
FORMAL VERIFICATION OF BEHAVIOURAL TRANSFORMATIONS

DURING EMBEDDED SYSTEM DESIGN

Chandan Karfa

FORMAL VERIFICATION OF BEHAVIOURAL TRANSFORMATIONS

DURING EMBEDDED SYSTEM DESIGN

Thesis submitted in partial fulfillment
of the requirements for the award of the degree

of

Doctor of Philosophy

by

Chandan Karfa

Under the supervision of

Dr. Chittaranjan Mandal
and

Dr. Dipankar Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

September 2011

c© 2011 Chandan Karfa. All Rights Reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled“Formal Verification of Behavioural Trans-
formations during Embedded System Design"submitted byChandan Karfa
to the Indian Institute of Technology, Kharagpur, for the award of the degree
of Doctor of Philosophy has been accepted by the external examiners and that
the student has successfully defended the thesis in the viva-voce examination
held today.

(Member of the DSC) (Member of the DSC)

(Member of the DSC) (Member of the DSC)

(Supervisor) (Supervisor)

(External Examiner) (Chairman)

Date:

CERTIFICATE

This is to certify that the thesis entitled“Formal Verification of Behavioural
Transformations during Embedded System Design”, submitted byChan-
dan Karfa to Indian Institute of Technology, Kharagpur, is a record ofbona
fide research work under our supervision and we consider it worthy of consid-
eration for the award of the degree of Doctor of Philosophy ofthe Institute.

Chittaranjan Mandal
Professor
CSE, IIT Kharagpur

Dipankar Sarkar
Professor
CSE, IIT Kharagpur

Date:

DECLARATION

I certify that

(a) The work contained in the thesis is original and has been done by myself
under the general supervision of my supervisors.

(b) The work has not been submitted to any other Institute forany degree or
diploma.

(c) I have followed the guidelines provided by the Institutein writing the
thesis.

(d) I have conformed to the norms and guidelines given in the Ethical Code
of Conduct of the Institute.

(e) Whenever I have used materials (data, theoretical analysis, and text)
from other sources, I have given due credit to them by citing them in
the text of the thesis and giving their details in the references.

(f) Whenever I have quoted written materials from other sources, I have put
them under quotation marks and given due credit to the sources by citing
them and giving required details in the references.

Chandan Karfa

ACKNOWLEDGMENTS

I would like to express my profound sense of gratitude to my thesis super-
visors Prof. Chittaranjan Mandal and Prof. Dipankar Sarkar for guiding me
through the PhD program. I acknowledge their constant technical and moral
support and guidance throughout my PhD. I have learned a lot about the art
of conducting research and solving problems from my supervisors. I consider
myself extremely lucky for getting the opportunity to work under them.

I acknowledge the support from Microsoft Research India for partially
funding my research work and providing generous travel grants and stipend
through the Microsoft Research India PhD Fellowship Award.

I want to thank my labmates Arnab da, Aritra, Priyankar da, Srobona,
MSD, Kunal, Partha, Antara, Debjit, Sudip, Subho, Gautam, Debi da and oth-
ers for making the lab most enjoyable place in Kgp. I want to thank Debjit for
all his system and latex related supports. Special thanks toKunal and Partha
for helping me in some experiments of my work. My stay in Kgp was ex-
tremely pleasurable thanks to my friends Somnath, Soumyajit, Soumyadip,
Bodhi, Pradipta da, Gopal da, Vivek, Sumit, Sayan, Soubhik, Rajarshi and
many others. I spent a lot of good time in TATA sports complex with VSRC
football and cricket teams.

I acknowledge google.com for helping me in searching most ofthe docu-
ments during my research. Special thanks to cricinfo.com which is the source
of my another (re)search on cricket during my stay in Kgp.

Last but most important are my wife Aparna, my parents and theother
members of my family. Without their constant encouragements, supports, love
and well wishes, this thesis never be materialized.

Chandan Karfa

ABSTRACT

Application of behavioural transformations for obtainingoptimal performance,
energy and/or area on a given platform during embedded system design is now
a common practice. Verifying correctness of these transformations is an im-
portant step in ensuring dependability of embedded systems. This thesis ad-
dresses verification methodologies, primarily by way of equivalence checking,
for six behavioural transformations that are applied during embedded system
design. The transformations considered cover code motion,generation of reg-
ister transfer level (RTL) design after carrying high-level optimizations and
also RTL transformations, loop and arithmetic transformations on array based
programs, transformations on array based programs leadingto the generations
of Kahn process networks (KPN) to achieve high degree of parallelism and
also transformations applied at the KPN level.

Verification methods for the first three transformations on programs not
involving arrays employ the model of finite state machines with datapaths
(FSMD). FSMDs are generalizations of FSMs to capture data transforma-
tions taking place between control states. FSMD based equivalence checking
method consists in introducing cutpoints in one FSMD, visualizing its com-
putations as concatenation of paths from cutpoints to cutpoints and finally,
identifying equivalent finite path segments in the other FSMD; the process
is then repeated with the FSMDs interchanged. Verification methods for the
last three transformations involving arrays employ the array data dependence
graphs (ADDG). The ADDG model primarily captures computation of a range
of elements of an array from ranges of elements of other arrays. ADDG based
equivalence checking attempts to show that the overall computations depicted
in the ADDG to define the final ADDG nodes in terms of the initialADDG
nodes are equivalent, both in terms of computation and rangeof array ele-
ments, with respect to those in the ADDG being compared.

The FSMD based methods developed handle both uniform and non-uniform
code motion transformations. For non-uniform code motionsmodel checking
of some data-flow properties is also carried out. A rewritingmechanism cov-
ering both pipelining and multicycling is used to constructan FSMD from reg-
ister transfer operations for RTL related equivalence checking. In our ADDG
equivalence checking method we have introduced the notion of slices to guide
the checking along the sequences in which operations are used to define array
elements in the original behaviour. Normalized representation of arithmetic
and conditional expressions play a central role in handlingarithmetic transfor-
mations for both FSMD and ADDG based equivalence checking. Our ADDG
based checking has been extended to check the equivalence ofKPN networks
derived by parallelizing sequential array based programs.Potential deadlocks
in the KPN are also detected through the ADDG based modelling.

Correctness and complexity of the all the developed methods have been
treated formally. The methods have been implemented and tested on several
benchmarks. This work represents useful application of equivalence checking

xiv

as a verification method for verification to several aspects of the embedded
system design flow.

Keywords: Embedded System, Formal Verification, Equivalence Check-
ing, Behavioural Transformation, Code Motion, Loop Transformation, Regis-
ter Transfer Level (RTL), Kahn Process Network, Finite State Machine with
Datapath (FSMD), Array Data Dependence Graph (ADDG).

Contents

Abstract xiii

Table of Contents xv

List of Symbols xix

List of Figures xxi

List of Tables xxv

1 Introduction 1
1.1 Embedded system design flow. 1
1.2 Behavioural transformations. 4

1.2.1 Code motion transformations. 4
1.2.2 Loop transformations. 5
1.2.3 Arithmetic transformations. 6
1.2.4 High-level to RTL transformations. 6
1.2.5 Sequential to parallel transformations. 7

1.3 Motivations and objectives. 8
1.3.1 Problem statements. 10

1.4 Contributions . 13
1.5 Organization of the thesis. 15

2 Literature Survey 17
2.1 Code motion transformations. 17

2.1.1 Applications of code motion transformations. 17
2.1.2 Verification of code motion transformations. 20

2.2 High-level to RTL and RTL transformations. 22
2.2.1 Applications of High-level to RTL and RTL transformations . 22
2.2.2 Verification of High-level to RTL and RTL transformations . . 23

xv

xvi CONTENTS

2.3 Loop transformations and arithmetic transformations. 25
2.3.1 Applications of loop transformations. 25
2.3.2 Applications of arithmetic transformations. 27
2.3.3 Verification of loop and arithmetic transformations. 29

2.4 Parallelizing transformations. 31
2.4.1 Applications of parallelizing transformations. 31
2.4.2 Verification of parallelizing transformations. 34

2.5 Conclusion . 35

3 Verification of Code Motion Transformations 37
3.1 Introduction. 37
3.2 Basic equivalence checking method. 38

3.2.1 FSMDs and its paths. 38
3.2.2 Normalization of arithmetic expressions. 42

3.3 Equivalence problem formulation. 44
3.3.1 Path cover and equivalence of FSMDs. 45
3.3.2 A method to handle uniform code motions. 46

3.4 Verification of non-uniform code motions. 48
3.4.1 An example of non-uniform code motion. 48
3.4.2 A scheme for verifying non-uniform code motions. 49
3.4.3 Strong and weak equivalence of paths. 53
3.4.4 Formulation of the path extension procedure. 56
3.4.5 Encoding and model checking the data-flow properties. . . . 57
3.4.6 The equivalence checking method. 58
3.4.7 Illustration of working of the equivalence checking method. . 64
3.4.8 Justification of the initial cutpoints. 66

3.5 Multicycle and pipelined execution of operations. 68
3.6 Correctness and complexity. 70

3.6.1 Correctness. 70
3.6.2 Complexity. 74

3.7 Experimental results. 75
3.7.1 Limitations of the method. 81

3.8 Conclusion . 82

4 Verification of RTL Generation Phase 83
4.1 Introduction. 83
4.2 Verification challenges. 86
4.3 Construction of FSMDs from RTL designs. 87

4.3.1 Representation of the datapath description. 87
4.3.2 A Method of obtaining the micro-operations for a control as-

sertion pattern . 89
4.3.3 Identification of RT operations realized by a set of micro-

operations . 91
4.3.4 Multicycle, pipelined and chained operations. 93

4.4 The Overall construction framework of FSMD. 95
4.4.1 Handling of multicycle operations. 96

CONTENTS xvii

4.4.2 Handling of pipelined operations. 99
4.4.3 Handling chained operations. 101
4.4.4 Verification during construction of FSMD. 102

4.5 Correctness and complexity of the algorithm. 103
4.5.1 Correctness and complexity of the modulefindRewriteSeq. . 103
4.5.2 Correctness and complexity of the moduleRTLV-1 111
4.5.3 Correctness and complexity of the modulesMulticycle and

Pipelined . 112
4.5.4 Correctness and complexity of the moduleRTLV-0 113

4.6 Verification by equivalence checking. 116
4.7 Verification of low power RTL transformations. 117

4.7.1 Alternative datapath architecture. 118
4.7.2 Restructuring of multiplexer networks to enhance datacorre-

lation . 121
4.7.3 Restructuring of multiplexer networks to eliminate glitchy con-

trol signals . 122
4.7.4 Clocking of control signals. 123
4.7.5 Glitch reduction using delays. 124

4.8 Experimental results. 126
4.9 Conclusion . 132

5 Verification of Loop Transformations 133
5.1 Introduction. 133
5.2 Array data dependence graphs. 135

5.2.1 Representation of data dependencies of the behaviour. 139
5.2.2 Transitive dependence. 142
5.2.3 Recurrence in ADDG. 146
5.2.4 Construction of the ADDG from a sequential behaviour. . . 148

5.3 Slices . 148
5.4 Equivalence of ADDGs . 154

5.4.1 Normalization of the characteristic formula of a slice 156
5.4.2 Some simplification rules for data transformations. 158
5.4.3 Equivalence problem formulation. 161

5.5 A case study. 165
5.6 Correctness and complexity. 167

5.6.1 Complexity. 168
5.7 Error diagnosis . 171
5.8 Experimental results. 172
5.9 Conclusion . 174

6 Verification of Parallelizing Transformations 175
6.1 Introduction. 175
6.2 Verification framework. 176

6.2.1 Kahn process networks. 176
6.2.2 Verification approach. 176

6.3 Modelling a KPN as an ADDG. 179

xviii CONTENTS

6.3.1 Modelling KPN processes as ADDGs. 179
6.3.2 Computation of the dependence mappings involving FIFOs . . 182
6.3.3 Composition of ADDGs of KPN processes. 191
6.3.4 Correctness of the composition operation. 195

6.4 Deadlock detection in a KPN. 199
6.4.1 Deadlock due to insufficient communication. 200
6.4.2 Deadlock due to circular dependence in a KPN. 201

6.5 Verification of KPN level transformations. 205
6.5.1 Channel merging. 205
6.5.2 Channel splitting. 213
6.5.3 Process splitting. 217
6.5.4 Process merging. 223
6.5.5 Message vectorization. 226
6.5.6 Computation migration. 230

6.6 Experimental results. 233
6.7 Conclusion . 234

7 Conclusion and Future Scopes 237
7.1 Summary of contributions. 238
7.2 Scope for future work. 242

7.2.1 Enhancement of the present work. 242
7.2.2 Scope of application to other research areas. 242

7.3 Conclusion . 244

Bibliography 249

List of Symbols

M0, M1 FSMDs39
S Set of status expressions 39
V0,V1 Set of storage variables of FSMDsM0 andM1 .38
B A set of Boolean variables 39
Q0,Q1 Set of states of FSMDM0 andM1 .39
q0,i A state of FSMDM0 .44
q1,i A state of FSMDM1 .44
f State transition function of FSMD 39
u Update function of FSMD39
α,β Paths in FSMD40
Rα Condition of execution of the pathα .40
rα Data transformation of the pathα .41
sα Storage variable transformations of the pathα .41
sα|V ′ Storage variable transformations restricted over the variable setV ′ 54
Oα Output list of the pathα .41
endPtNd(β) End state of the pathβ .56
τα Characteristic formula of the pathα .42
S Normalized sum 43
T Term in normalized sum 43
P Primary in terms of a normalized sum 43
R Set of relational operators39
c,c1,c2 Computations in FSMDs 45
c1≃ c2 Equivalence of computationsc1 andc2 .45
M0⊑M1 An FSMDM0 is contained in an FSMDM1 .45
P0,P1 Path cover of the FSMDsM0 andM1 .46
α≃s β Strong equivalence of pathsα andβ .54
α≃w β Weak equivalence of pathsα andβ .54
〈q0,i, q1, j〉 q0,i andq1, j are corresponding state pair .. . 61
ζ The set of corresponding state pairs 61
N The set of natural numbers 68
M The set of all possible micro-operations in the datapath87
A The set of all possible control assertion patterns 88
µ A micro-operation88

xix

xx CONTENTS

ρ A control assertion pattern 88
fmc A relation⊆M ×A such that(µ,ρ) ∈ fmc whenρ is needed forµ 88
MA The set of activated by the control assertion patternA89
A1 θ A2 Superposition of assertion patternsA1 andA2 .89
πi(A) The i-th projection of an assertion patternA .89
σ A sequence of micro-operations 104
G,GS,GT ADDGs 135
A The set of array nodes in ADDG 135
F The set of operator nodes in ADDG 135
IS Iteration domain of the statementS .139
~v An iteration vector 140

SM(d)
d Definition mapping140

SDd Definition domain140

SM(u)
un Operand mapping 141

SUun Operand domain 141
SMd,un Dependence mapping141
⋄ Right composition operator 143
g,g1,g2 Slices in ADDG 149
rg Data transformation of a sliceg .151
τg Characteristic formula of a sliceg .151
LI Left-hand-side (defined) array index expressions 157
RI Right-hand-side (used) array index expressions157
DQ Quantified formula depicting the domain of the variables inLI andRI 157
g1≈ g2 g1 andg2 are matching IO-slices 161
CGS IO-slice class of the ADDGGS .164
C1≃C2 The IO-slice classesC1 andC2 are equivalent .162
/0 The empty set210

List of Figures

1.1 Embedded system design flow. 2
1.2 HW-SW partitioning . 3
1.3 Various code motion techniques. 4

2.1 A program with non-uniform recurrence on array A. 30
2.2 A program with data dependent control and array access. 30
2.3 Commutative and distributive transformations: (a) original program;

(b) transformed program. 30

3.1 Example of reverse speculation: (a) and (c): Two FSMDs are shown
combined representing two behaviours before scheduling; (b) and (d):
Two FSMDs are shown combined representing the behaviours after
scheduling of the FSMD in (a) and in (c), respectively. 40

3.2 An example of duplicating down. 47
3.3 An instance of non-uniform code motion. 50
3.4 An example of speculative code motion. 51
3.5 Kripke structure obtained from FSMDM0 of figure 3.1(a). 57
3.6 An example of cutpoint selection. 67
3.7 (a) A 2-cycle multiplier; (b) A 3-stage pipelined multiplier; (c) A sam-

ple path in an FSMD with multicycle operation; (d) A sample path in
an FSMD with pipelined operation. 69

3.8 Illustration of deletion operation. 71

4.1 Hand-in-hand synthesis and verification framework. 84
4.2 The steps of datapath and controller verification. 85
4.3 Scheduling of a relational operation. 86
4.4 Datapath with control signals. 88
4.5 (a). schedule with a 2-cycle multiplier; (b) schedule with a 3-stage

pipelined multiplier; (c) schedule with a chained adder andsubtracter;
(d) Input and output timing of ak-cycle multiplier; (e) Input and out-
put timing of ak-stage pipelined multiplier; (f) Input and output tim-
ing for a chained adder and subtracter. 94

4.6 Schematic of our FSMD construction framework from the datapath
description and the controller FSM. 95

xxi

xxii LIST OF FIGURES

4.7 Working with multicyle and pipelined operations. 100
4.8 Parse tree of an RT-operation realized over a given datapath: An Ex-

ample . 106
4.9 Verification framework. 117
4.10 Alternative datapath architecture. 119
4.11 Multiplexer network restructuring to enhance data correlation: An ex-

ample . 121
4.12 Multiplexer network restructuring to eliminate glitchy control signals:

An example . 123
4.13 Clocking control signal to kill glitch. 124
4.14 Insertion of delay element in signal line. 125
4.15 Insertion of delay element in data inputs. 126

5.1 The ADDG of the sequential behaviour given in example 10. 137
5.2 A generalizedx-nested loop structure. 138
5.3 Computation of dependence mapping. 141
5.4 Transitive dependence. 143
5.5 (a) A program with recurrence; (b) the ADDG of the program. . . . 146
5.6 Slices of the ADDG in figure 5.1. 149
5.7 (a) A program, (b) its ADDG and (c)-(d) two slices of the ADDG . . . 149
5.8 An example of computation of data transformation over a slice 150
5.9 (a) source program; (b) transformed program. 155
5.10 (a) ADDG of the source program; (b) ADDG of the transformed program156
5.11 An example for matching slices and slice class. 162
5.12 (a) original behaviour; (b) transformed behaviour. 165
5.13 (a) ADDG of the original program; (b) ADDG of the transformed

program . 166

6.1 Verification of parallelizing transformations by equivalence checking. 177
6.2 The KPN representation of the concurrent behaviour. 179
6.3 Behaviours of the processes of the KPN given in figure 6.2. 180
6.4 Modified behaviours of the processes given in figure 6.3. 181
6.5 The ADDGs of processes of the KPN behaviour in figure 6.2. 182
6.6 A generalized nested loop behaviour. 183
6.7 An example of nonlinear relation betweenf 1In and loop indices (i, j) 185
6.8 An process of a KPN. 186
6.9 An example for under constrained linear system of equations 187
6.10 A FIFO is written by more than one statement. 190
6.11 Composition of ADDGs . 193
6.12 (a) The ADDG of the sequential behaviour given in example 21;

(b) The ADDG of the corresponding KPN behaviour. . . . 194
6.13 An example of producer-consumer deadlock. 197
6.14 A KPN with circular dependence. 201
6.15 ADDGs of the processes in figure 6.14: (a) ADDG of processP1; (b)

ADDG of process P2; (c) Composed ADDG of P1 and P2. 202
6.16 Another KPN of the with circular dependence: (a) Processes of the

KPN; (b) ADDG of the KPN . 203

LIST OF FIGURES xxiii

6.17 Channel Merging: (a) structure of the original KPN and (b) structure
of transformed KPN. 206

6.18 Channel Merging: (a) behaviours of the processes in initial KPN with
two processes and two FIFOs; (b) behaviours of the processesafter
merging two channels; (c) Erroneous behaviour of processP2 207

6.19 Channel Merging: (a) Composed ADDG of the initial KPN; (b)Com-
posed ADDG of the transformed KPN; (c) Composed ADDG of the
transformed KPN whenP2 is as in figure 6.18(c). 208

6.20 Channel Splitting: (a) initial KPN; (b) the transformedKPN 213
6.21 Channel Splitting: (a) A KPN with two processes and one channels;

(b) The KPN after splitting the channel into two. 214
6.22 Channel Splitting: (a) Composed ADDG of the input KPN; (b)Com-

posed ADDG of the transformed KPN. 215
6.23 Process Splitting: (a) initial KPN; (b) transformed KPN after process

splitting . 218
6.24 Process Splitting: (a) A KPN with two processes and one channel; (b)

The KPN after splitting the processP2 into two processesP2a andP2b 219
6.25 Process Splitting: (a) ADDG of the input KPN and (b) ADDGof the

transformed KPN. 220
6.26 The KPN after splitting processP1 of KPN in figure 6.21; (b) into two

processP1a andP1b . 222
6.27 Process Merging: (a) the initial KPN; (b) the transformed KPN 223
6.28 Process Merging: A KPN with four processes and four channels; (b)

The KPN comprisingP1, P2a andP4 obtained after merging two pro-
cessesP2 andP3 (into P2a) . 224

6.29 Process Merging: (a) ADDG of the input KPN; (b) ADDG of the
transformed KPN; (c) ADDG of the KPN in figure 6.30. 225

6.30 KPN after merging channels FIFO1 and FIFO2 into FIFO2 and chan-
nels FIFO3 and FIFO4 into FIFO3. 226

6.31 Message Vectorization: (a) initial KPN with two processes and one
channel; (b) The KPN when message is sent as a vector of 10 elements 227

6.32 Message de-vectorization: Modified behaviour of the KPN in figure
6.31(b). 227

6.33 Message de-vectorization: (a) ADDG of the input KPN; (b) ADDG
of the transformed KPN. 228

6.34 Computation Migration: (a) the structure of the initialKPN; (b) the
structure of the KPN after computation migrations. 231

6.35 Computation Migration: (a) A KPN with three processes and four
channels; (b) The KPN after migration of computationf3 from pro-
cess P2 to P1. 232

6.36 Computation Migration: (a) ADDG of the initial KPN; (b) ADDG of
the transformed KPN. 233

List of Tables

3.1 Characteristics of the HLS benchmarks and synthesis results of SPARK
. 76

3.2 Results for several high-level synthesis benchmarks. 77
3.3 Results for verification of uniform code motions. 78
3.4 Comparison time with competitive methods for uniform code motions 78
3.5 Results for several high-level synthesis benchmarks on erroneous design80

4.1 Construction of the setMA from fmc for the control assertion pattern
A = 〈1,0,1,0,1,0,1,1,0〉 . 90

4.2 The micro-operations of datapath in figure 4.10(b) and computation
of MA for CAP 〈0,1〉 . 120

4.3 The micro-operations of datapath in figure 4.10(b) and computation
of MA for CAP 〈0,1〉 . 120

4.4 Characteristics of the HLS benchmarks used in our experiment 127
4.5 Results for several high-level synthesis benchmarks. 128
4.6 Results for multicycle and pipelined datapath for two high-level syn-

thesis benchmarks. 129

5.1 Results for several benchmarks. 172

6.1 Results for sequential to KPN transformation. 234
6.2 Results for KPN level transformations. 234

xxv

Chapter 1

Introduction

Embedded systems (ES) are information processing systems that are embedded into

different products. These systems are dedicated towards certain applications with real-

time constraints, reactive in nature, and must be dependable and efficient (Marwedel,

2006). Embedded systems pervade all aspects of modern life, spanning from con-

sumer electronics, household appliances, automotive electronics, aircraft electronics

and telecommunication systems. These systems are also suited for use in transporta-

tion, safety and security, robotics, medical applicationsand life critical systems. In the

subsequent sections, we describe the ES design flow and highlight various behavioural

transportation that are often applied in course of the design. Since dependability is an

important aspect of ES, we have taken up the issue of verifying the correctness of

such transformations by way of equivalence checking. Specific problems handled in

the thesis have been listed. This is followed by a statement of contributions and the

thesis organization.

1.1 Embedded system design flow

Present day electronic products demand high performance and extensive features. As

a consequence, embedded systems are becoming more complex and difficult to de-

sign. To combat complexity and explore the design space effectively, it is necessary to

represent systems at multiple levels of abstraction (Chen et al., 2006b). Initial func-

tions and architectures are preferably specified at a high level of abstraction. Functions

1

2 Chapter 1 Introduction

constraints

Mapping

Behavioural
specification

Architectural
spefication

Design

Refinements

Implementation

Figure 1.1: Embedded system design flow

are then mapped onto the architecture through an iterative refinement process (Chen

et al., 2003; Keutzer et al., 2000). The embedded system design flow based on this

principle is shown in figure1.1. During the refinement process, the initial design is

repeatedly partitioned into hardware (HW) and software (SW) parts – the software

part executes on (multi)processor systems and the hardwarepart runs as circuits on

some IC fabric like an ASIC or FPGA. Application-specific hardware is usually much

faster than software, but its design, validation and fabrication are significantly more

expensive. Software, on the other hand, is cheaper to createand to maintain, but it

is slow. Therefore, the performance-critical components of the system should be re-

alized in hardware, and non-critical components should be realized in software. The

HW-SW partitioning approach is shown in figure1.2.

The SW part of the behaviour is translated into assembly/machine language code

by compilers. The translation process of input behaviour into target assembly lan-

guage code can be divided into two stages: the front end for analysis and the back end

for synthesis (Raghavan, 2010). The front end of the compiler transforms the input

behaviour into an intermediate representation (IR) and thenthe back end transforms

the IRs into a target assembly language code. The front end consists of several sub-

tasks such as lexical analysis, syntax analysis, semantic analysis, intermediate code

generation and optimizations (Aho et al., 1987; Raghavan, 2010). The back end of

the compiler consists of target code generation and optimization tasks. A set of be-

havioural transformations are applied in the optimizationphase by modern compilers

during this translation processes (Muchnick, 1997). Figure1.2 highlights the list of

1.1 Embedded system design flow 3

?

Yes
System

No Meets
Requirements

arithmetic transformation

sequential to parallel transformation

parallel code transformation

code motion

Initial Behaviour

HW-SW partation

HW partSW part

SW compilation HW synthesis

Simulation

loop transformation

Behavioral Transformations

Behavioral Transformations

RTL transformation
high-level to RTL transformation
loop transformation
arithmetic transformation
code motion

Figure 1.2: HW-SW partitioning

behavioural transformations that are applied during SW-compilation processes.

The HW part of the behaviour is first translated into a register transfer level (RTL)

code by high level synthesis (HLS) tools (Gajski et al., 1992; Gupta et al., 2003c).

The generated RTL then goes through the logic synthesis and the physical design

process before being fabricated into a chip. The HLS processconsists of several in-

terdependent subtasks such as compilation or pre-processing, scheduling, allocation

and binding, and datapath and controller generation. The HLS process applies sev-

eral behavioural transformations during pre-processing and scheduling phases. The

list of behavioural transformations that are commonly usedduring these phases are

listed in figure1.2. In the next section, we discuss the commonly used behavioural

transformations during embedded system synthesis.

4 Chapter 1 Introduction

.

.

.

4 4
2

1

1

3

5

2

control flow

1 - duplicating down, 2 - duplicating up

3

BB0

BB1

BB3

BB2

code motions

3 - boosting up, 4 - boosting down, 5 - useful move

CB0

Figure 1.3: Various code motion techniques

1.2 Behavioural transformations

As discussed above, application of behavioural transformation techniques is a com-

mon practice during embedded system design. In course of devising the final imple-

mentation from the initial specification, a set of transformations may be carried out on

the input behaviour targeting the optimal performance, energy and/or area on a given

platform. In this section, we introduce several behavioural transformations that are

commonly applied during embedded system design.

1.2.1 Code motion transformations

Code motion is a technique to improve the efficiency of a program by avoiding unnec-

essary re-computations (Knoop et al., 1992). The primary objective of code motion

is the reduction of the number of computations at run-time. Secondary objective is

the minimization of the lifetimes of temporary variables toavoid unnecessary register

pressure. This can be achieved by moving operations beyond basic block boundaries.

The code motion based transformation techniques can be classified into the following

categories (Rim et al., 1995) using Fig1.3: (i) Duplicating down refers to moving op-

erations from a basic-block (BB) preceding a conditional block (CB) to both the BBs

following the CB.Reverse speculation(Gupta et al., 2004b) andlazy execution(Rim

1.2 Behavioural transformations 5

et al., 1995) belong to this category. (ii) Duplicating up involves moving operations

from a BB in which conditional branches merge to its precedingBBs in the conditional

branches.Conditional speculation(Gupta et al., 2004b) andbranch balancing(Gupta

et al., 2003a) fall under this category. (iii) Boosting up moves operations from a BB

within a conditional branch to the BB preceding the CB from which the conditional

branch sprouts. Code motion techniques such asspeculation(Gupta et al., 2004b) fall

under this category. (iv) Boosting down moves operations from BBs within the condi-

tional branches to a BB following the merging of the conditional branches (Rim et al.,

1995). (v) Useful move refers to moving an operation to a control and data equivalent

block. A code motion is said to benon-uniformwhen an operation moves from a BB

preceding a CB to only one of the conditional branches, or vice-versa. Conversely,

a code motion is said to beuniform when an operation moves to and fro both the

conditional branches from a BB before or after the CB. Therefore, duplicating up and

boosting down are inherently uniform code motions whereasduplicating down and

boosting up can be uniform as well as non-uniform.

1.2.2 Loop transformations

As the name suggests, loop transformation techniques are used to increase instruction

level parallelism, improve data locality and reduce overheads associated with execut-

ing loops of array-intensive applications (Bacon et al., 1994). Most execution time of

a scientific program is spent on loops. Thus, a lot of compileranalysis and compiler

optimization techniques have been developed to make the execution of loops faster.

Loop fission/distribution/splittingattempts to break a loop into multiple loops over the

same index range but each taking only a part of the loop body. The inverse transfor-

mation of loop fission isfusion/jamming. Loop unrollingreplicates the body of a loop

by some number of times (unrolling factor). Unrolling improves performance by re-

ducing the number of times the loop condition is tested and byincreasing instruction

parallelism.Loop skewingtakes a nested loop iterating over a multi-dimensional array,

where each iteration of the inner loop depends on previous iterations, and rearranges

its array accesses so that the only dependencies are betweeniterations of the outer

loop. Loop interchange/permutationexchanges inner loops with outer loops. Such a

transformation can improve locality of reference, depending on the array layout.Loop

tiling/blockingreorganizes a loop to iterate over blocks of data sized to fit in the cache.

6 Chapter 1 Introduction

Loop unswitchingmoves a conditional from inside a loop to outside by duplicating the

loop body. Some other important loop transformations are loop reversal, spreading,

peeling, etc. (Bacon et al., 1994).

1.2.3 Arithmetic transformations

A compiler usually applies a set of techniques that transform the arithmetic expres-

sions of the behaviours. Some of them are discussed here.Common subexpression

elimination: In many cases, a set of computations will contain identical subexpres-

sions. The compiler can compute the value of the subexpression once, store it, and

reuse the stored result.Constant propagation: Typically programs contain many con-

stants. By propagating them through the program, the compiler can do a significant

amount of precomputation (Bacon et al., 1994). More importantly, the propagation

reveals many opportunities for other optimization.Constant foldingis a companion

to constant propagation. When an expression contains an operation with constant

values as operands, the compiler can replace the expressionwith the result. Copy

propagation: Optimization such as common subexpression elimination may cause

the same value to be copied several times. The compiler can propagate the original

value through a variable and eliminate redundant copies.Algebraic transformations:

The compiler can simplify arithmetic expressions by applying algebraic rules such

as associativity, commutativity and distributivity. Operator strength reduction:The

compiler can replace an expensive operator with an equivalent, less expensive oper-

ator. Redundancy-eliminating transformations: Compiler may remove unreachable

and useless computations. A computation is unreachable if it is never executed. Re-

moving it from the program will have no semantic effect on theinstructions executed.

A computation is useless if none of the outputs of the programare dependent on it.

1.2.4 High-level to RTL transformations

High-level synthesis (HLS) tools (Gajski et al., 1992) convert a high-level behavioural

specification into an RTL level description. The HLS processconsists of several in-

terdependent subtasks such as compilation or pre-processing, scheduling, allocation

and binding, and datapath and controller generation. In thefirst step of HLS, the be-

1.2 Behavioural transformations 7

havioural description is compiled into an internal representation. This process usually

includes a series of compiler like optimizations. Scheduling assigns operations of the

behavioural description into control steps. Allocation chooses functional units and

storage elements from the component library based on the design constraints. Binding

assigns operations to functional units, variables to storage elements and data trans-

fers to wires or buses such that data can be correctly moved around according to the

scheduling. The final step of high-level synthesis is data-path and controller genera-

tion. Depending upon the scheduling and the binding information of the operations

and the variables, proper interconnection between the data-path components is set up.

Finally, a finite state machine (FSM) is generated to controlall the micro-operations

over the datapath. The RTL designs consist of a description of the datapath netlist and

a controller FSM.

Power optimization can be performed on different levels of the design hierarchy.

Lately, system level and high-level power optimization have received great attention

(Ahuja et al., 2010; Jiong et al., 2004; Lakshminarayana et al., 1999; Musoll and

Cortadella, 1995; Xing and Jong, 2007). Employing low power transformations at

RTL designs, such as, restructuring multiplexer networks (to enhance data correlations

and eliminate glitchy control signals), clocking control signals, and inserting selective

rising/falling delays, clock gating, etc., has emerged as an important technique to

minimize total power consumption of the circuits (Chandrakasan et al., 1995a, 1992;

Raghunathan et al., 1999). In control-flow intensive designs, the multiplexer networks

and registers dominate the total circuit power consumption. Also, the control logic

can generate a significant amount of glitches at its outputs,which in turn propagate

through the data path accounting for a large portion of the glitch power in the entire

circuit. For data-flow intensive designs, the chaining of arithmetic functional units

results in majority of dynamic power consumption.

1.2.5 Sequential to parallel transformations

Applications like multimedia, imaging, bioinformatics, and signal processing must

achieve a high computational power with minimal energy consumption. Given these

conflicting constraints, multiprocessor implementationsnot only deliver the necessary

computational power, but also provide the required power efficiency. However, the

performance gain achieved is dependent on how well the compiler can parallelize the

8 Chapter 1 Introduction

given program and generate code for ‘matching’ the hardwareparallelism. There are

three types of parallelism of the sequential programs: (i) Loop-level parallelism: The

iterations of a loop are distributed over multiple processors. (ii) Data-parallelism:

data parallelism is achieved when each processor performs the same task on different

pieces of distributed data. (iii) Task-level parallelism:Task parallelism focuses on

distributing sub-tasks of a program across different parallel processors. The sub-tasks

can be the subroutine calls, independent loops, or even independent basic blocks. This

is the most used parallelization technique.

The parallel behaviour obtained from a sequential behaviour may undergo a par-

allel level code transformations. Parallel transformations manipulate the concurrency

level of the parallel programs. The concurrency level of a program may not match

the parallelism of the hardware, or vice-versa. In this case, the performance (in terms

of total execution time, energy consumption, etc.) of that parallel program can be

modified to suit the hardware by changing the concurrency level of the program. The

transformations likechannel merging and splitting, process merging and splitting and

computation migration, etc., are commonly used for this purpose.

1.3 Motivations and objectives

Verifying correctness of behavioural transformations, asdescribed above, is an impor-

tant step in ensuring dependability of embedded systems. Various analysis tools can

prove the absence of certain kinds of errors at the source behaviour; however, if the

compiler is not guaranteed to be correct, then no source-level guarantees can be safely

transferred to the generated code. One of the most error prone parts of a compiler is

its optimization phase. Many optimizations require an intricate sequence of complex

transformations. Often these transformations interact inunexpected ways, leading to a

combinatorial explosion in the number of cases that must be considered to ensure that

the optimization phase is correct (Kundu et al., 2009). Vendors of mature ES design

tools often talk of method which are “correct by construction". However, it should be

noted that tools are always in a state of change as newer features have to be introduced

to maintain competitiveness of the tools. Therefore, even with “mature" tools, there is

a possibility of encountering a bug resulting in design flaws.

1.3 Motivations and objectives 9

A degree of assurance is achieved by way of on extensive simulation and testing.

The goal of simulation is to identify errors as early as possible in the design phase.

In particular, for embedded systems, both the hardware and the software parts of the

system must be simulated at the same time. Both simulation andtesting suffer from

being incomplete: each simulation run or each test evaluates the system performance

for only a single set of operating conditions and input signals. For complex embedded

systems, it is impossible to cover even a small fraction of the total operating space

with simulations. Finally, testing is prohibitively expensive. Today building a test

harness to simulate a component’s environment is more expensive than building the

component itself.

Formal verification can be used to provide guarantees of compiler correctness. It

is an attractive alternative to traditional methods of testing and simulation, which for

embedded systems, tend to be expensive, time consuming, andhopelessly inadequate,

as argued above. There are two fundamental approaches of formal verification of

compilers. The first approach proves that the steps of the compiler arecorrect by con-

struction. In this setting, to prove that an optimization is correct, one must prove that

for any input program the optimization produces a semantically equivalent program.

The primary advantage of correct by construction techniques is that optimizations are

known to be correct when the compiler is built, before they are run even once. Most

of the techniques that provide correct by construction guarantees require user inter-

action (Kundu et al., 2009). Moreover, correct by construction proofs are harder to

achieve because they must show thatany application of the optimization is correct.

Despite the fact that a significant amount of work has been carried out for verifying

that synthesis steps are correct by construction, the stateof the art techniques are still

far from being able to prove automatically that the steps of the compilation process

always produce correct designs (Kundu et al., 2010). However, even if one cannot

prove a compiler to be correct by construction, one can at least show that, for each

translation that a compiler performs, the output produced has the same behavior as the

original behaviour. The second category of formal verification approach, calledtrans-

lation validation, consists of proving correctness each time an optimizationstep is

invoked. Here, each time the compiler runs an optimization,an automated tool tries to

prove that the original program and the corresponding optimized program are equiv-

alent. Although this approach does not guarantee the correctness of the compilation

process, it at least guarantees that any errors in translation will be caught when the

10 Chapter 1 Introduction

particular steps of ES design tool are performed, preventing such errors from propa-

gating any further in synthesis process. In this dissertation, we work on developing

translation validation methodologies for several behavioural transformations applied

during embedded systems.

1.3.1 Problem statements

The objective of this work is to show the correctness of several behavioural trans-

formations that occur during embedded system design primarily using equivalence

checking methods. Specifically, the following verificationproblems will be addressed:

Code motion transformations:Several code motion techniques such as specula-

tion, reverse speculation, branch balancing, conditionalspeculation, etc., may be ap-

plied on the input behaviour which is in the form of a sequential code at the prepro-

cessing stage of embedded system synthesis. The input behaviours are transformed

significantly due to these transformations. One may also apply a combination of

these transformation techniques. Moreover, arithmetic transformations may also be

applied along with code motion transformations. It is, therefore, a non-trivial task to

show the equivalence between the input behaviour and the transformed behaviour. The

equivalence checking methods reported in the literature conventionally use path based

approach whereupon for each path in a behaviour an equivalent path is identified in

the transformed behaviour. Code motions can be of two types namely, uniform and

non-uniform code motions. The former moves a code segment over both branches fol-

lowing a branching block; in contrast, the latter category of code motions move code

segments over only one branch of the BB. The methods reported inthe literature can

verify only uniform code motions. A common verification mechanism for both kinds

of code motion transformations is worth exploring.

High-level to RTL transformations:During high-level synthesis, the input high-

level behaviour is transformed to an output RTL consisting of a datapath, which is

merely a structural description, and a controller, represented as a finite state machine

(FSM). The controller invokes a control assertion pattern (CAP) in each control step

to execute all the required data-transfers and proper operations in the FUs. The results

of the relational operations (i.e. the status signals) are the inputs to the controller. The

state transitions in the controller FSM depend on these status signals. The input be-

1.3 Motivations and objectives 11

haviour is in a higher abstraction level compared to that of the output RTL behaviour.

The verification method, therefore, should first analyze theCAP vis-a-vis the datapath

structure to identify the RT-operations from the output RTLbehaviour to compare it

with the input high-level behaviour. The data transformations of the high-level be-

haviour, however, may be implemented in pipelined or multicycle functional units

which may execute over more than one FSM control state. Therefore, a state-wise

analysis of CAP vis-a-vis datapath inter-connections may not suffice to verify multi-

cycle and pipelined operations. The verification task of this phase, therefore, should

accommodate all the intricacies of the RTL designs to show the equivalence between

the high-level behaviour and the RTL behaviour.

RTL transformations:The low power RTL transformations primarily bring about

modifications at a much lower level of abstraction involvingintricate details regarding

restructuring of the datapaths, control logic and routing of the control signals. Accord-

ingly, in a typical industry scenario, an RTL or architectural low power transformation

implies a full cost of simulation based validation, which can extend to many months

(Viswanath et al., 2009). Formal verification methods, not necessarily compromising

the details through abstraction, is a desirable goal. One ofthe objectives of this work

is showing equivalence of two RTL designs, one obtained fromthe other by applying

low power RTL transformations.

Loop transformations:Signal processing and multimedia applications are data

dominated in nature. Several loop based transformation techniques such as un-switching,

reordering, skewing, tiling, unrolling, etc., may be applied at the preprocessing stage.

These transformations are applied in order to reorder and restructure the loop body to

improve the spatial and temporal locality of the accessed data. The loop transforma-

tion techniques can be of two types, structure preserving and structure modifying. The

former admits a clear mapping of control and data values in the transformed behaviour

to the corresponding control and data values in the source behaviour; the latter does

not admit such a mapping (Zuck et al., 2005). In addition, arithmetic transformations

may also be applied along with loop transformations. The verification method should

be strong enough to handle as many loop transformations and arithmetic transforma-

tions as possible applied on data dominated behaviours.

Sequential to parallel behaviour transformation:The functional specification,

which relies on a single-threaded sequential code, is not easy to deploy on highly

12 Chapter 1 Introduction

concurrent heterogeneous multi-processor systems. A parallel model of computation

(MoC) may be used as the programming model. However, writing an application

depicting concurrency is time consuming and error prone which conflicts with the

low time-to-market requirement of the present day embeddedsystems. So, an au-

tomated tool that converts a sequential code to its equivalent concurrent behaviour

is employed. In the case of streaming applications, Kahn process network (KPN)

(Kahn, 1974) model of computation is often used. The KPN is a deterministic parallel

MoC that explicitly specifies tasks as processes and distributed memory units as FIFO

channels. The verification task involves showing the equivalence between a sequential

behaviour and its corresponding parallel KPN behaviour. Obviously, the overall data

transformation of the KPN behaviour can only be captured if the global data depen-

dencies are captured. The challenge lies in capturing the data dependencies spread

over all the concurrent KPN processes independent of their possible interleaving.

Parallel level transformations:The parallel process network model that are ob-

tained from the sequential behaviour in an automated way or manually may not be

suitable for the target architectural platform. Moreover,the overall achieved perfor-

mance obtained as a result of mapping may not be satisfactoryfrom the point of view

of the data throughput and/or memory usage. In this case, it is necessary to manipulate

the amount of concurrency in the functional model. Too little concurrency may not be

desirable since it may not completely make use of the architectural capabilities. Too

much concurrency, in contrast, may require too large an overhead to eventually man-

age in the architecture, which may increase the overall latency. The transformation

techniques like process splitting, channel merging, process clustering, and unfolding

and skewing may be used to control the concurrency in the KPN behaviour accord-

ing to the architectural constraints. The verification taskof this phase, therefore, is to

show the equivalence between two KPN behaviours. The challenge remains the same

as in equivalence checking of sequential to parallel transformation namely, capturing

the global dependencies irrespective of the interleaving of both the input and the out-

put concurrent behaviours. Hence, it is worth examining whether a method capable of

validating sequential to parallel transformations shouldsuffice for the commonly used

parallel level transformations.

1.4 Contributions 13

1.4 Contributions

Verification of code motion transformations:A formal verification method for check-

ing correctness of code motion techniques is presented. Finite state machine mod-

els with datapath (FSMDs) have been used to represent the input and the output be-

haviours. The method introduces cutpoints in one FSMD, visualizes its computations

as concatenation of paths from cutpoints to cutpoints, and then identifies equivalent

finite path segments in the other FSMD; the process is then repeated with the FSMDs

interchanged. A path is extended when its equivalent path cannot be found in the other

FSMD. However, a path cannot be extended beyond loop boundaries. Our method is

capable of verifying both uniform and non-uniform code motion techniques. It has

been underlined in this work that for non-uniform code motions, identifying equiva-

lent path segments involves model checking of some data-flowproperties. Our method

automatically identifies the situations where such properties are needed to be checked

during equivalence checking, generates the appropriate properties, and invokes the

model checking tool NuSMV to verify them. The correctness and the complexity of

the method have been dealt with. Experimental results demonstrate the effectiveness

of the method.

Verification of RTL generation and RTL transformations:A formal verification

method of the RTL generation phase of a high-level synthesis(HLS) process is pre-

sented in (Karfa, 2007). The goal is achieved in two steps. In the first step, the dat-

apath interconnection and the controller FSM description generated by a high-level

synthesis process are analyzed to obtain the register transfer (RT) operations executed

in the datapath for a given control assertion pattern in eachcontrol step. In the second

step, an equivalence checking method is deployed to establish equivalence between

the input and the output behaviours of this phase. A rewriting method has been devel-

oped for the first step. Our method is strong enough to handle pipelined and multicyle

operations, if any, spanning over several states. The correctness (termination, sound-

ness and completeness) and complexity of the presented method have been treated

formally. The experimental results on several HLS benchmarks are presented.

In order to verify RTL transformations, we model both the RTLs as FSMDs and

then apply our FSMD based equivalence checking method to show the equivalence.

In this work, we analyze several commonly used RTL low power transformation tech-

14 Chapter 1 Introduction

niques and show that our verification method can handle thosetransformations.

Verification of loop and arithmetic transformations of array intensive behaviours:

We propose a formal verification method for checking correctness of loop transfor-

mations and arithmetic transformations applied on the array and loop intensive be-

haviours in design of area/energy efficient systems in the domain of multimedia and

signal processing applications. Loop transformations hinge more on data dependence

and index space of the arrays than on control flow of the behaviour. Hence, array data

dependence graphs (ADDGs), proposed by Shashidhar (Shashidhar, 2008), are used

for representing array intensive behaviours. Shashidhar (Shashidhar, 2008) proposed

an ADDG based equivalence checking method to validate the loop transformations.

Possible enhancements of his method to handle associative and commutative trans-

formations are also discussed in (Shashidhar, 2008; Shashidhar et al., 2005a). We

redefine the equivalence of ADDGs in this work to verify loop transformations along

with a wide range of arithmetic transformations. We also propose a normalization

method for array intensive integer arithmetic expressions. The equivalence checking

method relies on this normalization technique and some simplification rules to han-

dle arithmetic transformations over arrays. Correctness and complexity of the method

have been dealt with. Experimental results on several test cases are presented.

Verification of Parallelizing transformations:A formal verification method for

checking correctness of parallelizing transformations ofsequential behaviours is pre-

sented. The parallel behaviours are represented as Kahn process networks (KPNs).

We describe a mechanism to represent a KPN behaviour comprising inherently paral-

lel processes as an ADDG. We also present a proof of correctness of the construction

mechanism. We then apply our ADDG based equivalence checking method to estab-

lish the equivalence between the initial sequential behaviour and the KPN behaviour.

The key aspect of our scheme is to model a KPN behaviour as an ADDG. We then

show how the ADDG based modelling helps us detect deadlocks in KPN behaviours.

Experimental results supporting this scheme are provided.

We next address the problem of verifying transformations ofparallel behaviours.

We assume that the parallel behaviours and their transformed versions are both avail-

able as KPN models. The KPN to ADDG transformation scheme is applied for this

purpose. Specifically, we model both the input and the transformed KPNs as AD-

DGs and apply our ADDG based equivalence checking method forestablishing the

1.5 Organization of the thesis 15

equivalence between the two KPNs. We then show that the commonly used parallel

transformations techniques can be verified in our verification framework. Experimen-

tal results are presented.

1.5 Organization of the thesis

The rest of the thesis is organized in the following manner.

Chapter 2 provides a detailed literature survey on the applications of commonly

used behavioural transformations and their existing verification methods. In the pro-

cess, it identifies the limitations of the state of the art verification methods and under-

lines the objectives of the thesis.

Chapter 3 discusses a path extension based equivalence checking of code motion

transformations. The issues addressed in the chapter is illustrated first. The FSMD

model is then introduced. A normalization procedure over integer arithmetic is given

next. The notion of path extension and its enhancement for verifying non-uniform

code motions are described next. The verification method is then given. The chapter

also provides a detailed theoretical analysis of the methodand some experimental

results with the implementation.

Chapter 4 discusses the high-level to RTL translation verification method. The ba-

sic construction mechanism of the FSMDs from the RTL designsis discussed first.

How the basic method is enhanced to handle multicyle, pipelined and chained opera-

tions is given next. The overall construction mechanism is then discussed. Termina-

tion, soundness and completeness of the method have been proved and the complexity

of the method analyzed. The verification of the data-path andthe controller during

FSMD construction is given next. The chapter then discussesthe applicability of this

method to verify RTL level transformations and finally, provides some experimental

results on this method.

16 Chapter 1 Introduction

Chapter 5 discusses the verification of loop and arithmetic transformations of array

intensive behaviours. The ADDG model and its different entities are formally defined

and elaborated with examples first. The method to obtain an ADDG from a sequential

behaviour is then presented. A normalization method and some simplification rules of

normalized expressions for array intensive arithmetic expressions are introduced. The

chapter defines the notion of slice based equivalence of ADDGs next. The correctness

and complexity of the method have been analyzed subsequently. The chapter finally

provides some experimental results and error diagnoses of the presented method.

Chapter 6 discusses the verification of sequential to parallel and parallel to parallel

code transformations. The objectives of the work are illustrated first. The verification

framework is given next. The chapter then provides a mechanism of modelling a KPN

as an ADDG. The proof of correctness of this translation is given next. The chapter

then discusses the commonly applied KPN level transformations and shows that our

verification framework is strong enough to verify those transformations. Finally, some

experimental results are provided.

Chapter 7 concludes our study in the domain of verification of behaviour trans-

formations during embedded system design and discusses potential future research

directions in this field.

Chapter 2

Literature Survey

An overview of important research contributions in the areaof behavioural transfor-

mations during embedded system design is provided in this chapter. For each transfor-

mation, (i) We first study several applications of behavioural transformations during

embedded system design. The objective of this study is to establish the relevance of

these transformations in embedded system design. (ii) we then survey existing veri-

fication methodologies for each of behavioural transformations. The objective of this

study is to find the limitations of the existing verification methodologies and to iden-

tify the verification problems which have been addressed in this thesis.

2.1 Code motion transformations

2.1.1 Applications of code motion transformations

Application of code motion techniques is well studied in literature in the context of

parallelizing compilers (Aho et al., 1987; Fisher, 1981; Gupta and Soffa, 1990; Hwu

et al., 1993; Knoop et al., 1992; Lam and Wilson, 1992; Muchnick, 1997; Nicolau

and Novack, 1993; Ruthing et al., 2000). Efforts have recently been made to find

its effect during synthesis, specially during scheduling in high-level synthesis. In the

following, we study the applications of code motion techniques in the context of high-

level synthesis.

17

18 Chapter 2 Literature Survey

Santos et al. (Dos Santos et al., 2000; Dos. Santos and Jress, 1999) and Rim et

al. (Rim et al., 1995) support generalized code motions during scheduling in synthesis

systems, whereby operations can be moved globally irrespective of their position in

the input. The costs of a set of solutions for the given designare evaluated first and

then the solution with the lowest cost is selected. Santos etal. proposed a pruning

technique to select the lowest cost solution from a set of solutions. Their technique

explore a smaller number of solutions which effectively reduce the search time.

Speculative execution refers to the execution of parts of a computation before the

execution of the conditional operations that decide whether they need to be executed.

The paper (Lakshminarayana et al., 2000) presents techniques to integrate speculative

execution into scheduling during high-level synthesis. This work shows that the paths

for speculation need to be decided dynamically according tothe criticality of individ-

ual operation and the availability of resources in order to obtain maximum benefits.

Their method has been integrated into the Wavesched tool (Lakshminarayana et al.,

1997).

A global scheduling technique for superscalar and VLIW processors was presented

in (Moon and Ebciŏglu, 1992). This technique parallelizes sequential code by elimi-

nating anti-dependence (i.e., write after read) and outputdependence (i.e., write after

write) by renaming registers. The code motions are applied globally by keeping a data

flow attribute at the beginning of each basic block which indicates what operations are

available for moving up through this basic block.

In (Johnson, 2004), the register allocation phase and the code motion methods

are combined to obtain a better scheduling of instructions with less number of reg-

isters. Register allocation can artificially constrain instruction scheduling, while the

instruction scheduler can produce a schedule that forces a poor register allocation.

The method proposed in this work tried to overcome this limitation by combining

these two phases of high-level synthesis.

In (Cordone et al., 2006), control and data dependence graph (CDFG) is used as

an intermediate representation which provides the possibility of extracting the maxi-

mum parallelism from the behaviour. This work combines the speculative code motion

techniques and parallelizing techniques to improve scheduling of control flow inten-

sive behaviours.

2.1 Code motion transformations 19

The effectiveness of traditional compiler techniques employed in high-level syn-

thesis of synchronous circuits is studied for asynchronouscircuit synthesis in (Zaman-

Zadeh et al., 2009). It has been shown that the transformations like speculation, loop

invariant code motion and condition expansion are applicable in decreasing mass of

handshaking circuits and intermediate modules.

Gupta et al. (Gupta et al., 2003b, 2004b,c) pioneered the work of applying code

motions to improve results of high-Level synthesis. They have used a set of specu-

lative code motion transformations that enable movement ofoperations through, be-

yond, and into conditionals with the objective of maximizing performance.Specu-

lation, reverse speculation, early condition execution, conditional speculation tech-

niquesare introduced by them in (Gupta et al., 2004b, 2001a,b). They present a

scheduling heuristic that guides these code motions and improves scheduling results

(in terms of schedule length and FSM states) and logic synthesis results (in terms of

circuit area and delay) by up to 50 percent. In (Gupta et al., 2003a,b), two novel strate-

gies are presented to increase the scope for application of speculative code motions:

(a) Adding scheduling steps dynamically during schedulingto conditional branches

with fewer scheduling steps. This increases the opportunities to apply code mo-

tions such as conditional speculation that duplicate operations into the branches of

a conditional block. (b) Determining if an operation can be conditionally speculated

into multiple basic blocks either by using existing idle resources or by creating new

scheduling steps. These strategies lead to balancing of thenumber of steps in the con-

ditional branches without increasing the longest path through the conditional block.

