertion pattern in each state
of the controller FSM. Several inconsistencies both in the
data-path and the controller, are revealed during construc-
tion of the FSMD M,. The state based equivalence check-
ing method ensures that any RT-operation occurs in a state
transition of M, iff it also occurs in the corresponding tran-
sition in the FSMD M;. Experimental results on several
HLS benchmarks demonstrates the effectiveness of the pro-
posed method.
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