In (Gupta et al., 2002), a new approach calleddynamic common sub-expression elimi-

nation (CSE)is introduced. It dynamically eliminates common sub-expressions based

on new opportunities created during scheduling of control-intensive designs. Classical

CSE techniques fail to eliminate several common sub-expressions in control-intensive

designs due to the presence of a complex mix of control and data-flow. Aggressive

speculative code motions employed to schedule control intensive designs often re-

order, speculate and duplicate operations, changing thereby the control flow between

the operations with common sub-expressions. This leads to new opportunities for ap-

plying CSE dynamically. They also present a technique calledloop shiftingin (Gupta

et al., 2004a) that incrementally exploits loop level parallelism across iterations by

shifting and compacting operations across loop iterations. It has been shown through

experimentation that loop shifting is particularly effective for the synthesis of designs

20 Chapter 2 Literature Survey

with complex control especially when resource utilizationis already high and/or un-

der tight resource constraints. Their code motion techniques and heuristics have been

implemented in the SPARK high-level synthesis framework (Gupta et al., 2003c).

2.1.2 Verification of code motion transformations

A formal verification of scheduling process using finite state machines with data-path

(FSMD) is reported in (Kim et al., 2004). In this paper, break-points are introduced

in both the FSMDs followed by construction of the respectivepath sets. Each path of

one set is then shown to be equivalent to some path of the otherset. This approach

necessities that the path structure of the input FSMD is not disturbed by the scheduling

algorithm and code has not moved beyond basic block boundaries. in the sense that

the respective path sets obtained from the break points are assumed to be bijective.

This property, however, does not necessarily hold because the scheduler may merge

the segments of the original specification into one segment or distribute operations of

a segment over various segments for optimization of time steps.

An automatic verification of scheduling by using symbolic simulation of labeled

segments of behavioural descriptions has been proposed in (Eveking et al., 1999).

In this paper, both the inputs to the verifier, namely the specification and the imple-

mentation, are represented in theLanguage of Labeled Segments (LLS). Two labeled

segmentsS1 andS2 are bisimilar iff the same data-operations are performed inthem

and control is transformed to the bisimilar segments. The method described in this pa-

per transforms the original description into one which is bisimilar with the scheduled

description.

A Petri net based verification method for checking the correctness of algorithmic

transformations and scheduling process in HLS is proposed in (Chiang and Dung,

2007). The initial behaviour is converted first into a Petri net model which is expressed

by a Petri net characteristic matrix. Based on the input behaviours, they extract the

initial firing pattern. If there exists at least one candidate who can allow the firing

sequence to execute legally, then the HLS result is claimed as a correct solution.

All these verification approaches, however, are well suitedfor basic-block based

scheduling (Jain et al., 1991; Lee et al., 1989a) where the operations are not moved

2.1 Code motion transformations 21

across the basic-block boundaries or the path-structure ofthe input behaviour does not

modify due to scheduling. These techniques are not applicable to the verification of

code motion techniques since code may be moved from one basicblock to other basic

blocks due to code motions.

Some recent works, such as, (Karfa, 2007; Kim and Mansouri, 2008; Kundu et al.,

2008, 2010) target verification of code motion techniques. Specifically, a path recom-

position based FSMD equivalence checking has been reportedin (Kim and Mansouri,

2008) to verify speculative code motions. The correctness conditions are formulated

in higher-order logic and verified using the PVS theorem prover. Their path recom-

position over conditional blocks fails if non-uniform codemotion transformations are

applied by the scheduler. In (Kundu et al., 2008, 2010), a translation validation ap-

proach is proposed for high-level synthesis. Bisimulation relation approach is used

to prove equivalence in this work. Their method automatically establishes a bisim-

ulation relation that states which points in the initial behaviour are related to which

points in the scheduled behaviour. This method apparently fails to find the bisimula-

tion relation if codes before a conditional block are not moved to all branches of the

conditional block. This method also fails when the control structure of the initial pro-

gram is transformed by the path-based scheduler (Camposano, 1991). We proposed

an equivalence checking method for scheduling verificationin (Karfa, 2007). This

method is applicable even when the control structure of the input behaviour has been

modified by the scheduler. It has been shown that this method can verify uniform code

motion techniques. This method provides false-negative result for non-uniform code

motions.

The above discussion suggests that some of the existing methods can verify uni-

form code motions. None of existing methods, however, worksfor non-uniform code

motion. It would be desirable to have an equivalence checking method for verifying

both uniform and non-uniform code motion techniques.

22 Chapter 2 Literature Survey

2.2 High-level to RTL and RTL transformations

2.2.1 Applications of High-level to RTL and RTL transformations

Staring from early tools like MAHA (Parker et al., 1986), HAL (Paulin and Knight,

1987), STAR (Tsai and Hsu, 1992) to recent days’ tools such as SPARK (Gupta et al.,

2003c), SAST (Karfa et al., 2005), Catapult (Graphics, 2006), Synphony (Synopsys,

2011), a numerous tools have been developed with different optimization goals. Many

of them target minimization of time steps in the scheduling phase of high-level syn-

thesis. Many others target register optimization and some others target datapath and

controller optimizations. Some of the notable methods are discussed here.

Early works focused on scheduling steps of high-level synthesis. The simplest

one schedules all the operations as soon as possible (ASAP) (Trickey, 1987; Tseng

and Siewiorek, 1986). The opposite approach is to schedule the operations as late as

possible (ALAP). Several other scheduling approaches are force-directed scheduling

(Paulin and Knight, 1987), integer linear program based formulation of scheduling

(Lee et al., 1989b), list scheduling (Sllame and Drabek, 2002), genetic algorithm based

scheduling (Mandal and Chakrabarti, 2003). We have already discussed applications

of several code motion techniques during scheduling in the previous subsection.

Register optimizations are primarily performed by clique partition technique. Tseng

et al. (Tseng and Siewiorek, 1986) use clique partitioning heuristics to find a clique

cover for a module allocation graph. Paulin et al. (Paulin and Knight, 1989) perform

exhaustive weight-directed clique partitioning of a register compatibility graph to find

the solution with the lowest combined register and interconnect costs.

Many approaches target datapath and controller optimizations. The work of Kim

(Kim and Liu, 2010), for example, targets reduction of the multiplexer inputsand

shortening of the total length of global interconnects. Specifically, this method maxi-

mizes the interconnect sharing among FUs and registers. Thedatapath interconnection

optimization problem is mapped to a minimal cost maximal flowalgorithm in (Zhu

and Jong, 2002). The algorithm proposed in (Kastner et al., 2006) uses floorplan

information to optimize data communication of the variables. SAST (Karfa et al.,

2005; Mandal and Zimmer, 2000) produces structured architectures which avoid ran-

2.2 High-level to RTL and RTL transformations 23

dom inter-connections in the datapaths. In (Lin and Jha, 2005), the datapath inter-

connections are optimized for power during high-level synthesis. This method not

only reduces datapath unit power consumption in the resultant RTL but also optimizes

interconnects for power.

A set of glitch power reduction techniques based on minimizing propagation of

glitches in the RTL circuit is proposed in (Raghunathan et al., 1999). These techniques

include restructuring multiplexer networks (to enhance data correlations and eliminate

glitchy control signals), clocking control signals, and inserting selective rising/falling

delays, in order to kill the propagation of glitches from control as well as data sig-

nals. More than twenty architectural and computational transformation techniques are

presented in (Chandrakasan et al., 1995b) for minimizing power consumption in ap-

plication specific datapath intensive circuits. Several other RTL power management

schemes are presented in (Ahuja et al., 2010; Jiong et al., 2004; Lakshminarayana

et al., 1999; Xing and Jong, 2007).

2.2.2 Verification of High-level to RTL and RTL transformations

A set of high-level synthesis systems is validated using formally verified transforma-

tions in (Radhakrishnan et al., 2000). This tool examines the output of a high-level

synthesis system and derives a sequence of behaviour-preserving (correct) transfor-

mations (witness) that leads to the same effect as the applied HLS algorithm. If every

transformation, identical in the derived sequence, is applied in the presence of a set of

preconditions (which are proved to lead to a correct design), then the resulting RTL

design is correct. In (Rajan, 1995), both the specification at the behavioural level and

the implementation at the RTL level are encoded in SIL (Krol et al., 1992). A small

set of properties (axioms) corresponding to the SIL graph isasserted to be true. These

axioms capture the general notion of refinement of the CDFG used in various syn-

thesis frameworks. In order to compare the behavioral and the RTL descriptions in a

uniform way, a framework for verification and reasoning of the descriptions based on

mapping to virtual datapaths/controllers from these descriptions is developed in (Fu-

jita, 2005). Once those mappings have been established, the real comparison can be

based on the data transfer analysis controlled by finite state machines. In (Mansouri

and Vemuri, 1998), the technique of determining the correctness of the RTL design de-

pends upon comparing the values of certain critical specification variables in certain

24 Chapter 2 Literature Survey

critical behavioural states with those of certain criticalRTL registers in certain critical

controller states, provided they match at the start state. This approach, however, ne-

cessitates that the control flow branches in the behaviour specification are preserved

and no new control flow branches are introduced.

As discussed above, some end-to-end validation approachesof high-level synthe-

sis are proposed in the literature. The end-to-end HLS verification techniques are not

efficient enough as it is not only error prone but also unable to find the exact sub-

task in which the error occurs. Also, these techniques are not sophisticated enough

to handle the advanced transformations applied in each phase of HLS. For these rea-

son, verification of different phases of HLS are proposed in literature. Verification

techniques for the scheduling phase are discussed in the previous subsection. Since,

high-level behaviours are actually mapped to RTL design in datapath and controller

(i.e., RTL) generation phase, we review the verification techniques of this phase of

high-level synthesis next.

The allocation and binding phase and the datapath and controller generation phase

have been verified together in (Borrione et al., 2000) using the FSMD model. Demon-

strating the equivalence of the FSMD obtained by functionalcomposition of two parts

of the implementation, the control part and the operative part, with the scheduled

FSMD accomplishes the functional verification. In (Ashar et al., 1998), the synthe-

sis of datapath interconnect and control is verified as follows: The operations in each

state of the scheduled behaviour are converted to an equivalentstructured graph (SG)

having the hardware components as vertices and connectivity among the components

as edges. It then shows the equivalence between the SSG (scheduler SG) and the

RSG (RTL SG) by symbolic simulation to ensure that the datapath supports the RT-

operations of that state. However, the state-wise interaction of the controller and the

datapath through the status and control lines has not been verified; also, multicyle and

pipelined operations have not been considered.

The low power transformations represent an important aspect of power related op-

timizations. However, the main obstacle of applying low power transformations at

RTL designs is the difficulties of its verification problem. In a typical industry sce-

nario, an RTL or architectural low power transformation implies a full cost of dynamic

validation, which can extend to many months (Viswanath et al., 2009). Therefore, an

automated formal verification method for low power transformations at RTL designs

2.3 Loop transformations and arithmetic transformations 25

has tremendous practical importance. A dedicated rewriting method for verification

of low power transformations in RTL has been proposed in (Viswanath et al., 2009)

where low power transformations are verified based on transformation specific rules.

The completeness of this method, therefore, depends on the availability of the trans-

formation rules. Also, a combination of low power transformations may be applied

on the RTL designs. In such cases, transformation rules for individual transformation

may not be able to establish the equivalence between the input RTL and the trans-

formed RTL.

One of the objectives of this work is to develop an equivalence checking method

between a high-level behaviour and its corresponding RTL behaviour which can han-

dle pipelined and multicyle operations. Moreover, the method can be easily tuned to

verify the RTL level transformations.

2.3 Loop transformations and arithmetic transforma-

tions

2.3.1 Applications of loop transformations

Loop transformations along with algebraic and arithmetic transformations are applied

extensively in the domain of multimedia and signal processing applications. These

transformations can be automatic, semi-automatic or manual. In the following, we

study several applications of loop transformations techniques during embedded sys-

tem design.

Kandemir et al. studied the effects of loop transformationson system power in

their several works. In (Kandemir et al., 2001), they studied the impact of loop tiling,

loop unrolling, loop fusion, loop fission and scalar expansion on energy consumption.

In (Kandemir et al., 2005), they demonstrate that conventional data locality oriented

code transformations are not sufficient for minimizing diskpower consumption. In-

stead, they propose a disk layout aware application optimization strategy that uses both

code restructuring and data locality optimization. They focus on three optimizations

namely, loop fusion/fission, loop tiling, and linear optimizations for code restructuring

26 Chapter 2 Literature Survey

and also discuss how these transformations can be combined under a unified optimizer

that targets disk power management. They show how code and data optimizations help

to reduce memory energy consumption for embedded applications with regular data

access patterns on an MPSoC architecture with a banked memory system in (Kan-

demir, 2006). This is achieved by ensuring bank locality, which means that each pro-

cessor localizes its accesses into a small set of banks in a given time period. They also

propose a novel memory-conscious loop parallelization strategy with the objective of

minimizing the data memory requirements of processors in (Xue et al., 2007). The

work in (Kadayif and Kandemir, 2005) presents a data space-oriented tiling approach

(DST). In this strategy, the data space is logically dividedinto chunks (called data

tiles) and each data tile is processed in turn. Since a data space is common across all

nests that access it, DST can potentially achieve better results than traditional iteration

space (loop) tiling by exploiting inter-nest data locality. Improving data locality not

only improves effective memory access time but also reducesmemory system energy

consumption due to data references. The paper (Li and Kandemir, 2005) takes a more

global approach to identify data locality problem and proposes a compiler driven data

locality optimization strategy in the context of embedded MPSOCs. An important

characteristic of this approach is that, in deciding the workloads of the processors

(i.e., in parallelizing the application) it considers all the loop nests in the application

simultaneously. Focusing on an embedded chip multiprocessor and array-intensive

applications, the work in (Chen et al., 2006a) demonstrates how reliability against

transient errors can be improved without impacting execution time by utilizing idle

processors for duplicating some of the computations of the active processors. It also

shows how the balance between power saving and reliability improvement can be

achieved using a metric called the energy-delay-fallibility product.

Bouchebaba et al. identified that general loop-based techniques fail to capture the

interactions between the different loop nests in the application. In (Bouchebaba et al.,

2007), they propose a technique to reduce cache misses and cache size for multimedia

applications running on MPSoCs. Loop fusion and tiling are used to reduce cache

misses, while a buffer allocation strategy is exploited to reduce the required cache

size. The loop tiling exploration is further extended in (Zhang and Kurdahi, 2007)

to also accommodate dependence-free arrays. They propose an input-conscious tiling

scheme for off-chip memory access optimization. They show that the input arrays are

as important as the arrays with data dependencies when the focus is on memory access

2.3 Loop transformations and arithmetic transformations 27

optimization instead of parallelism extraction.

A method to minimize the total energy while satisfying the performance require-

ments for application with multi-dimensional nested loopswas proposed in (Karakoy,

2005). They have shown that an adaptive loop parallelization strategy combined with

idle processor shut down and pre-activation can be very effective in reducing energy

consumption without increasing execution time. The objective of the paper (Qiu et al.,

2008) is also the same as that of (Karakoy, 2005). However, they apply loop fusion

and multi-functional unit scheduling techniques to achieve that.

In (Ghodrat et al., 2009), a novel loop transformation technique optimizes loops

containing nested conditional blocks. Specifically, the transformation takes advan-

tage of the fact that the Boolean value of the conditional expression, determining the

true/false paths, can be statically analyzed using a novel interval analysis technique

that can evaluate conditional expressions in the general polynomial form. Results

from interval analysis combined with loop dependency information is used to parti-

tion the iteration space of the nested loop. This technique is particularly well suited for

optimizing embedded compilers, where an increase in compilation time is acceptable

in exchange for significant performance increase.

A survey on application of loop transformations in data and memory optimization

in embedded system can be found in (Panda et al., 2001). The IMEC group (Catthoor

et al., 1998; Palkovic et al., 2009) pioneered the work on program transformations to

reduce energy consumption in data dominated embedded applications. In (Fraboulet

et al., 2001), loop fusion technique is used to optimize multimedia applications before

the hardware/software partitioning to reduce the use of temporary arrays. Several

other loop transformation techniques and their effects on embedded system design

may be found in (Brandolese et al., 2004; Ghodrat et al., 2008; Šimuníc et al., 2000;

Zhu et al., 2004).

2.3.2 Applications of arithmetic transformations

Several arithmetic transformations based on algebraic properties of the operator such

as associativity, commutativity and distributivity, arithmetic expression simplification,

constant folding, common sub-expression elimination, renaming, dead code elimina-

28 Chapter 2 Literature Survey

tion, copy propagation and operator strength reduction, etc. are applied regularly

during embedded system design. Application of retiming, algebraic and redundancy

manipulation transformations to improve the performance of embedded systems is

proposed in (Potkonjak et al., 1993). They introduced a new negative retiming tech-

nique to enable algebraic transformations to improve latency/throughput. In (Zory

and Coelho, 1998), the use of algebraic transformations to improve the performance

of computationally intensive applications are suggested.In this paper, they inves-

tigate source-to-source algebraic transformations to minimize the execution time of

expression evaluation on modern computer architectures bychoosing a better way to

compute the expressions. Operation cost minimization by loop-invariant code motion

and operator strength reduction is proposed in (Gupta et al., 2000) to achieve minimal

code execution within loops and reduced operator strengths. Application of algebraic

transformations to minimize criticial path length in the domain of computationally in-

tensive applications is proposed in (Landwehr and Marwedel, 1997). Apart from stan-

dard algebraic transformations such as commutativity, associativity and distributivity,

they also introduce two hardware related transformations based on operator strength

reduction and constant unfolding. The work in (Gupta et al., 2000) explores applica-

bility and effectiveness of source-level optimizations for address computations in the

context of multimedia applications. The authors propose two processor-independent

source-level optimization techniques, namely, global scope operation cost minimiza-

tion complemented with loop-invariant code hoisting, and non-linear operator strength

reduction. The transformations attempt to achieve minimalcode execution within

loops and reduced operator strengths. A set of transformations such as common sub-

expression elimination, renaming, dead code elimination and copy propagation are

applied along with code motion transformations in the pre-synthesis and scheduling

phase of high-level synthesis in the SPARK tool (Gupta et al., 2003c, 2004c). The

potential of arithmetic transformations on FPGAs is studied in (E. Özer and Gregg,

2003). It has been shown that operator strength reduction and storage reuse reduce the

area of the circuit and hence the power consumption in FPGA. The transformations

like height reduction and variable renaming reduce the total number of clock cycles

required to execute the programs in FPGA whereas expressionsplitting and resource

sharing reduce the clock period of the circuits.

2.3 Loop transformations and arithmetic transformations 29

2.3.3 Verification of loop and arithmetic transformations

A number of research works have been carried out on verification of loop transfor-

mations on array intensive programs. Some of these target transformation specific

verification rules. Pnueli et al. proposed permutation rules for verification of loop

interchange, skewing, tiling, reversal transformations in their translation validation

approach (Zuck et al., 2003), (Zuck et al., 2005). The rule set is further enhanced in

(Hu et al., 2005), (Barrett et al., 2005). The main drawback of this approach is that the

method had to rely on the hint provided by the synthesis tool.The verifier needs the

transformations that have been applied and the order in which they have been applied

from the synthesis tool. Also, completeness of the verifier depends on the complete-

ness of the rule set and therefore enhancement of the repository of transformations

necessiates enhancement of the rule set.

A method called fractal symbolic analysis has been proposedin (Menon et al.,

2003). The idea is to reduce the gap between the source and the transformed be-

haviour by repeatedly applying simplification rules until the two behaviours become

similar enough to allow a proof by symbolic analysis. The rules are similar to the ones

proposed by Pnueli et al. The power of this method again depends on the availability

of the rule set.

Samsom et al. has developed a fully automatic verification method for loop trans-

formations. They have used data dependence analysis and show the preservation of the

dependencies in the original and in the transformed program(Samsom et al., 1995).

The program representation used in this work allows only a statement-level equiva-

lence checking between the programs. Therefore, this method cannot handle arith-

metic transformation. It is common that data-flow transformations, such as expression

propagations and algebraic transformations, are applied in conjunction with or prior to

applying loop transformations in order to reduce the constraints for loop transforma-

tions. Therefore, direct correspondence between the statement classes of the original

and the transformed programs does not always hold as required by Samsom’s method.

Shashidhar et al. (Shashidhar, 2008; Shashidhar et al., 2002, 2005a,b) consider a

restricted class of programs which must have static control-flow, affine indices and

bounds, uniform recurrence and single assignment form. They have proposed an

equivalence checking method for verification of loop and data-flow transformations.

30 Chapter 2 Literature Survey

A[0] = in[0];

for(i=1; i<100; i++)

A[i] = f(A[i/2]);

Figure 2.1: A program with non-uniform recurrence on array A

for(i=0; i<100; i++)

if(i < in1[i])

out[i] = f(in2[i + in3[i + 1]]);

Figure 2.2: A program with data dependent control and array access

An array data dependence graph (ADDG) model was used in theirwork to model the

loop-based array intensive programs. These works are promising in the sense that they

are capable of handling most of the loop transformation techniques without taking any

information from the synthesis tools.

The main limitations of the ADDG based method are its inability to handle the fol-

lowing cases (i) non-uniform recurrence (figure2.1), (ii) data-dependent assignments

and accesses (figure2.2) and (iii) arithmetic transformations (2.3). In figure2.1, the

non-uniform recurrence involves the access sequencei, i/2,1/22 and so on (in con-

trast to uniform recurrence access sequence such asi, i−2, i−4, etc). In figure2.2,

execution of the if statement depends on the arrayin1 and access to the elements of

the arrayin2 depends of arrayin3. In figure2.3, the transformed program is obtained

from the original one by application of commutative and distributive transformations.

for(i=1; i<100; i++)

A[i] = B[i + 1] x C[i] + C[i] x D[i];

(a)

for(i=1; i<100; i++)

A[i] = C[i] x (B[i + 1] + D[i]);

(b)

Figure 2.3: Commutative and distributive transformations:(a) original program; (b)

transformed program

2.4 Parallelizing transformations 31

The method proposed in (Verdoolaege et al., 2009) extends the ADDG model to a de-

pendence graph to handle non-uniform recurrences. This method is further extended

in (Verdoolaege et al., 2010) to verify data-dependent assignments and accesses also.

Both the methods proposed in (Verdoolaege et al., 2009) and (Verdoolaege et al., 2010)

can verify the associative and commutative transformations. It has also been discussed

in (Shashidhar, 2008) how the basic ADDG based method can be extended to handle

associative and commutative transformations.

All the above methods, however, fail if the transformed behaviour is obtained from

the original behaviour by application of arithmetic transformations such as, distribu-

tive transformations, arithmetic expression simplification, constant unfolding, com-

mon sub-expression elimination, etc., along with loop transformations. The definition

of equivalence of ADDGs proposed by Shashidhar et al. cannotbe extended easily

(as in the cases of commutative and associative transformations) to handle these arith-

metic transformations. In this dissertation, we consider the same class of programs

considered by Shashidhar et al. and their ADDG based modelling of programs. It

would be desirable to develop an equivalence checking method of array intensive pro-

grams based on Shashidhar’s work which can handle all kinds of loop transformations

along with most of the arithmetic transformations.

2.4 Parallelizing transformations

2.4.1 Applications of parallelizing transformations

Sequential to parallel code transformation techniques, ingeneral, comprise two tasks

– partitioning the sequential code into concurrent tasks and inserting appropriate com-

munication channels among them. Many of the reported techniques (Freisleben and

Kielmann, 1995; Hall et al., 1996; Wolf and Lam, 1991) exploit the data parallelism

among different iterations of a loop to split the sequentialbehaviour into concurrent

tasks and execute them in parallel on different processors.In (Freisleben and Kiel-

mann, 1995), for example, a system is presented that automatically transforms se-

quential divide and conquer algorithms written in C into parallel codes having com-

munication code in addition to the computation code segments which can be executed

32 Chapter 2 Literature Survey

in message passing multicomputers.

A tool called SPRINT reported in (Cockx et al., 2007) automatically generates an

executable concurrent SystemC model starting from a sequential code. While most

of the reported techniques exploit data parallelism, SPRINTexploits functional par-

allelism in the behaviour. The tasks generated by SPRINT represent functional paral-

lelism to yield tasks where each task implements a differentsubset of statements in the

application. In contrast, data parallelism consists in executing the same code in paral-

lel on different subsets of data. The work reported in (Girkar and Polychronopoulos,

1992) is focused on functional parallelism across loop and procedure boundaries. In

their approach, a hierarchical task graph (HTG) is constructed from the initial sequen-

tial behaviour. The HTG provides a powerful intermediate representation mechanism

which encapsulates parallelism of different types and scope levels, and is used for

generation and optimization of parallel programs.

Turjan et al. (Turjan, 2007; Turjan et al., 2004) described an automatic transfor-

mation mechanism of nested-loop programs to Kahn process networks (KPNs). The

main idea behind this approach is as follows. First, the computation carried out by a

sequential application in a single process is divided into anumber of separate compu-

tational processes. Secondly, some of the arrays used for data storage are transformed

to dedicated FIFO buffers that are read using agetprimitive and written into usingput

primitive, providing in this way a simple inter-process synchronization mechanism.

They have implemented these transformation techniques in an embedded system de-

sign framework called Compaan (Kienhuis et al., 2000).

In (Ferrandi et al., 2007), an embedded system design tool chain for automatic

generation of parallel code runnable on symmetric multiprocessor systems from an

initial sequential specification is presented. The initialC specification is translated into

an intermediate representation termed as a system dependence graph with feedback

edges. Each loop body forms a partition of the graph. Statements with the same branch

condition form control equivalent regions. Each control equivalent region forms a

partition in the graph. The number of partitions are then optimized based on data

and control dependencies. At the end, each partition (cluster of nodes) represents a

different task.

An interactive tool support for parallelizing sequential applications was presented

2.4 Parallelizing transformations 33

in (Ceng et al., 2008). In this work, an integrated framework called MAPS is presented

which targets parallelizing C applications for MPSoC platforms. With embedded de-

vices becoming more and more complex, an MPSoC programming framework should

able to deal with multiple applications. With this objective, a framework to support

multiple applications on top of the MAPS framework is presented in (Castrillon et al.,

2010).

Running a parallel program which is obtained from a sequential behaviour on a

multiprocessor architecture does not guarantee that the runtime requirements are met.

Therefore, it may be necessary to further analyze and optimize the amount of concur-

rency in the parallel specification. It has been shown in (de Kock, 2002; Meijer et al.,

2009, 2010b) that by changing the (interconnection) structure of a process network,

the total execution time of an application can be improved. There are several kinds

of transformations possible to manipulate the concurrencylevel of a parallel program.

The process splitting transformation (Meijer et al., 2007, 2010a) selects a process from

the original process network and creates a number of its copies such that the computa-

tional workload is distributed over these copies. The channel merging transformation

reduces the number of communication channels (Turjan, 2007). Channel merging is

relevant when the process network is to be mapped on a multiprocessor platform that

consists of processing units, shared bus and shared memory.In such an architecture,

communication and synchronization may be costly. So, merging channels may reduce

the communication cost and the synchronization cost. Process clustering, described

in (Davare et al., 2006), reduces the concurrency in the functional model by merging

together functional processes. Transformations like message vectorization, computa-

tion migration and interprocess communication (IPC) selection have been discussed

in (Fei et al., 2007). A complete design framework transforming an initial sequential

behaviour to a concurrent behaviour and optimizing the latter before finally mapping

it to a multiprocessor system is given in (Nikolov et al., 2008). The performance of

the process merging transformation in embedded Multi-Processor Systems on Chip

(MPSoCs) platforms is evaluated in (Meijer et al., 2010b). Similar work for process

partitioning transformations is reported in (Meijer et al., 2009).

34 Chapter 2 Literature Survey

2.4.2 Verification of parallelizing transformations

An approach for symbolic model checking of process networksis introduced in (Strehl

and Thiele, 2000). The authors have identified the problem with binary decision di-

agram based model checking of process networks and introduced a representation of

multi valued functions called interval decision diagrams (IDDs). In this paper, interval

diagram techniques are applied to symbolic model checking of process networks. The

non-semantic preserving transformations of process networks during refinement steps

of embedded system design is proposed in (Raudvere et al., 2008). Non-semantic-

preserving transformations introduce lower level implementation details. In this ap-

proach, a set of verification properties for every non-semantic-preserving transforma-

tion are defined as CTL* formulae. The verification tasks are divided into two steps:

(i) the local correctness of the non-semantic-preserving transformation is checked by

preserving properties using model checking tool, and (ii) the global influence of the re-

finement to the entire system is studied through static analysis. In (Chen et al., 2003),

the designs at deferent abstraction levels are automatically translated into Promela

description and verified using SPIN model checker (Holzmann, 1997).

When a sequential behaviour is transformed into a parallel behaviour or a parallel

behaviour is transformed into another parallel behaviour,it needs to ensure that (i) the

transformed behaviour satisfies certain properties of the systems and (ii) it is function-

ally equivalent to the initial behaviour. For the first task,model checking is used as the

primary verification approach for embedded system design. The verification models

are automatically generated from the both input and transformed behaviours and the

properties are checked using model checker like, SPIN (Holzmann, 1997), NuSMV

(Cimatti et al., 2000), etc.. For the second task, model checking, however, cannot be

used as it is more appropriate for property verification but not for behavioural verifi-

cation.

For a complex system, like the embedded systems, however, a synthesizable spec-

ification is not restricted to some liveness or safety properties only; instead, it depicts

behaviour at a high abstraction level in a procedural form. When a behaviour is trans-

formed, it is important to show that the transformed behaviour preserves the functional

behaviour of the initial specification. The current state ofthe art for embedded systems

verification lacks in this aspect. As discussed in section1.3, Kahn process network

2.5 Conclusion 35

(KPN) (Kahn, 1974) is often used to model parallel behaviours in the case of multime-

dia and signal processing applications,. In this work, we want to show the functional

equivalence between a sequential behaviour and its correcponding KPN behaviour and

also between two KPN behaviours.

2.5 Conclusion

In this chapter, we have discussed several applications of code motion transformations,

loop transformations, arithmetic transformations, high-level to RTL transformations,

RTL transformations, sequential to parallel transformations and parallel level trans-

formations which are applied at various phases of contemporary embedded system

design. Through the discussion, it is identified that those transformations are applied

often during embedded system design. The state of the art verification methods for

these transformations are also discussed in this chapter. In this process, we have iden-

tified some limitations of existing verification methods. Inthe subsequent chapters, we

present verification methods for these transformations which overcome the limitations

identified in this chapter.

Chapter 3

Verification of Code Motion

Transformations

3.1 Introduction

Code motion techniques move operations from their original positions to some other

places in order to reduce of the number of computations at run-time and to minimize

the lifetimes of the temporary variables. As discussed in section 1.2, a code motion

is said to benon-uniformwhen an operation is moved from a basic block (BB) pre-

ceding or succeeding a control block (CB) to only one of the conditional branches,

or vice-versa. In contrast, a code motion is said to beuniform when an operation

is moved to both the conditional branches after a CB from a preceding BB, or vice-

versa. The input behaviour and the transformed behaviour are modelled as FSMDs in

this work. In (Karfa, 2007), we have developed an FSMD based equivalence check-

ing method which is capable of verifying uniform code motions. In this chapter, we

have enhanced the method proposed in (Karfa, 2007) for verification of both uniform

and non-uniform code motion transformations. To verify non-uniform code motions,

we have identified that (i) certain data-flow properties musthold on the initial and

the transformed behaviours for valid non-uniform code motions and (ii) the defini-

tion of equivalence of paths needs to be weakened. The present method automatically

identifies the situations where such properties need to be checked during equivalence

checking, generates the appropriate properties, and invokes the model checking tool

37

38 Chapter 3 Verification of Code Motion Transformations

NuSMV (Cimatti et al., 2000) to verify them. The main contributions of the present

work over (Karfa, 2007) are as follows: 1. Certain data-flow properties are identified

to handle non-uniform code motions. Based on them, a weaker definition of equiva-

lence of paths is given. 2. The equivalence theory of FSMDs isaccordingly redefined

based on the weaker definition of paths. 3. A completely automated method is devel-

oped for verification of both uniform and non-uniform code motions. 4. Correctness

proof and complexity of the method are treated formally. 5. The developed method is

used to verify the scheduling steps of a well known high-level synthesis tool SPARK

(Gupta et al., 2003c), which applies a set of code transformations during scheduling.

This chapter is organized as follows. The FSMD models and thenotion of equiv-

alence of two FSMDs are introduced in section3.2.1. A normalization technique of

integer arithmetic expressions applied in our equivalencechecking method to handle

arithmetic transformations is also given in this section. Our verification scheme of

non-uniform code motions are given in section3.4. The enhancement of the method

to handle multicycle and pipelined operations are discussed in section3.5. The cor-

rectness and the complexity of the method are discussed in section 3.6. Experimental

results are given in section3.7. The paper is concluded in section3.8.

3.2 Basic equivalence checking method

3.2.1 FSMDs and its paths

An FSMD (finite state machine with datapath) is a universal specification model

(Gajski et al., 1992) that can represent all hardware designs. The FSMD is defined

as an ordered tuple〈Q,q0, I ,V,O, f ,h〉, where

1. Q = {q0,q1,q2, . . . , qn} is the finite set of control states,

2. q0 ∈ Q is the reset state,

3. I is the set of primary input signals,

4. V is the set of storage variables, andΣ is the set of all data storage values or

simply, data states,

3.2 Basic equivalence checking method 39

5. O is the set of primary output signals,

6. f : Q×2S →Q, is the state transition function and

7. h : Q×2S →U , is the update function of the output and the storage variables,

whereSandU are as defined below.

(a) S = {L∪E} is the set of status expressions whereL is the set of Boolean

literals of the formb or ¬b, b∈ B⊆V is a Boolean variable andE is the

set of arithmetic predicates overI ∪ (V−B). Any arithmetic predicate is

of the formeR0, wheree is an arithmetic expression andR∈ {==, 6=, >,

≥, <, ≤}.

(b) U is a set of storage or output assignments of the form{x⇐ e | x∈O∪V

and e is an arithmetic predicate or expression overI ∪ (V−B)}; it repre-

sents a set of storage or output assignments.

The implicit connective among the members of the set of status expressions which

occurs as the second argument of the functionf (or h) is conjunction. Parallel edges

between two states capture disjunction of status expressions. The state transition func-

tion and the update function are such that the FSMD model remains deterministic.

Thus, for any stateq ∈ Q, if, f (q,Si), 1≤ i ≤ k, are the only values defined, then

Si ∩Sj = φ for i 6= j, 1≤ i, j ≤ k andS1∪ . . . ∪Sk = true. The same property holds

for the update functionh. It may be noted that we have not introduced any final state

in the FSMD model as we assume that a system works in an infiniteouter loop.

Example 1 The FSMD modelM0 for the behavioural specification given in figure

3.1(a) is as follows:

• M0=〈Q,q0, I ,V0,O, f ,h〉, where

• Q = {q0,0, q0,1, q0,2, q0,3, q0,4, q0,5, q0,6, q0,7}, q0 = q0,0, V0 = {a, b, c, d, g,

p, q, x, y}, I = {b, p, q,x, y}, O = {p1},

• U = {a⇐ b+5, d⇐ 2×a, c⇐ y−x, g⇐ x+d, g⇐ d−12, g⇐ c−b, c⇐

g−a, d⇐ g+a},

• S = {p > q, p = q},

40 Chapter 3 Verification of Code Motion Transformations

q0,0

q0,1

q0,2

q0,3

−/a⇐ b+5

−/d⇐ 2×a

¬p > q/
c⇐ y−x

¬p = q/

g⇐ c−b

g⇐ d−12
p = q/

q0,4

q0,5

p > q/
g⇐ x+d

β5

β1

β3

β4

β2

p = q/
c⇐ g−a

−/OUT(p1,c)

q0,6

β7

β6
¬p = q/

only in (a)
d⇐ g+a

β8

q0,7

−/OUT(p1,d)

−/OUT(p1,g)

q1,1

q1,5

−/OUT(p1,g)

q1,7

−/a⇐ b+5

p = q/
c⇐ g−a

d⇐ 2×a
p > q/

−/OUT(p1,c)

−/g⇐ x+d

−/g⇐ c−b

(b) and (d)(a) and (c)

q1,6

q1,0

q1,2 q1,3 q1,4

−/g⇐ d−12

¬p = q/

d⇐ g+a
only in (b)

q1,8

−/OUT(p1,d)

¬p > q∧
p = q/

d⇐ 2×a

c⇐ y−x
¬p = q/
¬p > q∧

Figure 3.1: Example of reverse speculation: (a) and (c): TwoFSMDs are shown

combined representing two behaviours before scheduling; (b) and (d): Two FSMDs

are shown combined representing the behaviours after scheduling of the FSMD in (a)

and in (c), respectively

• f and h are as defined in the transition graph shown in figure3.1(a). Some

typical values off andh are as follows:

– f (q0,0, {true}) = q0,1, f (q0,5, {p = q2}) = q0,6,

– h(q0,5, {p = q}) = {c⇐ g−a}, h(q0,4, {true}) = {OUT(p1,g)}.

2

A (finite) pathα from qi to q j , whereqi,q j ∈ Q, is a finite transition sequence of

states of the form〈qi = q1 −→c1
q2 −→c2

. . . −−→cn−1
qn = q j〉 such that∀l ,1≤ l ≤n−1,∃cl ∈2S

such thatf (ql ,cl) = ql+1, andqk, 1≤ k≤ n−1, are all distinct. Only the last state

qn may be identical to anyqk, 1≤ k≤ n−1. In contrast, afinite walk is also such

a finite transition sequence of states where any state can repeat. Thecondition of

execution of the pathα, denoted asRα, is a logical expression over the variables in

V and the inputsI such thatRα is satisfied by the initial data state of the path1 iff the

pathα is traversed. Thus,Rα is the weakest precondition of the pathα (Gries, 1987).

1Data state of a variable at some control point is its value in that control point

3.2 Basic equivalence checking method 41

Thedata transformation of a pathα overV, denoted asrα, is the tuple〈sα,Oα〉; the

first membersα, termed as storage (variable) transformation ofα, is an ordered tuple

〈ei〉 of algebraic expressions over the variables inV and the inputs inI such that the

expressionei represents the value of the variablevi after the execution of the path in

terms of the initial data state of the path; the second memberOα = [OUT(Pi1,e1),

OUT(Pi2,e2), . . .] represents the output list along the pathα. More specifically, for

every expressione output to portP along the pathα, there is a memberOUT(P,e) in

the list, appearing in the order in which the outputs occur inα. We have to maintain

the list for outputs along a path; otherwise, all the outputsother than the last one

will be missed in the data transformations if there are more than one output through

a single port within a path. The conditionRα and the data transformationsrα can be

obtained by backward substitution or by forward substitution (Manna, 1974). Often,

for brevity, the above pathα is represented as[q1⇒ qn].

Example 2 Let us consider the pathα = q0,0→ q0,1→ q0,2−−−→¬p>qq0,3 −−→p=qq0,4→ q0,5

−−→p=qq0,6→ q0,0 in the FSMD in figure3.1(a). The computation of[Rα, rα] for this

path by forward substitution method is as follows:

At q0,0: [true, 〈〈a, d, g, c〉,−〉].

At q0,1: [true, 〈〈b+5, d, g, c〉,−〉].

At q0,2: [true, 〈〈b+5, 2× (b+5), g, c〉,−〉].

At q0,3: [¬p > q, 〈〈b+5, 2× (b+5), g, y−x〉,−〉].

At q0,4: [¬p > q∧ p = q, 〈〈b+5, 2× (b+5), 2× (b+5)−12, y−x〉,−〉].

At q0,5: [¬p> q∧ p= q, 〈〈b+5, 2×(b+5), 2×(b+5)−12, y−x〉, OUT(p11,2×

(b+5)−12)〉].

At q0,6: [¬p> q∧ p= q∧ p= q, 〈〈b+5, 2× (b+5), 2× (b+5)−12, 2× (b+5)−

12− (b+5)〉,OUT(p11,2× (b+5)−12)〉].

At q0,0: [¬p> q∧ p= q∧ p= q, 〈〈b+5, 2× (b+5), 2× (b+5)−12, 2× (b+5)−

12− (b+ 5)〉,OUT(p11,2× (b+ 5)− 12),OUT(p12,2× (b+ 5)− 12− (b+

5))〉].

42 Chapter 3 Verification of Code Motion Transformations

The expressions in[Rα, rα] can be simplified. After simplification,

Rα = ¬p > q∧ p = q and

rα = 〈〈b+5, 2×b+10, 2×b−2, b−7〉, OUT(p11,2×b−2), OUT(p12,b−7)〉.

During checking the equivalence of two arithmetic expressions, such simplifica-

tions are sometimes essential because the scheduler may itself have simplified some

arithmetic expressions of the initial behaviour (Gupta et al., 2000, 2002; Landwehr

and Marwedel, 1997; Potkonjak et al., 1993; Zory and Coelho, 1998). Accordingly,

a normalization method and some simplification rules of arithmetic expressions are

incorporated in this work. The normalization method and thesimplification rules are

presented in the next subsection. 2

The characteristic formulaτα(v,vf ,O) of the pathα is Rα(v)∧ (vf = sα(v))∧

(O = Oα(v)), wheresα is the data transformation andOα is the output list in the path

α, v represents a vector of variables ofI ∪V, vf represents a vector of variables of

V. The formula captures the following: if the condition of executionRα of the path

α is satisfied by the (initial) vectorv at the beginning of the path, then the path is

executed and after execution, the final vectorvf of variable values becomessα(v) and

the outputOα(v) is produced. Letτα(v,vf ,O) : Rα(v)∧(vf = sα(v))∧(O= Oα(v)) be

the characteristic formula of the pathα andτβ(v,vf ,O) : Rβ(v)∧ (vf = sβ(v))∧ (O =

Oβ(v)) be the characteristic formula of the pathβ. The characteristic formula for the

concatenated pathαβ is

ταβ(v,vf ,O) = ∃vα∃O1∃O2(τα(v,vα,O1)∧ τβ(vα,vf ,O2))

= Rα(v)∧Rβ(sα(v))∧ (vf = sβ(sα(v)))∧ (O = Oα(v)Oβ(sα(v))).

The listO is the concatenated output list ofOα(v) andOβ(sα(v)).

3.2.2 Normalization of arithmetic expressions

Specification for embedded system implementing algorithmic computation over inte-

gers involve the whole of integer arithmetic which is undecidable; thus, a canonical

3.2 Basic equivalence checking method 43

form does not exist for integer arithmetic. Instead, in thiswork, we use the follow-

ing normal forms of expressions, adapted from (Sarkar and De Sarkar, 1989) for both

integer and real expressions. The normalization process reduces many computation-

ally equivalent formulas syntactically identical as it forces all the formulas to follow

a uniform structure (Sarkar and De Sarkar, 1989). In the following, the normal form

chosen for the formulas and the simplification carried out onthe normal form during

the normalization phase are described in brief.

The data transformation of a path is an ordered tuple〈ei〉 of arithmetic expressions

such that the expressionei represents the value of the variablevi after the execution of

the path in terms of the initial data state. Each arithmetic expression in data transfor-

mation can be represented in thenormalized sum form. A normalized sum (S) is a sum

of terms with at least one constant term; each term (T) is a product of primaries with a

non-zero constant primary; each primary (P) is a storage variable, an input variable or

of the formabs(s), mod(s1,s2) or div(s1,s2), wheres,s1, ands2 are normalized sums.

In addition to the above structure, any normalized sum is arranged by a lexicographic

ordering of its constituent subexpressions from the bottom-most level, i.e., from the

level of simple primaries. This syntactic entities are defined by means of productions

of the following grammar.

Definition 1 1. S→ S + T | cs, where cs is an integer.

2. T → T ∗ P | ct , where ct is an integer.

3. P→ abs(S) | (S) mod(S) | S÷ Cd |v| cm, where v∈ I ∪V and cm is an integer,

4. Cd → S÷ Cd | S.

A condition of execution of a path is an arithmetic relation of the formS R0, where

S is a normalized sum andR∈ {≤,≥,>,<,=, 6=}. The relation> (<) can be reduced

to≥ (≤) over integers. For example,x − y > 0 can be reduced tox − (y − 1) >= 0.

Negated relational literals are suitably modified to absorbthe negation.

In addition, the following simplifications are carried out for integer expressions.

(i) The common subexpressions in a sum are collected. Thus,x2 + 3x+ 4z+ 7x is

simplified tox2+10x+4z+0. (ii) A relational literal is reduced by a common constant

44 Chapter 3 Verification of Code Motion Transformations

factor, if any, and the literal is accordingly simplified. For example, 3x2 +9xy+6z+

7≥ 0 is simplified tox2 +3xy+2z+2≥ 0, where⌊7/3⌋= 2.

The following simplification is carried out for both real andinteger expressions.

(iii) Literals are deleted from a conjunction by the rule “if(l ⇒ l ′) thenl ∧ l ′ ≡ l .” (iv)

If l ⇒¬l ′, then a conjunction having literalsl andl ′ is reduced to false. Implication of

a relational literal by another is identified by the method described in (Sarkar and De

Sarkar, 1989). Associativity and commutativity of+, −, ∗, distributivity of ∗ over

+, −, symmetry of{=, 6=}, reflexivity of {≤,≥,=} and Irreflexivity of{6=,<,>}

are accounted for by the above transformations.

Let us revisit the example2. In this example, we simplify the arithmetic expres-

sions in the data transformations and the arithmetic predicates in the condition of

execution of a path. For example, expression 2× (b+5)−12− (b+5) is simplified

to b− 7. The normalized sum form of the expression 2× (b+ 5)− 12− (b+ 5) is

2×b+(−1)×b+(−7). The rule (i) helps us in reaching the simplified form also.

Similarly, the condition of execution of that path¬p > q∧ p = q∧ p = q is simplified

to p = q by applying rule (iii). The above described normalization form along with

the simplification rules help us reach such simplified form. Let us consider another

possible pathβ = q0,3−−→p=qq0,4→ q0,5−−−→¬p=qq0,7→ q0,0, wherep andq do not change

in the transitionq0,4→ q0,5. For this path,Rβ : p = q∧¬p = q. So,Rβ becomes false

after application of rule (iv). Actually, the pathβ is not a valid path since it never exe-

cutes in practice. So, our normalization procedure and the simplification rules enable

us ignore such paths during equivalence checking.

3.3 Equivalence problem formulation

Let the input behaviour be represented by the FSMDM0 = 〈Q0,q0,0, I ,V0,O, f0,h0〉

and the transformed behaviour be represented by the FSMDM1 = 〈Q1,q1,0, I ,V1,O, f1,h1〉.

Our main goal is to verify whetherM0 behaves exactly asM1. This means that for all

possible input sequences2, the execution traces ofM0 andM1 produce the same se-

quence of outputs on each output port. Acomputationof an FSMD is a finite walk

2Note that unlike output sequences, we need not to keep track of the input sequences because every

input redefines a variable (like any assignment statement).

3.3 Equivalence problem formulation 45

from the reset state back to itself without having any intermediary occurrence of the

reset state. So, a computation, which represents one possible execution of an FSMD,

takes an input sequence and produces an output sequence. Theequivalence of com-

putations can be defined as follows.

Definition 2 (Equivalence of Computations) A computation c1 of an FSMD M0 is

equivalent to a computation c2 of another FSMD M1 if Rc1≡Rc2 and Oc1≡Oc2, where

Rc1 and Rc2 represent the conditions of execution of c1 and c2, respectively and Oc1

and Oc2 are the output lists of c1 and c2, respectively. The fact that the computation

c1 is equivalent to the computation c2 is denoted as c1≃ c2.

Similarly, a pathβ is said to be equivalent to a pathα iff Rβ ≃Rα andrβ ≃ rα. The

fact that a pathβ is computationally equivalent to a pathα is denoted asβ≃ α.

The following two definitions capture the notion of equivalence of FSMDs.

Definition 3 (Containment of FSMDs) An FSMD M0 is said to be contained in an

FSMD M1, symbolically M0 ⊑ M1, if for any computation c0 of M0, there exists a

computation c1 of M1 such that c0≃ c1.

Definition 4 (Equivalence of FSMDs) Two FSMDs M0 and M1 are said to be com-

putationally equivalent, if M0⊑M1 and M1⊑M0.

3.3.1 Path cover and equivalence of FSMDs

An FSMD may consist of an infinite number of computations. However, any compu-

tationµof an FSMDM can be looked upon as a computation along some concatenated

path[α1α2α3...αk] of M such that the pathα1 emanates from and the pathαk termi-

nates in the reset stateq0 of M, for 1≤ i < k, αi terminates in the initial state of the

pathαi+1 andαi ’s may not all be distinct. Hence, we have the following definition.

Definition 5 (Path cover of an FSMD) A finite set of paths P= {p0, p1, p2, . . .,pk}

is said to be a path cover of an FSMD M if any computation c of M can be looked

upon as a concatenation of paths from P.

46 Chapter 3 Verification of Code Motion Transformations

The following theorem can be concluded from definitions3 and5 (Karfa, 2007).

Theorem 1 An FSMD M0 is contained in another FSMD M1 (M0 ⊑ M1), if there

exists a finite cover P0 = {p00, p01, . . . , p0l} of M0 for which there exists a set P1 =

{p10, p11, . . . , p1l} of paths of M1 such that p0i ≃ p1i, 0 ≤ i ≤ l.

The statement of theorem1 suggests the following steps of a verification method

for checking equivalence of two FSMDs:

1. Construct the setP0 of paths ofM0 so thatP0 coversM0. LetP0 = {p0,0, p0,1, · · · , p0,k}.

2. Show that∀p0,i ∈ P0, there exists a path p1, j of M1 such thatp0,i ≃ p1, j .

3. Repeat steps 1 and 2 withM0 andM1 interchanged.

The question remains how one can find the path cover of an FSMD.It is difficult

to find a path cover of the whole computation comprising only finite paths because

of loops. Hence, any computation is split into paths by putting cutpointsat various

places in the FSMD so that each loop is cut in at least one cutpoint. The set ofall

paths from a cutpoint to another cutpoint without having any intermediary cutpointis

a path cover of the FSMD (Floyd, 1967; Hoare, 1969; King, 1980). In this work, the

starting cutpoints are defined in any FSMD as follows:

1. The reset state is chosen.

2. A stateqi is chosen, if there is a divergence or convergence of flow fromqi .

The cutpoints chosen by the above rules cut each loop of the FSMD in at least one

cutpoint, because each internal loop has an exit point.

3.3.2 A method to handle uniform code motions

The control structure of the input behaviour may be modified by the path based sched-

uler and also some operations in the behaviour may be moved beyond the conditional

3.3 Equivalence problem formulation 47

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

−/a⇐ a−c

p′0,1

c > b/!c > b/

a⇐ c+b,

c⇐ c+d

a⇐ c+b,

(b) M1

−/c⇐ b+5

p1,0

p1,1

c > b/c⇐ c−d

p0,1

p0,2

c⇐ c−d
!c > b/c⇐ c+d

−/a⇐ a−c

p′0,0

−/c⇐ b+5

−/a⇐ c+b

p0,0

(a)M0

Figure 3.2: An example of duplicating down

statements by application of code motion techniques. Therefore, the basic equivalence

checking method described in subsection3.3.1fails to find equivalent paths for some

members of the path coverP0 for the above choices of cutpoints. One situation of

code motion is explained with figure3.2. In this behaviour, the operationa⇐ c+ b

is duplicated down to both the branches in the transformed behaviour. The cutpoints

are shaded in the figure. The paths of the initial path cover ofM0 are shown as bold

lines. In particular, the path coverP0 is{p0,0, p0,1, p0,2}. The basic equivalence check-

ing method fails to find the equivalent of pathp0,0 in M1 because of mismatch in the

transformation of the variablea due to code motion. The idea of path extension was

proposed in (Karfa, 2007) for handling control structure modification. The mecha-

nism, however, also alleviates the problem of mismatch of variables values due to uni-

form code motions. The works as follows. As the equivalent ofp0,0 cannot be found

in M1, the method extends this path in all possible ways up to the next set of cutpoints

and checks the equivalence of every extended path inM1. The method, however, does

not extend a path beyond loops. In this way, the extended paths of p0,0 are p′0,0 and

p′0,1 (shown as dashed lines in the figure). It might be noted that the equivalent paths

of p′0,0 andp′0,1 can be found asp1,0 andp1,1, respectively.

This path extension based method works fine if consecutive path segments are

merged as in the case of a path based scheduler. It also works well for the following

cases of uniform code motions: (i) a code segment before a conditional block has

48 Chapter 3 Verification of Code Motion Transformations

been moved to all the branches, (ii) a code segment after merging of branches has

been moved to all the branches before the merge point, (iii) acode segment before a

control block has been moved after merging takes place following the control block.

The variable set of the initial and the transformed FSMD may not be exactly the

same. It is because of the fact that some variables may be removed or some variables

may get introduced due to code motion and arithmetic transformations. In (Karfa,

2007), therefore, the equivalence of paths are defined only on thevariables inV0∩V1.

In other words, two pathsα andβ are equivalent iffRα, rα, Rβ andrβ are defined over

V0∩V1 andRα = Rβ andrα = rβ. Any expression (arithmetic or status) isdefinedover

the variable setV0∩V1 if all the variables it involves belong toV0∩V1. Therefore,

if Rα, rα, Rβ and rβ become undefined (when they involve a variable which do not

belong toV0∩V1), the method in (Karfa, 2007) reports a possible non-equivalence of

paths.

3.4 Verification of non-uniform code motions

In the present section, we introduce non-uniform code motion through an example

and then illustrate how the basic method described so far fails to handle such code

motions; the exercise helps in identifying the features along which enhancement is

needed. The method is then enhanced accordingly.

3.4.1 An example of non-uniform code motion

Let us consider the FSMDs in figure3.1. The transformed behaviour in figure3.1(b)

is obtained from the input behaviour shown in figure3.1(a) by application of non-

uniform code motions. Specifically, the operationd⇐ 2×a associated with the tran-

sitionq0,1→ q0,2 of the original behaviour in the FSMDM0 of figure3.1(a) is moved

to the transitionsq1,1→ q1,2 andq1,1→ q1,3 of the FSMDM1 of figure3.1(b). The op-

eration, however, is not moved to the other branch〈q1,1−−−−−−−−−→¬p>q∧¬p=qq1,4〉 from the state

q1,1. Similarly, the other operationc⇐ y−x associated with the transitionq0,2→ q0,3

of the original behaviour is moved only to the transitionq1,1→ q1,4 from the stateq1,1.

So, these are instances of non-uniform duplicating down code motion. It may be noted

3.4 Verification of non-uniform code motions 49

that these code motions reduce the execution time of the behaviour and the number

of computations by one unit when¬p > q is true. They also reduce the lifetimes of

the variablesd andc by one unit. The first transformation (of movingd⇐ 2×a) is

permissible because the branchq0,3−−−→¬p=qq0,4 and the rest of the code staring from the

stateq0,4 in FSMD M0 do not use this definition (2×a) of d. Similar observations

hold for the operationc⇐ y−x also. Therefore, these two FSMDs produce the same

outputs for all possible inputs; hence they are equivalent.

Let us now consider the FSMD in figure3.1(c) (the only difference between the

FSMDs in figures3.1(a) and3.1(c) is that the operationd⇐ g+ a is present in the

transitionq0,5−−−→¬p=qq0,7 of M0 of figure3.1(a) but not present in the same transition of

figure3.1(c)). Let the same code motion described above be applied on this modified

FSMD. The corresponding transformed FSMDM1 is shown in figure3.1(d) (again the

only difference between the FSMDs in figure3.1(b) and3.1(d) is that the operation

d⇐ g+a is present in the transitionq1,6−−−→¬p=qq1,8 of M1 of figure3.1(b) but not present

in the same transition of figure3.1(d)). In this case, the non-uniform movement of the

operationd⇐ 2×a is not correct because it leads to a non-equivalent execution of the

FSMDs. Specifically, the output value ofd at port p1 is 2×a in the executionc1 =

q0,0→ q0,1→ q0.2 −−−→¬p>qq0,3−−−→¬p=qq0,4→ q0,5 −−−→¬p=qq07→ q0,0 of the FSMDM0 whereas

the output value ofd at the same portp1 is undefined in the executionc2 = q1,0→

q1,1−−−−−−−−−→¬p>q∧¬p=qq1,4→ q1,5→ q1,6−−−→¬p=qq1,8→ q1,0 of FSMDM1 in figure3.1(d). It may

be noted thatc2 is the only execution inM1 which can be equivalent toc1 because

their execution conditions match and the FSMDs being deterministic no other path

from q1,0 can have the same condition of execution. The objective of this work is to

develop an equivalence checking method which can establishsuch equivalence or non-

equivalence of the FSMDs. Moreover, the method should be as efficient as possible.

3.4.2 A scheme for verifying non-uniform code motions

As discussed above, the method given in (Karfa, 2007) extends a path in all possible

ways when the method fails to find its equivalent path. In the case of non-uniform

code motions, however, this approach confronts some problem. Let us consider, for

example, the following situation depicted in figure3.3. Let p0,1 = q0,i ⇒ q0, f be a

path segment (inM0) having a codec transforming a variablev. Let the codec be

moved (non-uniformly) inM1 to one path segmentp1,2 = q1, f ⇒ q′1, f emanating from

50 Chapter 3 Verification of Code Motion Transformations

...P1,1

P1,2 P1,3

c : v⇐ e

M0
M1

q′1, f

...P0,1

P0,2 P0,3

c : v⇐ e

q1, f

q1,iq0,i

q0, f

Figure 3.3: An instance of non-uniform code motion

the corresponding stateq1, f of q0, f and not moved to another path segmentp1,3 also

emanating fromq1, f . For the concatenated path segment,p0,1p0,2 in M0 obtained by

extendingp0,1 incorporating the path segmentp0,2, we will have an equivalent path

p1,1p1,2 but for the pathp0,1p0,3 obtained by extendingp0,1 incorporating the path

segmentp0,3, the equivalent path will be elusive. However, it may be the case that in

p0,3 and in the rest of the behaviour from the end state ofp0,3, the property that the

variablev is not used at all or may have been defined before usedis true (equivalently,

v is used before being definedis false). In such situations, the pathp1,1p1,3 is actually

the equivalent path ofp0,1p0,3. Extendingp0,1p0,3 (as is done by the method given in

(Karfa, 2007)), however, never reveals that equivalence. Following example ilusutraes

the fact further.

Example 3 Let us consider the pathβ = q0,0→ q0,1→ q0,2−−−→¬p>qq0,3−−−→¬p=qq0,4 of the

FSMD given in figure3.1(a). For this pathβ, Rβ = ¬p > q∧¬p = q andrβ = 〈〈b+

5, 2×b+10, y−x−b, , y−x〉,−〉, where the order of the variables are〈a, d, g, c〉.

Let us also consider the pathα = q1,0→ q1,1 −−−−−−−−−→¬p>q∧¬p=qq1,4→ q1,5 of the FSMD

given in figure3.1(b). The condition of execution ofα is ¬p > q∧¬p = q and the

data transformation ofα rα = 〈〈b+5, d, y−x−b, y−x〉,−〉. It may be noted that the

conditions of execution of bothβ andα are the same but the data transformations ofd

(∈V0∩V1) are not the same inrβ andrα. Hence,β andα are not equivalent. According

to the method presented in (Karfa, 2007), the pathβ needs to be extended. It can be

shown that after extendingβ twice, neither the equivalence of one of the extended

pathsq0,0→ q0,1→ q0,2−−−→¬p>qq0,3−−−→¬p=qq0,4→ q0,5−−→p=qq0,6→ q0,0 can be found in the

FSMD in figure3.1(b) nor the path can be further extended. Therefore, the method in

3.4 Verification of non-uniform code motions 51

(Karfa, 2007) reports a possible non-equivalence between these two FSMDs.

We, however, note that the definition ofd in pathβ is redundant because the de-

fined value has no further use. We can conclude that if a variable v (in V0∩V1) is

transformed in a path but the value acquired thereof is not used in the rest of the be-

haviour, then the transformation ofv in that path can be ignored since it has no further

use. Accordingly,α can be shown to be the equivalent path ofβ. 2

There is another shortcoming of the method given in (Karfa, 2007); it establishes

the equivalence of paths ignoring the transformations of the variables which are not

in V0∩V1. This approach, however, leads to false-negative results in the case of non-

uniform code motion. It is because of the fact that the condition of executionRα or

the data transformationrα of a pathα is defined in terms of the values of the vari-

ables at the start state of the path; these values, in turn, may depend on the uncommon

variables. Instead of setting the equivalence of paths by blindly ignoring the transfor-

mations of the variables which are not inV0∩V1, a selective path extension accom-

modating propagation of values of the variables may actually reveal the equivalence

of FSMDs in the case of non-uniform code motion. This situation is illustrated with

the help of the following example.

q0,2

q0,3

q1,1

q1,2

q1,3

q0,6

q1,0

a⇐ b+c,
d′⇐ d+10,
x′⇐ x+y

¬b > c/
c⇐ a+d

b > c/
d⇐ d′,

d⇐ x′+c

x < y/ ¬x < y/
x⇐ x′,

q0,0

−/a⇐ b+c

q0,1

b > c/

¬b > c/

q0,4 q0,5

−/d⇐ x−c

x⇐ x+y
¬x < y/x < y/

−/d⇐ x+c
(b) M1

(a)M0

x⇐ x+y

c⇐ a+d

x⇐ x′,

−/OUT(P,d)

−/OUT(P,d)

d⇐ x′−c

d⇐ d+10

−/c⇐ b−d

c⇐ b−d′

Figure 3.4: An example of speculative code motion

Example 4 Let us consider the FSMDsM0 andM1 in figure3.4. Let us assume for

simplicity that in the statesq0,0 andq1,0 each variable has the same initial value. Here,

52 Chapter 3 Verification of Code Motion Transformations

the operationd⇐ d+10 associated with the branchq0,1−−→b>cq0,2 of the FSMDM0 in

figure 3.4(a) has been speculated out to the transitionq1,0→ q1,1 in the FSMDM1

in figure 3.4(b) and the result is stored in the variabled′. Similarly, the operation

x⇐ x+y, which occurs in both the branches from the stateq0,3 in M0, is speculated

out to the transitionq1,0→ q1,1 in the FSMDM1 and the result is stored in the variable

x′.

The cutpoints are shaded in the FSMD in figure3.4(a). The variablesd′ andx′

are updated in the pathα = q1,0⇒ q1,1 but they do not belong toV0∩V1. So, the

method given in (Karfa, 2007) ascertainsβ = q0,0⇒ q0,1 as the equivalent path of

α ignoring d′ and x′; this, however, leads to a wrong inference (a false negative)

subsequently as explained below. While dealing with the pathq0,1−−→b>cq0,3, it is found

that the final value ofd does not match with the same in the potential equivalent

path (i.e.,q1,1−−→b>cq1,2). So, the method given in (Karfa, 2007) reports a possible non-

equivalence of these two FSMDs (which is not true in this case).

Instead of inferring (greedily) thatq0,0⇒ q0,1 andq1,0⇒ q1,1 are equivalent, it

should be examined whether the values ofd′ or x′ are used subsequently after the

stateq1,1; if so, it is required to extend the pathβ = q0,0⇒ q0,1 instead of saying it is

equivalent withα = q1,0⇒ q1,1. On the other hand, if the property“used before being

defined” is false in the rest of the code starting fromq1,1 for bothd′ andx′, then we

can infer thatα is the equivalent ofβ. In case of the pathq1,0⇒ q1,1 (which has the

potential of being equivalent of the pathq0,0⇒ q0,1), the property“used before being

defined"becomes true for bothd′ andx′ atq1,1. So, the original pathq0,0⇒ q0,1 will be

extended. The extended paths areq0,0→ q0,1−−→b>cq0,2→ q0,3 andq0,0→ q0,1−−−→¬b>cq0,3.

It may be noted that the property“used before being defined"is false for the variable

d′ atq1,2. So, we can now ignore the value ofd′. However, the extended paths need to

be extended again as the property is still true forx′ atq1,2. The reverse of the situation,

i.e., some variables are transformed inβ in M0 but not inα, can also happen. In that

case, we have to check the same property at the end state ofβ. 2

The examples given in this subsection, therefore, reveal the following: (i) Exam-

ple3 reveals a situation where checking equivalence of all the variables inV0∩V1 (for

equivalence of paths) may result finally in false-negative result through some unnec-

essary path extensions. (ii) Example4 reveals a situation where ignoring blindly the

variables which are not inV0∩V1 may result in a false negative inference. In both

3.4 Verification of non-uniform code motions 53

the cases, we have identified that checking equality of only those variables which are

used later without further definition suffice for checking equivalence of paths. The

property “used before being defined” helps us in both cases to find those variables.

Therefore, we can have a weaker definition of equivalence of paths where, besides

showing the equivalence of the respective conditions of execution and the respective

output lists, it is sufficient to show the equivalence of the variable transformations in

sα of only those variables whose values are used later. In the subsequent subsection,

we shall formally define strong and weak equivalence of pathsand then give the proof

of theorem 1 accommodating weak equivalence of paths.

3.4.3 Strong and weak equivalence of paths

Let us first generalize the storage transformation of path over all the variables of both

the source and transformed FSMD. We then present the definition of weak equivalence

of paths.

In general,M0, M1 may involve different storage variable setsV0 and V1, re-

spectively because of code motions. Hence, the equivalencechecking should take

into account the complete setV0∪V1 of variables. Without loss of generality, the

data transformation of any path inM0 or in M1 can be extended for the variables in

V0∪V1. Specifically, the storage transformation of any path inM0 or in M1 is of the

form 〈e1, . . . ,ex,ex+1, . . . ,ey,ey+1 . . .ez〉, where the sub-tuple(e1, . . . ,ex) represents

the transformation of the variables inV0−V1, the sub-tuple(ex+1, . . . ,ey) represents

the transformation of the variables inV0∩V1 and the sub-tuple(ey+1, . . . ,ez) repre-

sents the transformation of the variables inV1−V0. For a path ofM0, ei, y+1≤ i ≤ z,

would be the symbolic name of the variablevi (in V1−V0). Similarly, for a path of

M1, ei, 1≤ i ≤ x, would be the symbolic name of the variablevi (in V0−V1).

Let α be a path inM0 or in M1. The tuplesα restricted to the setV ′, whereV ′ ⊆

V0∪V1, is its projection overV ′. The restriction ofsα of a pathα on the variable setV ′

is denoted assα|V ′. For example,sα|V0−V1 = (e1, . . . ,ex) andsα|V1−V0 = (ey+1, . . . ,ez),

wheresα = 〈e1, . . . ,ex,ex+1, . . . ,ey,ey+1 . . .ez〉.

As discussed in subsection3.3.2, the equivalence of paths of two FSMDs are de-

fined in terms of the variables inV0∩V1 in (Karfa, 2007). We term this equivalence

54 Chapter 3 Verification of Code Motion Transformations

asstrong equivalence of paths. Formal definition of strong equivalence of paths is as

follows:

Definition 6 (Strong equivalence of paths)Two pathsβ andα are said to be strongly

equivalent iff their respective (i) conditions of execution are equivalent, i.e., Rβ ≡ Rα

(ii) output lists are equivalent, i.e., Oβ ≡ Oα, and (iii) storage variable transforma-

tions restricted over the variable set V0∩V1 are equivalent, i.e., sβ|V0∩V1 ≡ sα|V0∩V1.

The fact that a pathβ is strongly equivalent to a pathα is denoted asα≃s β.

Let the respective cardinalities of two output listsOk andOl bek andl , wherek≤ l .

The listOk is said to be aprefix of the listOl , i.e.,Ok = prefix(Ol), iff Ol = [Ok,Ox],

whereOx is another output list with length(l−k). These two listsOk andOl cannot be

equivalent even if we add some more elements inOk iff Ok 6= prefix(Ol). Two output

lists Ok andOl are equivalent iffOk = prefix(Ol) andOl = prefix(Ok).

Let us now define the weak equivalence of paths.

Definition 7 (Weak equivalence of paths)Let V′ ⊆ V0∪V1 be defined as follows.

V ′ = {v | v is transformed inβ or α or both and is used before being defined fol-

lowing the end state(s) ofβ, α or both, respectively}.

A pathβ of the FSMD M0 is said to be weakly equivalent to a pathα of FSMD M1, iff

their respective (i) conditions of execution are equivalent, i.e., Rβ ≡Rα (ii) output lists

are equivalent, i.e., Oβ≡Oα, and (iii) storage variable transformations restricted over

the variable set V′ are equivalent, i.e., sβ|V ′ ≡ sα|V ′ . The fact that a pathβ is weakly

equivalent to a pathα is denoted asβ≃w α.

The pathsβ and α cannot be weakly equivalent ifV ′ contains a variablev of

V0−V1 (or V1−V0) because such av has been transformed in onlyβ (or only α), and

hence cannot have the same transformation insβ and insα. In other words,β≃w α⇒
sβ|V ′ ≡ sα|V ′⇒V ′ ⊆V0∩V1. In contrast,β≃s α⇒ sβ|V ′ ≡ sα|V ′ , whereV ′ = V0∩V1.

Consequently,β≃s α impliesβ≃w α.

A path β is said to be the corresponding path or synonymously, the equivalent

path, of α if β ≃w α. Similarly, a computationci of FSMD M0 is said to be the

corresponding computation of a computationc j of FSMDM1 if ci ≃ c j .

3.4 Verification of non-uniform code motions 55

Based on the definition of weak equivalence of paths, the statement of theorem1

can be restated as follows.

Theorem 2 An FSMD M0 is contained in another FSMD M1 (M0 ⊑ M1), if there

exists a finite path cover P0 = {p0,0, p0,1, . . . , p0,l} of M0 for which there exists a set

P1 = {p1,0, p1,1, . . . , p1,l} of paths of M1 such that p0,i ≃w p1,i, 0 ≤ i ≤ l.

Proof: M0⊑M1, if for any computationc0 of M0, there exists a computationc1

of M1 such thatc0 andc1 are computationally equivalent [by definition3].

Now, let there exist a finite coverP0 = {p0,0, p0,1, · · · , p0,l} of M0. Corresponding

to P0, let a setP1 = {p1,0, p1,1, · · · , p1l} of paths ofM1 exist such thatp0,i ≃w p1,i,

0≤ i ≤ l .

SinceP0 coversM0, any computationc0 of M0 can be looked upon as a concate-

nated path [p0,i1 p0,i2 · · · p0,in] from P0 starting from the reset stateq0,0 and ending

again at this reset state ofM0. From the above hypothesis, it follows that there exists a

sequenceΠ1 of paths [p1, j1 p1, j2 · · · p1, jn] of P1 wherep0,ik ≃w p1, jk, 1≤ k≤ n. So, in

order thatΠ1 represents a computation ofM1, it is required to prove thatΠ1 is a con-

catenated path ofM1 from its reset stateq1,0 back to itself representing a computation

c1 such thatc0≃ c1. The following definition is in order.

Definition 8 (Corresponding states)Let M0 = 〈Q0,q0,0, I ,V0,O, f0,h0〉 and M1 =

〈Q1,q1,0, I ,V1,O, f1,h1〉 be the two FSMDs. (i) The respective reset states q0,0 and

q1,0 are corresponding states. (ii) If q0,i ∈Q0 and q1, j ∈Q1 are corresponding states

and there exist q0,k ∈ Q0 and q1,l ∈ Q1 such that, for some pathβ from q0,i to q0,k in

M0, there exists a pathα from q1, j to q1,l in M1 such thatβ ≃w α, then q0,k and q1,l

are corresponding states.

Now, let p0,i1 : [q0,0⇒ q0, f1]. Sincep1, j1 ≃w p0,i1, from the above definition of

corresponding states,p1, j1 must be of the form[q1,0⇒ q1, f1], where〈q0,0, q1,0〉 and

〈q0, f1, q1, f1〉 are corresponding states. Again, letp0,i2 : [q0, f1 ⇒ q0, f2]. By the above

argument,〈q0, f2, q1, f2〉 are also corresponding states. Sincep0,i1 is weak equivalent

to p1, j1, there may exist some variable which is transformed inp0,i1 but not in p1, j1.

The final value of such variables inp0,i1, however, does not effect any variable or any

56 Chapter 3 Verification of Code Motion Transformations

output of the pathp0,i2 [by definition7]. Similarly, any variable which is transformed

in p1, j1 and not inp0,i1 does not effect any variable or any output of the pathp1, j2.

Hence, the concatenated pathsp0,i1 p0,i2 andp1, j1 p1, j2 should also be weak equivalent,

i.e., p0,i1 p0,i2≃w p1, j1 p1, j2. Thus, by repeated application of the above two arguments,

it follows that if p0,i1 : [q0,0⇒ q0, f1], p0,i2 : [q0, f1⇒ q0, f2], · · · , p0,in : [q0, fn−1⇒ q0, fn =

q0,0], thenp1,i1 : [q1,0⇒ q1, f1], p1,i2 : [q1, f1⇒ q1, f2], · · · , p1,in : [q1, fn−1⇒ q1, fn = q1,0],

where〈q0, fm,q1, fm〉, 1≤m≤ n, are pairs of corresponding states andp0,i1 . . . p0,in ≃w

p1, j1 . . . p1, jn. Hence,Π1 is a concatenated path representing a computationc1 of M1,

wherec1≃ c0. 2

Theorem2 permits us to adopt the concept of selective path extension to verify

the non-uniform code motions. Instead of extending a path blindly when an equiva-

lent path cannot be found or setting the equivalence of pathsblindly by ignoring the

transformations of the variables which are not inV0∩V1, the path extension will now

be guided by some data-flow properties indicating the “defined-used” sequence. In

the rest of the chapter, unless mentioned otherwise, the notation p1 ≃ p2 implies the

p1≃w p2.

3.4.4 Formulation of the path extension procedure

Following the discussions in the above paragraphs, the pathextension procedure is

formulated as follows. The equivalence checker first tries to find a strong equivalent

pathα (in M1) for β (of M0). If the equivalence checker fails to find strong equivalence

of β, then it tries to find a weak equivalent path ofβ in M1. To do so, it first searches

for a pathα in M1 which starts from the corresponding state of the start stateof β
and has the same condition of execution and output list as that of β. As the FSMDs

are inherently deterministic, we can have at most one such path α which has the same

condition of execution as that ofβ. After obtaining such anα, the equivalence checker

finds the setV ′ of variables whose transformations insβ and insα are not the same.

The transformations of all other variables are the same. Now, if it is the case that

the transformations of the variables ofV ′ in β andα have no further use, thenα is

the weak equivalent path ofβ. So, the equivalence checker next finds whether the

variables inV ′ areused before being definedat endPtNd(β) (i.e., end state ofβ) and

endPtNd(α). If the propertyused before being definedis false for all the variables

3.4 Verification of non-uniform code motions 57

in V ′ at bothendPtNd(β) andendPtNd(α), the equivalence checker establishes the

weak equivalence ofβ andα. It is not required to extendβ in this case. Conversely, if

the property‘used before being defined’is true for any of the variables inV ′ at either

endPtNd(β) or endPtNd(α), the equivalence checker extendsβ.

We have discussed in subsection3.4.3that the variable setV0 andV1 may not be

equal due to application of code motion techniques. Let a variablev be present inV0

of FSMD M0 but not inV1 of M1. Since,v is not inV1, it is surely not used anywhere

in M1. Therefore, the propertyv is used before being definedis false in all states

of FSMD M1. Continuing the discussion of earlier paragraph, ifV ′ containsv, it is

sufficient to check the propertyv is used before being definedonly at endPtNd(β).

Similarly, if V ′ contains a variablev′, wherev′ is in V1 of M1 but not inV0 of M0, it is

sufficient to check the propertyv′ is used before being definedonly atendPtNd(α).

da,ub

dg,ud

dd,ua

dg,ux,ud

dp1,ug
dd,ug,uadc,ug,ua

dp1,uc

up,uq

up,uq

dg,uc,ub
up,uq

up,uq

up,uq

dp1,ud

dc,ux,uy
up,uq

Figure 3.5: Kripke structure obtained from FSMDM0 of figure3.1(a)

3.4.5 Encoding and model checking the data-flow properties

In the previous section, we found that the data-flow property“used before being de-

fined” should guide the path extension procedure. The question remains how we can

determine whether this property holds in a stateq in an FSMD. For this purpose, we

resort to model checking of the property involving two propositions,dv anduv, for

each variablev in V0∪V1, wheredv anduv representdefined(v)andused(v), respec-

58 Chapter 3 Verification of Code Motion Transformations

tively. The required property“v is used before being defined"is then encoded as the

CTL formula E[(¬dv) U uv]. Similar encoding scheme is presented in (Fehnker et al.,

2007, 2009) for static analysis of C/C++ programs. The method to convert an FSMD

into an equivalent Kripke structure (Clarke et al., 2002) - a step needed for applying

model checking - is given as algorithm1. It is done by some syntactic transformations

(whose logical validity is obvious). There is a state in the Kripke structure for each

state of the FSMD. There are two modifications needed for depicting an FSMD as a

Kripke structure. (i) For any pathqi → qf , we need to examine whether the CTL for-

mula E[(¬dv) U uv] hold in qf or not. The (infinite) paths considered in this process

should not extend through the reset state. Hence a dummy state is added in the Kripke

structure for the reset state with self loop (so that the paths still remain infinite). All

the transitions that terminate in the reset state in the FSMDwill be terminated in the

dummy state corresponding to the reset state (but not in the reset state) in the Kripke

structure. (ii) Since, Kripke structure does not support labels in the transitions, we add

a dummy state in the Kripke structure for each transition of the FSMD. For example,

figure3.5 represents the Kripke structure of the FSMD in figure3.1(a). The dummy

states corresponding to the transitions are denoted as black circles in the model. The

assignments and the condition expressions are all abstracted out using the propositions

dv anduv. The propositiondv will be true in a dummy state if the variablev is defined

by some operation in the corresponding transition in the FSMD. Similarly, uv will be

true in a dummy state if the variablev is used in the condition of the transition or in

some operation in the transition corresponding to the dummystate in the FSMD. For

example, the propositionsdg, ux, ud andup,uq are true in the dummy state in figure

3.5corresponding to the transitionq0,2→ q0,4 in figure3.1(a) as the variableg is de-

fined and the variablesx andd are used in the operationg⇐ x+ d in this transition

and the variablesp andq are used in the condition of the transition isp > q. By con-

vention, if any proposition is not present in any state of theKripke structure, then the

negation of the proposition is true in that state. The above property can now be easily

verified using any CTL model checker such as NuSMV (Cimatti et al., 2000).

3.4.6 The equivalence checking method

The equivalence checking method is given as algorithm2. The method constructs an

initial path coverP0 of M0 by putting cutpoints as stated in subsection3.3.1. It may

3.4 Verification of non-uniform code motions 59

Algorithm 1 FSMDtoKripkeStr(M)
/* Input: an FSMDM */

/* Output: a Kripke structureK */

1: for each stateqi of FSMDM do

2: add a stateq′i in the Kripke structureK; For each variablev in M, associate¬dv and¬uv

with the stateq′i in K;

3: if qi is the reset state, addq′end in the Kripke structureK; add a self loop inq′end. For

each variablev in V, associate¬dv and¬uv with the stateq′end in K;

4: end for

5: for each transitionqi −→c q j in M do

6: if q j is the reset statethen

7: add a stateq′ic j and two transitionsq′i → q′ic j andq′ic j → q′end in K;

8: else

9: add a stateq′ic j and two transitionsq′i → q′ic j andq′ic j → q′j in K;

10: end if

11: Let the condition of the transitiong(v1, . . . ,vk). Associateuvi , 1≤ i ≤ k, with the state

q′ic j in K;

12: for each operationa⇐ f (v1, . . . ,vn) associated with the transitionqi −→c q j do

13: associateda anduvi , 1≤ i ≤ n, with the stateq′ic j in K;

14: end for

15: for each variablev in M do

16: if dv is not true in the stateq′ic j then

17: associate¬dv with the stateq′ic j in K;

18: end if

19: if uv is not true in the stateq′ic j then

20: associate¬uv with the stateq′ic j in K;

21: end if

22: end for

23: end for

60 Chapter 3 Verification of Code Motion Transformations

be noted that initiallyP0 contains all the paths from one cutpoint to another without

having any intermediate cutpoint. The path coverP0 is gradually updated in each

iteration of the algorithm. The method considers each pathβ in P0 from a cutpoint,

q0,i say, (whose corresponding state inM1 is already found) one by one and invokes

the functionfindEquivalentPath(given as algorithm3) with β as an input parameter to

find its equivalent path inM1. The functionfindEquivalentPathchecks all the paths in

M1 starting from the stateq1, j (which is the corresponding state ofq0,i) and returns a

pathα and a Boolean flag EXTEND. It returns one of the following combinations of

values ofα and EXTEND:

(i) the equivalent path ofβ asα whenα is found to be the equivalent path ofβ,

(ii) α = emptyand EXTEND = 0 when equivalent ofβ is not found and cannot be

found inM1 even by extendingβ, and

(iii) α = emptyand EXTEND = 1 when the equivalent ofβ is not found but may be

found by extendingβ.

Based on these returned values, algorithm2 works as follows:

(i) α is non-empty: it puts〈endPtNd(β),endPtNd(α)〉 in the set of corresponding

state pairs.

(ii) α is empty and EXTEND = 0: the method reports possible non-equivalence of

the FSMDs.

(iii) α is empty and EXTEND = 1: the method extendsβ (= q0,i ⇒ q0, f) in M0 by

concatenating it with all the paths fromq0, f to the next cutpoints and puts the

extended paths inP0 in place ofβ. The method, however, does not allow a path

to be extended so that the reset state or any cutpoint occurs more than once as

an intermediate node in the extended path. In addition, if the method finds that

there is no path ofM0 in P0 with endPtNd = q0, f , then it removes those pathsβ′

whosestartPtNd(β′) is q0, f from P0.

The functionfindEquivalentPath(algorithm3) works as follows.

3.4 Verification of non-uniform code motions 61

Algorithm 2 equivalenceChecker (M0, M1)
Require: Two FSMDsM0 andM1

Ensure: P0: a path cover ofM0, E: ordered pairs〈β,α〉 of paths ofM0 andM1, respectively,

such thatβ ∈ P0 andβ≃w α.

1: Let ζ, the set of corresponding state pairs, be{〈q0,0,q1,0〉};

2: Insert cutpoints inM0 using the rules stated in this section. LetP0 be the set of all paths

of M0 from a cutpoint to a cutpoint having no intermediary cutpoint. LetE be empty;

3: for each member〈q0,i ,q1, j〉 of ζ do

4: for each pathβ ∈ P0 emanating fromq0,i do

5: 〈α,EXTEND〉 = findEquivalentPath(β, q1, j , M0, M1);

/* α 6= empty::α is the equivalent path ofβ. α = empty and EXTEND = 0::

no equivalent path – nor obtainable by extension ofβ. α = empty

and EXTEND = 1:no equivalent path – but extension ofβ to be tried. */

6: if α is not emptythen

7: ζ← ζ
S

{〈endPtNd(β),endPtNd(α)〉}; E← E
S

{〈β,α〉};

8: else ifα is emptythen

9: if EXTEND is 0then

10: Report “equivalent path ofβ may not be present in M1” and exit (failure);

11: else

12: Extendβ (= 〈q0,i ⇒ q0, f 〉) in M0 by concatenating it with all the paths from

q0, f to the next cutpoints. LetBm be the set of all such concatenated paths of

β;

13: if any of the paths inBm contains the reset state or any cutpoint more than once

as an intermediate nodethen

14: Report “β may not have any equivalent in M1 and cannot be extended” and

exit (failure);

15: else

16: P0← P0−{β}; P0← P0∪Bm;

17: For the cutpointq0, f , if there is no path ofM0 in P0 with endPtNd = q0, f ,

thenP0← P0−{β′ | startPtNd(β′) = q0, f };

18: end if // path inBm contains reset state ...

19: end if // EXTEND is 0

20: end if // α is not empty

21: end for // each pathβ emanating fromq0,i

22: end for // each member〈q0,i ,q1, j〉 of ζ

23: ReturnP0 as a path cover ofM0 andE as a set of ordered pairs of equivalent paths ofM0

(from P0) andM1 and exit (success);

62 Chapter 3 Verification of Code Motion Transformations

(i) A pathα is found inM1 as the strong equivalent ofβ: the function returnsα –

the non-emptiness ofα indicates that an equivalent path is found.

(ii) The condition of execution of one path matches with that ofβ but the output

lists are not equivalent: the output lists cannot be shown tobe equivalent even if

β is extended; hence the function returnsα = emptyand EXTEND = 0 which

indicates thatβ has no equivalent path inM1 and the equivalent path cannot be

found even by extendingβ.

(iii) The condition of execution of one path matches with that ofβ but one output list

is a prefix of the other3: equivalence of output lists may be shown by extending

β; hence, the function returnsα = emptyand EXTEND = 1.

(iv) a pathαk is found inM1 which has the same condition of execution and output

list as that ofβ having, however, some variables which are not transformed iden-

tically in the pathsβ andαk: The function then finds the setV ′ of variables of

β andαk as defined earlier. The method then calls the functiondataFlowProp-

ertyCheck(algorithm4) for both β andαk to check some data-flow properties

(described earlier). The functiondataFlowPropertyCheck, in turn, obtains the

respective Kripke structures fromM0 andM1 by algorithm1 and then constructs

the appropriate CTL formulas capturing the required property for each variable

in V ′; it invokes the model checking toolNuSMVto check the properties. If for

any of the paths, the functiondataFlowPropertyCheckreturns EXTEND, then

the functionfindEquivalentPathreturnsα = emptyand EXTEND = 1 to the

equivalence checker. If, for both the paths, the functiondataFlowPropertyCheck

returns EQUIV (by ensuring that for all the variables inV ′, the property ‘used

before being defined’ is false), then the functionfindEquivalentPathreturnsαk

as the weak equivalent path ofβ to the equivalence checker.

(v) The condition of execution of none of the paths starting from q1, j is found to

be the same as that ofβ: the equivalent path may be obtained by extendingβ;

hence, the function returnsα = emptyand EXTEND = 1.

It may be noted from step 1 of the functionf indEquivalentPaththat the function

considers several paths starting from the stateq1, j in M1 to find the equivalence ofβ
3 It may be noted that we extendβ even if the output list ofβ strictly covers that ofα. The idea is

that for each extended path ofβ, our method eventually finds the extended paths ofα with the same

output list as that of the extended paths ofβ.

3.4 Verification of non-uniform code motions 63

Algorithm 3 findEquivalentPath (β, q1, j , M0, M1)
/* Ensure: a pathα and a Boolean flag EXTEND –

α is non-empty – whenα is found to be the equivalent path ofβ;

α is empty and EXTEND = 0 – equivalent ofβ is not found inM1 and cannot be found inM1

by extendingβ;

α is empty and EXTEND = 1 – equivalent ofβ is not found inM1 but may be found by

extendingβ. */

1: for each pathαk which starts fromq1, j in M1 do

2: if αk is strong equivalent toβ then

3: return〈αk,0〉; /* Rβ ≃ Rαk and rβ ≃ rαk. return value of EXTEND is redundant

here */

4: else ifRβ ≃ Rαk andOβ ≃Oαk then

5: Let V ′ be the set of variables whose transformations are not same insβ andsαk;

6: x = dataFlowPropertyCheck (β, V ′, M0);

7: y = dataFlowPropertyCheck (αk, V ′, M1);

8: If x is EXTEND ory isEXTEND: return〈φ,1〉; /* path needs to be extended */

9: If x is EQUIV andy is EQUIV: return〈αk,0〉; /* β areαk weak equivalent. the

return value of EXTEND is redundant here */

10: else ifRβ ≃ Rαk then

11: if Oβ = prefix(Oαk) or Oαk = prefix(Oβ) then

12: return〈φ,1〉; /* output lists are matched partially; so, equivalent ofβ may found

by extending it */

13: else

14: return〈φ,0〉; /* output lists are not equivalent; hence equivalent path can not be

found even by extend */

15: end if

16: end if

17: end for

18: return〈φ,1〉; /* condition mismatches will all the paths fromq1, j ; equivalent path may

be found by extendingβ */

64 Chapter 3 Verification of Code Motion Transformations

in M1. The function considers those paths in the following manner. It first considers

all the transitions fromq1, j . Since all theses transitions have distinct conditions of

execution, the condition of execution of only one of them matches (partially) with

that of β. If the condition of execution of a transition,q1, j → q1,k say, starting from

q1, j matches partially with that ofβ, then the function concatenates the subsequent

transitions fromq1,k with q1, j → q1,k one by one and checks for equivalence. This

process continues till any repetition of nodes occurs or thecondition of execution of

path matches with that ofβ.

Algorithm 4 dataFlowPropertyCheck (p, V′, M)
/* This function checks whether the variables inV ′ have been used before being defined in

the rest of the behaviour in the FSMDM starting from the end state of the pathp. It re-

turns EXTEND if any variable ofV ′ is used before being defined; otherwise returns EQUIV

*/

1: Obtain the Kripke structure K fromM using algorithm1;

2: for each variablev∈V ′ do

3: Let qf be the end state of the pathp;

4: if v is in V then

5: /* V is the set of storage variables ofM; if v is not inV, the formula E[(¬dv) U uv]

is false by default atqf */

6: Check satisfiability of the formula E[(¬dv) U uv] in the state corresponding toqf in

Kripke structure K using NuSMV;

7: if the formula is true inqf then

8: return EXTEND; /*v is used before being defined in the behaviour starting from

qe */

9: end if

10: end if

11: end for

12: return EQUIV; /* the formulaused before being definedis false all the variables inV ′ at

qf */

3.4.7 Illustration of working of the equivalence checking method

Let us now discuss the working of our equivalence checking method with the help of

the example given in figures3.1(a) and3.1(b). The method first sets the cutpoints in

3.4 Verification of non-uniform code motions 65

M0 and finds the initial path coverP0 = {β1, β2, β3, β4, β5, β6, β7, β8}. The initial

value ofζ = {〈q0,0,q1,0〉}. The iterations of the equivalence checking method are as

follows:

1. The method first considers the paths from the stateq0,0. Let β = β1. It finds a

pathαk = q1,0→ q1,1 in M1 such that both paths have the same condition of execution

(which is “true" in this case) and no output but the variabled is transformed inβ1 but

not in αk. The method next finds the property E[(¬dd) U ud] is true at the stateq0,1.

So,β1 needs path extension. The extended paths ofβ1 areβ1β2 andβ1β3. Also, the

method removesβ2 andβ3 as there is no path inP0 that terminates inq0,2, i.e., the

startPtNdof β2 andβ3. Now,P0 = {β1β2, β1β3, β4, β5, β6, β7, β8}.

2. Let β = β1β2. The method findsα1 = q1,0→ q1,1→ q1,2→ q1,5 in M1 as the

strong equivalent ofβ. The method sets the end states ofβ andα1, i.e.,〈q0,4,q1,5〉, as

a corresponding state pair and puts it inζ.

3. Let β = β1β3. The method fails to find any path inM1 with same condition of

execution. So,β needs path extension. The method also removesβ4 andβ5 from P0

as there is no path inP0 which terminates inq1,3. Now,P0 = {β1β2, β1β3β4, β1β3β5,

β6, β7,β8}.

4. Let β = β1β3β5. The method findsα21 = q1,0→ q1,1→ q1,4→ q1,5 with the

same condition of execution and output list (empty) but the variabled is transformed

in β1β3β5 but not in α21. Next, the method finds that the property E[(¬dd) U ud]

is false for bothq0,4 (= endPtNd(β)) andq1,5 (= endPtNd(α21)). So, α21 is weak

equivalent to the pathβ.

5. Similarly, it can be shown that the pathα22 = q1,0→ q1,1→ q1,3→ q1,5 is weak

equivalent to the pathβ1β3β4 for a similar reason for the variablec. At this stage, the

equivalent of all the paths from the stateq0,0 found and hence the corresponding pair

{〈q0,0,q1,0〉} ∈ ζ is marked.

6. The method now considers paths from stateq0,4. It findsα3 = q1,5→ q1,6 as the

equivalent path ofβ6. The method sets the end states ofβ6 andα3, i.e.,{〈q0,4,q1,6〉} in

ζ. There is no other path the stateq0,0 and hence the corresponding pair〈q0,4,q1,5〉 ∈ ζ
is marked.

66 Chapter 3 Verification of Code Motion Transformations

7 and 8. The method now considers paths from stateq0,5. In the next two iter-

ations, the method findsα4 = q1,6−−−→¬p=qq1,8→ q1,0 andα5 = q1,6−−→p=qq1,7→ q1,0 as

the respective equivalent paths ofβ8 andβ7. The method next marks the correspond-

ing pair 〈q0,5,q1,6〉. Now, all corresponding state pairs ofζ have been marked and

each member ofP0 have an equivalent path inM1. Hence, the method establishes the

equivalence between these two FSMDs.

Let us now consider the equivalence checking between the FSMD in figure3.1(c)

with no operation in the transitionq0,5−−−→¬p=qq0,7 and the FSMD in figure3.1(d). For

this case, the first three iterations of the algorithm would be exactly the same as the

first three iterations of the algorithm for equivalence checking between FSMDs in

figures3.1(a) and in figure3.1(b) (as given above). In step 4, the pathβ = β1β3β5,

however, needs to be extended in this case as the method finds the property E[(¬dd) U

ud] to be true at end point ofα21 = q1,0→ q1,1→ q1,4→ q1,5. The extended path ofβ
is β1β3β5β6. The method again finds the pathα211= q1,0→ q1,1→ q1,4→ q1,5→ q1,6

with the same condition of execution and output list but the variabled is transformed

in β1β3β5β6 but not inα211. The method next finds that the property E[(¬dd) U ud]

is again true atq1,7. So, this path is extended and the extended paths areβ1β3β5β6β7

andβ1β3β5β6β8. For the pathβ1β3β5β6β8, the method cannot find any equivalent path

in M1 starting fromq1,0 because of the mismatch of the output. Hence, the method

reports a possible non-equivalence between these two FSMDs.

3.4.8 Justification of the initial cutpoints

As discussed in subsection3.3.1, we choose the reset state, and all the convergence

and divergence states of an FSMD as cutpoints. Choice of cutpoints, however, is not

unique and it is not guaranteed that a path cover of one FSMD obtained from any

choice of cutpoints in itself will have the corresponding set of equivalent paths for the

other FSMD. It is, therefore, necessary to search for a ‘suitable’ choice of cutpoints

such that the path cover obtained by them have a set of equivalent paths in the other

FSMD. Specifically, a suitable choice of cutpoints finally establishes the equivalence

of two FSMDs by theorem2. We start from a ‘good’ set of cutpoints and then arrive

at the ‘suitable’ set of cutpoints. A set of cutpoints is a ‘good’ starting point if we can

reach the ‘suitable’ one from such a set efficiently with minimum number of iterations

in most of the cases. In the following, we discuss why our choice of cutpoints is a

3.4 Verification of non-uniform code motions 67

‘good starting point’ for verification of code motion transformations.

.

.
.

.

.
.

.

.
.

..
.

.

.
.

..
.

..
. .. .

(c)

4 paths

(b)

q1,3

q1,5

q1,1

q1,4

8 paths

q1,4

q1,5

q1,1

16 paths

(d)

q1,5

q1,1

2

(a)

q0,2

q0,3

q0,5

q0,4

q0,1

1

4

3

Figure 3.6: An example of cutpoint selection

It might be noted that we have chosen some redundant points asthe initial cut-

points. The situation is clarified by figure3.6(a). There is only one loop in the figure.

We can cut this loop by choosing only stateq0,1 as a cutpoint. (In other words, in

general, we can choose the reset state and all the loop starting states as cutpoints.) It

gives us the minimum number of cutpoints. Instead, we chooseall the five states as

cutpoints. If we chooseq0,1 as the only cutpoint, there would be 32 paths in the ini-

tial path cover. Specifically, each path comprises five transitions. For each transition,

we have two choices; either taking the left transition or taking the right transition. In

each iteration, algorithm2 finds an equivalent of each of the 32 paths - the algorithm

takes 32 iterations to show the equivalence between the FSMDs. In contrast, if we

choose all the states as cutpoints (since they represent merging of control flows), then

there would be 10 paths in the initial path cover. Consider thecode segments in four

conditional blocks betweenq0,1 andq0,2 (segment 1), betweenq0,2 andq0,3 (segment

2), betweenq0,3 andq0,4 (segment 3) and betweenq0,4 andq0,5 (segment 4). The

segment numbers are shaded in the figure. It may happen that the scheduler (i) does

not move any code beyond the conditional block boundaries, (ii) moves code between

the first and the second conditional blocks, (iii) moves code between the first and the

third conditional blocks or (iv) moves code between the first and the fourth conditional

blocks. For case (i), no path extension is required. Our algorithm 2 finds an equivalent

of each of the 10 paths of the path cover in each iterations. So, the algorithm takes 10

iterations to establish the equivalence. Let us now consider the case (ii). Algorithm2

extends two paths in segment 1 to segments 2 in two iterationsand put four extended

68 Chapter 3 Verification of Code Motion Transformations

paths inP0. It also removes paths in segments 1 and 2 fromP0 So, after extensionsP0

contains 10 paths. In the next 10 iterations, algorithm2 finds an equivalent of each of

the 10 paths of the path cover. So, algorithm2 takes 12 iterations. In the same way,

one can show that for cases (iii) and (iv), the algorithm takes respectively, 18 or 32

iterations. The numbers of paths in the path cover (and hencethe actual cutpoints) are

shown in figures3.6(a), 3.6(b), 3.6(c), 3.6(d), respectively for these four cases. Even

though the algorithm takes the same number of iterations in the last case (as that in

the original case), its performance is better in all other cases. Also, it may be noted

that the chance of moving code between the first and the fourthconditional blocks is

the least compared to all other cases.

3.5 Multicycle and pipelined execution of operations

Real functional units have different propagation delays based on their designs. A mul-

tiplier, for example, is much slower than an adder. Therefore, all the operations do not

finish in one control step. Since an operation may no longer execute in one cycle, we

can have the following two execution models of operations. 1. Multicycleexecution of

an operation requires two or more control steps (figure3.7(a)). This increases the uti-

lization of the faster functional units since two or more operations can be scheduled on

them during one operation on the multicycle units. 2. Pipelining the pairs of operands

over the cycles of a multicycle execution of an operationp allows concurrent execu-

tion of p on these pairs of operands, each pair getting partially computed in one stage

of the pipelined unit (figure3.7 (b)) resulting in a better utilization of the (pipelined)

unit. An operation may be scheduled in multicycle or pipelined manner when the code

motion techniques are applied in the behaviour. The definition of FSMD model and

our verification algorithm should, therefore, accommodatemulticycle and pipelined

operations. In the following, we discuss the enhancement ofFSMD models and the

computation of data transformation for this purpose.

Our algorithm can handle multicycle and pipelined execution of the operations

with the following modification of the update function in theFSMD definition in

section3.2.1: h : Q× 2S → U ×N, whereQ,S ,U are the same as before andN

represents the set of natural numbers. Specifically,h(q, true) = (a⇐ a∗ b, t) rep-

resents thatt more time steps are required to complete the operation ‘*’; this second

3.5 Multicycle and pipelined execution of operations 69

(a)

−
*

+

(a)

−
*

+

*

*

(b)

*

*

(b)

(d)(c)

−/[a⇐ b∗c,2]

−/[a⇐ b∗c,1], [p⇐ q∗ r,2]

−/[a⇐ b∗c,0], [p⇐ q∗ r,1]

−/[p⇐ q∗ r,0]

a≤ x/[a⇐ a∗b,2], [c⇐ a+d,0]

−/[a⇐ a∗b,1], [e⇐ b+4,0]

−/[a⇐ a∗b,0], [f ⇐ a+x,0]

x < c/[x⇐ a+c,0]

q1,0

q1,1

q1,2

q1,4
q1,4

q1,3
q1,3

q1,2

q1,1

q1,0

Figure 3.7: (a) A 2-cycle multiplier; (b) A 3-stage pipelined multiplier; (c) A sample

path in an FSMD with multicycle operation; (d) A sample path in an FSMD with

pipelined operation

membert of the value-tuple ofh is called thespanof that operation. For a single

cycle operation,t should be zero. The input behaviour does not specify whetheran

operation is multicycle or pipelined. Hence, all operations in the input FSMD are

represented as single cycle ones. Depending upon the type ofthe operators, the oper-

ations are scheduled in a multicycle or pipelined manner by the scheduler. So, these

would be reflected in the scheduled FSMD. In figure3.7(c), the operationa⇐ a∗b

is scheduled in a 3 cycle multiplier. In the figure3.7(d), the operationsa⇐ b∗ c

andp⇐ q∗ r are scheduled using a 3 stage pipelined multiplier. The value produced

by a multicycle or a pipelined operation is available only when the span of the op-

eration becomes zero. So, during computation of the condition of execution and the

data transformations of a path in a scheduled FSMD, an operation will be considered

only when its span value becomes zero. For example, for the path shown in figure

3.7(c), the condition of execution isa≤ x ∧ x < (a+d) and the data transformation

is 〈〈a∗b, b, a+d, d, b+4, a+x, a∗b+a+d〉,−〉, where the variables are in order

〈a≺ b≺ c≺ d≺ e≺ f ≺ x〉. It may be noted that the data transformation correspond-

ing to the operationf ⇐ a+ x uses the old valuea whereas the operationx⇐ a+ c

uses the updated value ofa.

Since the operations are now scheduled over multiple steps,the execution of an

70 Chapter 3 Verification of Code Motion Transformations

operation should complete within a path. In other words, a cutpoint should not be

placed in an FSMD such that execution of an operation spans over multiple paths.

The presence of multicycle and(or) pipelined operations, however, do not create any

problem in selecting the cutpoints. Let a 3-cycle operationp be conceived in the

pre-scheduled FSMD in a transitionql → qm; let, in the scheduled FSMD,p spans

over the transition sequenceqi → q j → qk→ qs, whereqi corresponds toql andqs

corresponds toqm. It is obvious that there cannot be any bifurcation of flow from the

intermediary statesq j or qk in the scheduled behaviour. For the pipelined operation,

however, another aspect is to be checked: whether the sequence in which the operand

pairs appear at the input stage of the pipeline is in keeping with that in which the

destination registers are strobed. This aspect is verified in the RTL generation phase

which is discussed in the next chapter.

3.6 Correctness and complexity

3.6.1 Correctness

Let the cutpoints be put in an FSMDM according to the rule given in subsection

3.3.1. Let P be a set of all paths from one cutpoint to another without having any

intermediary cutpoint. Hence, by Floyd-Hoare method of program verification (Floyd,

1967; Hoare, 1969; King, 1980), P is a path cover ofM. Let us now define two

operations on the setP. We will show thatP remains a path cover ofM after any

number of applications of these two operations.

Definition 9 (Concatenation) Let p be a path in P. LetendNdPt(p) denote the end

state of p. Let Pt be the set of all paths in P that start fromendNdPt(p). Let Pp be the

set of paths which are obtained by concatenating p with the members of Pt . Replace

p with Pp in P.

Lemma 1 Let P′ be a set of paths obtained from a path cover P by an applicationof

concatenation operation to a member of P. The set P′ is a path cover.

3.6 Correctness and complexity 71

Proof: Letcbe any computation inM that contains some pathpon which the con-

catenation operation has been applied. Letc be represented as the concatenated paths

π1 = [p j1 p j2 . . . p jn], wherec≃ π1 andp j i = 〈q j i−1⇒ q j i〉, 1≤ i ≤ n, be the paths ofP;

let p jk be the pathp. So, in particular,p is of the formp jk = 〈q jk−1⇒ q jk〉 and the next

path inπ1 is p jk+1 = 〈q jk⇒ q jk+1〉. Sincep is concatenated with all its successor paths

in P, there must exist a pathp′k in P′ of the form〈q jk−1⇒ q jk+1〉. So, corresponding to

π1, there exists a concatenated pathπ2 of the formπ2 = [p j1 p j2 . . . p jk−1 p′kp jk+2 . . . p jn],

such that,π1≃ π2. Therefore,c≃ π2. Since,c is chosen arbitrarily, the above obser-

vation holds for any computation. Hence,P′ is a a path cover. 2

Definition 10 (Deletion) Let there be a cutpoint q in M such that no path in (a path

cover) P terminates in q, Remove all the paths starting at q from P.

q3

q1

q2

p4

p2

p3

p1

Figure 3.8: Illustration of deletion operation

Let us now analyze how we can reach a situation where there is acutpoint in

which no path of the path cover terminates. Let us consider the FSMD in figure3.8

for this purpose. The statesq1, q2 andq3 of this FSMD are cutpoints in our logic.

The path cover of the FSMD isP = {p1, p2, p3, p4}. Now, let theconcatenation

operation be applied on pathp1. So, after this operation, the path cover becomes

P′ = {p1p3, p1p4, p2, p3, p4}. Now, if the concatenationoperation be applied on

p2, then the path cover isP′ = {p1p3, p1p4, p2p3, p2p4, p3, p4}. Since all the paths

that terminate inq2 are extended, there is no path inP′ that terminates onq2. All

computations in this FSMD which follow the pathp3 or p4 are covered by the first

four members and accordingly membersp3 and p4 need no longer be maintained.

So, we can remove them from the path cover and the updated pathcover isP′ =

{p1p3, p1p4, p2p3, p2p4}. Hence we have the following lemma.

72 Chapter 3 Verification of Code Motion Transformations

Lemma 2 Let P′ be a set of paths obtained from a path cover P by an applicationof

deletion operation to a member of P. The set P′ is a path cover.

Proof: Let there be no path inP that terminates in a state,q say. Letc be any

computation which can be represented as the concatenated pathsπ1 = [p j1 p j2 . . . p jn],

wherep j i = 〈q j i−1⇒ q j i〉, 1≤ i ≤ n, be the paths ofP andq j0 = q jn = the reset state.

Since there is no path inP that terminates inq, none of theq j i , 0≤ i ≤ n, is q. Hence,

P′ remains a path cover after removing all paths starting fromq. Therefore,P′ remains

a path cover after application ofdeletionoperation. 2

Theorem 3 (Termination) Algorithm2 always terminates.

Proof: In each iteration of the loop (5-21) in algorithm2, either the equivalent of

the pathβ of M0 is found in M1 or the equivalent ofβ is not found inM1 and β
is extended. (The other case whereβ is decided to be not worth extending leads to

(failure) exit). If a path is considered in one iteration of the algorithm, it will not

be considered again in other iterations of the loop because of the restriction of path

extension imposed in step 14. Let at any iteration,Pc be the set of paths ofM0 that

are already considered by the algorithm. Initially,Pc is empty. The cardinality ofPc

increases by one in each iteration (not leading to (failure)exit) of the algorithm. Let

Pall be the set of all possible paths between cutpoints (with or without intermediary

cutpoints) in FSMDM0. The setPall is finite because of the condition imposed by step

13. Hence, each execution of the loop reduces‖Pall −Pc‖ by one. Since‖Pall −Pc‖

is in the well-founded set (Manna, 1974) of non-negative numbers having no infinite

decreasing sequence, the loop (5-21) of algorithm2 cannot execute infinitely long.

Now consider the outer loop (3-22) in algorithm2. In each iteration of this loop,

one corresponding state pair from the setζ is considered. Corresponding state pairs

are added inζ throughset unionin step 7. Hence, no corresponding state pair is

considered twice. Let the the number of states in FSMDsM0 andM1 be n1 andn2,

respectively. Therefore, the upper bound of the number of corresponding state pairs

is n1× n2. Let at any iteration,nζ be the number of corresponding state pairs that

are already considered by the algorithm. Initially,nζ is zero. In each iteration of the

loop (3-22),nζ increases by one. Therefore, each execution of the loop (notleading to

3.6 Correctness and complexity 73

(failure) exit) reducesn1×n2−nζ by one. Sincen1×n2−nζ is in the well-founded

set (Manna, 1974) of non-negative numbers having no infinite decreasing sequence,

the loop (3-22) of algorithm2 cannot execute the loops infinitely long. Hence, the

algorithm also terminates. 2

Let C be the set of all the cutpoints inM0 obtained in step 2 of algorithm2 by

the rule given in section3.4.6. Let C′ ⊆ C be such that every cutpoint inC′ has a

corresponding state inM1. We never extend a path beyond a loop. Therefore, all

the loops in the FSMDM0 are cut by at least one cutpoint inC′. Also, algorithm

2 never allows the pathβ of M0 to be equivalent ofα of M1 when the conditions

of execution and the output lists are not the same in them (ensured by the invoked

function f indEquivalentPath). Step 7 of algorithm2 ensures that the setP0 contains

paths of the form〈q0l ⇒ q0m〉, whereq0l ,q0m ∈ C′. But, the converse is not true,

i.e., P0 may not contain all such paths; moreover,P0 may contain paths which have

intermediary states belonging toC′. So, the final value ofP0 does not satisfy the

Floyd-Hoare rules of path cover. We prove by the following theorem thatP0 remains

a path cover ofM0 even if it does not satisfy Floyd-Hoare rules of path cover.

Theorem 4 (Soundness)If algorithm2 terminates, then M0⊑M1.

Proof: From theorem2, it follows thatM0⊑M1, if the output value ofP0 yielded

by algorithm2 is a path cover ofM0. Recall thatE is the set of ordered pairs of

equivalent paths ofM0 andM1. Steps 5−7 of the algorithm ensure that the output

E of the algorithm contains only pairs of equivalent paths ofM0 (belonging toP0)

andM1; this property ofE, therefore, is an invariant. So, we have to show that the

assertion,P0 (the other output of the algorithm) is a path cover ofM0, is an invariant at

each step of the algorithm. Specifically, we prove the above assertion for entry (step

3) of the outer loop (3-22). Since, the algorithm2 is assumed to terminate, the loop

(3-22) is finally exited; once proved, the invariant thatP0 is a path cover ofM0 ensures

that the exit takes place from step 3 withP0 as a path cover.

At step 2,P0 is a path cover by Floyd-Hoare’s rule of path cover. As there is no

statement other than the loop body (4-21) in the outer loop (3-22), we have only to

prove that the assertion is true at the entry point (step 4) ofthe inner loop (4-21) of

74 Chapter 3 Verification of Code Motion Transformations

the algorithm. Hence, let us consider the assertionA(n) : P0 is a path cover on thenth

entry of the loop (4-21). We prove∀nA(n) by induction onn.

Basis (n=1): Step 4 is entered first from step 2 and 3 with value of P0 which is a

path cover by Floyd-Hoare rule.

Induction step: Hypothesis: Let step 4 be enteredmth time with a value ofP(m)
0 ;

P(m)
0 is a path cover.

Let n = m+ 1. Let us now analyze howP(m+1)
0 is obtained fromP(m)

0 in themth

iteration of the loop. In particular, the following cases may arise: (i) The equiva-

lent path ofβ is found: The iteration does not make any change inP(m)
0 . Therefore,

P(m+1)
0 = P(m)

0 remains a path cover at the(m+1)th entry to the loop. (ii) The equiv-

alent ofβ is not found: In steps 12-16, theconcatenationoperation is performed on

P(m)
0 resulting inP′0, say. By lemma1, P′0 is a path cover ofM0. In step 17, it applies

deletionoperation onP′0 resulting inP(m+1)
0 . From lemma2, P(m+1)

0 remains a path

cover ofM0 subsequently. 2

3.6.2 Complexity

The complexity of normalization of a formulaF is O(‖F‖2), where‖F‖ denotes the

length of the formula, due to multiplication of normalized sums. (For all other oper-

ations, it is linear in‖F‖). Let n be the number of states in the FSMD and k be the

maximum number of parallel edges between any two states. So,the maximum possi-

ble state transitions from a state isk.n. The number of edges in an FSMD iskn2 in the

worst case andkn in the best case. In the Kripke structure, we have one state for each

state of the FSMD and one state and two edges for each edge of FSMD. The formula

length is fixed here. The complexity of CTL model checking isO(|ψ|.(x+y)), where

|ψ| is the length of the CTL formulaψ andx andy are respectively the number of

states and the number of edges in the Kripke structure. In ourcase, the CTL model

checking complexity isO(n2) in the worst case andO(n) in the best case.

Let us find the complexity of the the functionf indequivalentPath. All the tran-

sitions emanating from a state have distinct conditions of execution. As discussed in

3.7 Experimental results 75

subsection3.4.6, the condition of at most one of these transitions fromq1 j matches

(may be partially) withRβ. If the condition of transition matches partially, then the

function will concatenate the subsequent transitions withthis path one by one and

check for equivalence. This process will continue till any repetition of nodes occurs

or the condition of execution of a path matches. In the worst case, this process it-

eratesn times. The CTL model checker may be invoked to check some data-flow

properties only when the condition of execution matches. The condition of execution

of at most one path may match. So, the complexity of finding theequivalent path is

O(kn.n.‖F‖2+n2) = O(kn2‖F‖2), where‖F‖ is the maximum of the lengths ofRβ,

Rα, rβ andrα. However, the equivalent path can be found inO(1.‖F‖2) time when

there is only one path fromq1 j which is equivalent toβ.

It is required to find the equivalent path for every path inP0. Initially, this set contains

at mostO(n2) number of paths. In the best case, the equivalent path for each member

of this set can be found directly and no path extension is required. Also, the number of

paths isO(n) (for structured flow-chart). In the worst case, one path may be required

to be extendedn times. In this case, we have to considerk.(n−1) + k2.(n−1).(n−

2) + . . . + k(n−1).(n−1).(n−2).2.1 ≃ k(n−1).(n−1)(n−1) number of paths.

So, the complexity of our algorithm is O(k(n−1)(n− 1)(n−1). kn2. ‖F‖2) =

O(knn(n+1).‖F‖2) in the worst case andO(n.1.‖F‖2) = O(n‖F‖2) in the best case.

3.7 Experimental results

The verification method described in this paper has been implemented in C and tested

on the results produced by a high-level synthesis tool SPARK (Gupta et al., 2003c)

that employs a set of code transformations during scheduling. Specifically, SPARK

employs common sub-expression elimination (CSE), copy propagation, dead code

elimination in its pre-synthesis phase, dynamic renaming of variables and all kinds

of code motion techniques during scheduling phase. The FSMDs are extracted from

the behaviours at input and the output of the scheduling phase of SPARK. Our equiv-

alence checker has been run for fourteen HLS benchmarks (Panda and Dutt, 1995;

Parker et al., 1986; Wakabayashi and Yoshimura, 1989). The characteristics of the

benchmarks in terms of the numbers of basic blocks (BB) and branching blocks are

76 Chapter 3 Verification of Code Motion Transformations

#operation #variable #lines of code

Benchmark #BB #branch before after before after before after

GCD 7 5 9 29 5 16 26 96

TLC 17 6 28 58 13 31 79 183

MODN 7 4 12 22 6 17 18 67

PERFECT 6 3 8 13 4 11 17 48

LRU 22 19 49 74 19 61 113 227

DHRC 7 14 131 231 72 209 169 543

BARCODE 28 25 52 74 17 58 151 310

FINDMIN8 14 7 21 24 15 22 35 94

IEEE754 40 28 74 237 16 135 223 558

PRAWN 85 53 227 652 29 433 487 1484

DIFFEQ 4 1 19 20 12 18 23 60

WAKA 6 2 17 21 32 36 31 58

PARKER 14 6 22 33 14 31 39 102

QRS 26 16 139 125 35 112 178 332

Table 3.1: Characteristics of the HLS benchmarks and synthesis results of SPARK

listed in the second and the third columns in table3.1. The number of three-address

operations, variables and lines of code in the input C code ofthe behaviours and in

the C code at the output of the scheduling phase of SPARK are also listed in table

3.1. These figures are taken during our first experiment explained below. It might be

noted from the table that the behaviours are transformed significantly by the synthesis

tool. The model checking tool NuSMV (Cimatti et al., 2000) has been integrated in

our equivalence checker for checking the satisfiability of the data-flow properties.

In our first experiment, we enabled all possible code motionsin SPARK. The

benchmark behaviours are run on SPARK and the FSMDs are constructed automati-

cally from the initial behaviour and the intermediate results after the scheduling steps

of SPARK for all the benchmarks. Table3.2 lists the verification results in terms of

the number of states in the input FSMD (M0) and that in the output FSMD (M1), the

number of paths in the computed path cover (P0) of M0, the number of path exten-

sions required during equivalence checking, the number of times the model checker

is invoked, the number of weak equivalent paths detected by our method, the num-

ber of iterations of the algorithm and the average overall execution time and time

taken for model checking of the algorithm. It may be noted that path extension is

required to handle code motions beyond basic blocks. So, it is evident from column

3.7 Experimental results 77

#states verification results time(s)

Benchmarks M0 M1 #paths(P0) #Extend #modelChk #weakEquiv #iterations overall modelChk

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

GCD 7 6 11 4 5 0 17 0.325 0.294

TLC 13 13 20 0 2 1 20 0.245 0.184

MODN 6 5 9 4 2 0 13 0.541 0.452

PERFECT 9 6 7 1 2 0 8 0.107 0.078

LRU 33 25 39 1 14 4 39 3.570 3.449

DHRC 62 47 31 1 18 1 33 162.646 162.000

BARCODE 32 29 55 2 10 4 64 3.131 3.011

FINDMIN8 8 9 15 45 32 7 32 10.663 10.378

IEEE754 55 42 59 13 42 9 74 345.032 344.238

PRAWN 122 114 154 1 4 2 154 582.068 581.650

DIFFEQ 16 10 3 1 5 2 3 0.269 0.201

WAKA 9 12 5 2 10 2 5 1.788 1.728

PARKER 12 10 13 8 35 5 23 6.562 6.436

QRS 53 24 35 51 66 8 519 194.000 183.800

Table 3.2: Results for several high-level synthesis benchmarks

5 of the table that SPARK has applied code motion techniques inall the cases except

one. Column 6 shows how frequent the model checker is invoked during equivalence

checking. The model checker decides whether to extend a pathor not based on the

‘used before being defined’ property for each variable whose transformation is not

equal in the corresponding paths. So, the model checker is invoked quite often by the

method. Column 7 shows the number of times the model checker has explored weak

equivalence of paths. The weak equivalence of paths arises due to a valid non-uniform

code motion. It is evident from column 7 of the table that non-uniform transforma-

tions have been applied in most of the cases. So, our method successfully verifies the

non-uniform code motions also. As discussed in the introduction section, the compet-

itive methods (Karfa, 2007; Kim and Mansouri, 2008) could not handle non-uniform

code motions and therefore, they are likely to produce false-negative results in these

cases. The number of iterations listed in column 8 suggests that the upper bound of

complexity of the algorithm is not hit for the practical scheduling verification cases.

The overall execution time includes the FSMD construction time, equivalence check-

ing time, converting the FSMD model to the Kripke structure in NuSMV input format

and the property checking time of NuSMV. We have run each example at least six

times to get the average overall execution time. Model checking time includes the

78 Chapter 3 Verification of Code Motion Transformations

time to convert an FSMD to an NuSMV model and the model checking time using

NuSMV tool. It may be noted that major portion of the execution time is spent for

model checking. The size of the NuSMV model depends on the size of the FSMD

and on the number of variables in the behaviour. The NuSMV model for the IEEE754

input behaviour, for example, contains over nine thousand lines of code. Therefore,

creating a file with NuSMV model from an FSMD takes large amount of the model

checking time. For large FSMDs like for DHRC, IEEE754, PRAWN, etc., the model

checking time, therefore, is comparatively high. However,as is evident from column

9 of the table, the time required for verification is not very high and is well within in

acceptable range.

common results time (sec) modelCheck

Benchmarks #iteration #extend (Karfa, 2007) Our method Our method

DIFFEQ 3 0 0.013 0.026 0

GCD 11 0 0.024 0.040 0

TLC 20 0 0.035 0.052 0

MODN 11 3 0.037 0.530 8

PERFECT 7 0 0.015 0.027 0

LRU 39 3 0.730 3.355 14

DHRC 27 3 0.074 52.304 4

BARCODE 55 2 0.098 1.392 4

IEEE754 73 6 0.178 64.790 12

PRAWN 158 4 0.546 2962.000 44

Table 3.3: Results for verification of uniform code motions

time(sec)

Benchmarks our method method in (Kundu et al., 2010) method in (Kim and Mansouri, 2008)

DIFFEQ 0.026 1.680 -

TLC 0.052 - 77.457

GCD 0.040 - 7.673

FINDMIN8 4.110 14.860 66.056

WAKA 1.230 2.610 -

PARKER 2.042 5.230 -

Table 3.4: Comparison time with competitive methods for uniform code motions

In our second experiment, we allow the SPARK scheduler to perform only uni-

form code transformations. The SPARK tool has such provisionfor the users. The

purposes of this experiment are (i) identifying the timing overhead of our method

3.7 Experimental results 79

over the method reported in (Karfa, 2007) and (ii) comparing the performance of our

method with the competitive methods reported in (Kundu et al., 2010) and (Kim and

Mansouri, 2008). It may be noted that our method is an enhancement of the method

reported in (Karfa, 2007) which also works for uniform code motions. In the case

of uniform code motion, each iteration of our method finds either a strong equiva-

lent path of the path under consideration or extends the path. In the later case, our

method performs the property checking for all the variables, whose transformations

mismatch to find a possible weak equivalent path before extending the path. How-

ever, the model checking is redundant here because we cannothave a weak equivalent

path for uniform code motions. So, our method performs some redundant property

checking in this case. As a result, it takes more time compared to the time taken by

the method reported in (Karfa, 2007). The results tabulated in table3.3 for several

HLS benchmarks reflect this fact. Our method and the one reported in (Karfa, 2007)

take equal number of iterations and perform the same number of path extensions in all

the cases; however, our method takes relatively more time. The overhead, however,

is within an acceptable limit. If we disable weak equivalentpath finding option from

our tool, then it behaves exactly the same as the method reported in (Karfa, 2007).

This redundant property checking for uniform code motion is, however, unavoidable

because we could have combination of both uniform and non-uniform code motions

in real verification cases. The implementations of the methods reported in (Kundu

et al., 2010) and (Kim and Mansouri, 2008) and some of the benchmarks used in their

paper are not available with us. Therefore, we have comparedthe time taken by our

method with the same for the methods reported in (Kundu et al., 2010) and (Kim and

Mansouri, 2008) based on the results available in their paper. The results are given

as table3.4. The time figures given in the table may differ marginally if the results

are taken in the same system. The results in the table suggestthat our method takes

relatively less amount of time compared to other methods.

In our third experiment, we take the original behaviours andmanually inject some

errors in the behaviour. We then check the validity of such code motions by our

equivalence checker. The objective of this experiment is tocheck the efficiency of

our method in detecting incorrect code transformations. Wehave carried out several

such experiments on each of the benchmarks. Some instances of such experiments

are reported here. Other experiments also provide similar results. We have introduced

the following code transformations: (i) Swapping two operations randomly (in DHRC

80 Chapter 3 Verification of Code Motion Transformations

Errors Benchmarks #opn #iter #extend #modelChk #time(s)

type 1
DIFFEQ 2 5 1 2 0.342

DHRC 3 30 0 0 0.200

type 2
GCD 1 11 3 4 0.175

MODN 2 18 3 20 0.498

type 3
TLC 2 27 7 2 1.268

IEEE754 4 79 25 40 107.243

type 4
BARCODE 4 114 62 98 21.208

IEEE754 8 32 19 20 40.120

Table 3.5: Results for several high-level synthesis benchmarks on erroneous design

and DIFFEQ) which changes the data dependencies among the operations. (ii) non-

uniform boosting up code motion which introduces false-data dependency in the other

branch (in GCD and MODN) (iii) non-uniform duplicating down code motion which

removes data dependency in the other branch (in TLC and IEEE754). (iv) mix of

some correct code motions and incorrect code motions (in IEEE754 and BARCODE).

The number of operations moved, the number of iterations, the number path exten-

sions, the number of calls to model checker and the average execution time for this

experiment are tabulated in table3.5. For example, in the MODN (i.e.,(a∗ b)%N)

behaviour, an operationa⇐ a/2 is moved from its original place and is placed before

its preceding if-else block. As a result, another operations⇐ s+a within the if-else

block gets the wrong value ofa. One of the the advantages of our method is that it can

localize the source of non-equivalence and can report a specific path as a cause of that.

For example, our method can report the path in which the valueof shas differed in the

MODN example. It is evident from table3.5that the worst case scenario (of complex-

ity analysis) is not encountered in the errorenous cases also and our method finds the

possible non-equivalence for the above examples quite efficiently. We also consider

the bugs that have already been identified in practical compilers by the methods re-

ported in (Gesellensetter et al., 2008) and in (Kundu et al., 2010). The objective of this

study is to check whether such errors can also be detected by our method or not. The

method reported in (Gesellensetter et al., 2008) identifies a bug in thegccscheduler.

The bug is due to violation of dependencies among certain operations. We consider

a high-level version of the example given in (Gesellensetter et al., 2008) and run our

tool on that example. Our method reports the non-equivalence of the behaviours as

the data transformation of the paths do not match. However, we need an assembly

3.7 Experimental results 81

level code to FSMD converter to apply our method on such application. Two bugs

have been identified in the SPARK HLS tool by the method reported in (Kundu et al.,

2010). One bug occurs in a particular corner case of copy propagation for array ele-

ments and the other bug is in the implementation of the code motion algorithm in the

scheduler. Our current implementation does not support array. Therefore, we create an

instance of the second bug of SPARK. This error is like the case(i) discussed above.

We observe that our tool shows the non-equivalence of behaviours for this case.

3.7.1 Limitations of the method

Since the targeted verification problem is undecidable, themethod presented here

may produce some false negative results. Specifically, someof the limitations of our

method are as follows:

In our path extension based equivalence of FSMDs, a path cannot be extended be-

yond loop boundaries as path extensions beyond loops are prevented by the definition

of a path cover. As a result, the method fails when a code segment is moved beyond

loops.

It may be recalled that we have considered the modulus and thedivision opera-

tions as functions in the normalized form. Therefore, if anysynthesis tool deals with

transformations over these operations, then normalization may fail to reduce them to

syntactic identity; and hence our method fails to show the equivalence. Our normal-

ization technique also fails for the case of operator strength reduction like replacing

a product of two variables by repeated addition over a loop. More sophisticated nor-

malization procedure needs to be evolved to handle such transformations.

Our method extends a path in the forward direction if the equivalent of that path

is not found. This techniques fails to reveal the equivalence in the following case: Let

there be a pathβ1 followed by a pathβ2 in FSMD M0. Also, let there be a pathα1

followed by a pathα2 in FSMD M1. Let the following equivalence between the paths

of M0 andM1 hold: β1≃ α1 andβ2 6= α2 but β1β2≃ α1α2. Sinceβ1β2 is equivalent

to α1α2, the FSMDs are actually equivalent. Our method first findsβ1 ≃ α1. Since,

equivalence ofβ1 is found, our method does not extendβ1. In the next step, it finds the

non-equivalence ofβ2 andα2 and reports a possible non-equivalence of the FSMDs.

82 Chapter 3 Verification of Code Motion Transformations

An enhancement of our method with a heuristic of backward path extension can reveal

this equivalence.

3.8 Conclusion

A novel equivalence checking method is presented in this chapter for verification of

code motion transformations. The verification problem is treated as the equivalence

checking problem of two FSMDs. The method is strong enough tohandle both uni-

form and non-uniform code motions. For non-uniform code motions, it constructs

specific data-flow properties automatically as CTL formulae and checks their satisfia-

bility using a CTL model checker. The correctness and the complexity of the method

are provided. The method is implemented and applied to validate the code motions

used by a well known HLS tool called SPARK. The experiments show that the algo-

rithm is usable for practical cases of equivalence preserving code motions.

Chapter 4

Verification of RTL generation phase

of High-level Synthesis and RTL

Transformations

4.1 Introduction

High-level synthesis (HLS) is the process of translating a behavioural description

into a register transfer level (RTL) description containing a datapath and a controller

(Gajski et al., 1992). The synthesis process consists of several sub-tasks carried out

in sequence such as, scheduling, allocation and binding anddatapath and controller

(i.e., RTL) generation (Gajski et al., 1992). In thedatapath and controller generation

phase, the first task is to generate the datapath by providinga proper interconnec-

tion path from the source register(s) to the destination register for every RT-operation.

The objective of this step is to maximize sharing of interconnection units among RT-

operations ensuring conflict-free data transfers among theconcurrent RT-operations.

The second task is to generate the controller FSM by identifying the control signals

required in each state. Such a synthesis flow is depicted in figure4.1.

As discussed in subsection2.2.2, a phase-wise verification technique that can han-

dle the difficulties of each synthesis sub-task separately is desirable for HLS verifi-

cation. A verification flow which works hand-in-hand with HLSis depicted in fig-

83

84 Chapter 4 Verification of RTL Generation Phase

Verification

Verification
Scheduling

generation

Preprocessing

Scheduling

behaviour afer Alloc. and Bind.

Datapath and Controller

Allocation and Binding

Synthesis tool
Verification tool

Behavioral specification

scheduled behaviour

Verification

Datapath and Controller

CDFG

DP structure and Controller FSM

Allocation and Binding

Phase III

RTL

Phase I

Phase II

Figure 4.1: Hand-in-hand synthesis and verification framework

ure 4.1. A number of works were reported in the literature on verification of each

phase of HLS. The methods proposed in Chapter 3 can be applied for verification of

the scheduling phase. The verification of allocation and binding phase is treated in

(Karfa, 2007; Mansouri and Vemuri, 1999). In this chapter, we present a verification

method for the datapath and controller generation phase (i.e., RTL) assuming that the

scheduling phase and the allocation and binding phase have already been verified.

In this work, verification of the RTL generation phase of HLS is accomplished in

two steps as shown in figure4.2. The input of this synthesis phase is modelled as an

FSMD while the output comprises two parts, the datapath comprising the netlist and

the controller represented as an FSM. In the first step of verification of this phase,

an FSMDM2 is constructed from the datapath interconnection information and the

controller FSM. In the next step, equivalence between the FSMD M1 representing the

behaviour after the allocation and binding phase, and the FSMD M2 is established.

To verify RTL transformations, the inputs to our method are two RTL designs – the

input RTL design and the one obtained from the input RTL by applying low power

transformations. We construct FSMDs from both the input andthe transformed RTLs

using the same FSMD construction method as step 1 in figure4.2 and then apply

FSMD based equivalence checker.

In (Karfa, 2007), a preliminary version of this work has been reported. The contri-

butions of this chapter over (Karfa, 2007) are as follows: 1. A rewriting based method

for constructing an FSMD from a datapath and a controller description. The method

4.1 Introduction 85

......

Controller FSM

s/〈1,1,0, ...,1〉

−/〈1,0,0, ..,1〉

control assertion
pattern

......

−/r1⇐ r1+ r2,

s/r4⇐ r4− r3 ¬s/r3⇐ r3− r4

s⇐ r3≤ r4

......

¬s/〈0,1,0, ...,0〉

D
at

ap
at

h
an

d
co

nt
ro

lle
r

de
sc

rip
tio

n Construction
FSMD

yes/no
step 1 step 2

Equivalence
Checking

Datapath

FSMD M1, constructed from datapath and controller

¬s/r3⇐ r3− r4

−/r1⇐ r1+ r2,
s⇐ r3≤ r4

s/r4⇐ r4− r3

FSMD M0, after allocation and binding phase

Figure 4.2: The steps of datapath and controller verification

is versatile enough to handle pipelined, multicycle and chained operations. 2. Rigor-

ous treatments of soundness, completeness and complexity of the rewriting method.

3. Handling some algebraic transformations for interconnection optimization that oc-

cur during datapath synthesis using a normalization technique of arithmetic expres-

sions. 4. We apply this method to verify RTL low power transformations. 5. An

extensive experimental results are provided to show the effectiveness of the presented

method.

The chapter is organized as follows. The challenges in verification of this phase

are discussed in section4.2. The basic issues involved in construction of the FSMD

M2 from the datapath and the controller FSM are discussed in section 4.3. The overall

FSMD construction framework is given in section4.4. Various flaws in the datapath

and controller descriptions which get detected during the rewriting process are also

discussed here. In section4.5, the correctness and the complexity of the rewriting

method are given. The equivalence checking method is given in section4.6. The

verification of several RTL low power transformations is given in section4.7. Exper-

imental results on several HLS benchmarks are given in section 4.8. The chapter is

concluded in section4.9.

86 Chapter 4 Verification of RTL Generation Phase

...

...
...

...

...
...

q0i3

v1⇐ v3−v4
¬(v1≤ v2)/

q0i2

q0i1

v1≤ v2/
v1⇐ v1+v2

le⇐ v1≤ v2

q1i3

q1i2

q1i4

q1i1

le/v1⇐ v1+v2¬le/v1⇐ v3−v4

(b) The scheduled behaviour(a) The original input of HLS

Figure 4.3: Scheduling of a relational operation

4.2 Verification challenges

Although RTL generation phase does not bring about any change in the control flow,

the verification of this phase still has many challenges. First and foremost, the input

RTL behaviour transforms to an output consisting of a datapath, which is merely a

structural description, and a controller FSM. The controller FSM invokes a control

assertion pattern (CAP), in each control step to execute all the required data-transfers

and proper operations in the FUs. As a result, a set of arithmetic operations as well as a

set of relational operations are performed in the datapath.To capture the computation

of the condition of state transition in the initial behaviour, the scheduler introduces a

set of Boolean variablesB say, one for each relational operation, to store the result

of that operation as depicted in figure4.3 (where le is a Boolean variable). These

Boolean variables (also called as status signals) are the inputs to the controller. The

state transitions in the controller FSM are controlled by these Boolean variables. The

verification task, therefore, involves identification of the RT-operations executed in

a controller state from the control signal assertions in that state. The non-triviality

of this task is due to the following reasons. First, it is not possible to obtain an RT-

operation from a given control signal assertion pattern by examining the control signal

values individually in isolation. This is because an RT-operation may involve a micro-

operation which is accomplished by a set of control signals rather than an individual

control signal. Secondly, each RT-operation is associatedwith a spatial sequence of

micro-operations depicting the data flow from the source register(s) to a destination

register. The analysis mechanism has to reveal this spatialsequence.

4.3 Construction of FSMDs from RTL designs 87

The second challenge in verification of this phase lies in handling multicyle or

pipelined RT-operations which require more than one FSM state. For example, sup-

pose an RT-operation involves ak−cycle functional unit (FU) in a stateq of the input

behaviour; then in the output behaviour, all the states in any path of lengthk lead-

ing to q should realize datapaths from the operand register(s) to the FU inputs while

only stateq should realize the datapath from the operand register(s) tothe destination

register. On the other hand, if the FU is a pipelined one, thenonly the(k−1)th pre-

decessor state (and not the remaining ones) in any path leading toq should realize the

operand datapaths. Accordingly, the control assertions inthese states should reflect

setting up of such partial datapaths. Thus, there may not be aone-to-one correspon-

dence between the control assertion pattern in an FSM state and the RT-operations

in the corresponding state of the input behaviour. We have not come across work on

equivalence checking of pipelined or multicycle operations in the literature.

4.3 Construction of FSMDs from RTL designs

Let us now examine how the FSMDM2 can be constructed from the datapath inter-

connection description and the controller FSM whose transitions are labelled with the

subsets ofB and the control assertion values. Construction ofM2 essentially consists

in replacing the members of the subsets ofB with the corresponding relational expres-

sions over the DP registers and the control assertion valueswith the corresponding

RT-operations. We shall describe the second task first and then discuss how the same

method accomplishes the first task.

4.3.1 Representation of the datapath description

The following two pieces of information have to be extractedfrom the datapath de-

scription in order to find the RT-operations in each state of the FSMDM2:

(i) The set of all possible micro-operations in the datapath- Let this set be denoted

asM . A data movement from an inputy of a datapath component to its outputx

is encoded by the micro-operationx⇐ y. The datapath components essentially are

the storage elements (registers), the functional units, the interconnection components

88 Chapter 4 Verification of RTL Generation Phase

M1

r1 r2 r3

CS_M2

f1Out

CS_r3Ld

M2 M3

CS_r2Ld

FU1
CS_FU2

FU2
CS_FU1

f2Out

f1Lin

r3_outr2_outr1_out

f1Rin

CS_M3

CS_r1Ld

CS_M11

CS_M10

f2Rin

Figure 4.4: Datapath with control signals

(buses, muxes, de-muxes, switches, etc.) or the signal lines.

(ii) The control signal assertion pattern for every micro-operation in M - Let

there ben control signals. A control signal assertion pattern neededfor any micro-

operation is represented as an orderedn-tuple of the form〈u1, u2, . . . , un〉, where each

ui , 1≤ i ≤ n, represents the value of the control signalci from the domain{0, 1, X};

ui = X implies that the control signalci is not required (relevant) for a particular

micro-operation. In addition, for the same micro-operation, there may be two different

combinations of control signals. Hence, the association between the micro-operations

of a datapath and their corresponding CAPs is conceived as a relation fmc⊆M ×A

whereA is the set of all possible control assertion patterns; the tuple (µ,ρ) ∈ fmc

when the CAPρ is needed for the micro-operationµ. So, the relationfmc captures

the datapath structure, in its entirety; the DP interconnection is conveyed by common

signal naming.

Example 5 Let us consider the datapath shown in figure4.4. In this figure,r1, r2 and

r3 are registers,M1, M2 andM3 are multiplexers,FU1 andFU2 are functional units

andr1_out, r2_out, r3_out, f 1Lin, f 1Rin, f 2Rin, f 1Out, f 2Out are interconnec-

tion wires. The control signal names start withCS.

Let the ordering of the control signals in a control signal assertion pattern be

CS_M11≺CS_M10≺CS_M2≺CS_M3≺CS_FU1≺CS_FU2≺CS_r1Ld≺CS_r2Ld≺

CS_r3Ld. The micro-operations of this datapath and their corresponding CAPs are

4.3 Construction of FSMDs from RTL designs 89

given in the first two columns of table4.1with the first column designatingM and the

second one designatingA . It may be noted from the table thatfmc is actually a func-

tion in this case since we have only one CAP corresponding to each micro-operation.

Ignore the third column of the table for the time being. Thefmc can be obtained from

the output of any HLS tool containing the RTL behaviour of each component used in

the datapath. 2

4.3.2 A Method of obtaining the micro-operations for a control

assertion pattern

The next task is to obtain the set of micro-operationsMA (⊆M) which are activated

by a given control assertion patternA. The following definition is in order.

Definition 11 Superposition of assertion patterns:Let A1 and A2 be two arbitrary

control signal assertion patterns. Letπi(A) denote the i-th projection of an assertion

pattern A which is the asserted value ui of the control signal ci. The assertion pattern,

A1 θ A2, obtained by superpositionθ of A1 and A2, satisfies the following conditions.

For all i,

πi(A1 θ A2) = πi(A1), for πi(A1) = πi(A2)

= πi(A1), for πi(A1) 6= πi(A2)∧πi(A1) = X

= U(undefined), for πi(A1) 6= πi(A2)∧

πi(A1) 6= X

The set of micro-operationsMA ⊆M which are activated by a given CAPA can

be obtained byMA = {µ | µ ∈ M ∧ (µ,ρ) ∈ fmc∧ ρ θ A = ρ}, whereθ is the the

superposition of assertion two patterns. The superposition of the control assertion

pattern(s) of each micro-operation and the patternA is checked one by one to decide

whether to include that particular micro-operation inMA or not. It may be noted

that even if a micro-operationµ is activated by more than one CAPs, only one of

those CAPs becomes true for a given CAP from the controller. Letus consider the

superposition of one of the CAPS for a micro-operationµand a given control assertion

patternA. It may be noted that bits inA being outputs of the controller circuit cannot

90 Chapter 4 Verification of RTL Generation Phase

Micro-operation (µ) Control assertion pattern of µ (ρ) ρ θ A

s.t (µ,ρ) ∈ fmc

r1_out⇐ r1 〈X, X, X, X, X, X, X, X, X〉 〈X, X, X, X, X, X, X, X, X〉

r2_out⇐ r2 〈X, X, X, X, X, X, X, X, X〉 〈X, X, X, X, X, X, X, X, X〉

r3_out⇐ r3 〈X, X, X, X, X, X, X, X, X〉 〈X, X, X, X, X, X, X, X, X〉

f 1Lin⇐ r1_out 〈0, 0, X, X, X, X, X, X, X〉 〈U, 0, X, X, X, X, X, X, X〉

f 1Lin⇐ r2_out 〈0, 1, X, X, X, X, X, X, X〉 〈U, U, X, X, X, X, X, X, X〉

f1Lin ⇐ r3_out 〈1, X, X, X, X, X, X, X, X〉 〈1, X, X, X, X, X, X, X, X〉

f1Rin⇐ r2_out 〈X, X, 1, X, X, X, X, X, X〉 〈X, X, 1, X, X, X, X, X, X〉

f 1Rin⇐ r3_out 〈X, X, 0, X, X, X, X, X, X〉 〈X, X, U, X, X, X, X, X, X〉

f2Rin⇐ r2_out 〈X, X, X, 0, X, X, X, X, X〉 〈X, X, X, 0, X, X, X, X, X〉

f 2Rin⇐ r1_out 〈X, X, X, 1, X, X, X, X, X〉 〈X, X, X, U, X, X, X, X, X〉

f 1Out⇐ f 1Lin+ f 1Rin 〈X, X, X, X, 0, X, X, X, X〉 〈X, X, X, X, U, X, X, X, X〉

f1Out⇐ f1Lin − f1Rin 〈X, X, X, X, 1, X, X, X, X〉 〈X, X, X, X, 1, X, X, X, X〉

f2Out⇐ r3_out× f2Rin 〈X, X, X, X, X, 0, X, X, X〉 〈X, X, X, X, X, 0, X, X, X〉

f 2Out⇐ r3_out/ f 2Rin 〈X, X, X, X, X, 1, X, X, X〉 〈X, X, X, X, X, U, X, X, X〉

r1⇐ f1Out 〈X, X, X, X, X, X, 1, X, X〉 〈X, X, X, X, X, X, 1, X, X〉

r3⇐ f 1Out 〈X, X, X, X, X, X, X, X, 1〉 〈X, X, X, X, X, X, X, X, U〉

r2⇐ f2Out 〈X, X, X, X, X, X, X, 1, X〉 〈X, X, X, X, X, X, X, 1, X〉

Table 4.1: Construction of the setMA from fmc for the control assertion patternA =

〈1,0,1,0,1,0,1,1,0〉

contain ‘X’. Let ρ be a CAP such that(µ,ρ) ∈ fmc. If πi(ρ) = X, thenπi(ρ θ A) is

alsoX. Now, consider somej such thatπ j(ρ) = 0 or 1. If µ is executed byA, then

π j(ρ) = π j(A). So,ρ θ A becomesρ if µ is performed by the assertion patternA. Since

πi(ρ) 6= U for any µ and i, andπi(ρ θ A) = U whenπi(ρ) 6= X 6= πi(A), µ 6∈MA iff

πi(ρ θ A) = U , for somei.

Example 6 For the datapath given in figure4.4, let the control assertion pattern in a

particular FSM state beA = 〈1,0,1,0,1,0,1,1,0〉. The selection process is tabulated

in table 4.1 (column 3). The setMA comprises those micro-operations which are

marked bold in the table. It may be noted thatµ∈M −MA iff it contains at least one

U in some component; otherwise it is inMA. 2

It may be noted that the construction ofMA cannot be achieved by examining

each individual control signal value inA in isolation because a micro-operation may

be accomplished by a set of control signals rather than an individual control signal.

There is no information available in an assertion pattern togroup the control signals

so that each group defines a micro-operation around a datapath component.

4.3 Construction of FSMDs from RTL designs 91

4.3.3 Identification of RT operations realized by a set of micro-

operations

Each RT-operation is accomplished by a set of concurrent micro-operations. For ex-

ample, let us assume that an FU performs addition operation on its two input data

f 1Lin and f 1Rin. An RT-operationr3⇐ r1 + r2 may be accomplished over a datap-

ath by the concurrent micro-operationsr1_out⇐ r1, r2_out⇐ r2, f 1Lin⇐ r1_out,

f 1Rin⇐ r2_out, f 1Out⇐ f 1Lin+ f 1Rin, r3⇐ f 1Out. So, in order to find the con-

current RT-operations accomplished by a control assertionpatternA, it is necessary to

find the RT-operations realized by the setMA of concurrent micro-operations.

Finding an RT-operation from a given set of micro-operations is also not trivial

because of two reasons. First, there may be more than one RT-operation realized in a

state of the FSM. Secondly, there is aspatial sequenceof concurrent micro-operations

needed to accomplish an RT-operation but these are available in an unordered manner

in MA.

The concurrent RT-operations accomplished by the setMA of micro-operations are

identified using arewriting method. The method also reveals the spatial sequence of

data flow needed for an RT-operation in a reverse order (from the destination register

back to the source registers). The basic method consists in rewriting terms one after

another in an expression. LetM ′
A be the subset ofMA that contains all the micro-

operations whose right hand side (RHS) expressions are to be rewritten. How the

subsetM ′
A is chosen fromMA will be discussed shortly. For present discussion, it

is sufficient to note that the setM ′
A contains micro-operations of the formr ⇐ r−in,

wherer is a register andr−in is its input terminal. Next, the RHS expression “r−in" is

rewritten by looking for a micro-operation inMA of the form “r−in⇐ s" or “ r−in⇐

s1 〈op〉 s2". So, after rewriting “r−in", we have the RHS expression, either of the form

“s" or of the form “s1 〈op〉 s2". In the next step,s (or s1 and s2 for the latter case) are

rewrittenprovided they are not registers. When the expression in hand is of the form

“s1 〈op〉 s2" (ands1, s2 are not registers), rewriting takes place from left to rightin a

depth-first manner. Thus, at any point of time, the expression in hand can be of the

form “((s1 〈op1〉 s2) 〈op2〉 s3) 〈op3〉↑ . . .", where the pointer indicates the signal to

be rewritten next and the signalss1, s2 ands3 occurring at its left are all registers. The

process terminates successfully when allsi ’s in the expression in hand are registers.

92 Chapter 4 Verification of RTL Generation Phase

Example 7 We illustrate the rewriting process for the datapath given in figure4.4.

Let us consider the control assertion patternA = 〈1,0,1,0,1,0,1,1,0〉. Recall that the

corresponding setMA of micro-operations has been derived in example6 as

{ r1_out⇐ r1, r2_out⇐ r2, r3_out⇐ r3, f 1Lin⇐ r3_out, f 1Rin⇐ r2_out,

f 2Rin⇐ r2_out, f 1Out⇐ f 1Lin− f 1Rin, f 2Out⇐ r3_out× f 2Rin, r1⇐ f 1Out,

r2⇐ f 2Out}.

The micro-operations in which a register occurs in the left hand side (LHS) are

r1⇐ f 1Out and r2⇐ f 2Out which form the setM ′
A. The sequence of rewriting

steps for the micro-operationr1⇐ f 1Out is as follows:

r1⇐ f 1Out

⇐ f 1Lin− f 1Rin [by f 1Out⇐ f 1Lin− f 1Rin] (step1)

⇐ r3_out− f 1Rin [by f 1Lin⇐ r3_out] (step2)

⇐ r3− f 1Rin [by r3_out⇐ r3 (step3)

⇐ r3− r2_out [by f 1Rin⇐ r2_out] (step4)

⇐ r3− r2 [by r2_out⇐ r2] (step5)

Similarly, the RT-operationr2⇐ r3× r2 can be obtained starting from the other

micro-operationr2⇐ f 2Out in M ′
A. So, the RT-operationsr1⇐ r3− r2 andr2⇐

r3× r2 are executed by the given control assertion patternA in a transition of the

FSM. The forward spatial sequence of the micro-operations for an RT-operation is the

reverse order in which they are used in the above rewriting steps; more specifically,

therefore, the forward sequence ofr1⇐ r3− r2 is r2_out⇐ r2, f 1Rin⇐ r2_out,

r3_out⇐ r3, f 1Lin⇐ r3_out, f 1Out⇐ f 1Lin− f 1Rin, r1⇐ f 1Out. 2

Let us now examine how the condition of execution associatedwith a controller

FSM transition is made to correspond to an arithmetic predicate over registers. For this

purpose, let us recall figure4.3. The Boolean variablele may be bound to a register

during allocation and binding phase (in the case of Mealy machine implementation of

the controller FSM). In such a case, an arithmetic predicate(relational operation) will

be realized in the same way as an arithmetic operation. However, if it is scheduled

in the state itself (in the case of Moore machine implementation of the controller

FSM), the Boolean variablele need not be stored in a register; instead it may be

made available only as a status signal line output from the datapath feeding to the

4.3 Construction of FSMDs from RTL designs 93

controller. We account for this case by simply including in the setM ′
A the micro-

operations containing status signals in their LHS in addition to the micro-operations

having registers in the LHS.

4.3.4 Multicycle, pipelined and chained operations

Functional units have different propagation delays depending upon the functions they

are designed to perform. As a result, concurrently activated units with delays shorter

than a clock cycle remain un-utilized in most part of the clock cycle. To circumvent

this problem, three well known techniques namely,multicycle execution, pipelined ex-

ecution and operation chaining(Gajski et al., 1992) are used. In multicycle execution,

the clock cycle is shortened to allow the fast operations to execute in one clock cy-

cle, and the slower operations are permitted to take multiple clock cycles to complete

execution as shown in figure4.5(a). The corresponding figure4.5(d) depicts the time

steps for ak-cycle operation. Pipelining several sets of operands overthe cycles of a

multicycle execution of an operationp allows concurrent execution ofp on each of

those sets of operands (figure4.5(b) and figure4.5(e)). Operation chaining allows two

or more faster operations to be performed serially within one step (figures4.5(c) and

4.5(f)). The datapath may have all such variations of FUs. Also,the controller needs

to assert proper values to the control signals to execute an operation in a multicycle

or pipelined way over multiple clocks or to execute more thanone operation in one

clock in a chained manner. Since, operation chaining is restricted to a single control

state, the rewriting mechanism described in the previous subsection can be applied

straightway. In the following, verification issues of othertwo cases are discussed.

To execute an operation in a multicycle FU, the data have to beheld constant on

the FU inputs over all the control steps it takes to execute that operation. In figure

4.5(d), for example, the inputsx1 andy1 are held on the FU inputs fork steps, where

the FU is ak-cycle multiplier. If the operation starts execution at theith control step,

then the resultx× y is available only at the(i + k−1)th control step. Therefore, in

order to ensure that the datapaths are set properly, we need to verify the following:

1. Fromi to (i +k−1) steps, the left and the right input expressions to the FU are

the same.

94 Chapter 4 Verification of RTL Generation Phase

*

*
−

*

+

−
*

+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c)(b)(a)

+

x1 y1 w1

x2 y2 w2

-

x2 y2

y1x1

x1 y1

fRinfLin

i +k−1

fRinfLin

y2
y1

yk

zk = xk×yk

z2 = x2×y2
z1 = x1×y1

x1

x2

xk

(d) (f)

inputs inputs

k-cycle
multiplier

pipelined
multiplier

z1 = x1 +y1−w1

z2 = x2 +y2−w2

i +k−1

i

k-stage

time step time steptime step
i +k

inputs

a2 = x2 +y2
a1 = x1 +y1i

i +1

i +1
i

i
i +1

i +k

i +k−1

i +k−1

i +1
i

z1 = x1×y1 i +2k−2

(e)

Figure 4.5: (a). schedule with a 2-cycle multiplier; (b) schedule with a 3-stage

pipelined multiplier; (c) schedule with a chained adder andsubtracter; (d) Input and

output timing of ak-cycle multiplier; (e) Input and output timing of ak-stage pipelined

multiplier; (f) Input and output timing for a chained adder and subtracter

2. The registers feeding the inputs to the FU are not updated (by any other opera-

tions) in theith to the(i +k−1)th time steps.

For ak-stage pipelined FU operation starting at theith step, the output of the op-

eration is available at(i + k−1)th step. Figure4.5(e) reflects the scenario. The FU,

however, may take a new set of inputs in each of the(i +1)th step to the(i +k−1)th

step as shown in the figure. So, the datapaths from the operandregisters to the inputs

of the FU are set in theith step, whereas the datapath from the output of that FU to the

destination register where the result needs to be stored is set only at the(i + k−1)th

step.

Based on the above discussion, in table4.1corresponding tofmc, we need to record

two additional pieces of information namely, the type and the cycle information of

4.4 The Overall construction framework of FSMD 95

T1

having a pipelined operation

MA, signal

T2

Multicycle

q1, the start state of the transition

Pipelined

RTLV-0 findRewriteSeqRTLV-1

q1, the start state of the transition
having a multicycle operation

the set RTA of RT operation RT-operation realized withµ

µ∈M ′
A with register signal

or output signal of a multicycle
or pipelined unit at lhs

Figure 4.6: Schematic of our FSMD construction framework from the datapath de-

scription and the controller FSM

each micro-operation to handle multicycle and pipelined operations. Let there be an

FU performing a multicycle (pipelined) operationop needingk cycles (stages). The

corresponding micro-operation isp⇐ L〈op〉R, where p, L and R are respectively

the output, the left input and the right input of the FU. For such a micro-operation, we

designate ‘M’ (‘P’) as type andk as cycle. For all other micro-operations, the type will

be ‘N’ and the cycle value will be one. They are all normal single cycle operations.

So, fmc is now of the formfmc⊆M × type×cycle×A , wheretype= {‘M’, ‘N’, ‘P’

} andcycle= N, the set of natural numbers.

4.4 The Overall construction framework of FSMD

Figure4.6 depicts the schematic of the method presented for construction of FSMD

M2. The moduleRTLV-0is the central module which takes the datapath description

in the form of relationfmc and the controller FSM and constructs the FSMDM2. For

each transition of the controller FSM,RTLV-0obtains the setMA of micro-operations

activated by the control assertionA associated with the transition; the method used

for this purpose is discussed in subsection4.3.2. It then invokesRTLV-1with the

parametersMA and the variablesignal, the latter having values{0, 1, 2}. The as-

96 Chapter 4 Verification of RTL Generation Phase

signmentsignal= 0 is used to obtain the RT-operations involving only single cycle

operations or an RT-operation at the last step of a multicycle or a pipelined opera-

tion; signal = 1 is used to obtain an RT-operation with the output of a multicycle

FU at the LHS (corresponding to all the cycles of a multicyle operation except the

last one);signal= 2 is used to obtain an RT-operation with the output of a pipelined

FU at the LHS (corresponding to the first cycle of a pipelined operation). Note that

for a k-stage pipelined operation, only the first stage (where signal = 2) and the last

step (where signal = 0) are relevant for the operation. The module RTLV-1com-

putes the setM ′
A of micro-operations to be rewritten based on thesignal value and

then calls the functionf indRewriteSeqfor each member ofM ′
A. Initially, RTLV-0

invokesRTLV-1for each transition of the controller FSM with signal equal to zero.

The function f indRewriteSeq, in turn, identifies the RT-operation starting from that

micro-operation based on the procedure discussed in subsection 4.3.3. The modules

RTLV-1and the functionf indRewriteSeqare given as Algorithm5 and Algorithm6,

respectively. It may be noted that the functionf indRewriteSeqis capable of identify-

ing the RT-operations that involve registers and outputs ofpipelined units at the LHS.

The moduleRTLV-0uses the moduleMulticycle andPipelinedto handle the multi-

cycle and pipelined operations, respectively, the detailsof which are discussed in the

subsequent subsections.

4.4.1 Handling of multicycle operations

It may be recalled that for any RT-operationr⇐ r1〈op〉r2, where “op" is a multicycle

operation, there is one transition,τ say, in which the RT expressionsr ⇐ p, p⇐

L〈op〉R, L⇐ r1 andR⇐ r2 are all realized; furthermore, each of the sequences of

transitions of lengthk− 1 leading to the transitionτ will realize p⇐ r1〈op〉r2 by

havingp⇐ L〈op〉R, L⇐ r1 andR⇐ r2 in each member of the sequence. In addition,

these transition sequences do not realize any other RT-operation which has “r1" or

“ r2" as LHS terms. We verify these facts by the following steps. The call graph of the

same is shown pictorially in figure4.6.

1. Let τ be a transition from the stateq1. Let RTLV-0identify by usingRTLV-1

the RT-operationµ : r⇐ r1〈op〉r2 whereop is a multicycle operation inτ (des-

ignated by the type ‘M’ infmc|µ). RTLV-0passesq1 to the routineMulticycle

4.4 The Overall construction framework of FSMD 97

Algorithm 5 RTLV-1
/* Finds the set of RT-operations accomplished by a given setof micro-operations.

Input: The setMA of micro-operations for a given control assertion patternA andsignalvalue.

Output: The setRTA of RT-operations accomplished byMA. */

Method:

1: LetRTA beφ;

2: if signal= 0 then

3: M ′
A = {µ|µ∈MA andµ has a register or a status line in its LHS term};

4: else ifsignal= 1 then

5: M ′
A = {µ|µ∈MA andµ has an output signal of any multicycle FU in its LHS term};

6: else ifsignal= 2 then

7: M ′
A = {µ|µ∈MA andµ has an output signal of any pipelined FU in its LHS term};

8: end if

9: if more than one micro-operation inM ′
A has the same register name in its LHSthen

10: Report (“Same register is updated by more than one micro-operation");

11: else

12: for eachµ in M ′
A do

13: replaced= φ;

14: Seq[0]⇐ µ;

15: µ ← f indRewriteSeq(µ, MA, replaced, Seq, 1);

/* “ µ" - initially a micro-operation which is finally transformed toan RT-operation by the

function.

“ replaced" - a set of signals rewritten already- used by the function to detect if a data flow

loop is set up by the control assertion.

“Seq" contains the final sequence of micro-operations used in rewriting - depicts the data

flow in reverse, which obtains the RT-operation.

The last parameter contains the number of micro-operationscurrently inSeq*/

16: RTA = RTA∪{µ};

17: end for

18: end if

98 Chapter 4 Verification of RTL Generation Phase

Algorithm 6 f indRewriteSeq(µ, MA, replaced, Seq, i)
/* replaces (rewrites) the leftmost non-register signal(s) in the RHS expression ofµ, if possible, using

some micro-operationm; accordingly, putss in replaced, m in Seq(as theith entry) and invokes itself

recursively; finally returns the rewrittenµ having only register signals at its RHS */

1: if the RHS of theµ contains either register signals or the output signals of some pipelined FUthen

2: Report (“the RT operation found isµ"); returnµ;

/* terminates successfully */

3: else

4: Let s be the leftmost non-register signal in the RHS expression ofµ which is neither a register

nor an output of a pipelined FU.

5: if s∈ replacedthen

6: Report (“loop set up in the datapath by the control assertion"); return empty RT-operation;

7: else

8: LetMs⊂MA be the set of micro-operations s.t. each member ofMs hassas its LHS signal.

9: if Ms == φ then

10: Report (“Inadequate set of micro-operations"); returnempty RT-operation;

/* No micro-operation found inMA which hass as its LHS signal */

11: else ifMs contains more than one micro-operationthen

12: Report (“data conflict"); return empty RT-operation

/* more than one driver activated for a signal */

13: else

14: /* Ms contains a single micro-operation. */

Let Ms be{m};

15: Seq[i] = m;

16: Letm be of the forms⇐ e; Let µ be of the formt⇐ ((e1)s(e2));

17: replace all the occurrences ofs in the RHS expression ofµ with the RHS expression ofm;

thusµ becomest⇐ ((e1)(e)(e2));

18: replaced= replaced∪{s};

19: returnf indRewriteSeq(µ, MA, replaced, Seq, i +1);

20: end if

21: end if

22: end if

4.4 The Overall construction framework of FSMD 99

along with the numberk of clock cycles needed forµ (obtained fromfmc|µ).

The latter carries out a backward BFS traversal over the control FSM from the

stateq1 (with depth = 1) up to a depth ofk to identify all the sequences of tran-

sitions of lengthk−1 which terminate inq1. Each transition occurring in these

sequences is to be checked for containing the RT-operationp⇐ r1〈op〉r2 sub-

sequently byRTLV-0. So the routineMulticycle returns the set,T1 say, of all

these transitions.

2. On obtaining the setT1, the moduleRTLV-0selects transitions fromT1 one by

one for finding the RT-operations realized in them usingRTLV-1with signal= 1.

RTLV-1puts inM ′
A those micro-operations which have at their LHS the outputs

of multicycle FUs and subsequently ensures that the membersof T1 contain the

operationp⇐ r1〈op〉r2.

3. The moduleRTLV-0now checks for a micro-operation which has “r1" or “ r2" as

its LHS term in each transition of the setT1. If such a micro-operation is found

by RTLV-0, it reports an error message indicating that an operand is disturbed

during a multicycle operation.

Example 8 Let us consider the controller FSM given in figure4.7. The control asser-

tion pattern associated with each of FSM’s transition is notshown explicitly for clarity.

Let us assume thatRTLV-0identifies by usingRTLV-1the RT-operationr1⇐ r2× r3

which is realizable by the assertion pattern associated with the transition〈q1,q2〉.

Let ‘×’ be a three cycle multiplier. We have to now ensure that the RT-operation

f uOut⇐ r2× r3 is realizable by the assertion patterns associated with the transitions

belong to the sequences of transitions of length 2(= 3−1) which terminate inq1. The

moduleMulticyclefinds this set of transitionsT1. For this example, the transition set

is T1 = {〈qi ,q j〉,〈q j ,q1〉,〈q2,q j〉}. Also, we have to ensure that the registersr2 and

r3 are not updated in any of the transitions inT1. Task 1 and task 2 are done in step 2

and step 3, respectively, as described above. 2

4.4.2 Handling of pipelined operations

For any RT-operationr⇐ r1〈op〉r2, where “op" is ak-stage pipelined operation, there

is one transition in which the RT expressionr ⇐ p is realized and the first member

100 Chapter 4 Verification of RTL Generation Phase

q jqi q1
q2

f uOut⇐ r2× r3

for pipelined operationfor multicyle operation

r1⇐ r2× r3:

f uOut⇐ r2× r3: :
r1⇐ f uOut:

Figure 4.7: Working with multicyle and pipelined operations

of each of the sequences of transitions of length(k− 1) leading to this transition

will realize L⇐ r1, R⇐ r2 andp⇐ L〈op〉R. In other words, for an RT-operation

r ⇐ r1〈op〉r2 identified in the(i +k−1)th step, where〈op〉 is a pipelined operation,

the ith step should contain the RT-operationp⇐ r1〈op〉r2 and the(i + k−1)th step

should contain the RT-operationr ⇐ p. It may be noted that althoughp does not

contain the value of the expressionr1〈op〉r2 in theith step, for convenience, we resort

to such encoding to indicate that at theith step, the FU is activated to act on the

operands “r1" and “r2". We ensure that the RT-operations are indeed obtained in the

above manner by the following steps. The call graph of this sequence of steps is also

shown pictorially in figure4.6.

1. Letτ be a transition from the stateq1. Let RTLV-0identify by means ofRTLV-

1 that the transitionτ is one in which the RT-operationµ : r ⇐ p is realized,

wherep is the output of a pipelined FU (designated by the type ‘P’ infmc|µ).

Now, RTLV-0passesq1 to the routinePipelinedalong with the numberk of

pipeline stages (obtained fromfmc|µ). The latter carries out a backward BFS

traversal up to depthk−1 over the controller FSM from the stateq1 to identify

all the sequences of transitions of lengthk−1 which terminate inq1. The first

member of all such transition sequences have to be checked for containing the

RT-operationp⇐ r1〈op〉r2 subsequently byRTLV-0. So, the routinePipelined

returns the set,T2 say, of all these first transitions in these sequence.

2. On obtaining the setT2, the moduleRTLV-0selects transitions fromT2 one

by one for finding the RT-operations realized in them usingRTLV-1with the

parametersignal= 2. Forsignal= 2, RTLV-1puts inM ′
A only those micro-

operations ofMA which have outputs of the pipelined FUs at their LHS. As

RTLV-1invokes f indRewriteSeqwith µ∈M ′
A, the latter returns RT-operations

4.4 The Overall construction framework of FSMD 101

of the formp⇐ r1〈op〉r2. Thus,RTLV-0can ascertain that the members ofT2

indeed contain the desired RT-operation.

3. If it is found byRTLV-0that all the transitions inT2 contain the operationp⇐

r1〈op〉r2, then it rewrites the RHS of the RT-operationr ⇐ p (i.e., p) in the

transitionτ with the RHS expression ofp⇐ r1〈op〉r2. So, finally the RT-

operationr ⇐ r1〈op〉r2 is associated withτ.

Example 9 Let us again consider the controller FSM given in figure4.7. Let us as-

sume thatRTLV-0identifies by usingRTLV-1the RT-operationr1⇐ f uOut in tran-

sition 〈q1,q2〉. Let FU be a three stage pipelined multiplier. We have to now ensure

that the RT-operationf uOut⇐ r2× r3 is realizable by the assertion pattern associated

with the first member of the sequences of transitions of length 2 (= 3−1) which ter-

minates inq1. The modulePipelinedfinds this set of transitionsT2. For this example,

the transition set isT2 = {〈qi ,q j〉,〈q2,q j〉}. The above mentioned task is done by step

2. If step 2 is successful, then the actual RT-operationr1⇐ r2× r3 is obtained by

rewriting f 2Out of r2⇐ f 2Out by the RHS expression off 2Out⇐ r3× r1 in the

transition〈q1, q2〉 in step 3. 2

4.4.3 Handling chained operations

The operation chaining scenario is depicted in figure4.5(f) where two single cycle

functional units are chained in the datapath. The results ofboth the FUs are available

in the same time step as shown in the figure. As all the operations are performed in

single cycle and there exists a spatial sequence among the operations that are in the

chain, our rewriting method can handle this variation of thedatapath. However, chain-

ing of pipelined FUs, multicycle FUs with pipelined FUs, multicycle FUs with single

cycle FUs and pipelined FUs with single cycle FUs are also possible in the datapath.

Among them, the first two cases usually do not occur in practical circuits. The module

RTLV-0can handle chaining of multicycle/pipelined FUs with single cycle FUs. The

detailed implementation ofRTLV-0 is not given in this paper for brevity. It is also

possible to extend our rewriting method to handle the first two scenarios of chaining.

102 Chapter 4 Verification of RTL Generation Phase

4.4.4 Verification during construction of FSMD

Several inconsistencies that can be detected while constructing FSMDM2 are as fol-

lows.

Loops set up in the datapath by the controller (steps5 and 6 of the function

f indRewriteSeq): One non-register datapath signal line can be assigned only one

value in a particular control step. If a non-register term isattempted to be rewritten

twice during one invocation off indRewriteSeqby RTLV-1, then it implies an im-

proper control assertion pattern setting up a loop in the datapath without having any

register.

Inadequate set of micro-operations performed by a control assertion pattern (steps

9 and 10 of the function f indRewriteSeq):This situation arises due to either of the

following two reasons:

(i) interconnection between two datapath components is notactually set by the

control pattern but is required to complete an RT-operationor

(ii) the control signals are asserted in a wrong manner whichleads to a situation

where the required data transfer is not possible in the datapath.

Data conflict (steps11and12of the function f indRewriteSeq):It means that data

from more than one component try to pass through a single dataline due to wrong

control assertion.

Race condition (steps9 and10of RTLV-1):It means that one register is attempted

to be updated by two values in the same time step due to wrong control assertion

pattern.

Error in the datapath for a multicycle operation:It occurs when the input paths

for a k-cycle FU are not set in any of the firstk−1 steps of execution of an operation

in that FU. This occurs again due to wrong control assertion for the step in question

and gets detected inRTLV-0.

Input operand is disturbed during execution of a multicycleoperation: It means

that an input register of a multicycle operation is updated by an RT-operation midway

4.5 Correctness and complexity of the algorithm 103

during execution of that multicycle operation. This situation arises due to either of

the following two reasons: (i) If the RT-operation is also present in the FSMDM1,

then it is an error in the scheduling policy of the high-levelsynthesis, or (ii) If this RT-

operation is not present in the FSMDM1, then it occurs due to wrong control assertion

which causes an erroneous RT-operation in the datapath. Such flaws get detected in

RTLV-0.

Error in pipelining: It means that the datapaths corresponding to the inputs of

a pipelined unit are not properly set due to wrong control assertion pattern at the

state where the execution of that pipelined operation begins. This class of errors gets

detected inRTLV-0.

4.5 Correctness and complexity of the algorithm

4.5.1 Correctness and complexity of the modulefindRewriteSeq

Theorem 5 (Termination) The function f indRewriteSeq always terminates.

Proof: If a recursive invocation does not detect one of the error situations de-

picted in steps 6, 10, 12 (and hence terminate), then it must replace a signal in the

RHS expression ofµ and enhance the set “replaced". The same signal, once replaced,

is never replaced in subsequent invocations. There is only afinite number of signals

in the datapath. Hence, the function cannot invoke itself more times than the number

of signals in the datapath. 2

Definition 12 Forward rewriting by a micro-operation : An expression e is said to

be obtained from an expression e− by forward rewriting by a micro-operation s⇐ er ,

if e can be obtained by replacing one or more occurrences of er in e− by s.

In f indRewriteSeq, the rewriting of an expressione1 at hand by a micro-operation

s⇐ e2 is carried out by replacing all the occurrences ofs in e1 by e2. In contrast,

104 Chapter 4 Verification of RTL Generation Phase

the forward rewriting does the opposite, in keeping with thedirection of data flow

represented by the micro-operation (hence the name).

Lemma 3 (Realizability of an RT-operation): An RT-operation t⇐ e is realizable

over a datapath if there exists a sequenceσ of micro-operations (over the datapath)

such that the expression “t" is obtainable from the expression e byforward rewriting

of e by the members of, and according to, the sequenceσ.

Proof: By induction on the length|σ| of σ.

(Basis (|σ| = 1): σ comprises just one micro-operation, all micro-operationsare

realizable.

(Induction Step): Let us assume that whenever “t" is obtained frome by forward

rewriting by a sequence of length less thani, the RT-operationt⇐ e is realizable.

Let us now assume thatσ = 〈µ0,µ1, . . . ,µi−1〉 obtains “t" from eby forward rewrit-

ing, whereµk, 0≤ k≤ i−1, are micro-operations over the datapath. Letσ = 〈µ0, . . . ,µk,

µk+1, . . . ,µi−1〉. Let ek be obtained frome by forward rewriting ofe by the sub-

sequenceσk = 〈µ0,µ1, . . . ,µk〉. Obviously, “t" is obtained fromek by the sequence

〈µk+1, . . . ,µi−1〉, In particular, fork = 0, therefore, “t" is obtained frome0 by the

sequence〈µ1, . . . ,µi−1〉 which is of lengthi − 1. By induction hypothesis, the RT-

operationt⇐ e0 is realizable over the datapath. Since,µ0 is realizable andµ0 obtains

e0 from eby forward rewriting, the RT-operationt⇐ e is realizable over the datapath

and application of the micro-operationsµ0, . . .µi−1 according to that sequence realizes

it. 2

Theorem 6 (Soundness): Let the functionfindRewriteSeqbe invoked with a micro-

operation µ of the form t⇐ e0 and the setMA of micro-operations corresponding

to the control assertion pattern A. Let it return an RT-operation p of the form t⇐

e, where e comprises registers or the output signal of some pipelined FU. The RT-

operation p is realizable over the datapath.

Proof: Let the function terminate successfully (in step 1), obtain“Seq" as

〈µ0,µ1, · · · ,µk〉 and return an RT-operationt ⇐ e. The LHS signal of the argument

4.5 Correctness and complexity of the algorithm 105

micro-operationt⇐ e0 is never disturbed by the function. Let us consider the reverse

of “Seq" 〈µk, · · · ,µ1,µ0〉= σ, say. Thus, the first memberµ0 in “Seq" (that is, the last

member inσ), is of the formt⇐ e0. Let the (RHS) expression obtained after applica-

tion of µi in “Seq" beei. Clearly,ek = e ande contains registers or the output signal

of pipelined FU(s). The fact that the expression “t" is obtainable fromei by forward

rewriting by the sequence〈µi , · · · ,µ0〉, 0≤ i ≤ k, can be proved by induction oni.

(Basis i= 0): “t" is obtainable frome0 by forward rewriting by the singleton se-

quence of micro-operation(s)〈µ0 : t⇐ e0〉.

(Induction Step): Let “t" be obtainable fromei by the forward rewriting by the se-

quence〈µi , · · · ,µ1,µ0〉. Let ei be of the formx1sx2, wheres is the leftmost signal inei

such thats is neither a register nor an output signal of any pipelined FU. So from the

steps 8 to 13 of the function,µi+1 must be of the forms⇐ er and the function obtains

ei+1 asx1erx′2, wherex′2 is obtained fromx2 by replacing all the occurrences ofs in it

by er . Thus,ei is obtainable fromei+1 by forward rewriting by the singleton micro-

operation sequence〈µi+1〉. From Induction hypothesis, “t" is obtainable fromei by

〈µi , . . . ,µ0〉 andei is obtainable fromei+1 by µi+1. Therefore, “t" is obtainable from

ei+1 by forward rewriting by the micro-operation sequence〈µi+1,µi, · · · ,µ0〉. This

completes the induction.

Hence, in particular,t is obtainable fromek (e) by forward rewriting by the se-

quence〈µk,µk−1, · · · ,µ0〉. From lemma 1, it follows thatt ⇐ e is realizable over the

datapath by the sequence〈µk,µk−1, · · · ,µ0〉 (which is reverse of “Seq" found by the

function). 2

In order to demonstrate the completeness of the rewrite procedure, we introduce

the notion ofparse tree corresponding to a register transfer operation t⇐ e as realized

by a given setMA of micro-operations. The parse tree oft ⇐ e is the parse tree

of the expressione parenthesized in accordance with its realization byMA with its

root node labeled ast. For example, the RT-operationt ⇐ r1+ r2+ r3, realized

over the datapath shown in figure4.8(a), will have the parse tree corresponding to

the expression(r1+ r3) + r2 (figure4.8(b)) and not the one shown in figure4.8(c)

(corresponding to the expression(r1+ r2)+ r3). From now onwards, we will leave

the phrase “as realized byMA" understood following the term “parse tree of an RT-

operation". We denote the parse tree of an RT-operationp asT(p), and its depth as

106 Chapter 4 Verification of RTL Generation Phase

d(T(p)); (the root is assumed to have depth 1). In general, there is a datapath signal,ti

say, associated with each non-leaf node of the parse sub-tree Ti of any sub-expression

ei of the RHS expressione. The sub-treeTi (of ei), therefore, is also the parse sub-tree

corresponding to an RT-operationti ⇐ ei.

r3 r2r1

p

t
(a)

p

t +

r1

r2

r3

+

r3

(c)

p

t

+

+

r2r1

(b)

Figure 4.8: Parse tree of an RT-operation realized over a given datapath: An Example

Let ei be of the formeil 〈op〉eir (i.e., the RT-operation isti ⇐ eil 〈op〉eir), where

“op" is a binary operation such as, ‘+’, ‘-’, ‘*’, ‘/’, etc.. The parse treeTi of ei has

the root corresponding to the operator “op" (and the signal labelti) and two subtrees

namely, the left subtreeTil as the parse tree ofeil and the right subtreeTir as the parse

tree ofeir . Here, the assignment operator⇐ is implicit with the operator〈op〉. If ei

contains onlyeil , then the parse treeTi of ei has only the signal labelti associated with

the root with⇐ kept implicit. Lettil (tir) be the signal name attached to the root ofTil

(Tir). Themicro-operation sequence corresponding to the post-ordertraversal of Ti is

the sequence〈σil ,σir , ti ⇐ til 〈op〉tir 〉, whereσil (σir) is the micro-operation sequence

corresponding to the post-order traversal ofTil (Tir). Similarly, the micro-operation se-

quence corresponding to the pre-order traversal ofTi is 〈ti⇐ til 〈op〉tir ,σ′il ,σ
′
ir 〉, where

σ′il (σ′ir) is the micro-operation sequence corresponding to the pre-order traversal of

Til (Tir).

A sequence of micro-operations realizing an RT operation isonly a spatial se-

quence of data flow and not a temporal sequence. A forward rewrite sequence real-

izing an RT operationti ⇐ ei can be presented as either the post-order traversal of

its parse treeTi or a minor variation of this order whereupon the orders of traver-

sals of the subtrees are exchanged between themselves. We refer to this variant as

right-first post-ordertraversal because the right subtree is traversed before theleft

subtree. The presence of non-commutative binary operations like ‘/’, ‘%’, etc., do

4.5 Correctness and complexity of the algorithm 107

not impair this fact. It may be noted that the pre-order traversal is the reverse of the

right-first post-order traversal. Our completeness proof demonstrates that for any RT

operationp realizable over the datapath (i.e., using micro-operations fromMA), the

function f indRewriteSeqproduces the micro-operation sequence corresponding to the

pre-order traversal of the parse tree ofp or synonymously, the reverse of the sequence

corresponding to the right-first post order traversal of theparse tree ofp.

Let us define alinear chain over the datapath as an RT-operation of the form

dl ⇐ dr , wheredl anddr are any datapath signals.

Definition 13 Linear chain over the datapath: A linear chain over the datapath is

an RT-operation of the form dl ⇐ dr , where dl and dr are any datapath signals.

For a linear chain which is realizable using a setMA of micro-operations, there

exists a micro-operation sequenceσ = 〈µ0,µ1, · · · ,µk〉, whereµi ∈MA and is of the

form di+1⇐ di,0≤ i ≤ k, d0 = dr , dk+1 = dl anddi ’s are the datapath signals such

thatdl is obtained by forward rewriting by the members ofσ. It might be noted that

whenk = 0, a linear chain is essentially a micro-operation. The parse tree of such a

linear chain comprises only the root and is of depth one.

The micro-operation sequence realizing an operationt⇐ r1〈op〉r2 may be viewed,

in general, as〈µ0, . . . ,µj−1,µj , . . .µi−1,µi,µi+1, . . .µk〉, where the subsequence〈µ0, . . . ,

µj−1〉 realizes a linear chain depicting data movement fromr2 to the right input of the

FU (typically of the formf Rin⇐ r2), the subsequence〈µj , . . . ,µi−1〉 realizes a linear

chain depicting data movement fromr1 to the left input of the FU (typically of the

form f Lin⇐ r1), µi is a micro-operation corresponding to the FU operation (typically

of the form f Out⇐ f Lin 〈op〉 f Rin) and the subsequence〈µi+1, . . . ,µk〉 realizes a

linear chain of data movement from a functional unit (FU) output to the destination

signalt.

Lemma 4 For a realizable linear chain, the function f indRewriteSeq returns the re-

verse of the micro-operation sequence that realizes the linear chain.

Proof: Let dl ⇐ dr be a linear chain. Let the micro-operation sequence over the

setMA realizing the linear chain beσ = 〈µ0,µ1, · · · ,µk〉. More specifically, let the cor-

responding forward rewriting sequence bedr ⇒µ0 dr+1 ⇒µ1 dr+2 ⇒µ2 . . . ⇒µk−1 dr+k

108 Chapter 4 Verification of RTL Generation Phase

⇒µk dr+k+1 = dl . It may be noted thatdl ⇐ dr+k−i, 0≤ i ≤ k, are all realizable linear

chains realized by the forward rewriting micro-operation sequence〈µk−i, . . . ,µk〉. It

can be proved that for the realizable chaindl ⇐ dr+k−i, for anyi, 0≤ i ≤ k, the func-

tion f indRewriteSeqobtains the sequence〈µk,µk−1, . . . ,µk− j〉, 0≤ j ≤ i, by induction

on i.

Basis[i = 0]: dl ⇐ dr+k is the micro-operationµk ∈MA and the function finds

〈µk〉 corresponding to this RT-operation (in step 8 and step 14.).

Induction Step:Let us assume that fordl⇐dr+k−i, the function returns〈µk,µk−1, . . . ,

µk−i〉. Let us now considerdl ⇐ dr+k−i−1. There is a forward rewriting sequence

dr+k−i−1 ⇒µk−i−1 dr+k−i ⇒µk−i , . . . , ⇒µk dr+k+1 = dl . Thus,dl ⇐ dr+k−i is re-

alizable and by induction hypothesis, the function first obtainsdr+k−i from dl using

the micro-operation sequence〈µk, . . . ,µk−i〉 and then obtainsdr+k−i−1 from dr+k−i by

µk−i−1. Hence the result. 2

The proof of completeness of the function consists in demonstrating that if the set

MA contains all the micro-operations needed for realizing an RT operationp, then the

function f indRewriteSeqreveals in reverse order the sequence of micro-operations

corresponding to the right-first post-order traversal of the parse tree ofp thereby pro-

ducing the sequence corresponding to the pre-order traversal of the parse tree ofp.

Theorem 7 (Completeness) If there is an RT-operation p of the form t⇐ e which

is realizable using the micro-operations inMA, then the function f indRewriteSeq, if

invoked with a micro-operation of the form t⇐ e0, for some e0, returns the sequence

of micro-operations corresponding to the pre-order traversal of the parse tree of p,

parenthesized according to its realization usingMA.

Proof: Let the sequence of micro-operations corresponding to the pre-order

traversal of a tree ofp be σpre(p), that corresponding to the right-first-post-order

traversal ofp be σpost(p), and any sequence realizingp be σ(p). Sincet ⇐ e is

realizable using members ofMA, there exists a sequenceσpost(t ⇐ e) of the form

〈µ0,µ1, · · · ,µk〉. Sinceσ is a spatial sequence and not a temporal one, without loss of

generality, the suffix “post" can be used. We now prove that the functionf indRewriteSeq

4.5 Correctness and complexity of the algorithm 109

returns the micro-operation sequenceσpre(p) = 〈µk,µk−1, · · · ,µ0〉 = reverse(σpost)

We accomplish this proofby induction on d(T(p)) = i, say.

(Basis i = 1): The parse tree ofp comprises the root labeled witht and e is an-

other register or an output signal of a pipelined FU; thus,p is a realizable linear

chain. By lemma4, the micro-operation sequence〈µk,µk−1, · · · ,µ0〉 is obtainable by

f indRewriteSeq.

(Induction step): Suppose that the function can find the sequenceσpre, whend(T(p′))≤

i, wherep′ is realizable and of the formt ⇐ e. Now, consider any realizable RT-

operationp with d(T(p)) = i + 1. Therefore,p must be of the formt ⇐ e1〈op〉e2,

where d(T(t1 ⇐ e1)), d(T(t2 ⇐ e2)) ≤ i. Let σpost(t1 ⇐ e1) and σpost(t2 ⇐ e2)

be σ1 = 〈µ1,0,µ1,1, . . .µ1,l 〉 andσ2 = 〈µ2,0,µ2,1, . . .µ2,r〉, respectively. The sequence

σpost(p) is, therefore,〈σ2, σ1, σt〉, whereσt = σ(t ⇐ t1〈op〉t2). So, the sequence

σpre(p) = reverse(〈σ2,σ1,σt〉). Since,d(T(t1⇐ e1)), d(T(t2⇐ e2)) ≤ i, by induc-

tion hypothesis, the function can construct the sequencereverse(σ1) andreverse(σ2).

So, it remains to be proved that the function constructs (i)reverse(σt) correspond-

ing to t ⇐ t1〈op〉t2 and (ii) the sequence〈reverse(σt), reverse(σ1), reverse(σ2)〉 =

reverse(〈σ2,σ1,σt〉) corresponding top.

(i) The proof that the function constructsreverse(σt) corresponding tot⇐ t1〈op〉t2

is as follows: Lettl , tr andto respectively be the left input, the right input and the output

of the FU which performs the operation “op”. So, in order to realize the RT-operation

t ⇐ t1〈op〉t2, it is necessary to realize the sequence of RT-operationstr ⇐ t2, tl ⇐ t1,

to⇐ tl 〈op〉tr , t ⇐ to, according to right-first postorder traversal of the parse tree of

t⇐ t1〈op〉t2. In other words, the realizing sequenceσt of micro-operations can be split

as follows:σt = 〈µ0,µ1, . . . ,µm〉= 〈σt2,σt1,σt3,σto〉, whereσt2 = 〈µ0,µ1, . . . ,µn1〉 cor-

responds to (the parse tree of) the linear chaintr ⇐ t2, σt1 = 〈µn1+1,µn1+2, . . . ,µn1+n2〉

corresponds to the linear chaintl ⇐ t1, σt3 is 〈µn1+n2+1 = to⇐ tl 〈op〉tr〉〉 andσto =

〈µn1+n2+2, µn1+n2+3, . . . ,µm〉 corresponds to the linear chaint⇐ t0.

Now, the last micro-operationµm in the forward rewrite sequence must be of the

form t⇐ ti, whereti is the input signal name of the component whose output ist. Let

the function f indRewriteSeqbe invoked withµm as the argument. The function, in

turn, selects its right hand sideti for rewriting. Sincet⇐ to is a linear chain realized by

σto, by lemma4, the functionf indRewriteSeqconstructsreverse(σto). In the process,

110 Chapter 4 Verification of RTL Generation Phase

the expressionti changes toto. Therefore,f indRewriteSeqselectsµn1+n2+1 as the next

micro-operation in the sequence and obtains the RT-operation ast ⇐ tl 〈op〉tr . The

function next rewritestl to t1, corresponding to the linear chaintl ⇐ t1; by lemma4,

therefore, the function constructsreverse(σt1). By similar argument, the function then

constructsreverse(σt2) to rewritetr to t2. Thus, the function constructs the sequence

〈reverse(σto),µn1+n2+1, reverse(σt1), reverse(σt2)〉= reverse(〈σt2, σt1,µn1+n2+1, σto〉)

= reverse(σt).

(ii) The proof that the functionf indRewriteSeqconstructs the sequence〈reverse(σt),

reverse(σ1), reverse(σ2)〉= reverse(〈σ2,σ1,σt〉) for the RT-operationp is as follows:

When f indRewriteSeqis invoked with t ⇐ ti in M ′
A, it returns the RT-operation

t⇐ t1〈op〉t2 by constructing the sequencereverse(σt). The functionf indRewriteSeq

next takes upt1 for rewriting. Since,p is realizable, so is the RT-operationt1⇐ e1 and,

by assumption,σ1 = σpost(t1⇐ e1). Sinced(T(t1⇐ e1))≤ i, by induction hypothe-

sis, the function can constructreverse(σ1) to rewritet1 ase1. Because of the strategy

of replacing the leftmost non-register signal first, the function does rewritet1 ase1

before taking up rewriting oft2. Hence, the function obtainst⇐ e1〈op〉t2 from t⇐ ti

(= µm∈M ′
A) constructing, in the process, the sequence〈reverse(σt), reverse(σ1)〉. It

then takes up rewriting oft2 to e2; by similar argument as used above for rewriting of

t1 to e1, it can be seen that the function constructs the sequencereverse(σ2) in course

of this rewriting. Hence, it does construct〈reverse(σt), reverse(σ1), reverse(σ2)〉 in

rewriting t⇐ ti to t⇐ e1〈op〉e2 = p. 2

Complexity of f indRewriteSeq Let the number of FUs bef , the number of registers

be r and the number of wires bew. Let the number of interconnect components (like

muxes, demuxes, switches, etc.) bec and the maximum of number of inputs of an

interconnect component bek. A micro-operation in the datapath involves either two

wires through some interconnect unit or a register or an FU. So, the maximum num-

ber of micro-operations possible in the datapath isO(kc+ r + f). In each invocation

of the function f indRewriteSeq, one term (wire) is rewritten and no term is rewrit-

ten more than once. Hence, the number of invocations of the (recursive) function is

O(w). The maximum number of terms that can be present in an RHS expression is

O(r + w). So, the complexity of ensuring that no non-register signalis present in

an RHS expression (i.e., the step 1 off indRewriteSeq) is O(r + w). Similarly, the

4.5 Correctness and complexity of the algorithm 111

complexity of finding the leftmost non-register signal in anRHS expression (i.e., the

step 4 of f indRewriteSeq) and that of determining whethers∈ replaced(i.e., step

5 of f indRewriteSeq) is O(r + w). The maximum number of micro-operations in

MA is O(c+ r + f). Therefore, the complexity of finding a subsetMs of MA (i.e.

the step 8 off indRewriteSeq) is O(c+ r + f). So, the complexity of the function

f indRewriteSeqis O(w∗ ((r +w)+(r +w)+(r +w)+(c+ r + f))) = O(w2 +wr +

w f +wc).

4.5.2 Correctness and complexity of the moduleRTLV-1

Theorem 8 (Termination) The module RTLV-1 always terminates.

Proof: The moduleRTLV-1constructs the setM ′
A of micro-operations which have

registers or an output signal of any multicycle or pipelinedFU in lhs depending upon

the value of signal it receives fromRTLV-1and invokes thef indRewriteSeqfunction

for each of its members. This set is obviously finite as a data path always consists of a

finite number of micro-operations. Also, the functionf indRewriteSeqalways termi-

nates. Hence, the moduleRTLV-1always terminates. 2

Theorem 9 (Soundness) If RTLV-1 terminates successfully returning anon-empty set

RTA of RT operations, then each member of RTA is realizable by the assertion pattern

A and is either of the form t⇐ e, where t is a register signal or an output of a pipelined

FU and e involves register signals or output signals of pipelined FUs or of the form

p⇐ e, where p is an output signal of a multicycle FU and e involves register signals.

Proof: RTLV-1constructs the setM ′
A consisting of micro-operations which

have registers or output signals of multicycle or pipelinedFUs in their lhs depend-

ing upon the value ofsignal it receives and invokes the functionf indRewriteSeqfor

each member of the setM ′
A. Hence, the proof follows from the soundness of the func-

tion f indRewriteSeq. 2

112 Chapter 4 Verification of RTL Generation Phase

Theorem 10 (Completeness) If an RT-operation of the form t⇐ e, where the rhs

expression e contains registers and the output signal of pipelined FUs and the lhs

signal t is either a register or the output signal of a pipelined FU or of the form

p⇐ e, where p is the output of a multicycle FU and the rhs expression contains only

registers, is realizable by the setMA of micro-operations for a given control assertion

pattern A, then the RT operation will be found by RTLV-1.

Proof: The completeness proof of theRTLV-1follows directly from the com-

pleteness of the functionf indRewriteSeq(theorem7). 2

Complexity:It might be recalled from the section4.5.1that the complexity of the

f indRewriteSeqfunction isO(w2+wr+w f +wc), wherew is the number of wires,f

is the number of FUs,r is the number of registers andc is the number of interconnect

components in the data path. The moduleRTLV-1invokes thef indRewriteSeqfunc-

tion for each member of the setM ′
A of micro-operations which have in the lhs registers

or output signals of functional units performing multicycle or pipelined operations.

Therefore, the maximum number of micro-operations possible in M ′
A is O(r + f).

Hence, the complexity of the moduleRTLV-1is O((r + f)∗ (w2 +wr +w f +wc)) =

O(w2r +w2 f +wr2 + f 2w+wr f +wcr+wc f).

4.5.3 Correctness and complexity of the modulesMulticycle and

Pipelined

Both the modulesMulticycle andPipelineddeploy a backward BFS traversal up to

the depthk−1 from the argument FSM stateq1 of the controller. Hence we have the

following theorems.

Theorem 11 (Termination) The module Multicycle and the module Pipelined always

terminate.

Theorem 12 (Soundness of Multicycle) If the module Multicycle terminates success-

fully, then each member of the set T1 is a transition which occurs in some sequence of

4.5 Correctness and complexity of the algorithm 113

transitions of length k−1 which terminates in the controller FSM state q1 passed as

argument.

Theorem 13 (Completeness of Multicycle) If a transition occurs in some transition

sequence of length k−1 which terminates in the state q1 of the controller FSM, then

the module Multicycle puts that transition in T1.

Theorem 14 (Soundness of Pipelined) If the module Pipelined terminates success-

fully, then each member of T2 is the first transition in some sequence of length k−1

which terminates in the state q1 of the controller FSM.

Theorem 15 (Completeness of Pipelined) If a transition is the first one insome se-

quence of length k− 1 which terminates in the state q1 of controller FSM, then the

module Pipelined puts in T2.

Complexity:Both the modulesMulticycleandPipelinedhave the same complex-

ity. Only difference of thePipelinedmodule withMulticycle is that it stores only the

first transition in each of the sequences of transitions of lengthk−1 which terminates

in q1 whereasMulticyclestores all the transitions of such sequences. Let the number

of edges in the controller FSM bee. Since both the modules perform backward BFS,

the complexity of both these modules isO(e).

4.5.4 Correctness and complexity of the moduleRTLV-0

Theorem 16 (Termination) The module RTLV-0 always terminates.

Proof: For each transition, selected at random, the moduleRTLV-0first obtains the

setMA of micro-operations for the control assertion patternA of that transition. As

the number of micro-operations in the data path is finite, this step always terminates.

The moduleRTLV-0, next, calls the moduleRTLV-1to find the set of RT operations

performed by the control assertion pattern of that transition. AsRTLV-1always ter-

minates, this step also always terminates. If the setRTA returned byRTLV-1contains

an RT operation of the formr ⇐ e′〈e1〈op〉e2)e′′, whereop is a multicycle operation,

114 Chapter 4 Verification of RTL Generation Phase

thenRTLV-0callsMulticyclemodule to find the setT1. This step obviously terminates.

Specifically, for a multicycle operation,RTLV-0invokesRTLV-1to ensure that each

transition inT1 contains a desired RT operation. This step terminates becauseRTLV-1

terminates.RTLV-0then ensures that none of the lhs of the micro-operations corre-

sponding to a transition of the setT1 contains a register signal which is present in the

expressionse1 ande2. The finiteness of the setT1 and that of the number of micro-

operations in each transition confirm the termination of this step. For a pipelined

operation of the formr ⇐ e′pe′′, wherep is the output of a pipelined FU,RTLV-0

calls the functionPipelinedto find the setT2. From termination ofPipelinedfollows

the termination of this step. After that, it callsRTLV-1for each member of the setT2.

RTLV-0then ensures that all members ofT2 contain RT operations of the formp⇐ e.

The finiteness of this set and the termination ofRTLV-1ensure that these two steps

always terminate. 2

Theorem 17 (Soundness) If RTLV-0 terminates successfully, then the RToperations

found by it corresponding to each transition are realizableover the data path by the

control assertion pattern A associated with the transition.

Proof: All single cycle, multicycle, pipelined and chained RT operations are es-

sentially found by the functionf indRewriteSeq; the soundness off indRewriteSeq

ensures their realizability. The only extra RT operation that RTLV-0associates is a

pipelined one in step 32 ensuring that (i) there is a transition, τ say, in which an RT

operation of the formr ⇐ p, wherep is the output of a pipelined FU with operation

‘op’, is realized and (ii) any transition that precedesτ by (k−1) transitions has the RT

operationp⇐ r1〈op〉r2 realized over the data path. These two conditions together,

when met, ensure thatr ⇐ r1〈op〉r2 is realizable over the data path in transitionτ.

2

Theorem 18 (Completeness) If an RT operation is realizable over the datapath by a

control assertion pattern of a transition of the controllerFSM, then the module RTLV-

0 finds that RT operation.

4.5 Correctness and complexity of the algorithm 115

Proof: If the realizable RT operation in a transition,τ say, is a single cycle or a

chained one, thenRTLV-0finds it by f indRewriteSeq. If it is a multicycle one, then

alsoRTLV-0finds it by f indRewriteSeq. The extra processing indulged in byRTLV-0

is only to ensure certain conditions. Therefore, the completeness off indRewriteSeq

(and hence ofRTLV-1) ensures thatRTLV-0 finds these RT operations. If it is a

pipelined RT operation, thenRTLV-0is ensured to find an RT operation of the form

r⇐ e′pe′′, wherep is the output of the corresponding pipelined FU, by the complete-

ness ofRTLV-1. It is then ensured to find the(k−1)-predecessors ofτ (in T2) using the

modulePipelined. Finally, it is ensured to find in each of these(k−1)-predecessors

in T2, the RT operationp⇐ r1〈op〉r2, by the completeness ofRTLV-1. 2

Complexity: The moduleRTLV-0first obtains the setMA of micro-operations

for a control assertion patternA using the mechanism described in section4.3.2. It

essentially compares the control assertion pattern of eachmicro-operation of the data

path withA. The number of micro-operations possible in the data path isO(kc+r + f).

Let |A| (i.e., the number of control signals over the entire data path) ben. So, the

complexity of this step isO(n∗ (kc+ r + f)). In the next step, the moduleRTLV-

0 invokesRTLV-1to find the RT operations realized byMA. So, the complexity of

this step isO(w2r +w2 f + r2w+ f 2w+wr f +wcr+wc f). If any of the RT-operations

returned by the moduleRTLV-1is of typer⇐ e′(e1〈opi〉e2)e′′ or r⇐ e′pe′′, it invokes

eitherMulticyclefor the former case to obtain the setT1 or Pipelinedfor the latter one

to obtain the setT2. The complexity of both these modules isO(e). The moduleRTLV-

0 now performs step 1 and step 2 as discussed above for each member of the setT1

or T2. The |T1| or |T2| is O(e). So, the complexity of this step isO(e∗ ((knc+ nr +

n f)+ (w2r + w2 f + r2w+ f 2w+ wr f + wcr+ wc f))). The module searches for the

RT operationp⇐ e1〈op〉e2 in the setT1 for multicycle operations andp⇐ e on the

transitions inT2 for pipelined operations. Maximum number RT-operations, which has

FU output signal in their lhs performed by the micro-operations for a control assertion

pattern isO(f). So, the complexity of this step of moduleRTLV-0is O(f ∗e). Finally,

it searches inMAt for a micro-operation which contains a register term belongto

the expressionse1 or e2 on the transitions inT1. So, the complexity of this step

is O(e∗ (r ∗ (c+ r + f))). Hence, the overall complexity of the moduleRTLV-0 is

O((nkc+nr+n f)+(w2r +w2 f + r2w+ f 2w+wr f +wcr+wc f)+(e∗ ((nkc+nr+

n f) + (w2r + w2 f + r2w+ f 2w+ wr f + wcr + wc f) + f ∗ e+ e∗ (r ∗ (c+ r + f)))

116 Chapter 4 Verification of RTL Generation Phase

= O(w2re+w2 f e+ r2we+ f 2we+enkc+ewr f +ewcr+enr+en f).

4.6 Verification by equivalence checking

In the datapath and controller generation phase, the behaviour represented by the input

FSMD M1 is mapped to hardware. The number of states and the control structure of

the behaviour are not modified in this phase. Hence, there is aone-to-one correspon-

dence between the states of the input FSMDM1 and the constructed FSMDM2. Let

the mapping between the states ofM1 and those ofM2 be represented by a function

f12 : Q1 ↔ Q2. The stateq2i (∈Q2) of the FSMDM2 is said to be the corresponding

state ofq1i (∈Q1) if f12(q1i) = q2i. A transitionq2k −→c q2l of the FSMDM2 is said to

correspond to a transitionq1k −→c′
q1l of the FSMDM1 if f12(q1k) = q2k, f12(q1l) = q2l

and the conditionc is equivalent to the conditionc′. A set of RT-operations are formed

for each state transition of the FSMDM2 from the corresponding control assertion pat-

tern. Now, the question is whether all the RT-operations corresponding to each state

transition of the FSMDM1 are captured by the controller or not. It may be noted

that because of minimization of the controller output functions, some spurious RT-

operations may get activated. So, the verification tasks consist in showing that all the

RT-operations in each state transition in FSMDM1 are also present in the correspond-

ing state transition in FSMDM2 and no extra RT-operation occurs in that transition of

the FSMDM2.

It may be noted that algebraic transformation techniques based on commutativity,

associativity and distributivity of arithmetic operations are often used during datap-

ath synthesis to improve interconnection cost (Chandrakasan et al., 1995b; Zory and

Coelho, 1998). Hence, the RTL operations in one transition of FSMDM1 and in the

corresponding transition of FSMDM2 may not be syntactically identical. Specifica-

tion of digital systems implementing algorithmic computations involves the whole of

integer arithmetic for which a canonical form does not exist. Instead, we use a normal

form adapted from (Sarkar and De Sarkar, 1989) during equivalence checking. The

normalization process reduces many computationally equivalent formulas to a syntac-

tically identical form. We have also added several simplification rules on normalized

expressions, the details of which may be found in Chapter3.

4.7 Verification of low power RTL transformations 117

It has been assumed that the control flow graph of the behaviour is not changed

subsequent to the scheduling phase. However, controller FSMs can be minimized

(Bergamaschi et al., 1992). Under such a situation, our method, in its present form,

will not be able to establish equivalence as the bijections no longer hold. If, however,

the FSM minimization is a distinct phase following the datapath and controller gener-

ation phase, as is usually the case (Bergamaschi et al., 1992), then the verification of

the FSM minimization can be separately addressed as the equivalence checking prob-

lem of two FSMs. Another way to upgrade the present verifier isto use the path based

equivalence checking method as reported in Chapter3; this approach, however, would

have an exponential upper bound.

FSMD construction
step 1

success success

analysis

error report

analysis

error report

FSMD construction
step 1

−/s⇐ r3≤ r1

s/r3⇐ r1− r2+ r3

¬s/OUT(r3)

¬s/〈0,1,0,0,0〉

−/〈1,0,0,0,1〉

s/〈1,1,0,1,1,1〉
−/〈1,1,0,1,1〉

−/s⇐ r3≤ r1

s/r3⇐ r3+ r1− r2

¬s/OUT(r3)

−/〈1,0,0,1,1,0〉

s/〈1,0,0,0,1,1〉
−/〈0,1,1,0,0,0〉

¬s/〈1,1,1,0,1,0〉
status

cap

input RTL transformed RTL

low power

transformation

cap

status

DatapathController FSM Controller FSM Datapath

step 2

Checking
Equivalence

yes/no

no yes yes no
FSMD

FSMD

−/s⇐ r3≤ r1−/s⇐ r3≤ r1

Figure 4.9: Verification framework

4.7 Verification of low power RTL transformations

We present an automated verification method for low power transformations in RTL

design. The inputs are two RTL designs – the original one and the one obtained by

applying some low power transformations. Our verification framework is depicted in

figure4.9. Specifically, we apply the FSMD construction mechanism developed above

(in section4.4) to obtain the FSMDs from both the RTL designs. In the next step, the

equivalence of two FSMDs are established.

118 Chapter 4 Verification of RTL Generation Phase

A significant portion of the overall power consumption of an RTL design is due

to propagation of glitches in both control and data parts of the circuit. Reduction

of glitching power is achieved primarily by the following transformations of RTL

circuits:

• Choosing an alternative datapath architecture

• Restructuring of multiplexer networks to eliminate glitchycontrol signals

• Restructuring of multiplexer networks to enhance data correlation

• Clocking of control signals

• Inserting delay elements in the datapath and the controller

We observed that the number of control signals and the datapath interconnections in

the input and the output RTL descriptions may differ due to applications of these

transformations. However, the number of control states in the controller FSM remains

the same in both RTLs. We have already proved by theorem7 that any realizable RT-

operation in the datapath can be constructed by our FSMD construction mechanism

(described in section4.4). Therefore, by virtue of the completeness of the method,

it is able to construct the FSMDs from both the RTL designs. Inthe following, we

illustrate the above mentioned transformations with examples to show their effects

on the input RTL circuits and then discuss how our FSMD construction mechanism

works for them.

4.7.1 Alternative datapath architecture

Increase in resources does not always increase power consumption of a circuit. Al-

ternative datapath architectures (even with more resource) may be available with low

power consumption. The following example illustrates the fact.

Consider two RTL architectures shown in figure4.10(a) and in figure4.10(b).

Both the circuit implement the same function:if(CS_m) then z⇒ c + d else z⇒

a + b. Let the control signalCS_m be the output of a comparator block. The circuit

in figure4.10(b) uses more resource than the circuit in figure4.10(a) since the former

4.7 Verification of low power RTL transformations 119

d

M2

0 1

a

M1

0 1

dOut

m2Outm1Out

CS_m

fOut

bc

z

(a)

+

FU1

FU1 FU2

+

dcba

z

M1

0 1

aOut cOutbOut dOutbOutaOut cOut

(b)

f1Out f2Out

CS_m

m1Out
CS_zLd

CS_zLd

+

Figure 4.10: Alternative datapath architecture

one uses two adders as opposed to one adder for the latter. Since the control signal

may come from a comparator circuit, it will be glitchy. In thecircuit of figure4.10(a),

these glitches may then propagate through two multiplexersto the inputs of the adder,

which cause a significant increase in glitching activities and hence power consumption

in the two multiplexers and the adder. For the circuit in figure 4.10(b), though the

comparator generates glitches as before, the effect of these glitches is restricted to the

single multiplexer. Hence, the architecture in figure4.10(b) actually consumes less

power than the circuit in figure4.10(a).

The controller’s functionality would be the same even though the datapath archi-

tecture is changed. Therefore, the controller of this RTL shall generate the same con-

trol assertion pattern (CAP) for both the datapaths to perform certain RT-operation(s)

in the datapaths. The existing rewriting method works for such transformations. Since

the datapath architecture is changed, the micro-operations of the datapath are differ-

ent. Therefore, the rewriting sequence would be different.The rewriting method finds

the same RT-operations in both the datapaths for a given CAP. Following example

illustrates this.

Let the relative ordering of the control signals in the CAP pattern beCS_m≺

CS_zLd. For brevity, let us ignore the other members in CAP. Let the controller gen-

erate the CAP〈0,1〉 in a control state. The possible micro-operations in the datapath

120 Chapter 4 Verification of RTL Generation Phase

Micro-operation (µ) CAP of µ fmc(µ) θ A

aOut⇐ a 〈X,X〉 〈X,X〉

bOut⇐ b 〈X,X〉 〈X,X〉

cOut⇐ c 〈X,X〉 〈X,X〉

dOut⇐ d 〈X,X〉 〈X,X〉

m1Out⇐ aOut 〈0,X〉 〈0,X〉

m1Out⇐ cOut 〈1,X〉 〈U,X〉

m2Out⇐ bOut 〈0,X〉 〈0,X〉

m2Out⇐ dOut 〈1,X〉 〈U,X〉

fOut ⇐m1Out+m2Out 〈X,X〉 〈X,X〉

z⇐ fOut 〈X,1〉 〈X,1〉

Table 4.2: The micro-operations of datapath in figure4.10(b) and computation ofMA

for CAP 〈0,1〉

Micro-operation (µ) CAP of µ fmc(µ) θ A

aOut⇐ a 〈X,X〉 〈X,X〉

bOut⇐ b 〈X,X〉 〈X,X〉

cOut⇐ c 〈X,X〉 〈X,X〉

dOut⇐ d 〈X,X〉 〈X,X〉

f1Out⇐ aOut+bOut 〈X,X〉 〈X,X〉

f2Out⇐ cOut+dOut 〈X,X〉 〈X,X〉

m1Out⇐ f1Out 〈0,X〉 〈0,X〉

m1Out⇐ f2Out 〈1,X〉 〈U,X〉

z⇐m1Out 〈X,1〉 〈X,1〉

Table 4.3: The micro-operations of datapath in figure4.10(b) and computation ofMA

for CAP 〈0,1〉

of figure 4.10(a) are: aOut⇐ a, bOut⇐ b, cOut⇐ c, dOut⇐ d, m1Out⇐ aOut,

m1Out⇐ cOut, m2Out⇐ bOut, m2Out⇐ dOut, fOut⇐ m1Out+m2Out, z⇐ fOut.

In figure4.10(b), this set contains:aOut⇐ a, bOut⇐ b, cOut⇐ c, dOut⇐ d, f1Out

⇐ a+b, f2Out⇐ c+d, m1Out⇐ f1Out, m1Out⇐ f2Out, z⇐ m1Out. The selec-

tion of micro-operations that are activated by the CAP〈0,1〉 in datapaths in figure

4.10(a) and in figure4.10(a) are tabulated in table4.2and table4.3, respectively. The

selected micro-operations are marked as bold in the tables.

For the datapath in figure4.10(a), the sequence of rewriting steps is as follows:

z⇐ f Out

⇐m1Out+m2Out [by f Out⇐m1Out+m2Out] (step1)

⇐ aOut+m2Out [by m1Out⇐ aOut] (step2)

4.7 Verification of low power RTL transformations 121

⇐ a+m2Out [by aOut⇐ a] (step3)

⇐ a+bOut [by m2Out⇐ bOut] (step4)

⇐ a+b [by bOut⇐ b] (step5)

For the datapath in figure4.10(b), the sequence of rewriting step is as follows:

z⇐m1Out

⇐ f 1Out [by m1Out⇐ f 1Out] (step1)

⇐ aOut+bOut [by f1Out⇐ aOut+bOut] (step2)

⇐ a+bOut [by aOut⇐ a] (step3)

⇐ a+b [by bOut⇐ b] (step4)

4.7.2 Restructuring of multiplexer networks to enhance data cor-

relation

The glitch propagation from control signals through a multiplexer is minimized when

its data inputs are highly correlated (Raghunathan et al., 1999). This observation can

be used to reduce the glitch propagation from control signals feeding a multiplexer

network by restructuring it. The following example illustrate this fact.

0

CS_b

CS_c

CS_b

CS_a

c

c

z z

b

0 1

1

a

0

data input correlations:

< a,c >= 0.76
< a,b >= 0.76
< c,b >= 0.991

ba

bOut

cOut m1Out

M1

M2

M1

M2

m2Out

aOutm1Out

cOut bOut

m2Out

aOut

(a) (b)

1 0

CS_zLd CS_zLd

Figure 4.11: Multiplexer network restructuring to enhancedata correlation: An exam-

ple

Let us consider the 3 : 1 multiplexer network implementationusing two 2 : 1 mul-

122 Chapter 4 Verification of RTL Generation Phase

tiplexers in figure4.11(a). In this example, at most one ofCS_a, CS_b andCS_c can

be 1 in a control step. Let us assume that these control signals are generated in such

a way thatCS_b be highly glitchy, leading to propagation of glitches to theoutput of

M1. Let us also assume that data inc andb be highly corelated at bit-level as shown

in the figure. Hence, the multiplexer tree is transformed as shown in figure4.11(b).

This arrangement significantly lowers the switching activity at the output ofM1.

The datapath structure has changed. Therefore, the sets of micro-operations are

different in the datapaths. However, the controller remains the same and it produces

identical CAP for both the datapath to execute certain RT-operations. It may be noted

thatCSa is redundant for the datapath in figure4.11(a) whereasCSc is redundant for

the datapath in figure4.11(b). In this case also, the existing rewriting method works.

The rewriting sequence, however, differs for the datapaths. For a given CAP, the

rewriting method obtains the same RT-operation(s) in both the datapaths.

4.7.3 Restructuring of multiplexer networks to eliminate glitchy

control signals

The glitches of control signal propagates through the datapath; consequently, con-

sumes a large portion of the glitching power of the entire circuit. Eliminating glitchy

control signals, therefore, reduces the total power consumption of the circuit. Follow-

ing example illustrates the fact.

Let us consider datapath in figure4.12(a). The multiplexer network uses only

two of the three available control signals. Let assume that the control signalCS_a

be glitchy. An alternative implementation of the network isshown in figure4.12(b)

where the control signalCS_a is eliminated.

In the datapath in figure4.12(a) the disjunction of control signalsCS_a andCS_b

is used as the select line for the multiplexer M2. In this case, the micro-operation

m2Out⇐m1Out executes whenever the value of at least one ofCS_a andCS_b is one.

Therefore, for this micro-operation, we can have three different CAPs,〈0,1,X,X〉,

〈1,0,X,X〉, 〈1,1,X,X〉. Therefore,fmc is a non-functional relation in this example.

It may be noted that even if a micro-operationµ is activated by more than one CAPs,

only one of those CAPs becomes true for a given CAP from the controller. For a

4.7 Verification of low power RTL transformations 123

CS_b

CS_a+CS_b

CS_c

CS_b

c

z z

0

10

ba

bOut

cOut m1Out

M1

M2

M1

M2

m2Out

m1Out

m2Out

aOut

(a) (b)

10

c

cOut

b

a

bOut

aOut

0 1
1

CS_zLd CS_zLd

Figure 4.12: Multiplexer network restructuring to eliminate glitchy control signals:

An example

given value ofCS_a andCS_b in a CAP from the controller, for example, at most one

of these〈0,1,X,X〉, 〈1,0,X,X〉, 〈1,1,X,X〉 is true.

Since some of the control signals are removed from the selectlines of the mul-

tiplexer network, the functionality of the control signalshave changed for the multi-

plexer network. So, the controller may have to generate different CAPs for these two

networks to execute the same RT-operation in them. Also, theset of micro-operations

of the transformed network is different from the original one. In this case, our rewrit-

ing method succeeds in constructing the same RT-operationsfrom two different CAPs

over two different sets of micro-operations. The details ofthe working of our rewriting

method on the example given in figure4.12are omitted here for brevity.

4.7.4 Clocking of control signals

Multiplexer restructuring strategies do not always work toreduce the effect of glitches

on control signals; in such cases, clocking control signalscan be used to suppress

glitches on control signals (Raghunathan et al., 1999).

Let us consider the design in figure4.13(a). Let assume that both the possible

control signalCS_b is glitchy. Since there is only one multiplexer in this circuit,

124 Chapter 4 Verification of RTL Generation Phase

z

(a)

CS_b

ba

bOut

m1Out

M1

aOut

0 1

ba

bOut

m1Out

M1

aOut

0 1

clk

CS_b

z

(b)

CS_zLdCS_zLd

Figure 4.13: Clocking control signal to kill glitch

multiplexer restructuring transformations cannot be applied here. Let us assume that

the design is implemented using rising-edge-triggered FF’s and a single-phase clock

with a duty cycle of 50%. Let assume that both the possible control signalCS_b

is glitchy. In that case, multiplexer restructuring transformations cannot be applied

here. Figure4.13(b) shows the modified circuit after clocking the control signal to the

multiplexer. This ensures that for the first half of the clockperiod, when the clock is

high, the output of the AND gate is forced to zero in spite of the glitches on its other

input.

This modification does not make any change in the datapath as well as in the

controller. Therefore, the set of micro-operations and their corresponding CAP of

the transformed RTL would be the same as that of the original RTL. The controller

also generates the same CAP to execute certain RT-operation(s) in both the datapaths.

Therefore, rewriting method works identically for both thebehaviours.

4.7.5 Glitch reduction using delays

Let us consider the circuit in figure4.14(a). Adders generate glitches even when the

inputs are glitch free. Therefore, the data inputs to the multiplexer have glitches which

propagate through the multiplexer and then through the third adder, causing significant

power dissipation. The propagation of glitches can be minimized by adding delay

elements (buffers or inverters) in the select lineCS_m of the multiplexer as shown in

figure4.14(b) .

Adding a delay element or a clock to a control signal does not result in any struc-

4.7 Verification of low power RTL transformations 125

(a) (b)

FU1 FU2

+

dcba

M1

0 1

aOut cOutbOut dOut

f1Out f2Out

CS_m

m1Out

+

e

zCS_zLd

eOut

FU3

+

f3Out f3Out

FU3

+

FU1 FU2

+

dcba

M1

0 1

aOut cOutbOut dOut

f1Out f2Out

m1Out

+

e

z

CS_m

CS_zLd

d1delay element

eOut

Figure 4.14: Insertion of delay element in signal line

tural changes in datapath. Also, it does not effect in the functionality of the controller.

Therefore, the rewriting method works identically for boththe behaviours.

Similarly, delay elements may be inserted in the data lines also. In figure4.15, for

example, the delay elements are inserted at the data line from b to multiplexer M1 and

also at the data line froma to multiplexer M2. It may be noted that the multiplexer

network has also restructured in this example.

When the delay elements are inserted in the datapath, number of micro-operations

are increased in the datapath. Let us consider the micro-operation m1Out⇐ b of

the datapath in figure4.15(a). A delay element has been inserted in this data line as

shown in figure4.15(b). As a result, the micro-operationm1Out⇐ b is now replaced

by two micro-operationsd1Out⇐ d andm1Out⇐ d1out. The CAPs generated by the

controller to the datapath remain the original one. Since the set of micro-operations

of the transformed datapath are not same as the original one,the rewriting sequence

would be different in them for the same RT-operation.

126 Chapter 4 Verification of RTL Generation Phase

CS_b

CS_a+CS_b

CS_b

CS_a

z z

m1Out

M1

M2

M1

M2

m2Out

m1Out

m2Out

10

0 1

CS_zLd CS_zLd

1

d1

0 1

d2

d1Out

d2Out

zOut

0

zOut

(a) (b)

a b b

a

Figure 4.15: Insertion of delay element in data inputs

4.8 Experimental results

The verification method described in this chapter has been implemented in C and in-

tegrated with an existing high-level synthesis tool SAST (Karfa et al., 2005). It has

been run on a 2.0 GHz IntelR© CoreTM2 Duo machine with 2GB RAM on the outputs

generated by SAST for eleven HLS benchmarks (Panda and Dutt, 1995). Some of

the benchmarks such as, differential equation solver (DIFFEQ), elliptic wave filter

(EWF), IIR filter (IIR_FIL) and discrete cosine transformation (DCT), aredata in-

tensive, some arecontrol intensivesuch as, greatest common divisor (GCD), traffic

light controller (TLC),(a∗b) modulon (MODN) and barcode reader (BARCODE),

whereas some are bothdata and control intensivesuch as, IEEE floating point unit

(IEEE754), least recently used cache controller (LRU) and differential heat release

computation (DHRC) (Panda and Dutt, 1995). The number of basic blocks, branch-

ing blocks, three-address operations and variables for each benchmark are tabulated

in table4.4. Before presenting the details of the experiments, a brief introduction to

SAST is in order. The datapath produced by SAST may be viewed as a set ofarchitec-

tural blocks(A-blocks) connected by a set of global buses. Each A-block has a local

functionalunit (FU), local storage and local buses. The datapath is characterized by

a three tuple of positive numbers〈a,b, l〉, wherea gives the number of A-blocks,b

gives the number of global buses interconnecting the A-blocks andl gives the number

4.8 Experimental results 127

Benchmark #BBs #branching blocks #operations #variables

DIFFEQ 4 1 19 12

EWF 1 0 53 37

DCT 1 0 58 53

GCD 7 5 9 5

TLC 17 6 28 13

MODN 7 4 12 6

IIR_FIL 3 0 27 20

BARCODE 28 25 52 17

IEEE754 40 28 74 16

LRU 22 19 49 19

DHRC 7 14 131 72

Table 4.4: Characteristics of the HLS benchmarks used in our experiment

of access links or access width connecting an A-block to the global buses. SAST takes

these architectural parameters along with the high-level behaviour as inputs. The tool

produces different schedule of operations, different binding of variables and operators

and hence, different datapath interconnection and controller from a given high-level

behaviour for different architectural parameters. The design synthesized by the SAST

tool under the above mentioned architectural parameters are well suited to test this

verifier as the designed datapaths have complex interconnections and complex data

transfers.

In our first experiment, we assume that all operations in the benchmark exam-

ples are single cycle. Two different sets of architectural parameters comprising the

number of A-blocks, the number of global buses and the numberof access links are

considered for each benchmark depending on the size of the benchmark. The results

for all the HLS benchmarks are shown in table4.5. The number of registers, func-

tional units, interconnection wires and switches (which isthe only interconnection

component here), the number of micro-operations possible in the datapath, the num-

ber of states in the controller FSM, the number of control signals used to control the

micro-operations, the average time of construction of the FSMD from the datapath and

the controller and the average time of verification by equivalence checking for each

benchmark program for both architectural parameters are shown in columns 3-11 (un-

der the designation “correct design") of this table. It may be noted that the number

of control signals for each benchmark is less than the numberof micro-operations in

the datapath because SAST optimizes the number of control signals required to con-

trol the micro-operations in the datapath and some of the micro-operations depend on

12
8

C
ha

pt
er

4
Ve

rifi
ca

tio
n

of
R

T
L

G
en

er
at

io
n

P
ha

se

Correct Design Erroneous Design

Arch. #regs #FUs #wires #swi- #micro- #states #ctrl time (ms) #bits M2 construction Eq. Check.

Benchmarks Params. tches opns sigs construct. verif changes #errors #time #errors #time

DIFFEQ
〈3,2,1〉 14 3 49 42 82 13 60 188 7 6 4 165 - -

〈4,3,2〉 12 4 54 48 88 10 67 170 7 2 0 183 1 8

EWF
〈3,2,1〉 17 3 63 83 135 34 109 504 3 10 6 443 - -

〈4,3,2〉 19 4 75 108 165 23 138 458 3 20 9 536 - -

DCT
〈3,2,1〉 25 3 70 190 154 29 117 656 13 7 6 576 - -

〈4,3,2〉 31 4 96 130 218 23 171 597 14 5 1 554 - -

GCD
〈2,2,1〉 4 2 24 15 29 8 21 141 21 2 0 126 1 20

〈2,1,1〉 4 2 21 13 26 8 19 140 21 7 2 104 - -

TLC
〈2,2,1〉 14 2 32 21 46 22 28 229 35 3 1 212 - -

〈3,2,1〉 16 3 45 23 51 22 37 205 31 10 4 260 - -

MODN
〈2,2,1〉 15 2 43 33 71 15 46 144 18 8 5 162 - -

〈3,2,1〉 15 3 58 34 78 15 49 192 19 11 7 195 - -

IIR_FIL
〈3,2,1〉 18 3 57 50 97 21 71 242 12 7 4 245 - -

〈4,3,2〉 21 4 81 74 131 16 99 231 10 5 0 252 2 12

IEEE754
〈3,2,1〉 52 3 112 110 235 120 147 1420 55 26 7 1306 - -

〈4,3,2〉 55 4 133 150 292 107 197 1260 60 16 4 1529 - -

BARCODE
〈3,2,1〉 30 3 63 57 118 76 82 565 68 17 7 487 - -

〈4,3,2〉 34 4 80 81 157 58 116 510 60 3 0 592 0 55

LRU
〈3,2,1〉 30 3 82 105 190 72 140 1020 48 32 11 885 - -

〈4,3,2〉 33 4 102 112 217 69 152 980 46 11 5 805 - -

DHRC
〈3,2,1〉 49 3 115 136 252 97 177 1445 67 44 11 1372 - -

〈4,3,2〉 57 4 139 148 289 95 198 1295 59 12 2 1387 - -

Table 4.5: Results for several high-level synthesis benchmarks

4.8
E

xperim
entalresults

129

Correct Design Erroneous Design

Datapath info. Controller info. Time (ms) M2 construct.

Bench- operator Arch. #regs #FUs #wires #swi- #micro- #states #ctrl FSMD equiv. #bits

marks type Params. tchs opns sigs construction check changes #errors #time

DIFFEQ

MULTICYCLE
〈3,2,1〉 14 3 52 51 91 13 69 211 8 3 1 200

〈4,3,2〉 15 4 60 57 99 11 75 194 8 4 3 214

PIPELINED
〈3,2,1〉 11 3 44 42 75 12 57 184 7 1 1 205

〈4,3,2〉 13 4 58 54 99 10 75 178 7 2 2 195

DCT

MULTICYCLE
〈3,2,1〉 30 3 77 92 166 42 124 723 15 6 4 730

〈4,3,2〉 28 4 93 126 209 27 196 726 14 3 2 722

PIPELINED
〈3,2,1〉 30 3 76 91 165 36 123 629 14 4 3 642

〈4,3,2〉 30 4 91 115 199 26 154 580 13 2 2 567

Table 4.6: Results for multicycle and pipelined datapath fortwo high-level synthesis benchmarks

130 Chapter 4 Verification of RTL Generation Phase

more than one control signal. Our method can successfully find the RT-operations for

this case. Furthermore, the number of RT-operations in eachbenchmark (in column

4 in table4.4) is much higher than the number of states (in column 8 of table4.5) in

the controller FSMs. It indicates that more than one RT-operation are executed in the

datapath for a control assertion pattern. Again, our methodsuccessfully finds all the

RT-operations from a given control assertion pattern. The FSMD construction time

is seen to increase linearly with the design size. For instances, the datapath of the

GCD example for architectural parameter〈2,2,1〉 consists of 14 registers, 2 FUs, 24

interconnection wires, 15 switches and 29 micro-operations; the corresponding fig-

ures for IEEE754 example for architectural parameters〈3,2,1〉 are 52, 3, 112, 110

and 235. The controller for the GCD example has 8 states and 21 control signals. The

corresponding figures for the IEEE754 example are 120 and 147. The construction

time of the FSMD of IEEE754 is only ten times higher than that of GCD. The aver-

age FSMD construction time is higher than that of verification time. The construction

time, however, is not very high and is less than two seconds inall the cases.

In our second experiment, we consider two data intensive benchmarks, i.e., DIF-

FEQ and DCT examples, which consist of 6 and 16 multiplications, respectively.

These behaviours have been synthesized in SAST with two different architectural

parameters. In addition to that, the same observations havebeen repeated twice; in

the first step, all the multiplication operations of the behaviour are taken as two cy-

cle ones; in the second step, these are taken as two stage pipelined. The same set of

observations as in the first part of table4.5 are carried out and recorded in table4.6

for this experiment. Our rewriting method successfully constructed the RT-operations

from the control assertion patterns for all these cases. TheFSMD construction time

and the verification time are not particularly high here either.

In the third experiment, we consider erroneous designs. Forexample, in the RTL

design of IEEE754 floating point example generated by SAST with architectural pa-

rameters〈3,2,1〉, we modify the 70th state of the FSM. The correct RT-operations in

this state arevar6⇐ exponent1 + exponent2 andmmult⇐mantissa1×mantissa2

and the corresponding control assertion pattern is0x1180400000020000402008000800118004080.

Now, we inject different faults in the RTL design by manuallychanging some bits

of the control assertion pattern and check whether our method can successfully find

the corresponding bugs. The set of micro-operations in thisstate is rendered in-

adequate by changing the 19th hex digit of the assertion pattern from 2 to 0 (i.e.,

4.8 Experimental results 131

0x1180400000020000400008000800118004080). As a result, the micro-operationalu1Lin⇐

exponent1Out is not realized in this state. ThefindRewriteSeqfunction finds this

inconsistency as it fails to find the replacement ofalu1Lin during rewriting. The

function reports “inadequate set of micro-operations" andreturns the partially com-

puted micro-operation sequence from the destination register var6 to alu1Lin. Simi-

larly, data conflict is next introduced in this state by changing the assertion pattern to

0x1180400000220000400008000800118004080. As a result, the data from both regis-

tersr223 andexponent1 try to pass toalu1Lin. The functionfindRewriteSeqfinds two

replacements, i.e.,aluLin⇐ r223Out andaluLin⇐ exponent1Out for alu1Lin and

then reports “data conflict". In the same way, other faults arealso injected and suc-

cessfully found by our FSMD construction method. In the nextstep, we set the control

assertion pattern to0x1180400000020000402000800800118004004. As a result, the RT-

operationmantissa⇐ mantissa1×mantissa2, instead of the original RT-operation

mmult⇐mantissa1×mantissa2, is executed in the datapath. TheRTLV-0constructs

the RT-operationmantissa⇐mantissa1×mantissa2. Subsequently, the equivalence

checking step finds this mismatch of RT-operations in the FSMD transition.

We further introduce faults by randomly changing control bits from 1 to 0 or vice

versa in the controller of all the benchmark examples. The number of control bits

changed, the number of errors detected during FSMD construction and equivalence

checking and their respective time for this experiment are tabulated in columns 12-16

(under the designation“erroneous design") of the table4.5. It may be noted that the

equivalence checking is not needed if some errors are detected during FSMD construc-

tion. In most of the cases, errors are found correctly duringconstruction of FSMD. In

some cases, incorrect or redundant RT-operations are constructed but they are found

subsequently during equivalence checking. Random modification of the control bits,

in some cases, resulted in (benign) partial data flows in the datapath which did not

realize any RT-operation. For such modified designs, no errors were reported because

the original behaviour is still realized. Our rewriting method does not reveal such

partial dataflows without compromising the correctness of the method. Furthermore,

for pipelined and multicycle operations, we have modified the control bits so that they

are performed inconsistently. All these errors have also been detected. The number of

control bits changed, the number of errors identified and thecorresponding verifica-

tion time are given in columns 13-15 of table4.6. It may be noted that the execution

times of the method for the erroneous design are comparable with those for the correct

132 Chapter 4 Verification of RTL Generation Phase

design. In our next part of this experiment, we introduce faults in the datapath by alter-

ing the connections of some interconnection switches without changing their control

assertions (the controller circuit stays unaltered). These errors are also successfully

identified by our verifier; the time taken is comparable with other experiments.

4.9 Conclusion

This chapter presents a verification method of the RTL generation phase of high-level

synthesis. The verification task is performed in two steps. In the first step, a novel

and formally provenrewriting methodis presented for finding the RT-operations per-

formed in the datapath by a given control assertion pattern.Several inconsistencies

in both the datapath and the controller may be revealed during construction of the

FSMD. Unlike many other reported techniques, this work provides a completely auto-

mated verification procedure of pipelined, multicycle and chained datapaths produced

through high-level synthesis. Its correctness and complexity analysis are also given.

In the second step, a state based equivalence checking methodology is used to verify

the correctness of the controller behaviour. We next apply our FSMD construction

mechanism to verify several RTL low power transformations.Specifically, we con-

struct FSMDs from both the initial and the transformed RTLs and then apply our

FSMD based equivalence checker. Experimental results on several HLS benchmarks

demonstrate the effectiveness of our method.

Chapter 5

Verification of Loop and Arithmetic

Transformations of Array-Intensive

Behaviours

5.1 Introduction

In course of synthesizing the final implementation from the initial specification of an

algorithm, a set of transformations may be carried out on theinput behaviour target-

ing the best performance, energy and/or area on a given platform. In particular, loop

transformations along with algebraic and arithmetic transformations are applied exten-

sively in the domain of multimedia and signal processing applications. These trans-

formations can be automatic, semi-automatic or manual. We have discussed in section

2.3.1that loop transformation techniques like loop fusion, looptiling, loop shifting,

loop unrolling, loop spliting, etc., are used quite often inthe multimedia and signal

processing domain. We have also discussed in section2.3.2that arithmetic transfor-

mations based on algebraic properties of the operator like associativity, commutativity

and distributivity, arithmetic expression simplification, constant folding, common sub-

expression elemination, copy propagation, renaming and operator strength reduction,

etc., are also applied during synthesis. Importantly, looptransformation and arithmetic

transformation techniques are applied dynamically since application of one may cre-

ate the scope of application of the other. In all cases, it is crucial to know that the

133

134 Chapter 5 Verification of Loop Transformations

transformed program preserves the behavior of the original.

In this chapter, we develop an equivalence checking method which is capable of

handling all kinds of loop transformations and a wide range of arithmetic transforma-

tions applied on array intensive behaviours. We model both the input behaviour and

the transformed behaviour as array data dependence graph (ADDG) models (Shashid-

har, 2008). As discussed in subsection2.3.3, an ADDG based equivalence checking

method for loop and data-flow transformations was proposed in (Shashidhar, 2008;

Shashidhar et al., 2005a). This method works for most of the loop transformations

and for associative and commutative transformations. Their method, however, fails if

the transformed behaviour is obtained from the original behaviour by application of

arithmetic transformations such as, distributive transformations, arithmetic expression

simplification, common sub-expression elimination, constant folding, substitution of

multiplications with constants by addition, etc, along with loop transformations. As

discussed in (Shashidhar, 2008; Shashidhar et al., 2005a), to hanlde further arithmetic

transformations, one has to evolve appropriate rule for each individual transformation

and apply that rule to transform the ADDGs accordingly, before matching their slices.

This suggested direction of extension of their mathod, , however, cannot be extended

to handle many of above mentioned arithmetic transformations. It is because of the

fact that the defintion of equivalence of slices developed intheir work necessiates

that the number of paths must be the same in two equivalent slices. This assump-

tion, however, may not hold in several cases of arithmetic transformations. In this

work, we define a slice based equivalence of ADDGs to alleviate the restrictions of

the method proposed in (Shashidhar, 2008; Shashidhar et al., 2005a). Specifically, the

contributions of the present chapter are: 1. modification ofdefinition of the charac-

teristic formula of a slice of ADDGs, 2. redefining the equivalence of ADDGs based

on slice level characterization rather than path based one alleviating, in the process, a

shortcoming of the latter in handling equivalent slices with unequal number of paths,

3. incorporating normalization of arithmetic expressions(Sarkar and De Sarkar, 1989)

and some additional simplification rules for normalized expressions for handling sev-

eral arithmetic transformations applied along with loop transformations, 4. automat-

ing method for checking equivalence of ADDGs and 5. providing the correctness and

complexity of the proposed method.

The rest of the chapter is organized as follows. The ADDG model is introduced in

section5.2, The notions of slice and its characteristic formula are defined in section

5.2 Array data dependence graphs 135

5.3. The equivalence checking method of ADDGs is given in section 5.4. The method

is explained with an example in section5.5. Correctness and complexity issues are

dealt with in section5.6. Several kinds of errors and corresponding diagonistic infer-

ences are discussed in section5.7. Some experimental results are given in section5.8.

Finally, the chapter is concluded in section5.9.

5.2 Array data dependence graphs

A sequential program consists of a set of statements. The right-hand-side (rhs) expres-

sion of any assignment statement is treated as an arithmeticexpression represented as

a function f called the operator in the statement. The array in the left hand side (lhs)

depends on the operator. The operator, in turn, depends on the arrays occurring in the

right hand side (rhs) expression. In the case of a copy statement, where one just copies

the contents of one array to another array, we consider the operator to be the identity

function I . Each individual array and each operator in a statement of the behaviour

form the vertex set and the dependencies discussed above form the edge set in the

ADDG. Hence we have the following definition.

Definition 14 (Array Data Dependence Graph (ADDG):) The ADDG of a sequen-

tial behaviour is a directed graph G= (V,E), where the vertex set V is the union of the

set A of array nodes and the set F of operator nodes and the edgeset E= {〈a, f 〉 | a∈

A, f ∈ F} ∪ {〈 f ,a〉 | f ∈ F,a ∈ A}. Edges of the form〈a, f 〉 are write edges; they

capture the dependence of the lhs array node on the operator corresponding to the

rhs expression. The edges of the form〈 f ,a〉 are read edges; they capture the depen-

dence of the rhs operator on the (rhs) operand arrays. An assignment statement S

of the form l[~el] = f (r1[~e1], . . . , rk[~ek]), where~e1, . . . , ~ek and~el are the vectors of

index expressions of the arrays r1, . . . , rk and l, appears as a subgraph GS of G,

where GS = 〈VS, ES〉, VS = AS∪FS, AS = {l , r1, . . . , rk} ⊆ A, FS = { f} ⊆ F and

ES = {〈l , f 〉}∪{〈 f , r i〉, 1≤ i ≤ k〉} ⊆ E. The write edge〈l , f 〉 is associated with the

statement name S. If the operator associated with an operatornode f has an arity

k, then there will be k read edges〈 f ,a1〉, . . . , 〈 f ,ak〉. The operator f applies over k

arguments which are elements of the arrays a1, . . . ,ak, not all distinct.

136 Chapter 5 Verification of Loop Transformations

A sequential program can be represented as an ADDG under the following restric-

tions: single-assignment, affine indices and bounds, static control-flow and uniform

recurrences(Shashidhar, 2008). Let us now describe each of the restrictions.

Single-assignment:A behaviour is said to be in single assignment form if any

memory location is written at most once in the entire behaviour. In other words, each

individual variable and each location of an array can be defined at most once and

cannot be redefined.

Affine indices and bounds:The array index expressions and the loop bounds must

be affine in nature. It means that all arithmetic expressionsin the indices of array

variables and in the bounds of loops must be affine function inthe iteration variables

of the enclosing loops. An affine transformation, or affine map, or affinity, between

two vector spacesV1 andV2 (strictly speaking, two affine spaces) consists of a linear

transformation followed by a translation such as,x←Ax+b, whereA is a matrix over

the underlying scalar of the vector space andb is a vector inV1
1. For the nested loop

behaviours, the ordered tuples of iteration variables of the enclosing loops constitute

a vector space.

Static control-flow:The control-flow of a behaviour is static if the execution of the

program can be exactly determined in compile time.

Uniform recurrences:A recurrence of the formM(~i) =~i +~c, where~i is a vector

of integer variables and~c is a vector of constant integers, is called uniform recurrence

(Karp et al., 1967).

In a single-assignment form program, any variable other than the loop indices,

can be replaced with an array variable (Shashidhar, 2008). Therefore, without loss of

generality, it is assumed that all the statements in the behaviours involve only array

variables. In fact, the application domain that we are considering also consists of array

intensive behaviours.
1 In the finite-dimensional case, each affine transformation is given by a matrix A and a vector b,

satisfying certain properties described below.

Geometrically, an affine transformation in Euclidean spaceis one that preserves

(i) The collinearity relation between points; i.e., three points which lie on a line continue to be

collinear after the transformation. (ii) Ratios of distances along a line; i.e., for distinct collinear points

p1, p2, p3, the ratio|p2− p1| / |p3− p2| is preserved.

5.2 Array data dependence graphs 137

As the program is considered to be in single assignment form,an element of an

array cannot be defined through two different operators. On the other hand, ifa(i) and

a(j) be the sets of elements of the arraya defined respectively through the operatorfi

and f j , 1≤ i, j ≤ l ∧ i 6= j, thena(i) anda(j) must be two disjoint sets of elements.

So, if the elements of an arraya are defined throughl operators,f1, . . . , fl , then the

array nodea will be associated withl write edges of the form〈a, f1〉, . . . ,〈a, fl 〉 in the

ADDG. Also, even if a program has more than one statement withreference to the

same arraya in the lhs, there will be only one array node in the ADDG for thearray

a.

out1

r2

F4

F3F2

r1

F1

in2in1

S2

S1

S3

S4

Figure 5.1: The ADDG of the sequential behaviour given in example10

Example 10 Let us now introduce one such behaviour through the following exam-

ple. Rest of the formalism will be explained through this behaviour.

The following nested loop sequential behaviour first computes the elements of the

array r1 from values of two input arrays namely,in1 andin2. In the next loop, the

program computes the values of arrayr2 and finally produces the output arrayout1

from r2.

138 Chapter 5 Verification of Loop Transformations

for (i = 1; i ≤M; i+ = 1) do
for (j = 4; j ≤ N; j+ = 1) do

r1[i +1][j−3] = F1(in1[i][j], in2[i][j]); // S1

end for
end for
for (l = 3; l ≤M; l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l +m ≤ 7) then

r2[l][m] = F2(r1[l −1][m−2]); // S2

end if
if (l +m ≥ 8) then

r2[l][m] = F3(r1[l][N−3]); // S3

end if
end for

end for
for (l = 3; l ≤M; l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
out1[l][m] = F4(r2[l][m]); // S4

end for

end for

The ADDG of this sequential behaviour is given in figure5.1. The arraysin1, in2,

r1, r2 andout1 account for the array nodes represented as rectangles and the operators

(functions)F1,F2,F3 andF4 account for the operator nodes represented as circles

in the ADDG. The dependencies among the nodes are represented as directed edges

as shown in the figure. In the statementS1, for example, the elements of the array

r1 is defined in terms of the elements of the arraysin1 andin2 using the functionF1.

Accordingly, there are two read edges〈F1, in1〉, 〈F1, in2〉 and one write edge〈r1,F1〉

in the ADDG. The statement nameS1 is associated with the write edge〈r1,F1〉.

The other edges in the ADDG can also be obtained in the same wayfrom the other

statements of the behaviour. 2

f or(i1 = L1; i1≤ H1; i1+ = r1)

f or(i2 = L2; i2≤ H2; i2+ = r2)
...

f or(ix = Lx; ix≤ Hx; ix+ = rx)

i f (CD) then

d[e1] . . . [ek] = f (u1[e′11] . . . [e
′
1l1

], . . . , um[e′m1] . . . [e
′
mlm]]); //statement S

Figure 5.2: A generalizedx-nested loop structure

5.2 Array data dependence graphs 139

5.2.1 Representation of data dependencies of the behaviour

The following information is extracted from each statementSof the behaviour. Let us

consider the generalizedx-nested loop structure in figure5.2 for this purpose. Each

index ik has a lower limitLk and a higher limitHk and a step constant (increment)

rk. The parametersLk, Hk andrk are all integers. The statementSexecutes under the

conditionCD within the loop body. The conditionCD is a logical expression involving

relational expressions over the loop indices. The array being defined isd and the arrays

read areu1, . . . ,um. All the index expressionse1, . . . ,ek of d and the index expressions

e′11, . . . ,e
′
1l1

, . . . ,e′m1, . . . ,e
′
mlm

of the corresponding arraysu1, . . . ,um in the statementS

are affine arithmetic expressions over the loop indices. There may be other statements

under the same condition or under other conditions within the loop body. They are not

considered here for simplicity.

Definition 15 (Iteration domain of the statementS(IS)) For each statement S within

a generalized loop structure with nesting depth x, the iteration domain IS of the state-

ment is a subset ofZx defined as

IS = {[i1, i2, . . . , ix] |
x̂

k=1

(Lk ≤ ik ≤ Hk∧CD∧∃αk ∈ N(ik = αkrk +Lk))}

where ik,Lk,Hk, rk,1≤ k≤ x, are integers2.

Example 11 Let us consider the statementS1 of the example10. For this statement,

IS1 = {[i, j] | 1≤ i ≤M∧4≤ j ≤ N∧ (∃α1,α2 ∈ N | i = α1 +1∧ j = α2 +4)}

Similarly, for the statementS2 of the same example, the iteration domain is

IS2 = {[l , m] | 3≤ l ≤M∧3≤m≤ N−1∧ l +m≤ 7∧ (∃α1,α2 ∈ N | l = α1 +

3∧m= α2 +3)} 2

2 Alternative definition:

IS = {[i1, i2, . . . , ix] |
x̂

k=1

(Lk ≤ ik ≤ Hk∧CD∧ (ik−Lk)%rk = 0)}

This definition removes the extra variableα.

140 Chapter 5 Verification of Loop Transformations

Each point[i1, i2, . . . , ix] in IS denotes exactly one execution of the statementS.

Each statement of a program defines the elements of an array (occurring in the lhs)

using the elements of a set of operand arrays (appearing in the rhs). Therefore, for

each statement, we may speak of adefinition domainand adefinition mappingof the

lhs array in the statement. The former comprises the domain from which the lhs array

indices assume values and the latter provides the mapping between the elements of the

iteration domain of the statement to the definition domain ofthe lhs array. Similarly,

for each rhs array of each statement, we have anoperand domainand anoperand

mappingof the rhs array in the statement. The former comprises the domain from

which the indices of rhs array of the statement assume valuesand the latter provides

the mapping between the elements of the iteration domain of the statement to the

operand domain of the rhs array. There are one operand domainand one operand

mapping for each of the arrays in the rhs of the statement. Thefollowing definitions

are in order.

Definition 16 (Definition mapping (SM(d)
d)) The definition mapping describes the as-

sociation between the elements of the iteration domain of a statement and the elements

of its lhs array d.

SM(d)
d = IS → Zk s.t.∀~v∈ IS, ~v 7→ [e1(~v), . . . , ek(~v)] ∈ Zk.

The image of the functionSM(d)
d is called thedefinition domainof the lhs arrayd,

defined asSDd; So,SDd = SM(d)
d (IS). Due to single assignment form, each element

of the iteration domain of a statement defines exactly one element of the lhs array of

the statement. Therefore, the mapping between the iteration domain of the statement

and image ofSM(d)
d is injective (one-one). Hence,(SM(d)

d)−1 exists.

In a similar way, the operand mapping for each operand array of a statement can

be defined as follows.

Definition 17 (Operand mapping (SM(u)
un)) The operand mapping describes the as-

sociation between the elements of the iteration domain of a statement and the elements

of the rhs array un

SM(u)
un = IS→ Zln s.t.∀~v∈ IS, ~v 7→ [en1(~v), . . . , enln(~v)] ∈ Zln.

5.2 Array data dependence graphs 141

The imageSM(u)
un (IS) is theoperand domainof the rhs arrayun in the statement

S, denoted asSUun. One element of the operand arrayun may be used to define more

than one element of the arrayd. It means that more than one element of the iteration

domain may be mapped to one element of the operand domain. Hence,SM(u)
un may not

be injective.

Definition 18 (Dependence mapping (SMd,un)) It describes the association of the in-

dex expression of the lhs array d which is defined through S to the index expression of

the operand array un,1≤ n≤m, i.e., one of the rhs arrays of S.

SMd,un = {[e1, . . . ,ek]→ [e′1, . . . ,e
′
ln] | ([e1, . . . ,ek] ∈ SDd ∧ [e′1, . . . , e′ln] ∈ SUun ∧

∃~v∈ IS | ([e1, . . . ,ek] = SM(d)
d (~v) ∧ [e′1, . . . ,e

′
ln] = SM(u)

un (~v)))}

The defined array d is k-dimensional and e1, . . . ,ek are its index expressions over the

loop indices~v; the array un is an ln-dimensional array, and e′1, . . . ,e
′
ln

are its index

expressions over the indices~v.

SM(d)
d

SM(u)
un

SMd,un
IS

SUun

SDd

SMd,un = (SM(d)
d)−1 ⋄ SM(u)

un

Figure 5.3: Computation of dependence mapping

The dependence mappingSMd,un can be obtained by

SMd,un = (SM(d)
d)−1 ⋄ SM(u)

un

142 Chapter 5 Verification of Loop Transformations

Specifically,SMd,un(SDd) = SM(u)
un ((SM(d)

d)−1(SDd)) = SM(u)
un (IS) = SUun. Figure

5.3 illustrates the fact.

There would be one such mapping from the defined array to each of the operand

arrays in the rhs ofS. The mappingsSMd,un, 1≤ n≤m, will be associated with the

corresponding read edge〈 f ,un〉 in the ADDG.

Example 12 Let us consider the statementS1 of the example10again. For this state-

ment,

S1M(d)
r1 = {[i, j]→ [i +1, j−3] | 1≤ i ≤M∧4≤ j ≤ N}

S1Dr1 = {[i +1, j−3] | 1≤ i ≤M∧4≤ j ≤ N}

S1M(u)
in1 = {[i, j]→ [i, j] | [i, j] ∈ 1≤ i ≤M∧4≤ j ≤ N}

S1Uin1 = {[i, j] | 1≤ i ≤M∧4≤ j ≤ N}

S1Mr1,in1 = (S1M(d)
r1)−1 ⋄ S1M(u)

in1

= {[i, j]→ [i−1, j +3]⋄ [i−1, j +3]→ [i−1, j +3]} | [i, j] ∈ S1Dr1}

= {[i, j]→ [i−1, j +3] | [i, j] ∈ S1Dr1} 2

5.2.2 Transitive dependence

Data dependence exists between two statementsP andQ if Q defines the values of

one array andP subsequently reads the same values from that array to define another

array. Figure5.4 depicts such a situation. Let the elements of the arrayy be defined

in terms of the elements of the arrayz in the statementQ and subsequently (a subset

of) the elements ofy defined inQ be used to define the elements of the arrayx in the

statementP, as depicted in figure5.4. Corresponding to the statementsP andQ, we

have the dependence mappingsPMx,y andQMy,z, respectively. Therefore, the elements

of the arrayx depends transitively on the elements of the arrayz. The dependence

mapping between the arrayx and the arrayz, i.e., PQMx,z, can be obtained from the

5.2 Array data dependence graphs 143

P

Q

z

y

x
PDx

PUy QDy

QUz

PMx,y

QMy,z

PQMx,z

PQDx

PQUz

PQDx = PM−1
x,y (QM−1

y,z (QUz) ∩ PMx,y(PDx))

PQUz = QMy,z[PMx,y(PDx)∩Q M−1
y,z (QUz)]

Figure 5.4: Transitive dependence

mappingsPMx,y andQMy,z by right composition (⋄) of PMx,y andQMy,z. The following

definition captures this computation.

Definition 19 (Transitive Dependence)PQMx,z = PMx,y ⋄ QMy,z = {[e1, . . . ,el1]→

[e′′1, . . . ,e
′′
l3
] | ∃[e′1, . . . ,e

′
l2
] s.t. [e1, . . . ,el1]→ [e′1, . . . ,e

′
l2
] ∈ PMx,y ∧ [e′1, . . . ,e

′
l2
]→

[e′′1, . . . ,e
′′
l3
] ∈ QMy,z}, where y is used in P and is defined in Q; we say that the array

y satisfies “used-defined” relationship over the sequence P, Q of statements.

The operand domain ofy (PUy) in the statementP and the definition domain ofy

(QDy) in the statementQ may not be the same. This can happen because a subset of

the elements ofy used inP as operands may be written (defined) by a statement other

thanQ leading to branching of dependencies of the destination array through other

paths. This situation is depicted byPUy ⊇ QDy. It is also possible thatPUy ⊆ QDy

when only a subset of elements ofy defined inQ is used as operands in the statement

P (the remaining elements ofQDy may be used by other statements). Therefore, the

domainPQDx say, of the resultant dependence mapping (i.e.,PQMx,z) is the subset

of the domain ofPMx,y such that∀x ∈ PQDx, PMx,y(x) = {y | y ∈ range(PMx,y)

144 Chapter 5 Verification of Loop Transformations

∩ domain(QMy,z)}. Thus,PQDx = PM−1
x,y (QM−1

y,z (QUz) ∩ PMx,y(PDx)). Similarly, the

range ofPQMx,z is PQUz = QMy,z(PMx,y(PDx) ∩ QM−1
y,z (QUz)). This is illustrated in

figure5.4. The operation⋄ returns empty ifPUy ∩ QDy is empty which indicates that

the iteration domains ofP andQ are non-overlapping.

It may be noted that the definition of transitive dependence can be extended over a

sequence of statements (by associativity) and also over twosequences of statements.

Example 13 Let us consider the behaviour given in example10and its corresponding

ADDG of figure5.1. Let us now consider the statementsS4 andS2 of the behaviour.

We have

IS4 = {[l , m] | 3≤ l ≤ M ∧ 3≤ m≤ N− 1∧ (∃α1,α2 ∈ Z | l = α1 + 3∧m =

α2 +3)},

S4Dout1 = IS4, S4Ur2 = IS4

S4Mout1,r2 = {[l ,m]→ [l ,m] | [l ,m] ∈ S4Dout1},

IS2 = {[l , m] | 3≤ l ≤M∧3≤m≤ N−1∧ l +m≤ 7∧ (∃α1,α2 ∈ Z | l = α1 +

3∧m= α2 +3)},

S2Dr2 = IS2,

S2Ur1 = {[l −1, m−2] | [l ,m] ∈ IS2} and

S2Mr2,r1 = {[l ,m]→ [l −1,m−2] | [l ,m] ∈ S2Dr2}.

The transitive dependence mappingS4S2Mout1,r1 can be obtained fromS4Mout1,r2

andS2Mr2,r1 by the composition operator⋄ as follows:

S4S2Mout1,r1 = S4Mout1,r2 ⋄ S2Mr2,r1

= {[l ,m]→ [l ,m] | [l ,m]∈ S4Dout1} ⋄ {[l ,m]→ [l−1,m−2] | [l ,m]∈ S2Dr2}

= [l ,m]→ [l −1,m−2] | [l ,m] ∈ S4Dout1}

We haveS2Mr2,r1 : S2Dr2 → S2Ur1. So,S2M−1
r2,r1(S2Ur1) would beS2Dr2 which

is actuallyIS2. We also haveS4Mout1,r2 : S4Dout1 → S4Ur2. So,S4Mout1,r2(S4Dout1)

5.2 Array data dependence graphs 145

would beS4Ur2 which is actuallyIS4. Therefore, the domain ofS4S2Mout1,r1 is S4S2Dout1

= S4M−1
out1,r2(S2M−1

r2,r1(S2Ur1) ∩ S4Mout1,r2(S4Dout1)) = S4M−1
out1,r2(IS2 ∩ IS4) = IS2.

It may be noted thatS2Dr2 (which is IS2) is a subset ofS4Ur2 (which is IS4) in this

example. (The remaining part ofS4Ur2 is defined by the statementS3.) The range of

S4S2Mout1,r1 is S4S2Ur1 = S4S2Ur1 = S2Mr2,r1(S4Mout1,r2(S4Dout1) ∩ S2M−1
r2,r1(S2Ur1))

= S2Mr2,r1 (IS4 ∩ IS2) = IS2.

We also have

IS1 = {[i, j] | 1≤ i ≤M∧4≤ j ≤ N∧ (∃α1,α2 ∈ Z | i = α1 +1∧ j = α2 +4)},

S1Dr1 = {[i +1, j−3] | [i, j] ∈ IS1} and

S1Mr1,in1 = {[i +1, j−3]→ [i, j] | [i, j] ∈ S1Dr1}

The transitive dependence mappingS4S2S1Mout1,in1 over the sequenceS4,S2,S1 of

statements can be obtained fromS4S2Mout1,r1 andS1Mr1,in1 in the following way:

S4S2S1Mout1,in1 = S4S2Mout1,r1 ⋄ S1Mr1,in1

= {[l ,m]→ [l −1,m−2] | [l ,m] ∈ S4Dout1}

⋄ {[i +1, j−3]→ [i, j] | [i, j] ∈ S1Dr1}

= {[l ,m]→ [l −2,m+1] | [l ,m] ∈ S4Dout1}

Specifically, the right composition operator⋄ checks that∀[l ,m]∈ S4Dout1, ∃[i, j]∈ S1Dr1

such thatl −1 = i +1, i.e.,i = l −2. Similarly,m−2 = j−3, i.e., j = m+1.

We haveS1Mr1,in1 : S1Dr1 → S1Uin1. So, S1M−1
r1,in1(S1Uin1) = S1Dr1. We also

haveS4S2Mout1,r1 : S4S2Dout1 → S4S2Ur1. So, S4S2Mout1,r1(S4S2Dout1) = S4S2Ur1 =

IS2. So, the domain ofS4S2S1Mout1,in1 is S4S2S1Dout1 = S4S2M−1
out1,r1(S1M−1

r1,in1(S1Uin1)

∩ S4S2Mout1,r1(S4S2Dout1)) = S4S2M−1
out1,r1(S1Dr1 ∩ IS2) = IS2 (sinceIS2 is a subset of

S1Dr1). It can also be shown that the range ofS4S2S1Dout1 is IS2. 2

146 Chapter 5 Verification of Loop Transformations

5.2.3 Recurrence in ADDG

An ADDG may contain a cycle. Since we consider programs in single-assignment

form, a cycle in a ADDG does not imply a circular data dependence among the array

elements. It simply means that there exists a set of statements that define arrays and

these arrays depend on themselves for values assigned by thesame set of statements

in their earlier execution. The statements involved are then said to define a recurrence

in the dependencies in the data-flow (Shashidhar, 2008). The transitive dependence

mapping over a recurrence is calledacross recurrence mapping. Since we consider

only uniform recurrences, it is always possible to compute this mapping for such a

cycle directly without completely enumerating the recurrence. For computing across

recurrence mapping in such a cycle in an ADDG, we use the technique proposed in

(Shashidhar, 2008) and explained below with the help of an example.

S1: a[0] = in[0];

for(i=1; i<=N; i+=1)

S2: a[i] = f 1(a[i-1]);

S1: out[0] = f 2(a[N]);

(a)

out

a

in

S1
S2

S3

f2

If1

(b)

Figure 5.5: (a) A program with recurrence; (b) the ADDG of theprogram

Example 14 In the program in figure5.5(a), the value of the array locationa[i], 1≤

i ≤ N depends ona[i − 1]. This recurrence of the program results in a cyclec =

(a, f1,a) in the ADDG as shown in figure5.5(b). Let us now compute the across-

recurrence transitive mapping froma to a, i.e, S2Ma,a and then use it to compute the

transitive dependence mapping over this recurrence fromout to a. Since, there is only

one statement involved in the recurrence path, the transitive mappingcMa,a is given

by

5.2 Array data dependence graphs 147

cMa,a = {[i]→ [i−1] | 1≤ i ≤ N}

The transitive closure of this mapping is given by

m = (cMa,a)+

= {i→{(cMa,a)k(i)} | k≥ 1 ∧ 1≤ i ≤ N}

= {[i]→ [P] | 0≤ i ≤ N ∧ P = {α | 0≤ α < i}}.

Note thatk will be less than equal toN for present case of recurrence. The domain

and range ofmare given by,

d = domain(m) = {i | 0 < i ≤ N}.

r = range(m) = {i | 0≤ i < N}.

The end-to-end mapping of any ADDG cycle specifies the mapping of the largest

index value. In this case, therefore, it is given byN 7→ (cMa,a)N(N) = 0. Note that

when conceived as a function, the domain and the range of the end-to-end mapping

are obtained from the domain and the range of the transitive closure as

d′ = (d− r) = {N} and

r ′ = (r−d) = {0}.

Since the domaind′ and the ranger ′ of the end-to-end mapping are both unit sets,

the across-recurrence mapping is

S2M′a,a = (m\d′)/r ′ = {[N]→ [0]}.

Now, the transitive dependence over the recurrence fromout to a can be computed

as

S3S2Mout,a = S3Mout,a ⋄ S2Ma,a = [0]→ [N] ⋄ [N]→ [0]} = {[0]→ [0]}. 2

148 Chapter 5 Verification of Loop Transformations

5.2.4 Construction of the ADDG from a sequential behaviour

Let us now discuss how the ADDG of a given sequential program can be obtained.

Initially, the ADDGG= (V,E) is empty, i.e.,V = /0 andE = /0. We read the behaviour

sequentially. Corresponding to a statementSof the forml [~el] = f (r1[~e1], . . . , rk[~ek])

read, our ADDG construction mechanism works as follows:

(1) It extracts the iteration domain of the statement (IS), the definition mapping

(SM(d)
l) and the definition domain (SDl) of the lhs array, and the operand mapping

(SM(u)
r i) and the operand domain (SUr i) of each rhs arrayr i, 1≤ i ≤ k, and computes

the dependence mappingSMl ,r i accordingly as described above.

(2) If the elements of the arrayl which are used by the statements that are already

read are overlapped with the elements defined by the statement S, then those elements

were undefined earlier since the behaviour is in single assignment form. Therefore,

we have to ensure that the elements ofl defined inSare not used by the statements that

are already read. For that, we find out all the read edges inG that terminates inl . We

then compute the union of the ranges of the dependence mappings, r say, associated

with thosem read edges. Ifr has an overlap withSDl , then our construction method

reports this inconsistency and stops. Otherwise, it proceeds to the next step.

(3) It next constructs the subgraphGS of S whereGS = 〈VS, ES〉, VS = AS∪FS,

AS = {l , r1, . . . , rk}, FS = { f} andES = {〈l , f 〉}∪ {〈 f , r i〉, 1≤ i ≤ k〉}. The write

edge〈l , f 〉 is associated with the statement nameSand the read edge〈 f , r i〉, 1≤ i ≤ k,

is associated with the dependence mappingSMl ,r i . The subgraphGS is added toG.

Specifically,V = V ∪VS andE = E∪ES.

5.3 Slices

Definition 20 (Slice) A slice is a connected subgraph of an ADDG which has an array

node as its start node (having no edge incident on it), only array nodes as its terminal

nodes (having no edge emanating from them), all the outgoingedges (read edges)

from each of its operator nodes and exactly one outgoing edge(write edge) from each

of its array nodes other than the terminal nodes.

5.3 Slices 149

S2

F2

r2

r1

S3
r2

F3

r1

S4

out1

F4

r2

S1

F1

in1 in2

r1

in2

S2

S4

S1

out1

r2

F4

F2

r1

F1

in1

S3

S4

S1

out1

r2

F4

F3

r1

F1

in2in1

S4

out1

F4

r2

S2

F2

r1

S4

out1

F4

r2

F3

r1

S3
S1

F1

in1 in2

r1

S3

r2

F3

S1

F1

in1 in2

r1

S2

F2

r2

(a)g1 (b) g2 (c) g3
(d) g4

(g) g7 = g2 ⋄g1 (h) g8 = g3 ⋄g1
(j) g10 = g6 ⋄g1 = (g4 ⋄g3)⋄g1

(e)g5 = g4 ⋄g2 (f) g6 = g4 ⋄g3
(i) g9 = g5 ⋄g1 = (g4 ⋄g2)⋄g1

Figure 5.6: Slices of the ADDG in figure5.1

for(i=1; i<100; i++){
if(i < 50){

S1: c[i] = f 1(a[2i+1]);
S2: d[i] = f 2(b[i]);}

else{
S3: c[i] = f 3(a[2i-1]);
S4: d[i] = f 4(b[i]);}}

for(i=1; i<100; i++)
S5: e[i] = f 5(c[i], d[i]);

(a)

f5

a

f1

b

d

e

c

f4

S5

S1 S4

(b)

f5

a

f1

b

d

e

c

f4f3f2

S5

S1 S4S3 S2

f5

a

f1

b

d

e

c

f3

S5

S1 S2

(c) g1 (d) g2

Figure 5.7: (a) A program, (b) its ADDG and (c)-(d) two slicesof the ADDG

A slice represents the computation of a subset of elements ofthe start array node

in terms of the elements of the terminal arrays. All the possible slices of the ADDG

of figure 5.1, for example, are given in figure5.6. Let g be a slice with the start

arraya and the terminal arraysv1, . . . ,vn, denoted asg(a, 〈v1, . . . , vn〉). Each of the

dependence mappingsgMa;vi , 1≤ i ≤ n, can be obtained by transitive dependence

computation over a sequence of statements involved ing. The dependence mapping of

the slice in figure5.6(i), for example, can be obtained by transitive dependence over

the sequenceS4,S2,S1 of statements.

The domain of a slice is the intersection of the domains of thedependence map-

pingsgMa;vi , 1≤ i ≤ n. If the intersection of these domains is empty, then it indicates

that the elements of the start array of the slice are not defined in terms of the elements

150 Chapter 5 Verification of Loop Transformations

of the terminal arrays of that slice. Therefore, slices withempty domains can be ig-

nored. Let us consider the program given in figure5.7(a) and its ADDG in figure

5.7(b). Two of its possible slices are depicted in figure5.7(c)-(d). Both the slices have

start nodee and two terminal nodesa andb. It may be noted that the dependence

mappingg1Me,a betweene anda, and the dependence mappingg1Me,b betweene and

b, in the slice in figure5.7(c) are obtained from the statement sequences(S5,S1) and

(S5,S4), respectively. Since, the iteration domain of the statementsS1 andS4 are non-

overlapping, the intersection of the domains ofg1Me,a andg1Me,b is empty. Specifi-

cally, g1Me,a = {[i]→ [2i + 1] | 1≤ i < 50} andg1Me,b = {[i]→ [i] | 50≤ i < 100}.

Therefore, this slice will be ignored. Let us now consider the slice in figure5.7(d). For

this slice, the mappingsg2Me,a andg2Me,b are obtained from the statement sequences

(S5,S1) and(S5,S2), respectively. Here,g2Me,a = {[i]→ [2i + 1] | 1≤ i < 50} and

g2Me,b = {[i]→ [i] | 0≤ i < 50}. Therefore, the domain of the sliceg2 would be

0≤ i < 50.

r1 r2

r4

in2 in3

f4 f5

f2 f3

f1

out

r3

out

f 1(r1, r2)

f 1(f 2(r3), f 3(r4))

in1

B
ac

kw
ar

d
S

ub
st

ut
io

n

f 1(f 2(f 4(in1, in2, in3)), f 3(f 5(in2)))

Figure 5.8: An example of computation of data transformation over a slice

The association between indices of the start array node and the terminal array

nodes are captured in the dependence mappings between them in a slice. In addition,

5.3 Slices 151

it is required to store how the start array is dependent functionally on the terminal

arrays in a slice. We denote this notion as the data transformation of a slice.

Definition 21 (Data transformation of a sliceg (rg)) It is an abstract algebraic ex-

pression e over the terminal array names of the slice such that e represents how the

value of the output array of the slice depends functionally on the input arrays; the

exact index expressions are abstracted out from e.

It may be noted that that the dimensions of the arrays are leftimplicit and are

accounted for in the dependence mapping. The data transformationrg can be obtained

by using a backward substitution method (Manna, 1974) on the slice from its output

array node up to the input array nodes. The backward substitution method of finding

rg is based on symbolic simulation. The method is depicted in figure 5.8 indicating

how “out” gets computed in terms of “in”, “in2” and “in3”.

A slice g(a,〈v1, . . . , vn)〉) is characterized by its data transformation and a list of

dependence mappings between the start arraya and the terminal arraysv1, . . . ,vn.

Definition 22 (Characteristic formula of a sliceg (τg)) The characteristic formula

of a slice g(a,〈v1, . . . , vn)〉) is given as the tupleτg = 〈rg,〈gMa;v1, . . . , gMa;vn〉〉,

wheregMa;vi , 1≤ i ≤ n, denotes the dependence mapping between a and vi.

We are interested in capturing the dependence of each outputarray on the input

arrays of a program and its corresponding ADDG. Slices with an output array as start

node and a set of input arrays as terminal nodes are meant to capture such dependen-

cies. More specifically, we need three kinds of slices – primitive slices, component

slices and IO-slices – and a composition operation of slicesfor this purpose. In the fol-

lowing, we show how to obtain the data transformation and thedependence mappings

between the output array and the input arrays of a slice.

Definition 23 (Primitive slice) Given an ADDG G of a behaviour, a primitive slice is

a subgraph of G which consists of all the vertices and edges obtained from a statement

of the behaviour.

152 Chapter 5 Verification of Loop Transformations

We have a primitive slice corresponding to each statement ofthe behaviour. For

a statement S of the forma[~e] = f (v1[~e1], . . . ,vn[~en]) of the behaviour, the cor-

responding primitive slice contains the verticesa, v1, . . . ,vn, f , the write edge〈a, f 〉

and the read edges〈 f ,v1〉, . . . ,〈 f ,vn〉. The primitive slice also hasn dependence map-

pingsSMa,vi , 1≤ i ≤ n. The data transformation of a primitive slice is given by the

rhs expression of the corresponding statement without the array indices; hence, for the

slice corresponding to the statement S, the data transformation is f (v1, . . . ,vn). There-

fore, the characteristic formula of the primitive slice corresponding to a statement S:

a[~e] = f (v1[~e1], . . . ,vn[~en]) is 〈 f (v1, . . . ,vn), 〈SMa,v1, . . . , SMa,vn〉〉.

A sliceg1 can be composed with a sliceg2 if the start node ofg2 is a terminal node

of g1. In other words,g1 can be composed withg2 if the array which is defined ing2 is

one of the arrays used to define the elements of the start arrayof g1. The composition

of g1 with g2 is denoted asg1⋄g2. The following definition is in order.

Definition 24 (Composition of slices)Let the characteristic formulas of two slices

g1(a, 〈b1, . . . , bn〉) and g2(bk, 〈c1, . . . , cm〉), for some k≤n, beτg1 = 〈 f1(b1, . . . ,bn),

〈g1Ma,b1, . . . , g1Ma,bn〉〉 and τg2 = 〈 f2(c1, . . . ,cm), 〈g2Mbk,c1, . . . , g2Mbk,cm〉〉, re-

spectively. Let the slice g(a, 〈b1, . . . ,bk−1,c1, . . . , cm, bk+1, . . . , bn〉) = g1⋄g2. The

characteristic formula of g isτg = 〈 f1(b1, . . . , bk−1, f2(c1, . . . ,cm), bk+1, . . . , bn),

〈gMa,b1, . . . , gMa,bk−1, gMa,c1, . . . , gMa,cm, gMa,bk+1, . . . , gMa,bn〉〉, wheregMa,bi =

g1Ma,bi , 1≤ i ≤ k−1 ∧ k+1≤ i ≤ n andgMa,ci = g1Ma,bk ⋄ g2Mbk,ci , 1≤ i ≤m.

So, the data transformation of the resultant sliceg is obtained by replacing the

occurrence(s) ofbk in rg1 by rg2. The dependence mapping betweena andci, i.e.,

gMa,ci , 1≤ i ≤m, is obtained fromg1Ma,bk andg2Mbk,ci using transitive dependence

computation over two sequences of statements. Naturally, we ignore the resultant slice

if its domain is empty.

Definition 25 (Component slice)A slice is said to be a component slice iff (i) the

slice is a primitive slice or (ii) it is obtained from composition of two component

slices.

Definition 26 (IO-slice) A component slice is said to be an IO-slice iff its start node

is an output array node and all the terminal nodes are input array nodes.

5.3 Slices 153

Finally, therefore, only the IO-slices are of our interest.In general, an output array

is dependent on more than one input array. Again, while a set of elements of an output

array has a dependence on a set of input arrays, another set ofelements of the same

output array may have a different dependence on the same set of input arrays or a

different set of input arrays. In general, therefore, for each output array, there may be

a set of slices; (recall the restriction that a slice contains a single outgoing edge for

each of its non-terminal array nodes;) each slice in the set captures a dependence of

(some subset of elements of) the output array on (some subsetof elements of) some

input arrays.

Example 15 Let us consider the slices in figure5.6 which are obtained from the

ADDG given in figure5.1. The ADDG is obtained from the behaviour given in exam-

ple 10. The slices in figure5.6(a)-(d) are primitive and those given in figure5.6(i)-(j)

are the two IO-slices of the ADDG. It may be noted that both theslices are from the

same output nodeout1 to the same input nodesin1 andin2. Some other component

slices are shown in5.6(e)-(h). For example, the component slice in figure5.6(e) is

obtained by composing the slices in5.6(d) and5.6(b). 2

The primitive slices are obtained from the statements of thebehaviour. The com-

ponent slices are obtained by composing the primitive and the component slices. The

process is repeated until we obtain all the IO-slices of an ADDG; not that all the com-

ponent slices need to be generated. The algorithmic form to compute all the slices of

an ADDG is given as algorithm7.

Let us now illustrate the working of the algorithm with the ADDG in figure5.1.

Different slices of this ADDG can be found in figure5.6(a)-(j).

1. g1, g2, g3, g4 are the primitive slices. Initially,SG = {g1, g2, g3, g4}.

2. In the first iteration of the while loop, the method considers g4 which is the

only slice inSG with an output array nodeout1 as the start node. The method then

composesg4 with g2 andg3, respectively, and obtains the component slicesg5 andg6,

respectively. Next, it removesg4 from SG. After this step,g2 andg3 become redun-

dant. So, they are also eliminated fromSG. After the first iteration,SG = {g1,g5,g6}.

3. In the next iteration, the method considersg5, composes it withg1 and obtains

154 Chapter 5 Verification of Loop Transformations

Algorithm 7 Computing the IO-slices of an ADDG
Require: An ADDG G;

Ensure: SG: A set of IO-slices ofG;

1: Find all the primitive slices ofG and put them inSG;

2: while SG contains a slice which is not an IO-slicedo

3: Take a sliceg(a, 〈b1, . . . , bn〉) from SG which starts from an output array nodea;

4: Compute all the slices by composingg with other slices of the form

g′(bi , 〈c1, . . . ,cm〉), 1≤ i ≤ n. If there arel i , 1≤ i ≤ n, slices inSG which start from

the ith terminal node ofg, then we have to checkl1× . . . × ln possible resultant slices.

Put the resultant slices inSG. But, ignore the resultant slices with empty domains;

5: Removeg from SG;

6: Remove redundant slices fromSG. A slice g′ is redundant if its start node is not an

output array node and no other slices ofSG terminate at the start node ofg′;

7: end while

g9. It removesg5 from SG. Now, SG = {g1,g6,g9}. There is no redundant slice after

this iteration.

4. In the next iteration, the method considersg6, composes it withg1 and obtains

g10. It removesg6 from SG. Now,g1 is redundant. After the third step,SG = {g9, g10}.

Both g9 andg10 are IO-slices. So, the method terminates withSG = {g9, g10}. Note

that the algorithm does not generateg7 andg8.

5.4 Equivalence of ADDGs

As discussed in the introduction, Shashidhar et al. (Shashidhar, 2008; Shashidhar

et al., 2005a) have proposed an equivalence checking method for ADDG based verifi-

cation of loop transformations and some data-flow transformations. In characterizing

the transformation over a slice, the method proposed inShashidhar(2008) relies on

the signature of the individual paths3 of the slice. The basic assumption in their equiv-

3A path pfrom an array nodea1 to an array nodean in an ADDG is of the forma1→ f1−→l1 a2→

f2−→l2 a3→ . . . −−→ln−2
an−1→ fn−1−−→ln−1

an, where the array nodes (ai ’s) and the operator nodes (fi ’s) alter-

nate,〈ak, fk〉, 1≤ k≤ n−1, are the write edges,〈 fk, ak+1〉, 1≤ k≤ n−1, are the read edges in the

5.4 Equivalence of ADDGs 155

alence checking method is that the number of paths from the output array to the input

arrays must be same in two equivalent IO-slices. Since, paths may be removed or

the path signatures may be transformed significantly due to application of arithmetic

transformations, computationally equivalent slices may have paths whose signatures

are non-identical or have no correlation among them. Following example illustrates

this fact.

for(k=0; k<64; k++){

tmp2[k] = in1[2k] - tmp1[k];} //S2
tmp1[k] = f(in3[k+1]); //S1

for(k=5; k<69; k++){
tmp3[k] = f(in3[k-4]); //S3
tmp4[k-5] = tmp3[k] + in2[k-3];} //S4

for(k=0; k<64; k++){
out[k] = tmp2[k] + tmp4[k];} //S5

for(k=0; k<64; k++) {

(a) Original Program

out[k] = in1[2k] + in2[k+2]; } //S6

(b) Transformed program

Figure 5.9: (a) source program; (b) transformed program

Example 16 Let us consider two program fragments given in figure5.9. The program

in figure5.9(b) is obtained from figure5.9(a) by loop merging and simplification of

arithmetic expressions. These two programs are actually equivalent. Let us now con-

sider their corresponding ADDGs in figure5.10. It may be noted that both the ADDGs

contain a single IO-slice. These two IO-slices have different number of paths from the

output to the input arrays. Specifically, the IO-slice in figure 5.10(a) has two paths

from the output array nodeout to the input array nodein3; however, the slice in the

ADDG in figure5.10(b) has no such paths. 2

ADDG andl i ,1,≤ i ≤ n−1, are the labels of the read edges of the path. A labell of the read edge from

an operator nodef to an array nodea denotes thata is thel th argument of the operatorf .

The signature of that path is a tuple〈a1, f1, l1, f2, l2, . . . , ln−2, fn−1, ln−1,an〉. For example,

the read edges of the ADDGs in figure5.10 have been labelled. The signature of the path

out → +−→1 tmp2 → −−→2 tmp1 → f −→1 in3 of the ADDG given in figure5.10(a), for example, is

〈out,+,1, tmp2,−,2, tmp1, f ,1, in3〉. We have not labelled the read edges explicitly as they do not

play any role in our equivalence formulation.

156 Chapter 5 Verification of Loop Transformations

in3

tmp3

tmp4

+

f f

in1 in2

tmp1

(a)

in2in1

out

+

in3

(b)

tmp2

2

1 2

11

2
1

1

1 2

S5

out

S4S2

S1 S3

S6

+-

Figure 5.10: (a) ADDG of the source program; (b) ADDG of the transformed program

The above example underlines the fact that while obtaining the equivalence of a

slice,one should compare the slice as a whole rather than the individual path signa-

tures within the slice. In this work, we redefine the equivalence of ADDGs based on

a direct slice level characterization. In addition to that,a normalization technique is

incorporated in our method to represent the data transformations of the slices. Two

simplification rules for normalized expression are proposed in this work. Slice level

characterization and inclusion of the normalization technique and the simplification

rules enable us to handle several arithmetic transformations applied along with loop

transformation techniques. Let us first introduce the normalization procedure of data

transformations and the simplification rules. We then formulate the equivalence prob-

lem of ADDGs.

5.4.1 Normalization of the characteristic formula of a slice

The characteristic formula of a slice consists of data transformation of the slice and

a set of dependence mappings. The data transformation is an arithmetic expression

over the input array names representing how the value of the output array depends

functionally on the input arrays. Each dependence mapping (of the array indices) is

a function from a tuple of arithmetic expressions (representing the definition domain)

5.4 Equivalence of ADDGs 157

to another tuple of arithmetic expressions (representing the operand domain). Since

a canonical form does not exist for integer arithmetic, we represent the data transfor-

mation of a slice in the same normalized form as discussed in subsection3.2.2. For

dependence mappings, we develop the following normal form.

Each of the dependence mapping can be represented as a three tuple – index ex-

pressions of the lhs array, index expressions of the rhs array and a quantified (closed)

formula defining the domain of the mapping. The index expressions of lhs/rhs ar-

ray is an ordered tuple of normalized sums where theith normalized sum represents

the index expression of theith dimension of the array. The quantified formula is a

conjunction of arithmetic predicates (atomic formulae) defined over the universally

quantified variables. The increment/decrement operation of the universally quantified

variables is captured by existentially quantified variables (as shown in definition15).

An atomic formula is of the formSR0, whereS is a normalized sum,R is one of the

relations{≤, ≥, <, >, =, ! =}. The dependence mappings are defined by means

of productions of the following grammar.

Definition 27 Grammar of dependence mapping:

1. M → 〈LI ,RI ,DQ〉,

/* M: mapping, LI : lhs (defined) array index expressions, RI : rhs (used) array

index expressions, DQ: quantified formula depicting the domains of the vari-

ables in LI and RI */

2. LI → LI ,S | S, /* S: normalized sum */

3. RI → RI ,S | S,

4. DQ → ∀∃DQ | (A) | A,

5. A → A∧C |C,

6. C → SR0,

7. R→ ≤ | ≥ | < | > | = | ! =.

In addition to the above structure, any normalized formula is arranged by a lexi-

cographic ordering of its constituent subexpressions fromthe bottom-most level, i.e.,

158 Chapter 5 Verification of Loop Transformations

from the level of simple primaries. This will help us handle the algebraic transforma-

tions efficiently.

Example 17 Let us consider the dependence mapping

M = {[i][j][k]→ [10i + 50j + k][k] | 0 ≤ i ≤ 10∧ ∃αi ∈ N(i = 2αi)∧ 0 ≤ j ≤

50∧∃α j ∈ N(j = 3α j)∧ 0≤ k≤ 20∧∃αk ∈ N(k = 2αi)}.

The normalized representation of this mapping isM = 〈D,U,Q〉, where

LI = 1∗ i +0,1∗ j +0,1∗k+0,

RI = 10∗ i +50∗ j +1∗k+0,1∗k+0 and

DQ = ∀i∃αi∀ j∃α j∀k∃αk (1∗ i + 0≥ 0∧ 1∗ i + 0≤ 10∧ 1∗ i + (−2) ∗αi = 0∧

1∗ j + 0 ≥ 0∧ 1∗ j + 0 ≤ 50∧ 1∗ j + (−3) ∗α j = 0∧ 1∗ k+ 0 ≥ 0∧ 1∗ k+ 0 ≤

20∧1∗k+(−2)∗αk = 0). 2

5.4.2 Some simplification rules for data transformations

We have proposed some simplification rules over a normalizedexpression. This sim-

plification rules are used to simplify arithmetic expressions over arrays by collecting

common sub-expressions. Normalization along with these simplification rules en-

ables us handle arithmetic transformations efficiently. The simplification rules are as

follows:

Rule 1:(a) For a sliceg, the dependence mappings in its characteristic formulaτg

are ordered according to the occurrence of the array names inrg.

(b) If an array name occurs more than once (as primaries) in a term of rg, then

their dependence mappings are ordered according to the lexicographic ordering of the

dependence mappings.

(c) If the data transformationrg in τg contains common sub-expressions with the

same non-zero constant primary, then the tuple of dependence mappings correspond-

ing to those terms are ordered according to the ordering of the corresponding depen-

dence mappings in the tuples of the terms.

5.4 Equivalence of ADDGs 159

So, the rule 1 consists of three parts as shown above. An occurrence of a primary

v(i) in an arithmetic expression signifies theith occurrence of the array variablev in it.

The following example illustrates the three parts of rule 1.

Example 18 (a) Let rg of a sliceg be 1∗a∗b(1) + 2∗b(2) + 1. Let the start node

(output array) ofg be out. Thenτg would be〈rg, 〈 gMout,a, gMout,b(1), gMout,b(2) 〉〉

assuming order of the occurrences of the array names isa≺ b(1) ≺ b(2) in rg.

(b) Let rg of a sliceg be 1∗a∗b(1) ∗b(2) + 2∗b(3) + 0. So, the arrayb occurs

twice in the first term ofrg. Let gMout,b(1) = {[i]→ [2i] | 1≤ i ≤ N} and

gMout,b(2) = {[i]→ [i +5] | 1≤ i ≤ 2∗N}. Thenτg would be〈rg, 〈 gMout,a, gMout,b(2),

gMout,b(1), gMout,b(3)〉〉 since “i +5” ≺ “2 ∗ i +0” in the ordering of normalized sums.

Instead, ifgMout,b(1) = {[i]→ [i +5] | 1≤ i ≤N} andgMout,b(2) = {[i]→ [i +5] | 1≤

i ≤ 2∗N}, thenτ would be〈rg, 〈 gMout,a, gMout,b(1), gMout,b(2), gMout,b(3)〉〉 since

1∗N+0 ≺ 2∗N+0 in the ordering of normalized sums.

(c) Let rg of a sliceg be 1∗a(1) + 1∗a(2) + 0. LetgMout,a(1) = {[i]→ [i +1] | 1≤

i ≤ N} andgMout,a(2) = {[i]→ [2i] | 1≤ i ≤ N}. Thenτg would be〈rg, 〈 gMout,a(1),

gMout,a(2)〉〉. 2

Rule 2: In the data transformation of a slice, the occurrences of a common sub-

expression are collected together if the dependence mappings from the output array

to each of the (input) arrays involved in the occurrences of the sub-expression are

equal. Let an expressione consist ofp occurrences of the sub-expressiones. Let

the sub-expression involvek input arrays,in1, . . . , ink. Formally, let this be denoted

as e(e(1)
s (in1, . . . , ink), . . . , e(p)

s (in1, . . . , ink)). Thesep sub-expressions can be

collected iff ∀ j∀l∀m, 1≤ j ≤ k, 1≤ l , m≤ p M(l)
out, in j

= M(m)
out, in j

, whereM(l)
out, in j

(M(m)
out, in j

) denotes the dependence mapping from the index space of the array out

(start node of the slice) to that of the input array in thel th (mth) sub-expression. If

the collection of the sub-expressions cancels out through symbolic computation, then

remove all the dependence mappingsM(l)
out, in j

, 1≤ l ≤ p, 1≤ j ≤ k, from the output

array to each of the (input) arrays from the characteristic formula of the slice.

The following example illustrates the rule 2.

Example 19 Let us consider, for example, that the data transformation of a slice

160 Chapter 5 Verification of Loop Transformations

g(a, 〈x,z〉) is 3x + 5z − 3x, wherex andz be two input arrays anda be the output

array. Let the dependence mapping from the output arraya of the slice tox corre-

sponding to the first sub-expression 3x begM(1)
a;x and the same forx corresponding to

the second sub-expression 3x be gM(2)
a;x. This formula is reduced to 5z if the depen-

dence mappinggM(1)
a;x = gM(2)

a;x. Similarly, the formula 3xy + 4z + 7xy is reduced

to 10xy+4z if the dependence mappings from output array tox are the same for both

occurrences ofx (in 3xy and 7xy) and the dependence mappings from output array to

y are the same for both occurrences ofy (in 3xyand 7xy). 2

These simplification rules enable us to represent two arithmetically transformed

expressions uniformly. Let us consider the behaviours in figure in5.9 and their cor-

responding ADDGs in figure5.10. Both the ADDGs contain a single slice. The

data transformation of the slice,g1 say, in the ADDG in figure5.10(a) is rg1 =

in1+ f (in3(1))− f (in3(2))+ in2. The two dependence mappings fromout to in3 are

g1Mout;in3(1) = {[k]→ [k+1] | 0≤ k≤ 64} andg1Mout;in3(2) = {[k]→ [k+1] | 0≤

k≤ 64} in figure 5.10(a). Here, the dependence mappings for both the occurrences

of in3 in the data transformation are the same. Hence, the data transformationrg1

is reduced toin1+ in2. On the other hand, the data transformation of the slice,g2

say, in the ADDG in figure5.10(b) is in1+ in2. It can be shown that the dependence

mapping fromout to in1 and dependence mapping fromout to in2 are the same in

both the slices. Hence, the sliceg1 of the ADDG in figure5.10(a) and the sliceg2 of

the ADDG in figure5.10(b) are equivalent. Also, the dependence mappingsgM(1)
out;in3

andgM(2)
out;in3 are removed from the characteristic formula of this slice since they now

become redundant.

Let us again consider the source behaviour in figure5.9(a). Let the statementS3

be modified astmp3[k] = f (in3[k]) in that behaviour. Then, the dependence mapping

would beg1Mout;in3(1) = {[k]→ [k+ 5] | 0≤ k ≤ 64} and g1Mout;in3(2) = {[k]→

[k+1] | 0≤ k≤ 64}. Clearly, they are not the same. Therefore, the data transformation

rg1 = in1+ f (in3(1))− f (in3(2))+ in2 for this modified behaviour cannot be simplified

to in1+ in2. It may be noted that the behaviour in figure5.9(a) with the modification

stated above is no more equivalent with the behaviour in figure 5.9(b) since the data

transformation ofg1 andg2 are not the same now.

5.4 Equivalence of ADDGs 161

5.4.3 Equivalence problem formulation

Let GS be the ADDG corresponding to an input behaviour andGT be the ADDG cor-

responding to the transformed behaviour obtained from the input behaviour through

loop and arithmetic transformations. In the following the definition of equivalence

between the two ADDGs is evolved.

Definition 28 (Matching IO-slices) Two IO-slices g1 and g2 of an ADDG G are said

to be matching, denoted by g1≈ g2, if the data transformations of both the slices are

equivalent.

Let the characteristic formula ofgi(a, 〈v1, . . . , vl 〉), i = 1,2, be〈rgi ,〈gi Ma;v1, . . . ,

gi Ma;vl 〉〉, wherea is an output array andv1, . . . , vl are the input arrays. These two

slices are matching slices ifrg1 andrg2 are equivalent. Due to single assignment form

of the behaviour, the domain of the dependence mapping between the output array

a and the input arrayv j in the slicesg1 andg2 of the ADDG G, however, are non-

overlapping.

Definition 29 (IO-slice class)An IO-slice class is a maximum set of matching IO-

slices.

Let a slice class beCg(a, 〈v1, . . . ,vl 〉) = {g1, . . . ,gk} where each slice involves

l input arraysv1, . . . , vl and the output arraya. Let the characteristic formula of

the member slicegi , 1≤ i ≤ k, be 〈rgi ,〈gi Ma;v1, . . . , gi Ma;vl 〉〉. Due to single as-

signment form of the behaviour, the domain of the dependencemappings between the

output arraya and the input arrayvm, 1≤ m≤ l , in the slices ofCg must be non-

overlapping, that isgi Ma;vm and g j Ma;vm, 1≤ i, j ≤ k, are non-overlapping. The

domain of the dependence mappingCgMa;vm from a to vm over the entire classCg is

the union of the domains ofgi Ma;vm, 1≤ i ≤ k. So, the characteristic formula of the

slice classCg is 〈rCg,〈CgMa;v1, . . . , CgMa;vl 〉〉, whererCg is the data transformation

of any of the slices inCg andCgMa;vm, 1≤m≤ l , is

CgMa;vm =
[

1≤i≤k
gi Ma;vm

162 Chapter 5 Verification of Loop Transformations

Therefore, a slice class can be visualized as a single slice.The characteristic formula

of a slice classCg is denoted asτCg.

for(k = 0; k <= 100; k++)
S1: c[k] = f 1(a[2k], b[k+1]);

for(i=0; i<=50; i++)
for(j=0; j<=50; j++)

S2: out[i][j] = f 2(c[i+j]);
(a) original program

for(k = 0; k <= 100; k +=2){
S3: c[k] = f 1(a[2k], b[k+1]);
S4: c[k+1] = f 1(a[2k+2], b[k+2]);}

for(i=0; i<=50; i++)
for(j=0; j<=50; j++)

S5: out[i][j] = f 2(c[i+j]);
(b) transformed program

f2

f1

ba

c

out

S1

S2

f2

ba

c

f1 f1

out

S3 S4

S5

(d) ADDG of (b)(c) ADDG of (a)

Figure 5.11: An example for matching slices and slice class

Definition 30 (IO-slice class equivalence)A slice class C1 of an ADDG GS is said

to be equivalent to a slice class C2 of GT , denoted as C1≃C2, iff τC1 = τC2.

Let us also denote the slice classC2 as the corresponding slice class ofC1 when

C1≃C2.

Definition 31 (Equivalence of ADDGs:) An ADDG GS is said to be equivalent to an

ADDG GT iff for each IO-slice class CS in GS, there exists an IO-slice class CT in GT

such that CS≃CT , and vice-versa.

Example 20 Let us consider the behaviours in figure5.11. The transformed be-

haviour in figure5.11(b) is obtained by loop unrolling of the first loop body of the

source program in figure5.11(a). The corresponding ADDGs are depicted in figure

5.11(c) and figure5.11(d). There is only one IO-slice (i.e., the ADDG itself),g1 say,

in the ADDG in figure5.11(c). For the sliceg1,

rg2 = f2(f1(a,b)),

g1Mout,a = {[i, j]→ [2i +2 j] | 0≤ i ≤ 50∧0≤ j ≤ 50} and

5.4 Equivalence of ADDGs 163

g1Mout,b = {[i, j]→ [i + j +1] | 0≤ i ≤ 50∧0≤ j ≤ 50}.

The ADDG in figure5.11(d) consists of two IO-slices,g2 andg3, say, where the

IO-sliceg2 consists of the statementsS5 andS3 and the IO-sliceg3 consists the state-

mentsS5 andS4. For the sliceg2,

rg2 = f2(f1(a,b)),

g2Mout,a = {[i, j]→ [2i +2 j] | 0≤ i ≤ 50∧0≤ j ≤ 50∧∃α ∈ Z(2α = i + j)} and

g2Mout,b = {[i, j]→ [i + j +1] | 0≤ i ≤ 50∧0≤ j ≤ 50∧∃α∈Z(2α = i + j +2)}.

For the sliceg3,

rg3 = f2(f1(a,b)),

g3Mout,a = {[i, j]→ [2i +2 j] | 0≤ i ≤ 50∧0≤ j ≤ 50∧∃α ∈ Z(2α = i + j−1)}

and

g3Mout,b = {[i, j]→ [i + j +1] | 0≤ i ≤ 50∧0≤ j ≤ 50∧∃α∈Z(2α = i + j +1)}.

It may be noted that the data transformations of bothg2 andg3 are same. So, the

IO-slicesg2 andg3 are matching IO-slices and they form a slice classCg in the ADDG

in figure5.11(d). For the slice classCg,

rCg = f2(f1(a,b)),

CgMout,a = g2Mout,a ∪ g3Mout,a = {[i, j]→ [2i +2 j] | 0≤ i ≤ 50∧0≤ j ≤ 50} and

CgMout,b = g2Mout,b ∪ g3Mout,b = {[i, j]→ [i + j + 1] | 0 ≤ i ≤ 50∧ 0 ≤ j ≤ 50}.

Therefore,g1 is equivalent toCg. Hence, the ADDGs in figure5.11(c) and in figure

5.11(d) are equivalent. 2

The equivalence checking method is given as algorithm8. The basic steps of the

algorithm are as follows:

1. We first obtain the possible IO-slices of an ADDG with theircharacteristic for-

mulae comprising their dependence mappings and the data transformations. The

data transformation of a slice will be represented as a normalized expression.

The algebraic transformations based on associativity and commutativity and

distributivity will be taken care of by the normalization process itself.

164 Chapter 5 Verification of Loop Transformations

Algorithm 8 Equivalence Checking Between two ADDGs
1: /* Input: Two ADDGsGS andGT ;

Output: WhetherGS andGT are equivalent or not; */

2: Find the set of IO-slices in each ADDG. Find the characteristic formulae of the

slices;

3: Use arithmetic simplification rule to the data transformation of the slices ofGS

andGT ;

4: Obtain the slice classes ensuring non-intersection of the dependence mapping do-

mains of the constituent slices and their characteristic formula in each ADDG;

Let CGS andCGT be the respective sets of slice classes in both the ADDGs;

5: for each slice classg1 in CGS do

6: gk = f indEquivalentSliceClass(g1, CGT);

7: /* this function returns the equivalent slice ofg1 in CGT if found; otherwise

returns NULL; */

8: if gk = NULL then

9: Report “ADDGs may not be equivalent;” exit (failure);

10: end if

11: end for

12: Repeat the above loop by interchangingGS andGT ;

13: Report “ADDGs are equivalent;” exit (success);

2. We then apply the simplification rule on the slice data transformations. The ef-

fect of other arithmetic transformations like, common sub-expression elimina-

tion, constant folding, arithmetic expression simplification, etc. will be handled

by the simplification rule. After simplification of the data transformations, two

equivalent slices have the same characteristic formula.

3. We then form slice classes by collecting the matching slices in an ADDG. We

now compute the characteristic formula of each slice class from its member

slices.

4. We now establish equivalence between slice classes of theADDGs. The func-

tion f indEquivalentSliceClassin algorithm8 is used for this purpose. For each

slice class, this function tries to find its equivalent sliceclass in the other ADDG.

Corresponding to each slice class, the function uses the datatransformation to

find the matching slice class in the other ADDG first and then compare the re-

5.5 A case study 165

spective dependence mappings.

for(k=0; k<64; k++){

for(k=5; k<69; k++){

tmp1[k] = b[2k+1] + c[2k];
tmp2[k] = a[k]× tmp1[k]; }

tmp3[k] = a[k-5] - c[2k-10];

for(k=0; k<64; k++){

tmp4[k] = tmp3[k]× b[2k-9]; }

tmp5[k] = a[k]× c[2k];
out[k] = tmp2[k] - tmp4[k] + tmp5[k]; }

for(k=0; k<64; k++){

(b) transformed behaviour

(a) original behaviour

out[k] = c[2k]× tmp[k];}
tmp[k] = 2a[k] + b[2k+1];

Figure 5.12: (a) original behaviour; (b) transformed behaviour

5.5 A case study

Let us consider the source behaviour of figure5.12(a) and its corresponding trans-

formed behaviour of figure5.12(b). In this example,a, b andc are three input arrays

andout is the output array. The transformed behaviour is obtained from the source

behaviour by application of loop fusion (Bacon et al., 1994) along with distributive

transformations and arithmetic transformation. The ADDG of the original behaviour

is depicted in figure5.13(a) and the same for the transformed behaviour is depicted in

figure5.13(b).

It may be noted that each of the ADDGs has only one slice. Let the slices of the

source behaviour and the transformed behaviour be denoted as s andt, respectively.

Our method first extracts the data transformation of the slice and the dependence map-

ping of each path of the slices andt. The data transformation of the slices, i.e., rs is

a(b+c)−b(a−c)+acand that of the slicet, i.e.,rt is c(2a+b); The normalized rep-

resentation ofrs is 1∗a∗b + (−1)∗a∗b + 1∗a∗c + 1∗a∗c + 1∗b∗c + 0. In this

normalized expression, the first and the second terms can be eliminated as the depen-

dence mappings from the output arrayout to the arraysaandbare the same in them. In

166 Chapter 5 Verification of Loop Transformations

-

tmp4tmp2 tmp5

tmp2tmp1

cba

out

× ×

×+
a b c

out

tmp

f1

×

(a)

(b)

f2

Figure 5.13: (a) ADDG of the original program; (b) ADDG of thetransformed pro-

gram

particular, the dependence mapping fromout to a is Mout,a = {[k]→ [k] | 0≤ k < 64}

and the dependence mapping fromout to b is Mout,b = {[k]→ [2k+1] | 0≤ k < 64}

in both the terms. Similarly, the third and the fourth terms of the normalized expres-

sion have the same dependence mappings fromout to a and the dependence mappings

from out to c. In particular, the dependence mappings fromout to a and fromout

to c areMout,a = {[k]→ [k] | 0≤ k < 64} andMout,c = {[k]→ [2k] | 0≤ k < 64},

respectively. So, these two terms can be collected. Therefore, after application of

our simplification rules,rs becomes 2∗a∗ c + 1∗b∗ c + 0. The normalized rep-

resentation ofrt is 2∗ a∗ c + 1∗ b∗ c + 0. Therefore,rs ≃ rt . After simplifi-

cation, the data transformations of the slices consist of three input arrays including

two occurrences ofc. So, we need to check four dependence mappings, each one

from out to the input arraysa, b, c(1) and c(2). The respective dependence map-

pings areMout,a = {[k]→ [k] | 0≤ k < 64}, Mout,b = {[k]→ [2k+ 1] | 0≤ k < 64},

Mout,c(1) = {[k]→ [2k] | 0≤ k < 64} andMout,c(2) = {[k]→ [2k] | 0≤ k < 64}, respec-

tively in the slices. It can be shown thatMout,a, Mout,b, Mout,c(1) andMout,c(2) in slice

t are the same as those in the slices. So, the slicess andt are equivalent. Hence, the

5.6 Correctness and complexity 167

ADDGs are equivalent.

5.6 Correctness and complexity

Two behaviours are said to be equivalent iff for every input,both the behaviours pro-

duce the same set of outputs. The method presented here examines the equivalence

of the ADDGsGS andGT obtained from the input (source) behaviour and the trans-

formed behaviour. For soundness of our method, we need to show thatGS andGT are

indeed equivalent when the algorithm ascertains them to be so. Following theorem

captures the fact.

Theorem 19 (Soundness)If the algorithm8 terminates successfully in step13, then

two ADDGs GS and GT are equivalent.

Proof: Let there bel IO-slice classesgs1, . . . , gsl in the setCSg of slice classes of

GS which start from the output arrayo. Our method finds that the setCTg of IO-slice

classes in ADDGGT comprises exactlyl slice classesgt1, . . . , gtl , say which also

start from arrayo such thatgsi ≃ qti ,1≤ i ≤ l . Each slice classgsi defines a part of

the arrayo. Since the behaviours are considered to be in single assignment form, the

parts ofo defined bygsi ,1≤ i ≤ l , are non overlapping. Also, there is no other slice

class that starts fromo in CSg. Thereforegsi ,1≤ i ≤ l , together define the whole array.

Moreover, there cannot be any more slice class other thangt1, . . . , gtl in CTg starting

from o; otherwise, our method will find a possible non-equivalenceof that slice class

in step12 of algorithm8. In the same way, we can show that for all other output

arrays, there are equal number of slice classes inCTg and inCTg which start from that

array. Therefore, if the algorithm8 proceeds up to step12, then both the ADDGs have

equal number of slice classes and there is a one-to-one correspondence between the

slice classes of the ADDGs. Let the ADDGGS have slice classesgs1, . . . , gsn and

the ADDG GT has slice classesgt1, . . . , gtn andgsi ≃ qti ,1≤ i ≤ n. Let us assume

that the ADDGGS is not equivalent to the ADDGGT even if there is a one-to-one

correspondence between the slices ofCTg andCTg. In the following, the assumption is

proved to be wrong by contradiction.

The two ADDGsGS andGT are not equivalent in the following cases.

168 Chapter 5 Verification of Loop Transformations

(i) The final values of some elements of one output array are different in two

ADDGs: As discussed above, each element of any output array is defined through a

slice. Since we are considering the same set of elements of anoutput array, they must

be associated with some corresponding slice class ofGS andGT . Let us assume that

the slice classesgsi andgti be associated with those elements of the output array in

GS andGT , respectively. Since, transformations do not match for these elements, the

data transformations ofgsi andgti should be different. However, step6 of algorithm8

already ensures thatr(gsi)≃ r(gti) (contradiction).

(ii) The association between the index of an output array,o say, and an input array,

in say, is not the same for some elements of an output array: As reasoned above in

case (i), those elements ofo must be associated with the corresponding slice class of

GS andGT . Let us assume that the slice classesgsi andgti be associated with those

elements ofo in GS andGT , respectively. Since, the association between the index

of o and that of the arrayin is not the same for those elements ofo, the mappings

gsi
Mo,in andgti

Mo,in are not the same. However, step6 of algorithm8 already ensures

thatgsi
Mo,in ≃ gti

Mo,in (contradiction).

Hence, the ADDGsGS andGT are indeed equivalent. 2

Given the undecidability results of the equivalence problem of flow chart schemas,

completeness, however, is unattainable (Howden, 1987; Manna, 1974).

5.6.1 Complexity

Complexity of algorithm 7 (finding slices in an ADDG)

In algorithm7, we first find all the primitive slices of the behaviour. Let the number

of statements bep in the bahaviour. So, the complexity of this step isO(p). A prim-

itive slice is not composed with a component slice in each iteration of a while loop.

This loop terminates when all the IO-slices of the ADDG are obtained. We need to

find the complexity of this loop and also the number of IO-slices in an ADDG. Let

us consider the control flow graph (CFG) of the behaviour for this purpose. Our

objectve is to find the correlation between the number of IO-slices in the ADDG

5.6 Correctness and complexity 169

with the number of paths in the CFG. Let us denote a specie of code of the form

if(c){//if−body}else{//else−body} as a branching block with two branches.

A sequence of statements (without any conditional statement) is considered as a branch-

ing block with one branch. Let us ignore the back edges (corresponding to the loops)

in the CFG. In such a case, the CFG is nothing but a sequence of branching blocks.

Let the number of branching blocks in the CFG ben and the maximum branches in

a branching block bek. Therefore, the maximum number of possible execution paths

from the start node to the terminal nodes of the CFG bekn. Let us now relate the CFG

(without back edges) with the ADDG. If the arrayA is being defined in one branch

of a branching block of CFG, then that branch creates an outward (write edge) from

the array nodeA in the ADDG. In general, more than one array may be defined in

one branch of a branching block. Let the maximum number of arrays defined in a

branch bex. Therefore, each branch of a branching block of the CFG creates at most

x write edges from the corresponding array nodes in the ADDG. In the worst case,

the samex arrays are defined in each of the branch of a branching block and all thex

arrays defined within a branch form a data dependent chain. Also, the arrays defined

in one branching block may depend on the arrays defined in the preceding blocks in

the worst case. So, the maximum height of the ADDG in the worstcase isn×x. Also,

there may be maximumk number of write edges from an array node in the ADDG.

Therefore, in the worst case, the number of slices in an ADDG isO(kn×x). In the best

case, all the branching blocks are not data dependent and onearray is defined only in

one branch of the branching blocks. So, in the best case, the height of the ADDG is

one and the maximum possible slices in an ADDG ben× k× x. To compute a slice

in an ADDG with heighth, we needO(h) iterations of the algorithm7. Therefore, the

complexity of the algorithm7 for finding the slices in an ADDG isO(n×x×kn×x) in

the worst case and isO(n×k×x) in the best case.

Complexity of the normalization procedure

Let us now identify the complexity of normalizing a formulaF . If ‖F‖ be the length

of the formula (i.e., the number of variable occurrences plus that of the operations in

F), then the complexity of normalization ofF is O(‖F‖2) due to multiplication of

normalized sums. (For all other operations, it is linear in‖F‖). The complexity in

comparing two normalized formulas isO(‖F‖), where‖F‖ is the length of maximum

170 Chapter 5 Verification of Loop Transformations

of two formulas. Let the number of arrays in the behaviour bea.

Let us now obtain the complexity of the simplification rules (of subsection5.4.2).

1.(a) The number of arrays in a formula beO(a). So, the complexity of ordering

the dependence mapping of a slice isO(a×‖F‖).

1.(b) Each array may occur multiple times in a term of a normalized sum. Ordering

multiple occurrences of an array in a term requiresO(‖F‖× log(‖F‖)) time. So,

ordering multiple occurrences of the arrays in a term requires)(a×‖F‖× log(‖F‖)).

1.(c) The number of arrays in a term isO(a). The complexity of comparing two

common sub-expressions (terms) isO(a2‖F‖).

2. In this case, we have to compare two common sub-expressions. So, the com-

plexity of this step alsoO(a2‖F‖).

Complexity of algorithm 8 (equivalence checking between two ADDGs)

Let the number of slices in the two ADDGsGS andGT bes1 ands2, respectively. So,

normalization of the data transformations and the index expressions for the slices1(s2)

requiresO(s1×a2‖F‖) (O(s2×a2‖F‖)) time. Each slice needs to compare with ev-

ery other slices ofGS (GT) to find the slice classes inGS (GT). So, the complexity of

finding the slice classes inGS (GT) is O(s2
1×‖F‖) (O(s2

2×‖F‖)). To find the equiva-

lent of a slice class ofGS in GT , we have to compare the data transformations and the

dependence mappings of each slice ofGS with every slice class ofGT . Therefore, the

complexity of equivalence checking between the slice classes ofGS andGT is O(s1×

s2×‖F‖). So, the overall complexity of the algorithm8, is O(s×a2‖F‖+s2×‖F‖),

wheres is maximum ofs1 ands2. Considering the best case and worst case values of

s, the complexity of equivalence checking isO(kn×x×a2×‖F‖+ k2×n×x×‖F‖) in

the worst case andO(n×k×x×a2×‖F‖+(n×k×x)2×‖F‖) in the best case.

For computing the transitive dependence and comparing the two dependence map-

pings, we have used the Omega calculator (Kelly et al., 2008). It has one component

called Omega test which is a system for manipulating sets of affine constraints over

integer variables. The Omega test framework is an integer programming solver for

5.7 Error diagnosis 171

the Presburger arithmetic based on Fourier-Motzkin variable elimination. The index

expressions in the dependence mapping are affine over integer variables. Therefore,

Omega test can be used for our purpose. The deterministic upper bound on the time

required to verify Presburger formulas is 222n

, wheren is the length of the formula.

However, in practice, the Omega test is reasonably efficientfor simplifying and veri-

fying Presburger formulas.

5.7 Error diagnosis

In case of non-equivalence of two behaviours, our method canprovide some additional

information to the users to help them localize the possible causes of non-equivalence.

In the following, we discuss some such situations.

During computing IO-slices:

• For an output arraya, if the union of domains of all the IO-slices starting froma

is not equal to the union of the definition domains ofa, it means some of the ele-

ments ofa are not actually defined in terms of the input arrays in the behaviour.

In this case, even if the transformed behaviour is found to beequivalent to the

original behaviour, the latter is itself inconsistent. After computing all the IO-

slices of an ADDG, we can do this additional consistency checking in algorithm

7. In such cases of inconsistency, we can report the output array name, the set of

statements involved in those IO-slices and the domain of theundefined elements

of the output array.

During Equivalence Checking:

• The data transformation of one slice class of one ADDG does not match with

any of the slice classes of the other ADDG. In this case, our method can re-

port the slice, data transformation of it and the set of statements it involves. In

addition to that, we can add a heuristic to find slice(s) with nearest data transfor-

mation in the other ADDG. The heuristic may be based on the finding longest

common subsequence (LCS) (Cormen et al., 2001) of the data transformations

of the two slices.

172 Chapter 5 Verification of Loop Transformations

• Corresponding to a slice classs of an ADDG, our method finds a slice class

t in the other ADDG with data transformation same as that ofs but the index

expressions for some input arrays do not match in the corresponding dependence

mappings. In this case, our method can report the slices, theset of statements

they involve, precise array names whose indices mismatch and their respective

index expressions.

• Corresponding to a slice classsof an ADDG, our method finds a slice classt in

the other ADDG with data transformation same as that ofs. Also, the associ-

ation rules in the corresponding dependence mappings are same. However, the

domains of some of the corresponding dependence mappings ofs andt are not

the same. In this case also, our method can report the slices,the set of statements

they involve and the array names it involved.

5.8 Experimental results

nesting loops arrays slices Exec time (sec)

Cases depth src trans src trans src trans equiv not-equiv1 not-equiv2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SOB1 2 3 1 4 4 1 1 01.53 0.62 0.75

SOB2 2 3 3 4 4 1 1 11.21 0.72 0.46

WAVE 1 1 2 2 2 4 4 07.05 0.73 0.59

LAP1 2 1 3 2 4 1 1 02.31 0.43 0.32

LAP2 2 1 1 2 2 1 2 07.58 0.26 0.24

LAP3 2 1 4 2 4 1 2 02.12 1.14 1.13

Table 5.1: Results for several benchmarks

The method has been implemented in C language and run on a 2.0 GHz Intel R©

CoreTM2 Duo machine. Our tool first extracts the ADDGs from the source and the

transformed behaviour written in C and applies the method toestablish the equiva-

lence between them. For the dependence mappings of the slices, our method relies

on the Omega calculator (Kelly et al., 2008). The method has been tested on sev-

eral instances of equivalence checking problems obtained manually from the sobel

5.8 Experimental results 173

edge detection (SOB), debaucles 4-coefficient wavelet filter(WAVE) and Laplace al-

gorithm to edge enhancement of northerly directional edges(LAP). To create the test

cases, we have considered variety of loop transformations and arithmetic transforma-

tions. Specifically, test cases have been obtained by applications of following loop

and arithmetic transformations: (i) SOB1: loop fusion, commutative and distributive,

(ii) SOB2: loop reorder, commutative and distributive, (iii) WAVE: loop un-switching

and commutative, (iv) LAP1: expression splitting and loop fission, (v) LAP2: loop

unrolling, commutative and distributive, and (vi) LAP3: loop spreading, commutative

and remaining. The maximum nesting depth of the loops, numbers of loop bodies,

arrays and slices in the source and the transformed behaviours are shown in columns

two to eight in table5.1. The execution time of our tool for these test cases are tab-

ulated in column nine of the table. In the last two cases, the number of slices differs

from the source ADDG to the transformed ADDG, the method successfully forms the

slice classes and establishes their equivalence. In all of the cases, our method was

able to establish the equivalence in less than twelve seconds. It may be noted that the

method reported in (Shashidhar et al., 2005a) fails in the cases of SOB1, SOB2, LAP2

because of application of distributive transformations.

In our second experiment, we take the source and the transformed behaviours of

the previous experiment. We, however, intentionally change the index expressions

of some of the arrays or limits of the loops in the transformedbehaviours. As a

result, some dependence mappings (involving those arrays)do not match with the

original behaviour. Similarly, we change the rhs expressions of some statements of

the transformed behaviours to create another set of erroneous test cases. As a result,

the data transformations of some of the slices do not match with the corresponding

slices of the original behaviour. The execution time of our tool for these two cases

are tabulated in columns 10 and 11, respectively. Our tool isable to find the non-

equivalence of in all the cases in less than two seconds as shown in table5.1. One

important aspect of our implementation is that it provides some additional information

to the users to help them localize the possible causes of non-equivalence in the case

of non-equivalence of ADDGs as discussed in subsection5.7.

174 Chapter 5 Verification of Loop Transformations

5.9 Conclusion

This chapter presents a verification method of loop transformations and arithmetic

transformation techniques applied on loop and array intensive applications in the mul-

timedia and signal processing domain. An ADDG based equivalence checking method

is proposed for this purpose. The method relies on normalization of arithmetic ex-

pressions and simplification rules to handle arithmetic transformations applied along

with loop transformations. Unlike many other reported techniques, our method is

strong enough to handle arithmetic transformations like associative, commutative,

distributive, arithmetic expressions simplifications, common sub-expressions elimi-

nation, constant folding, copy propagation, etc. Correctness and complexity of the

method are also discussed. Experimental results have shownthe efficiency of the

method. The future scope of work includes identification of the simplification rules to

handle sophisticated arithmetic transformations like operator strength reduction. To

find the scope of application of our normalization techniques to widening based ap-

proach (Verdoolaege et al., 2009) which can handle non-uniform recurrence can also

be explored in future.

Chapter 6

Verification of Parallelizing

Transformations

6.1 Introduction

Modern day embedded system designs consist of multiprocessor systems to meet the

contrasting needs of high computational performance with low power consumption.

To deploy suitably in a multiprocessor system, the initial sequential behaviour is trans-

formed into a parallel behaviour. We consider the Kahn process networks (KPN) to

model the parallelized behaviours. KPNs are commonly used for representing parallel

behaviours in multimedia and signal processing domains. Inthis chapter, our objec-

tive is to ensure that the generated KPN behaviour is functionally equivalent to the

corresponding original sequential behaviour. The parallel process network model, ob-

tained from the sequential behaviour, may again again have be transformed to map it

optimally in the available multiprocessor platform. The transformations in this phase

affect the code and the concurrency in the process network model. Accordingly, our

next objective is to show the equivalence between two KPN behaviours. Also, the

deadlock may be introduced in the generated KPNs by both these transformation pro-

cesses. Our another objective is to detect deadlock in the KPNs.

The chapter is organized as follows: Our overall verification approach is discussed

in section6.2. The KPN model is also introduced in this section. The KPN to ADDG

transformation scheme is presented in section6.3. The correctness of the scheme is

175

176 Chapter 6 Verification of Parallelizing Transformations

developed given in this section. In section6.4, we show how ADDG based mod-

elling of KPNs helps us detect deadlocks in KPNs. Verification of several KPN level

transformations using our technique is discussed in section 6.5. Some experimental

results are presented in section6.6. The contributions of this chapter are summarized

in section6.7.

6.2 Verification framework

As discussed in the introduction section, we consider KPNs as a model of parallel

behaviours. Let us briefly introduced the KPN model. We then discuss our approach

for verification.

6.2.1 Kahn process networks

Kahn Process Network (KPN) (Kahn, 1974) is a deterministic model of computation

which consists of a set of processes and a set of FIFO communication channels. The

processes, which are sequential programs, run in parallel.They communicate data

among each other through one directional FIFO channels. TheFIFOs, which theoret-

ically may be infinite in size, are used for point to point communication among the

processes. A process can write any amount of data to a FIFO; it, however, gets blocked

when it tries to read from an empty channel. Therefore, the processes of a KPN are

synchronized by blocking read property of FIFO. At any giventime, a process is either

computing or waiting on one of its empty input FIFO channels.FIFOs are represented

by data streams and processes by functions that map streams into streams. A stream

is a finite or infinite sequence of data elements.

6.2.2 Verification approach

Application programs in signal processing and multimedia domains primarily involve

nested loops. The translation process explores the loop level parallelism in such pro-

grams. Therefore, processes in the generated KPN also involve nested loops. Since,

6.2 Verification framework 177

all the loop bounds are finite, the amount of data communicated through a FIFO chan-

nel is also finite. In the original definition of KPN, each process, however, maps a

set of input sequences (from the incoming FIFOs) into a set ofoutput sequences (to

the outgoing FIFOs) where the input sequences can be finite orinfinite. Therefore, a

restricted class of KPNs are considered in this work where each process of the KPN is

a nested loop program and the amount of data communicated through a FIFO is finite.

ADDGSequential Behaviour

ADDG construction

ADDG construction

ADDG

ADDG

Equivalence Checker

ADDG based

Equivalence Checker

ADDG based

ADDG construction

yes/no

yes/no

sy
nt

he
si

s
flo

w

KPN

Transformed KPN

Figure 6.1: Verification of parallelizing transformationsby equivalence checking

We leverage the ADDG based equivalence checking developed in the previous

chapter for determining equivalence of the sequential behaviour to the derived KPN

behaviour and also checking equivalence between a KPN behaviour and its trans-

formed version. Our verification flow is depicted in figure6.1. Specifically, we first

construct array data dependence graphs (ADDGs) from both sequential and KPN be-

haviours. The equivalence between the sequential behaviour and its corresponding

KPN behaviour is then established by checking equivalence between two ADDGs.

The mechanism to model a sequential behaviour as an ADDG is already discussed in

section5.2.4. The ADDG based equivalence checking method is also developed in

chapter5. In this chapter, we describe a mechanism to represent a KPN behaviour

comprising inherently parallel processes as an ADDG. Once both the behaviours are

modelled as ADDGs, their equivalence can be established using the ADDG based

equivalence checker.

The equivalence between two KPNs are established by modelling both the KPNs

178 Chapter 6 Verification of Parallelizing Transformations

as ADDGs and then applying our ADDG based equivalence checking method. We

show in this chapter that our verification framework can handle most of the KPN level

transformations.

An example of sequential to KPN code transformation (taken from (Kienhuis et al.,

2000)) is given next which serves as a running example for illustrating our method.

Example 21 Let us consider the following nested loop sequential behaviour. It first

computes the elements of the arrayr1 from values of two input arrays namely,in1 and

in2. In the next loop, the program computes the values of arrayr2 and finally produces

the output arrayout1 from r2. The ADDG of the behaviour is shown in figure5.1(a).

for (i = 1; i ≤M, i+ = 1) do
for (j = 4; j ≤ N; j+ = 1) do

S1: r1[i +1][j−3] = g1(in1[i][j], in2[i][j]);

end for
end for
for (l = 3; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l +m ≤ 7) then

S2: r2[l][m] = g2(r1[l −1][m−2]);

end if
if (l +m ≥ 8) then

S3: r2[l][m] = g3(r1[l][N−3]);

end if
end for

end for
for (l = 3; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
S4: out1[l][m] = g4(r2[l][m]);

end for

end for

The structure of the KPN behaviour generated by the Compaan tool (Turjan et al.,

2004) from the above sequential behaviour is given in figure6.2. This KPN behaviour

consists of four processes and four FIFO channels as shown inthe figure. The de-

tailed behaviour of the processes of the KPN are given in figure 6.3. In particular,

processP1 computes the elements ofr1, processP2 computes those elements ofr2

which are actually computed by the statementS2 in the sequential behaviour, process

P3 computes those elements ofr2 which are actually computed by the statementS3

in the sequential behaviour and processP4 computes the elements of the arrayout1

as in statementS4 in the sequential behaviour. Since the elements ofr2 gets defined

by the elements ofr1, P1 sends the required elements ofr1 to processesP2 andP3

accordingly throughFIFO1 andFIFO2, respectively. Similarly, the elements ofr2

6.3 Modelling a KPN as an ADDG 179

are communicated toP4 for out1 from P2 andP3 throughFIFO3 andFIFO4, re-

spectively. Therefore, the elements of the arraysr1, r2, out1 are computed in parallel

in the KPN. 2

Process P1

Process P2

Process P4

FIFO3
FIFO1

Process P3

FIFO4FIFO2

Figure 6.2: The KPN representation of the concurrent behaviour

6.3 Modelling a KPN as an ADDG

The basic steps involved in modelling a KPN as an ADDG are as follows:

1. Each process of the KPN is first modelled as an ADDG.

2. The ADDGs corresponding to the processes are then composed to obtain the

ADDG of the KPN.

6.3.1 Modelling KPN processes as ADDGs

As discussed in subsection6.2.1, a KPN consists of a set of sequential processes which

execute in parallel. They communicate via a set of point to point, one way FIFOs. The

processes are synchronized by way of blocking read propertyof the FIFOs. Each pro-

cess of a KPN behaviour is sequential. It is easily seen that each individual process in

180 Chapter 6 Verification of Parallelizing Transformations

Behaviour of Process P1:
for (i = 1; i ≤M; i+ = 1) do

for (j = 4; j ≤ N; j+ = 1) do
if (−i− j +6 ≥ 0 and−i +M−2≥ 0) then

FIFO1.put(g1(in1[i][j], in2[i][j]));

end if
if (j −N == 0 and i + M− 8 ≥ 0 and−i + M−

1 ≥ 0) then
FIFO2.put(g1(in1[i][j], in2[i][j]));

end if
end for

end for

Behaviour of Process P2:
for (l = 3; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l −4 ≤ 0 andm+ l −7≤ 0) then

t1 = FIFO1.get();

end if
if (l −4≤ 0 andm+ l −7 ≤ 0) then

FIFO3.put(g2(t1));

end if
end for

end for

Behaviour of Process P3:
for (l = 3; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (9−N ≤ l and 8− l ≤mandl +m−8== 0 and

5−m ≥ 0 andm+M−8 ≥ 0) then
t2 = FIFO2.get();

else if(9−N ≤ l and 8− l ≤mandm−3 == 0

andl −6 ≥ 0) then
t2 = FIFO2.get();

end if
if (9−N≤ 0 and 8− l ≤ m) then

FIFO4.put(g3(t2));

end if
end for

end for

Behaviour of Process P4:
for (l = 3; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l +m ≤ 7) then

t3 = FIFO3.get();

end if
if (l +m≥ 8) then

t3 = FIFO4.get();

end if
out[l −3][m−3] = g4(t3));

end for

end for

Figure 6.3: Behaviours of the processes of the KPN given in figure6.2

the KPN behaviour except for thegetand theputFIFO primitives within the processes

is otherwise a sequential program using arrays and can be modelled using ADDGs.

We shall show that these two primitives can also be encompassed within the ADDG

framework by utilizing the first-in-first-out property of FIFOs. We may model a FIFO

channel as a one dimensional array associated with two indices, one each for handling

the primitive operations ofgetandput, respectively for reading and writing elements

from the start of the array one by one. Let the index corresponding to agetoperation

be denoted as ‘out-pointer’ and that for aputoperation be denoted as ‘in-pointer’. Let

the FIFOF communicate data from a processP1 to another processP2 in a KPN. In the

ADDG, the FIFOF is realized as a one dimensional arrayF with in-pointerFIn and

out-pointerFOut, say. The statementF.put(x) in P1 is visualized as the assignment

F [++FIn] = x in P1. Similarly, the statementy = F.get() in P2 is now visualized as

y= F [FOut++] in P2. The modified behaviours of the KPN processes given in figure

6.3 are shown in figure6.4. The individual variables are converted to arrays in order

6.3 Modelling a KPN as an ADDG 181

Behaviour of Process P1:
for (i = 1, f 1In =−1, f 2In =−1; i ≤M, i+ = 1) do

for (j = 4; j ≤ N; j+ = 1) do
if (−i− j +6 ≥ 0 ∧ − i +M−2≥ 0) then

S11:FIFO1[++ f 1In] = g1(in1[i][j], in2[i][j]);

end if
if (j−N == 0 ∧ i +M−8≥ 0 ∧ − i +M−1 ≥ 0)

then
S12:FIFO2[++ f 2In] = g1(in1[i][j], in2[i][j]);

end if
end for

end for

Behaviour of Process P2:
for (l = 3, f 1Out =−1, f 3In =−1; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l −4 ≤ 0 ∧ m+ l −7≤ 0) then

S13:t1[l][m] = FIFO1[++ f 1Out];

else
S14:t1[l][m] = FIFO1[f 1Out];

end if
if (l −4≤ 0 ∧ m+ l −7 ≤ 0) then

S15:FIFO3[++ f 3In] = g2(t1[l][m]);

end if
end for

end for

Behaviour of Process P3:
for (l = 3, f 2Out =−1; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (9−N ≤ l and 8− l ≤mandl +m−8== 0 and

5−m ≥ 0 andm+M−8 ≥ 0) then
S16:t2[l][m] = FIFO2[++ f 2Out;

else if(9−N ≤ l and 8− l ≤m andm−3 == 0

andl −6 ≥ 0) then
S17:t2[l][m] = FIFO2[++ f 2Out];

else
S18:t2[l][m] = FIFO2[f 2Out];

end if
if (9−N≤ 0 and 8− l ≤ m) then

S19:FIFO4[++ f 4In] = (g3(t2[l][m]);

end if
end for

end for

Behaviour of Process P4:
for (l = 3, f 3Out =−1, f 4Out =−1; l ≤M, l+ = 1) do

for (m= 3; m≤ N−1; m+ = 1) do
if (l +m ≤ 7) then

S20:t3[l][m] = FIFO3[++ f 3Out];

end if
if (l +m≥ 8) then

S21:t3[l][m] = FIFO4[++ f 3Out];

end if
S22:out[l −3][m−3] = g4(t3[l][m]);

end for

end for

Figure 6.4: Modified behaviours of the processes given in figure6.3

to represent them as ADDGs in the above behaviour.

Each process of the KPN can be modelled as an ADDG when its FIFOs are real-

ized as arrays as identified above. The ADDGs of the four processes of the KPN in

figure6.4 are depicted in figure6.5. It may be noted that the array corresponding to

a FIFO becomes a start node in the producer process and a terminal node in the con-

sumer process. The FIFOFIFO1, for example, is communicating from the producer

processP1 to the consumer processP2 in the KPN of figure6.4. It may be observed

thatFIFO1 is a start node in the ADDG corresponding toP1 and a terminal node in

the ADDG corresponding toP2 in figures6.5(a) and6.5(b), respectively. We refer to

a FIFO and the linear array corresponding to it by the same name.

182 Chapter 6 Verification of Parallelizing Transformations

FIFO3

g2

t1

I I

S13

S15

FIFO1

II

g4

t3

out

S20
S21

S22

FIFO3 FIFO4

FIFO4

g3

t2

I I I

S18

S19

S17
S16

FIFO2

(b) ADDG of process P2

(a) ADDG of process P1

(c) ADDG of process P3

(d) ADDG of process P4

FIFO2FIFO1

g1

in1

g1

in2

S11 S12
S14

Figure 6.5: The ADDGs of processes of the KPN behaviour in figure6.2

6.3.2 Computation of the dependence mappings involving FIFOs

There is still one problem in encoding these modified sequential behaviours by AD-

DGs. The elements of the linear array is either computed (in aproducer process) from

the values of other operand arrays or used (in a consumer process) to compute the

element values of other arrays under a nested loop structure. For the former case, the

definition mapping and its domain, and for the later case, theoperand mapping and its

domain, of the linear array need to be computed for the dependency mapping between

the defined array and the used array in the statement of concern. The exact mapping

between the indices of the loop under which the statement is executed and the index of

the linear array, however, is missing because the index expressions (basically a vari-

able) of the linear array are not in terms of the loop indices.So, we need to represent

the index variable of the linear array (corresponding to each FIFO) in terms of the

loop indices under which the statement is executed. In figure6.5(a), for instance, the

definition mapping and its domain for the linear arrayFIFO1 are required to obtain

the dependency mappingsS11MFIFO1, in1 and S11MFIFO1, in2 between the indices of

the arraysin1 andin2 and the indexf 1In of the arrayFIFO1. For this, we need to

expressf 1In in terms of the loop indicesi and j.

Let us consider a general behaviour given in figure6.6 to evolve a formulation

of this mapping. In this behaviour, the array FIFO1 is computed from the values

of m multi-dimensional arraysu1, . . . ,um in a loop with a nesting depthx. Here,

ei1, . . . , eil i ,1≤ i ≤m, are affine expressions andCD is some condition over the loop

6.3 Modelling a KPN as an ADDG 183

f or(f 1In = 0, i1 = L1; i1≤ H1; i1+ = r1)

f or(i2 = L2; i2≤ H2; i2+ = r2)
...

f or(ix = Lx; ix≤ Hx; ix+ = rx)

i f (CD) then

P : FIFO1[f 1In++] = F(u1[e11] . . . [e1l1], . . . , um[em1] . . . [emlm]]);

Figure 6.6: A generalized nested loop behaviour

indicesi1, . . . , ix. Our objective is to find the relation betweenf 1In and i1, . . . , ix.

This relation may be linear or non-linear. It can be mechanically found out whether

the relation is linear or not. In the following we evolve the mechanical steps of syn-

thesizing the relation through a case analysis.

Case 1: The relation is linear: We have the following sub-cases:

Subcase 1.1: The conditionCD is identically true:

Here the closed form of the linear relation is given by the following equation:

f 1In = (i1−L1)/r1×{((H2−L2)/r2 +1) × . . . × ((Hx−Lx)/rx +1)}

+ (i2−L2)/r2×{((H3−L3)/r3 +1) × . . . × ((Hx−Lx)/rx +1)}

+ . . . + (ix−Lx)/rx

(6.1)

Subcase 1.2: The conditionCD is not identically true: The relation may or may not

involve all the loop indicesi1, . . . , ix. Accordingly, we have two subcases.

Subcase 1.2.1: The relation involves all the loop index variables:

The general form of the relation betweenf 1In andi1, . . . , ix is

f 1In = i1×α1 + i2×α2 + . . . + ix×αx + αx+1, (6.2)

whereα1, . . . , αx+1 are real constants whose values are to be found. Let in a

particular iterationl , the value ofik be al ,k, 1≤ k≤ x, and the value off 1In be cl .

Placing these values in equation6.2, we have

184 Chapter 6 Verification of Parallelizing Transformations

al ,1×α1 + al ,2×α2 + . . . + al ,x×αx + αx+1 = cl (6.3)

Here,al ,1, . . . , al ,x, cl , are some known integer values obtained through exhaustive

simulation of the loop from the first to thel th iterations. Letn iterations of the loop

body satisfy the conditionCD. Considering sequentially all suchn iterations of the

loop, we can haven equations of the form

a1,1×α1 + a1,2×α2 + . . . + a1,x×αx + αx+1 = c1

a2,1×α1 + a2,2×α2 + . . . + a2,x×αx + αx+1 = c2
...

an,1×α1 + an,2×α2 + . . . + an,x×αx + αx+1 = cn

Solving these equations by any linear program solvers such as, lp_solve (lp_solve,

2010) or any SMT solver such as, Yices (Yices, 2010), we can obtain the values of

α1, . . . , αx+1 and hence the relation betweenf 1In andi1, . . . , ix. Following example

illustrates the above mechanism.

Example 22 Let us consider the statement S11 ofP1 in the bebaviour given in figure

6.4. Let us now extract the relation between the indexf 1In of FIFO1 and the loop

indicesi and j. The relation can be represented as

f 1In = i×α1 + j×α2 +α3

We need to find the values ofα1 α2 and α3. Let us consider the first iteration

i = 1, j = 4 with f 1In = 0, we have

α1 +4×α2 +α3 = 0

For the second iterationi = 1, j = 5 with f 1In = 1, we have

α1 +5×α2 +α3 = 1

6.3 Modelling a KPN as an ADDG 185

The statementS11 does not execute for the remaining iterations withi = 1 (and

6 ≤ j ≤ M) since the conditionCD (i.e., −i − j + 6 ≥ 0∧−i + M− 2 ≥ 0) under

which S11 executes fails in these iterations. For the next iteration which satisfiesCD,

i = 2, j = 4 with f 1In = 2; we have

2×α1 +4×α2 +α3 = 2

None of the remaining iterations of the loop satisfies the condition−i− j +6≥ 0

∧− i + M−2≥ 0. Therefore, the statement S1 executes only three times. Solving

the above three equations, we haveα1 = 2, α2 = 1, α3 = −6. Therefore,f 1In =

2× i + j−6. 2

The range(Hk−Lk + 1) of the loop indexik, 1≤ k≤ x, can be high in practice.

Consequently, the number of iterations that satisfyCD may also be large. Hence, the

number of equations given to the solver is quite high. Since,we havex+1 unknown

variables in those equations, onlyx+1 linearly independent equations actually suffice

to find the values ofα1, . . . , αx+1. Unfortunately, it is not possible to choose such

x+ 1 linearly independent equations greedily fromn equations avoiding exhaustive

simulation. The following example illustrates that if we stop after obtaining the first

x+1 linearly independent equations, then we reach a linear relation wrongly (because

the relation is actually non linear).

for(i=1, fIn=-1; i < 6; i++)
for(j=1; j < 6; j++)
if(j <= i)

S1: FIFO1[++f1In] = a[i][j];

(a) behaviour of a process

↑j

5 14

4 9 13

3 5 8 12

2 2 4 7 11

1 0 1 3 6 10

1 2 3 4 5

−→
i

(b) relation between f1In and (i,j)

Figure 6.7: An example of nonlinear relation betweenf 1In and loop indices (i, j)

Example 23 Let us consider the behaviour of the process given in figure6.7(a). The

corresponding values off 1In for different values of (i, j) of this behaviour is shown in

figure6.7(b). Here, the relation can be written asf 1In = i×α1+ j×α2+α3. Since we

186 Chapter 6 Verification of Parallelizing Transformations

have three unknown variables here, three linear independent equations should suffice

to find them. Considering the first three iterations of the loop, we have

α1 +α2 +α3 = 0,

2×α1 +α2 +α3 = 1 and

2×α1 +2×α2 +α3 = 2.

Solving these three equations, we find thatα1 = 1,α2 = 1,α3 = −1. So the syn-

thesized relation isf 1In = i + j−2. Now, consider the iteration withi = 4, j = 3, the

value of f 1In by this equation is 5. However, the table in figure6.7(b) suggests that

the actual value off 1In is 8 for this iteration. Therefore, inferring the relation from

the first three equations, which are linearly independent, is wrong. We shall show in

example26 that the relation is actually non-liner for this behaviour. 2

It is, however, possible to prune out some of the input equations to save the running

time of lp_solve or Yices for the following case. If the iteration vectors~v1, . . . , ~vn

are multiples of another iteration vector~vp and subtracting the equation obtained by

~vp from the equations obtained by vectors~v1, . . . , ~vn result in a single equation, then

we can ignore the equations corresponding to~v1, . . . , ~vn for solving the whole system

of equations. It may be noted that we still need an exhaustivesimulation of the entire

loop since we need to find all the equations; the above step only helps in reducing the

size of the input to the lp_solve or Yices. The following example illustrates the fact.

for(i=0; i<=20; i+=1)

if(i % 2 == 0){

S1: a[i] = FIFO1.get();

c[i] = f 1(a[i]); }

Figure 6.8: An process of a KPN

Example 24 Let us consider the process in figure6.8. The relation between out-

pointerFIFO1Out of FIFO1 and the loop indexi can be represented asFIFO1Out=

α1× i + α2. It may be noted that the statementS1 executes eleven times. So, we can

obtain eleven equations fori = 0,2, . . . , 20, respectively, namely 0×α1 + α2 = 0,

2×α1 + α2 = 1, 4×α1 + α2 = 2, . . . , 20×α1 + α2 = 10. As discussed above, the

values ofα1 andα2 can be obtained by solving all these equations using lp_solve or

6.3 Modelling a KPN as an ADDG 187

Yices. Obviously, the first two equations suffice to obtain (using lp_solve or Yices)

the relationFIFO1Out= i/2 leading to the dependence mappingS1Ma,FIFO2 = {[i]→

[i/2] | 0≤ i≤ 10∧ ∃p∈N(i = 2×p)}. Therefore, we can reduce the time taken by the

solver by removing most of the redundant equations from the inputs of the solver. It

may be noted that the values ofi = 2,4, . . . ,20 are multiple of the value ofi = 1. If the

equation obtained fori = 1 is subtracted from the equations obtained fori = 2, . . . ,20,

then we shall obtain nine equations of the form 2k×α1 = k, 1≤ k≤ 9. All these nine

equations reduce to a single equation of the form 2×α1 = 1. Therefore, we select two

equationsα1×0+ α2 = 0 andα×2+ α2 = 1 from the above eleven equations and

submit to lp_solve or Yices. 2

Subcase 1.2.2: The relation is independent of some loop index variables:

In this case, the linear system of equations is under constrained, i.e., among the equa-

tions obtained through exhaustive enumeration of the loops, there is actually less than

x+ 1 linearly independent equations. For an under constrainedlinear system, there

are infinite solutions, i.e., an infinite number of assignments toα1, . . . , αx+1 satisfy

those equations. The valuef 1In (f 1Out) remains the same for all the assignments.

The solver returns one of the possible solutions. The following example illustrates

this subcase.

for(i=0, fIn=-1; i<=10; i+=1)

for(j=0; j<=10; j++)

if(i == j)

S1: FIFO[++f1In] = f 1(a[i]);

Figure 6.9: An example for under constrained linear system of equations

Example 25 Let us consider the behaviour of the producer process given in figure

6.9. Clearly, the statementS1 iterates 11 times. So, we find 11 equations of the form

k×α1 + k×α2 + α3 = k, 0≤ k≤ 10. Fork = 0, we obtainα3 = 0. By applying

the equation reduction strategy described above, the remaining 10 equations, which

are linearly dependent, reduce toα1 + α2 = 1. No unique value ofα1 andα2 cannot

be obtained since we have only one equation over them. Here, we have an infinite

number of assignments toα1 andα2 of the formα1 = x andα2 =−(x−1), ∀x∈ N.

The solver returns any one of them as a solution.

It will be observed subsequently that computation of transitive dependence over

188 Chapter 6 Verification of Parallelizing Transformations

a FIFO necessiates equatingf 1In equal to f 1Out. If the solution returned by the

solver for f 1In differs from that returned forf 1Out (for the under constrained cases),

the process is not impaired this process (because equatingf 1In = f 1Out takes place

under the explicit conditionCD). In particular, for this example, let us assume that we

also have the same loop in the consumer process where data from FIFO1 are read.

Let the solver returnsα1 = p andα2 =−(p−1), p∈N for f In and returnsα1 = q and

α2 =−(q−1), q∈N for f Out. Based on the values returned by the solver, we obtain

f In = p× i− (p−1)× j and f Out = q× i− (q−1)× j. Clearly f In = f Out, ∀i, j,

0≤ i ≤ 10∧ 0≤ j ≤ 10∧ i == j. Therefore, an arbitrary choice does not hamper the

dependence mapping computations over a FIFO. 2

Case 2: The relation is not linear:

In this case, there does not exist any assignment ofα1, . . . , αx+1 which satisfy all

the above equations. The solver reports that the constraints are unsatisfiable. The

following example illustrates the fact.

Example 26 Let us revisit the behaviour of the process in figure6.7(a). The cor-

responding values off 1In for different values of (i, j) of this behaviour is shown

in figure 6.7(b). It can be shown that the relation betweenf 1In and i, j is f 1In =

(i× (i−1))/2+(j−1) (and the corresponding dependence mapping is

S1MFIFO,a = {[(i× (i−1))/2+(j−1)]→ [i][j] | 0≤ i ≤ 5∧0≤ j ≤ 5}). Clearly

this is a nonlinear relation. In this case our method will generate 15 equations (cor-

responding to 15 entries of the table6.7(b)). When these equations are submitted to

lp_solve or Yices, the latter reports that the constraints are unsatisfiable indicating,

thereby,that no linear relation exists. 2

As discussed in the previous chapter (in section5.8), our ADDG equivalence

checking method uses Omega calculator (Kelly et al., 2008) for computing the de-

pendence mappings. The inherent limitation of Omega calculator is that it only sup-

ports Presburger formulas1. Therefore, such nonlinear dependence mappings cannot

be handled by Omega calculator.

1 Presburger formulas contain affine constraints, the usual logical connectives, and existential and

universal quantifiers

6.3 Modelling a KPN as an ADDG 189

The closed form of the relation betweenf 1In and i1, . . . , ix will be elusive for

nonlinear cases. In such cases, the dependence mapping betweenFIFO1 and any

right hand side (rhs) arrayun, 1≤ n≤m, in the statement P of figure6.6can still be

synthesized as follows:

The iteration domain of the statement P in figure6.6 is:

IP = {[i1, i2, . . . , ix] |
x̂

k=1

(Lk ≤ ik ≤ Hk∧CD∧∃αk ∈ N(ik = αkrk +Lk))}

The definition domain of FIFO1 in the statement P is

PDFIFO1 = {i | 0≤ i ≤ (H1−L1 +1)× . . . (Hx−Lx +1)}.

The operand domain of the arrayun is

PUun ⊆ Zln = {[en1(~v), . . . , enln(~v)] |~v∈ IP}.

The dependence mapping can be represented as

PMFIFO1,un = { [f 1In]→ [~v] | f 1In ∈ PDFIFO1 ∧ ~v∈ PUun

∧ ∀~v1,~v2 ∈ PUun(~v1≤ ~v2 ∧∄~v3 ∈ PUun(~v1≤ ~v3 ∧ ~v3≤ ~v2))

=⇒ ∃ f 1In1, f 1In2 ∈ PDFIFO1(([f 1In1]→ [~v1]) ∈ PMFIFO1,un

∧ ([f 1In2]→ [~v2]) ∈ PMFIFO1,un ∧ (f 1In1 = f 1In2−1))},

where~vi ≤ ~v j , 1≤ i, j ≤ 3, denotes the lexicographic ordering

o f the vectors~vi and~v j

(6.4)

The expression depicted in equation6.4 is arrived at by taking two consecutive

iteration vectors which satisfyCD and relating them to the correspondingf 1In values

f 1In1 and f 1In2, respectively. Unfortunately, Omega calculator does notwork on

such inductive definition of the dependence mapping. Therefore, when the relation

betweenf 1In and i1, . . . , ix is not linear, we have to put the relations in their ex-

haustively enumerated forms to the Omega calculator. Accordingly, the dependence

190 Chapter 6 Verification of Parallelizing Transformations

mapping for the statementS1 in figure6.7(a) is represented as

S1MFIFO1,a = {[0]→ [1][1]} ∪ {[1]→ [2][1]} ∪ {[2]→ [2][2]} ∪ {[3]→ [3][1]}

∪ . . . ∪ {[13]→ [5][4]} ∪ {[14]→ [5][5]}

A FIFO written by multiple statements of a process

So far we have discussed a procedure to obtain the relation between the FIFO pointer

and the loop indices through case analysis considering thatonly one statement of

a producer process produces data elements into a FIFO. In general, however, more

than one statement of a producer process may put data into thesame FIFO. Similarly,

there may be more than one statement of a consumer process consuming data from a

FIFO. In such cases, we need the starting value of the FIFO pointers for each of such

statements of a process. Following example illustrates thephenomenon.

for(i=0, fIn=-1; i<10; i+=1)

for(j=0; j<10; j++){

S1: FIFO[++f1In] = f 1(a[i]);

S2: FIFO[++f1In] = f 2(a[i]); }

for(k=0; k<=10; k+=1)

S3: FIFO[++f1In] = f 3(a[k]);

Figure 6.10: A FIFO is written by more than one statement

Example 27 Let us consider the producer process given in figure6.10where the el-

ements ofFIFO1 are written by three statements. For the statementsS1 andS2, the

starting values off 1In are 0 and 1, respectively. It may be noted that the statements

S1 andS2 of the first two dimensional loop write 0 to 199 locations of theFIFO1 al-

ternately. Therefore, the starting value off 1In for the second loop is 200. This value

will be used to find the relation betweenf 1In and the loop indexk of the second loop.

2

The starting value of a FIFO pointer for a statement (in a loop) can be obtained

by completely simulating the loop bodies where the previouselements of FIFO are

written. However, if the conditionCD for a loop is identically true, then the initial

values off 1In for the statements can be obtained directly.

6.3 Modelling a KPN as an ADDG 191

In general, there may ben such statements within a loop writing data into a FIFO.

As discussed in case 1.1, if there is a single statement within a loop body andCD is

true, the relation betweenf 1In and the loop indices can be obtained by equation6.1.

If there aren statements in a loop writing data into a FIFO, then the relation f 1In and

the loop indices for themth statement, 1≤m≤ n, can by obtained with the following

modification of equation6.1:

f 1In = [(i1−L1)/r1×{((H2−L2)/r2 +1) × . . . × ((Hx−Lx)/rx +1)}

+ (i2−L2)/r2×{((H3−L3)/r3 +1) × . . . × ((Hx−Lx)/rx +1)}

+ . . . + (ix−Lx)/rx]×m+ f 1In0,

(6.5)

where f 1In0 is the starting value off 1In for themth statement. The final value of the

nth statement of a loop body can be obtained by substituting respectivelyH1, H2, . . . , Hx

in place ofi1, i2, . . . , ix in the equation6.5. Thus, to obtain the starting value off 1In

for the statementS3 in figure6.10, the final value off 1In for the statementS2 is ob-

tained by equation6.5as(9×10+9)×2+1 = 199. Therefore, the starting value of

f 1In is 200 for the second loop. The relation betweenf 1In and the indexk of the sec-

ond loop for the statementS3 can be obtained using the equation6.5with m= 1 and

f 1In0 = 200. Hence, the relation is obtained as computed thereby asf 1In = k+100.

Finally, our scheme to obtain the relation betweenf 1In (f 1Out) andi1, . . . , ix is

given as algorithm9.

6.3.3 Composition of ADDGs of KPN processes

The next task is to compose the ADDGs obtained from the individual processes to

obtain the ADDG of the KPN. The composed ADDGG = (V,E) of two ADDGs

G1 = (V1,E1) andG2 = (V2,E2) would be the union of their respective vertices, i.e.,

V = V1∪V2 and edges, i.e.,E = E1∪E2. It may be recalled that a FIFO is used as

the communication medium between a producer process and a consumer process in a

KPN. Let Fk be the FIFO used as the communication channel between the producer

processPi and the consumer processPj . Let Gi andG j be the ADDGs obtained from

Pi andPj , respectively, withFk depicted as a linear array. In this case,Fk would be a

start node inGi and a terminal node inG j . Therefore, the composed ADDG ofGi and

G j captures the transitive dependence of the start node ofG j on the terminal nodes of

192 Chapter 6 Verification of Parallelizing Transformations

Algorithm 9 Algorithm to find relation betweenf 1In (f 1Out) and loop indices
/* Input: statement label
Output: the relation */

1: Obtain the starting value off 1In (f 1Out).
2: if all Li andHi are integer constants andCD is truethen
3: Obtain the relation using the equation6.5;
4: else
5: Find all the linear equations from the iterations of the loops;
6: Remove the redundant equations as described in subcase 1.2.1;
7: Apply Yices to solve these linear equations;
8: if Yices is able to obtain a linear relationthen
9: /*Yices yields a solution */

10: Use the expression returned by Yices;
11: else
12: /* Yices indicates that the equations are unsatisfiable */
13: Use the relation in enumerated form;
14: end if
15: end if

Gi. While computing the transitive dependence across the linear array corresponding

to the FIFO channelFk, we use the ‘first-in-first-out’ property of the FIFO; in other

words, we make the in-pointerf In of Fk equal to the out-pointerf Out of Fk to obtain

the transitive dependence. On the other hand, if there is no FIFO communication

between two processes, then their ADDGs remain disjoint in the composed ADDG.

Therefore, the ADDG corresponding to the KPN can be obtainedfrom the ADDGs of

the individual processes by composing them along all the FIFOs of the KPN.

The composition of two ADDGs can be formally defined as follows:

Let G1 = (V1, E1) andG2 = (V2,E2) be the respective ADDGs of any two pro-

cessesP1 and P2 of a KPN. Let there bek FIFOs F1, . . . , Fk betweenP1 and P2.

We assume thatP1 andP2 may have some common input and output arrays, but all

the internal arrays of the processes have distinct names. Let P1 andP2 havem com-

mon input arraysI1, . . . , Im and n common output arraysO1, . . .On. Therefore,

V1∩V2 = {F1, . . . , Fk, I1, . . . , Im, O1, . . .On}. The composed ADDGG12 of G1

and G2 is G12 = G1 ⋄G2 = (V1∪V2, E1∪E2). The input array nodesI1, . . . , Im

become the terminal nodes and the output array nodesO1, . . .On become the start

nodes in the composed ADDGG12. The linear arraysF1, . . . , Fk are either start

nodes or terminal nodes inG1 and G2 depending upon the direction of the FIFOs

F1, . . . , Fk. Let F1 be a start node inG1 and a terminal node inG2. It means that

6.3 Modelling a KPN as an ADDG 193

g2 of G2

F1

B1

B

(b) g2 of G2

Bp F1

Sl

f2 f1

(c) composed ADDG

B

B1 Bp F1

g1 of G1

Si

A1 Ak

π1

Al

Sl

π

Si

A2 Ak

A

Sj

A

Sj

A1

(a)g1 of G1

Figure 6.11: Composition of ADDGs

the direction ofF1 is from (producer) processP1 to (consumer) processP2. The linear

array nodesFl , 1≤ l ≤ k, become internal array node inG12. Specifically, we need

to compose the slices inG2, which haveF1 as terminal nodes, with the slices inG1,

which haveF1 as start nodes, to obtain the transitive dependencies between the output

and the input arrays inG12. Let g2(B,〈B1, . . . , Bp,F1〉) be one such slice inG1 and

g1(F1,〈A1, . . . , Ak〉) be one such slice inG2. The slicesg1 andg2 are depicted as

figures6.11(a) and6.11(b), respectively. Let the characteristic formulas of the two

slicesg2 andg1 beτg2 = 〈 f1(B1, . . . , Bp,F1), 〈g2MB,B1, . . . , g2MB,Bp, g2MB,F1〉〉 and

τg1 = 〈 f2(A1, . . . , Ak), 〈g1MF1,A2, . . . , g1MF1,Ak〉〉, respectively. Let the slice

g(B, 〈B1, . . . , Bp, A1, . . . , Ak〉) as shown in figure6.11(c) be the composition ofg1

andg2, i.e.,g = g2⋄g1. The characteristic formula ofg is

τg = 〈 f1(B1, . . . , Bp, f2(A1, . . . , Ak)), 〈 g2MB,B1, . . . , g2MB,Bp, gMB,A1, . . . , gMB,Ak〉〉,

wheregMB,Az = g2MB,F1 ⋄ g1MF1,Az, 1≤ z≤ k. So, the data transformation of the

resultant sliceg is obtained by replacing the occurrence(s) ofF1 in f1(B1, . . . , Bp,F1)

by f2(A1, . . . , Ak). The dependence mapping betweenB andAz, 1≤ z≤ k, is ob-

tained fromg2MB,F1 andg1MF1,Az using transitive dependence computation over two

194 Chapter 6 Verification of Parallelizing Transformations

sequences of statements. The transitive dependencies for the FIFOs fromP1 to P2 can

be obtained in a similar way. The following example illustrates the composition of

ADDGs of KPN processes.

out

g4

g3g2

r1

g1

in2

(a)

S2 S3

S4

r2

in1

(b)

S1

FIFO4

I

g3

t2

FIFO2

FIFO3

I

g2

t1

I I

FIFO1

g1

in1

g1

in2

I I I

g4

t3

out

S20
S21

S11 S12

S13
S14 S18

S15 S19

S22

S17
S16

Figure 6.12: (a) The ADDG of the sequential behaviour given in example21;

(b) The ADDG of the corresponding KPN behaviour

Example 28 Let us consider the ADDGs in figure6.5. It may be recalled that these

ADDGs are obtained from the KPN processes given in figure6.4. Clearly, the ADDGs

in figures6.5(b) and6.5(c) can be composed with the ADDG in figure6.5(a). Sim-

ilarly, the ADDG in 6.5(d) can be composed with the ADDGs in figures6.5(b) and

6.5(c). The resultant ADDG of the KPN is depicted in figure6.12(b). The ADDG of

the original sequential behaviour (given in example21) is depicted in figure6.12(a).

We have to establish the equivalence between these two ADDGsof figure6.12.

Let us now compute the transitive dependence across the FIFO1 in the resultant

ADDG. We haveS11MFIFO1, in1 = {[f 1In]→ [i, j] | f 1In = (2× i + j −6)∧1≤ i ≤

M∧4≤ j ≤N∧−i− j +6≥ 0∧−i +M−2≥ 0}. We also haveS15S13MFIFO3, FIFO1

6.3 Modelling a KPN as an ADDG 195

= {[f 3In]→ [f 1Out] | f 3In = (l +2×m−3)∧ f 1Out = (l +2×m−3)∧3≤ l ≤M

∧3≤ n≤ N−1∧ l −4≤ 0∧m+ l −7≤ 0}. It may be noted that the value off 1In

in S11MFIFO1, in1 and the values off 3In and f 1Out in S15S13MFIFO3, FIFO1 are ob-

tained by the method discussed above. Therefore, the transitive mapping fromFIFO3

can be obtained by composingS15S13MFIFO3, FIFO1 with S11MFIFO1, in1. Specifically,

S15S13S11MFIFO3, in1

= {[f 3In]→ [i, j] |

1≤ i ≤M∧4≤ j ≤ N ∧− i− j +6≥ 0∧−i +M−2≥ 0∧3≤ l ≤M

∧3≤ n≤ N−1∧ l −4≤ 0∧m+ l −7≤ 0

∧∃ f 1In, f 1Out([f 1In]→ [i, j] ∈ S11MFIFO1, in1

∧ [f 3In]→ [f 1Out] ∈ S15S13MFIFO3, FIFO1)

∧ f 3In = (l +2×m−3) ∧ f 1Out = (l +2×m−3)

∧ f 1In = (2× i + j−6) ∧ f 1In = f 1Out}. 2

6.3.4 Correctness of the composition operation

We now show that the composition operation correctly captures the data dependence

of a deadlock free KPN. The (sequential to KPN) transformation process, however,

may introduce deadlock in the generated KPN. In the next section, we shall show

that deadlocks in KPN can be detected automatically during ADDG composition by

carrying out some extra checks. Without loss of generality,we, therefore, assume here

that the KPN is deadlock free to prove the correctness of the composition operation.

Theorem 20 The ADDG composition mechanism captures correctly the datadepen-

dence across the deadlock free KPN processes.

Proof: Let there be a FIFOF1 from a KPN processP1 to another KPN processP2.

Let G1 andG2 be the ADDGs ofP1 andP2, respectively. LetSi be a statement inP1

definingF1 andSj be a statement inP2 whereF1 is read into an array,A say.

Figure 6.11(a) depicts the IO-sliceg1(F1,A1, · · · ,Ak) of G1 ending in the write

edgeSi . Similarly, figure6.11(b) depicts the IO-sliceg2(B,B1, · · · ,F1, · · · ,Bp) of G2,

whereB is an output array ofP2; the statementSj appears as a write edge correspond-

ing to reading of the FIFO into the arrayA.

196 Chapter 6 Verification of Parallelizing Transformations

Let g(C, I1, · · · , In) be a slice having the last write edge with statement labelsSt

in an ADDG of a processP. Let π be any path from the start arrayC to some ter-

minal arrayI j , for some j, 1 ≤ j ≤ n. Let the sequence of write edges inπ be

〈St ,S1,S2, . . . , Sk〉, whereSt , S1, . . . , Sk are the statement labels. The following

properties are satisfied byπ.

Property 1: The sequence of statements〈St ,S1,S2, . . . , Sk〉 in π gives the reverse ex-

ecution sequence (not necessarily occurring consecutively in the process body)

through which the output arrayC gets defined.

Property 2: LetA1, . . . , Ak are the respective arrays, not necessarily distinct, defined

by the statementsS1, . . . , Sk. (The statementSt defines the output arrayC.)

All the elements of the arraysAi, 1≤ i ≤ k, and the output arrayC, assigned

along the pathπ over the iteration domains of statementsSi andSt get properly

defined by virtue of having all the operand array elements defined before use in

π. Thus, the dependence mappingπMC,I j is well defined.

If the composed ADDGs maintain these properties, then the composition process

captures the dependence across the (deadlock free) KPN processes correctly.

In the composed ADDG of figure6.11(c), let us, therefore, consider a pathπ.Si.π1

comprising the prefixπ from the output arrayB to F1 followed by the pathSi .π1 in the

sliceg1 from F1 to some terminal arrayAl of the sliceg1. (There may be more than

one such path in the sliceg2 and hence in the composed ADDGG.)

Property 1 holds in the prefixπ and the suffixSi.π1 of the pathπ.Si.π1 by construc-

tion of the ADDGsG1 andG2, respectively. Hence, the property holds for the entire

pathπ.Si.π1 if it holds for the statement sequenceSj .Si in the path; this fact, however,

is ensured by the FIFO operationsput andget and by theblocking readoperational

semantics of KPN processes. It may be noted that the output array may not actually

get defined ifP1 or P2 or both cannot proceed because of deadlock.

Now, regarding property 2 for the pathSi .π1, the dependence mappings

Si .π1MF1,A1,Si .π1 MF1,A2, · · · , Si .π1MF1,Ak, obtained during construction of the ADDGG1,

are well formed satisfying property 2. Hence, the mappingSi .π1MF1,Al is well defined.

So is the dependence mappingπMB,F1 for the pathπ, ensured during construction of

6.3 Modelling a KPN as an ADDG 197

for(i=0; i<50; i+=1)

S1: FIFO1.put(f 1(a[i]));

process P1

for(i=0; i<60; i+=1)

S2: b[i] = FIFO1.get();

for(i=0; i<50; i+=1)

S3: FIFO2.put(f 1(b[i]));

process P2

for(i=0; i<50; i+=1)

S4: c[i] = FIFO2.get();

process P3

Figure 6.13: An example of producer-consumer deadlock

the ADDG G2. Also, the composition step ofG1 andG2 ensures that the mapping

π.Si .π1MB,Al is well defined satisfying property 2 for the pathπ.Si.π1. Again, if P1 or

P2 or both are in deadlock, the mappingπ.Si .π1MB,Al , although constructed by the com-

position process, will not actually be realized. 2

Thus, the presence of deadlocks invalidate the compositionof ADDGs. The fol-

lowing example illustrates the fact.

Example 29 Let us consider the KPN in figure6.13. This KPN has a deadlock around

the channel FIFO1 since the processP1 puts 50 elements in FIFO1 whereas the process

P2 tries to get 60 elements from it. So, the processP2 remains blocked on read from

empty channel after consuming 50 elements from FIFO1. As a result, the second loop

of P2 and hence the processP3 never execute. So, none of the elements of the arrayc

gets defined.

Let us now discuss the composition mechanism in this KPN. It might be noted that

each of the input and output pointers of the three FIFOs is thesame as the correspond-

ing loop indexi in this example. The dependence mapping inP1 is

S1MFIFO1,a = {[i]→ [i] | 0≤ i ≤ 49}.

198 Chapter 6 Verification of Parallelizing Transformations

The dependence mappings inP2 are

S2Mb,FIFO1 = {[i]→ [i] | 0≤ i ≤ 59}. S3MFIFO2,b = {[i]→ [i] | 0≤ i ≤ 49}.

So,S3S2MFIFO2,FIFO1 = S3MFIFO2,b ⋄ S2Mb,FIFO1 = {[i]→ [i] | 0≤ i ≤ 49}.

The dependence mapping inP3 is

S4Mc,FIFO2 = {[i]→ [i] | 0≤ i ≤ 49}.

The composition ofP3 andP2 around FIFO2 gives

S4S3S2Mc,FIFO1 = S4Mc,FIFO2 ⋄ S3S2MFIFO2, FIFO1 = {[i]→ [i] | 0≤ i ≤ 49}.

The composition of composed behaviour ofP3 andP2 with P1 around FIFO1 gives

S4S3S2S1Mc,a = S4S3S2Mc,FIFO1 ⋄ S1MFIFO1,a = {[i]→ [i] | 0≤ i ≤ 49}.

Therefore, the ADDG construction mechanism constructs thedependence map-

ping from the arrayc to a for the first 50 elements communicated through FIFO1 by

ignoring the fact that second loop ofP2 andP3 will never execute due to deadlock

around FIFO1.

It may be noted that while computing (in the last step) the mapping S4S3S2S1Mc,a,

inferring deadlock from the fact that|S1Ua| < S4S3S2MFIFO1 is not always correct. To

illustrate this fact, let us assume that in figure6.13, there is another loop body

for(i=0; i<9; i++)

S5:FIFO1.put(f2(d[i]));

after the first loop body in processP1 in figure6.13. In this case, the processP1 puts

60 elements in FIFO1. Therefore, there will not be any deadlock in this KPN with

this modification. However, the fact that|S1Ua| < S4S3S2MFIFO1 is still true while

computing the mappingS4S3S2S1Mc,a. 2

In general, therefore, the composition mechanism fails to to detect this kind of

deadlocks. In the next section, we discuss how to detect deadlocks in KPNs.

6.4 Deadlock detection in a KPN 199

6.4 Deadlock detection in a KPN

There may be two kinds of deadlocks in a KPN – global deadlocksand local deadlocks

(Geilen and Basten, 2003). Recall that processes communicate through unbounded

unidirectional FIFOs in a KPN model. The processes are synchronized by blocking

read from empty FIFOs. A KPN is in a global deadlock if none of the processes in

the network can make progress, that is, when all the processes are blocked reading

from empty channels. In contrast, alocal deadlockarises if some (but not all) of the

processes in the network cannot progress and their further progress cannot be initiated

by the rest of the network. Although KPN models use unboundedFIFOs, in practice,

they are implemented using finite memory. Execution of a KPN behaviour can also

stop if one or more processes are blocked writing to full channels. Therefore, some of

the (local and global) deadlocks areartificial deadlock(Parks, 1995) in the sense that

they do not exist in the actual KPN but arise due to finiteness of the FIFO implemen-

tation. A KPN with bounded FIFOs behaves in the same way as thecorresponding

KPN, except for the fact that certain write actions may be stalled by full channels.

In general, the FIFO size cannot be decided statically (Buck, 1993). Therefore, the

artificial deadlock situations are handled in runtime. The works reported in (Bharath

et al., 2005; Cheung et al., 2009; Jiang et al., 2008; Li et al., 2010; Olson and Evans,

2005; Parks, 1995) speak of several such approaches for handling artificial deadlocks.

The basic idea is to identify the artificial deadlock situations runtime. Once such a

situation occurs, the size of the FIFO in question is increased by some fixed amount.

As discussed in section6.2, each process in the KPN is a nested loop program and the

loop bounds are finite. For such a restricted class of KPNs, the amount of data com-

municated through a FIFO is finite and can be computed statically (Carpenter et al.,

2010; Cheung et al., 2007). Therefore, artificial deadlock situation does not arise at

runtime for these KPNs. A real deadlock, both local and global, however, can still

be present in such KPNs. In the following, we show how the realdeadlocks can be

identified in such KPNs.

There are two factors leading to real deadlock in KPNs:

(i) Insufficient communication of data elements over a FIFO:The number of el-

ements to be written in a FIFO by the producer process is less than the number of

elements to be consumed from the FIFO.

200 Chapter 6 Verification of Parallelizing Transformations

(ii) Circular dependencies among the processes:If we consider the producer-

consumer dependencies among the processes of a KPN, then there may be circular

dependencies among the processes of a KPN. One process of such a cycle may be

blocked if it tries to read from an empty channel. A process ofthis cycle must write

some data to a FIFO in order for the cycle to make progress. This is impossible if

at least one of the processes of the cycle can never progress.Therefore, circular de-

pendencies among the processes may lead to real deadlock situation. This type of

deadlock may be local if the cycle involves only some processes of the KPN and

global if it involves all the processes.

One of the advantages of ADDG based modelling of the KPNs is that we can

identify both kinds of real deadlock from their corresponding ADDGs. For the former

case, we need to do some extra checking before compostion of the individual ADDGs

of the processes. The seond one gets detected automaticallyduring computation of

transitive dependencies. In the following, we elaborate both of them.

6.4.1 Deadlock due to insufficient communication

Example29in the previous section is an instance of the class of deadlocks in question.

The following extra processing is carried out for detectionof such deadlocks. Letnp

be the number of elements to be written in a FIFO by the producer process andnc

be the number of elements to be consumed from the FIFO. Ifnp < nc for any FIFO

in a KPN, then the consumer process eventually gets blocked permanently and the

execution of the KPN never terminates. Therefore, we need toensure thatnp ≥ nc

for all FIFOs in a KPN. LetF be a FIFO from a producer processP to a consumer

processC in a KPN. LetF be written by the statementsi statements inP, Si , 1≤

i ≤ k. Therefore, the total number of data communicated byP to F , i.e., np, is the

cardinality of IS1 ∪ . . . ∪ ISk. Similarly, let the elements ofF be consumed byl

statements,Tj : 1≤ j ≤ l . Therefore, the total number of data consumed fromF by

C, i.e., nc, is the cardinality ofIT1 ∪ . . . ∪ ITl . We obtain the values ofnp andnc

corresponding to each FIFO from ADDGs of the individual processes of a KPN and

check whethernp ≥ nc or not. Whilenp < nc helps detect the deadlock, ifnp > nc,

then some redundant data are communicated through the FIFO which will never be

consumed by the consumer process; we, therefore, can reportabout the redundant

communication over the FIFO. It may be noted that the values of np andnc can only

6.4 Deadlock detection in a KPN 201

be computed if the lower limits and the upper limits and the step (increment) value of

the loops of the processes are constant (i.e., they are not variable).

6.4.2 Deadlock due to circular dependence in a KPN

A cycle is formed in an ADDG when some statement,S say, defines an array such

that definition of an element of the array depends on other elements of the same array

defined by an earlier execution of the statementS. For example,Scan be a statement

of the form S : a[i] = f (a[i − 1]). The producer-consumer relationship among the

processes in a KPN may also result in a cycle in the corresponding ADDG. Presence of

such ADDG cycles may result in deadlocks. We depict certain situations through the

following examples before formalizing the detection mechanism for such deadlocks.

for(i=0; i<=10; i+=1) {

S1: a[i] = FIFO2.get();

S2: FIFO1.put(f 1(a[i]);

S3: c[i] = f 3(a[i]); }

process P1

for(i=0; i<=10; i+=1) {

S4: b[i] = FIFO1.get();

S5: FIFO2.put(f 2(b[i]);

S3: d[i] = f 4(b[i]); }

process P2

P1 P2

FIFO1

FIFO2

Figure 6.14: A KPN with circular dependence

Example 30 Let us consider the circular dependence of the KPN in figure6.14. It

may be noted from the behaviours of P1 and P2 that theith element communicated

through FIFO1 depends ona[i]. This ith element of FIFO1 is then used to defineb[i].

The ith element communicated through FIFO2 in turn depends onb[i]. Finally, a[i] is

defined by theith element communicated through FIFO2. There is a deadlock in this

KPN because an ADDG cycle is formed by the statementsS1, S5, S4 andS2 such that

an element ofa[i] is defined in terms of some element ofb[i] which, in turn, depends

ona[i]. In general, such circular dependence involves all the arrays defind in the cycle.

2

202 Chapter 6 Verification of Parallelizing Transformations

FIF02

I

a

f1

FIFO1

f3

S1

S2 S3

c

(a)

I

b

f4

d

S4

S6

(b)

FIFO1

FIF02

S5

f2

FIF02

I

a

f1

FIFO1

I

b

f4

d

f3

f2

S1

S2 S3

S4

S6

S5

c

(c)

Figure 6.15: ADDGs of the processes in figure6.14: (a) ADDG of process P1; (b)

ADDG of process P2; (c) Composed ADDG of P1 and P2

The ADDGs of the processesP1 andP2 of the KPN of figure6.14are depicted

in figures6.15(a) and6.15(b), respectively. The composed ADDG of P1 and P2 is

shown figure6.15(c). It may be noted from the ADDG in figure6.15(c) that cycle has

no outward edge. As discussed above, a cycle in an ADDG implies that an element of

an array,a say, defined in one statement depends on the other elements ofa defined

by the earlier execution of the same statement. Therefore, the base element(s) of this

array (i.e., the elements ofa which do not depend on the other elements ofa) must be

defined by some other statement,S′ say, in order to break this loop. Thus,S′ creates

an outward edge from the array nodea in the ADDG. Therefore, a cycle in an ADDG

without any outward edge is a sufficient condition for deadlock. However, presence of

an ADDG cycle without any outward edge is not a necessary condition for deadlock.

The following example provides an instance where deadlock occurs in spite of an

outward edge from the ADDG cycle.

6.4 Deadlock detection in a KPN 203

for(i=0; i<=10; i+=1) {

S1: a[i] = FIFO2.get();

S2: FIFO1.put(f 1(a[i]);

S3: c[i] = f 3(a[i]); }

for(i=11; i<=20; i+=1) {

S4: a[i] = in[i];

S5: c[i] = f 3(a[i]); }

process P1

for(i=0; i<=10; i+=1) {

S4: b[i] = FIFO1.get();

S5: FIFO2.put(f 2(b[i]);

S3: d[i] = f 4(b[i]); }

process P2

(a) (b)

FIF02

I

a

f1

FIFO1

I

b

f4

d

f3

f2

c

in

I

f3

S7S1

S2 S3

S4

S6

S8

S5

Figure 6.16: Another KPN of the with circular dependence: (a) Processes of the KPN;

(b) ADDG of the KPN

Example 31 Let us consider the KPN given in6.16(a). This KPN is obtained from

the KPN of figure6.14with following modification. In P1 in figure6.16(a), we addi-

tionally define the elements of the arraya from index 11 to 20 in terms of the elements

of the input arrayin. We then use this elements to define the elements of the arrayc

from index 11 to 20. The rest of the behaviours (of P1 and P2) isexactly the same as

that of in figure6.14. The ADDG of this KPN is depicted in figure6.16(b). The first

half of the behaviour of process P1 is not altered (where the deadlock actually occurs)

by the latter part of P1. Clearly, the deadlock is still there in this modified KPN. 2

It may be recalled from subsection5.2.3 that a cycle, in which the elements of

an array are defined in terms of earlier defined elements of thesame array. In such

a case, we compute the end-to-end mapping of the recurrence involved in the cycle.

This end-to-end mapping is then used to compute the transitive dependencies across

recurrence. Let us now compute the end-to-end mapping of thecycle in the ADDG in

figure6.15(c).

204 Chapter 6 Verification of Parallelizing Transformations

We have the following dependence mappings obtained from each statement of the

KPN in figure6.14(and hence in figure6.15(c)).

S1Ma,FIFO2 = {[i]→ [i] | 0≤ i ≤ 10},

S2MFIFO1,a = {[i]→ [i] | 0≤ i ≤ 10},

S3Mc,a = {[i]→ [i] | 0≤ i ≤ 10},

S4Mb,FIFO1 = {[i]→ [i] | 0≤ i ≤ 10},

S5MFIFO2,b = {[i]→ [i] | 0≤ i ≤ 10} and

S6Md,b = {[i]→ [i] | 0≤ i ≤ 10}.

It may be noted that FIFO pointers are represented as loop iterator i using the

equation6.5. The transitive dependenceS1S5S4S2Ma,a in this cycle can be obtained by

S1S5S4S2Ma,a = S1Ma,FIFO2 ⋄ S5MFIFO2,b ⋄ S4Mb,FIFO1 ⋄ S2MFIFO1,a

= {[i]→ [i] | 0≤ i ≤ 10}.

The transitive closure of this mapping is given by

m= (S1S5S4S2Ma,a)+ = {[i]→ [P] | 0≤ i ≤ 10 ∧ P = {α | 0≤ α≤ i}}.

The domain and range ofmare

d = {[i] | 0≤ i ≤ 10} and

r = {[α] | 0≤ α≤ 10}.

The domain and range of end-to-end mapping are

d′ = (d− r) = /0, the empty set and

r ′ = (r−d) = /0.

The domain and the range of the end-to-end mapping is empty inthis case. As

discussed in example31, the statements involved in the cycle in the ADDG in figure

6.5 Verification of KPN level transformations 205

6.16(b) are identical to those involved in the cycle in figure6.15(a). Therefore, the

domain and the range of the end-to-end mapping of the cycle infigure 6.16(b) can

also shown to be empty. Similarly, it can be shown that even for ADDG cycles without

any outward edge (such as, the case depicted in figure6.15) have empty domains and

ranges for the end-to-end mappings.

The above discussion suggests that if there is a cycle in an ADDG corresponding

to a KPN and the domain and range of the end-to-end mappingMa,a for any arraya

within the cycle is/0, then we can ensure that there is a deadlock in the KPN. We have

shown in subsection6.3.3that our method of composition of the ADDGs correspond-

ing to the processes of a KPN also computes the transitive dependence mappings (and

hence the end-to-end dependence mappings) accross processes during composition it-

self. Therefore, the deadlock due to circular dependenciesamong the processes in a

KPN automatically gets detected during the composition steps.

6.5 Verification of KPN level transformations

In this section, we introduce several transformation techniques commonly used on a

KPN behaviour. The objectives of this study include checking

1. how the ADDG of an initial KPN is changed by these transformations,

2. whether the current mechanism of converting a KPN to an ADDG works on the

transformed KPN and

3. whether our equivalence checking method of ADDGs can verify all these trans-

formations.

6.5.1 Channel merging

More than one channel from a producer process to a consumer process are merged

into a single channel by channel merging transformations. All the data communicated

between two processes through individual channels are now communicated through a

single channel. Channel merging is relevant when a KPN behaviour is to be mapped

206 Chapter 6 Verification of Parallelizing Transformations

on a multiprocessor system where a set of processors communicate through a shared

bus and a shared memory. In such an architecture, communication and synchroniza-

tion may be too costly to permit use of such redundant channels. Therefore, applica-

tion of channel merging transformations reduce the controlinvolved for communicat-

ing data over FIFOs and also reduce the total memory size allocated to the FIFOs in

the case of communication of the same data elements over multiple FIFO channels.

P2P1

FIFO1

FIFO2

P2P1
FIFO3

(b) transformed KPN(a) initial KPN

Figure 6.17: Channel Merging: (a) structure of the original KPN and (b) structure of

transformed KPN

Let FIFO1 andFIFO2 be two FIFOs between the producer processP1 and the

consumer processP2 in the initial KPN. The order in which the data are produced

into FIFO1 andFIFO2 in the producer process may not be the same as the order in

which data are consumed from them by the consumer process. Let us consider, for

example, the KPNs in figure6.17. Let the respective behaviours of the producer and

the consumer process of the initial KPN and the transformed KPN of figure6.17be as

shown in figure6.18(a) and in figure6.18(b), respectively. From figure6.18(a), it may

be noted that in the initial KPN, the producer process produces 100 elements of the

FIFO1 first, the next 100 elements ofFIFO1 and the first 100 elements ofFIFO2 al-

ternately next, and finally, the last 100 elements ofFIFO2. The consumer process, on

the other hand, consumes all 200 elements fromFIFO1 first to compute the elements

of the output arrayout1 and then consumes all 200 elements fromFIFO2 to compute

the elements of the other output arrayout2. Clearly, the relative order of production of

the elements ofFIFO1 andFIFO2 in P1 is not the same as the relative consumption

order from these two FIFOs inP2 in figure6.18(a). In contrast, consider the situa-

tion, as depicted in figure6.17(b), where the FIFOsFIFO1 andFIFO2 are merged

into a single FIFOFIFO3 in the transformed KPN. Obviously, now that there is a

single FIFO, the order of consumption ofFIFO3 elements inP2 should be the same

as the production order into this FIFO. Thus, similar to processP1, the transformed

consumer processP2 now consumes first 100 elements fromFIFO3 to compute the

6.5 Verification of KPN level transformations 207

for(i=0; i<100; i+=1)
S1: FIFO1.put(f 1(a[i+1]));

for(i=0; i<100; i+=1){
S2: FIFO1.put(f 2(a[i]));
S3: FIFO2.put(f 3(b[i+1]));}

for(i=0; i<100; i+=1)
S4: FIFO2.put(f 4(b[i]));

process P1

for(i=0; i<200; i+=1)
T1: out1[i] = f 5(FIFO1.get());

for(i=0; i<200; i+=1)
T2: out2[i] = f 6(FIFO2.get());

Process P2

(a)

for(i=0; i<100; i+=1)
S5: FIFO3.put(f 1(a[i+1]));

for(i=0; i<100; i+=1){
S6: FIFO3.put(f 2(a[i]));
S7: FIFO3.put(f 3(b[i+1])); }

for(i=0; i<100; i+=1)
S8: FIFO3.put(f 4(b[i]));
process P1

for(i=0; i<100; i+=1)
T3: out1[i] = f 5(FIFO3.get());

for(i=0; i<100; i+=1){
T4: out1[i+100] = f 5(FIFO3.get());
T5: out2[i] = f 6(FIFO3.get()); }

for(i=100; i<200; i+=1)
T6: out2[i] = f 6(FIFO3.get());
process P2

(b)

for(i=0; i<200; i+=1)
T7: out1[i] = f 5(FIFO3.get());

for(i=0; i<200; i+=1)
T8: out2[i] = f 6(FIFO3.get());
Process P2

’

(c)

Figure 6.18: Channel Merging: (a) behaviours of the processes in initial KPN with two

processes and two FIFOs; (b) behaviours of the processes after merging two channels;

(c) Erroneous behaviour of processP2

first 100 elements ofout1, then consumes next 200 elements fromFIFO3 to compute

the next 100 elements ofout1 and the first 100 elementsout2 alternately, and finally,

consumes the last 100 elements to compute the next 100 elements of out2. If the

processP2 in the transformed KPN is retained in a form nearest to its behaviour in the

initial KPN as shown in figure6.18(c), then it may be noted that the arraysout1 and

out2 are wrongly assigned. In the following, we explain how the composed ADDG

for the KPN in figure6.18(a) is found to be equivalent to the composed ADDG of the

KPN in figure6.18(b) and not equivalent to that of the KPN comprisingP1 of figure

6.18(b) and P2 of figure6.18(c).

In this example, in figure6.18(a)FIFO1 elements are produced by the statements

S1 andS2, FIFO2 elements byS3 andS4 and in figure6.18(b) FIFO3 elements are

208 Chapter 6 Verification of Parallelizing Transformations

out1 out2

a

FIFO1 FIFO2

(b)(a)

f2f1 f3 f4

b

S2
S3 S4S1

f6f5 f6

T3 T4 T5 T6

FIFO3

a

f3f1 f2 f4

b

S5
S6 S7

S8

f5 f6

out2out1

T7 T8

(c)

f5f5 f6

out2out1

T1 T2

FIFO3

a

f3f1 f2 f4

b

S5
S6 S7

S8

Figure 6.19: Channel Merging: (a) Composed ADDG of the initialKPN; (b) Com-

posed ADDG of the transformed KPN; (c) Composed ADDG of the transformed KPN

whenP2 is as in figure6.18(c)

produced byS5−S8 and consumed byT3−T6. As discussed in subsection6.3.2,

we need to find the starting values of the corresponding FIFO pointers for each loop

in these cases. These values can be obtained directly by the equation6.5 sinceCD is

true. The dependence mappings are given next. We place the expressions (in terms of

loop indexi) of the in-pointers and the out-pointers in the dependence mappings.

The dependence mappings in the processP1 of the initial KPN in figure6.18(a)

are as follows:

S1MFIFO1,a = {[i]→ [i +1] | 0≤ i ≤ 99}, whereFIFO1In = i

S2MFIFO1,a = {[i +100]→ [i] | 0≤ i ≤ 99}, whereFIFO1In = i +100

S3MFIFO2,b = {[i]→ [i +1] | 0≤ i ≤ 99}, whereFIFO2In = i

S4MFIFO2,b = {[i +100]→ [i] | 0≤ i ≤ 99}, whereFIFO2In = i +100.

The dependence mappings in the processP2 of the initial KPN in figure6.18(a)

are as follows:

6.5 Verification of KPN level transformations 209

T1Mout1,FIFO1 = {[i]→ [i] | 0≤ i ≤ 199}, whereFIFO1Out = i

T2Mout2,FIFO2 = {[i]→ [i] | 0≤ i ≤ 199}, whereFIFO2Out = i.

The dependence mappings in the processP1 of the transformed KPN in figure

6.18(b) are as follows:

S5MFIFO3,a = {[i]→ [i +1] | 0≤ i ≤ 99}, whereFIFO3In = i

S6MFIFO3,a = {[2i +100]→ [i] | 0≤ i ≤ 99}, whereFIFO3In = 2i +100

S7MFIFO3,b = {[2i +101]→ [i +1] | 0≤ i ≤ 99}, whereFIFO3In = 2i +101

S8MFIFO3,b = {[i +300]→ [i] | 0≤ i ≤ 99}, whereFIFO3In = i +300

It may be noted that the index expressions for the linear arrays corresponding to

the FIFOs are obtained using the method describe in subsection 6.3.1. The details are

omitted here for clarity in presentation. The dependence mappings in the processP2

of the transformed KPN in figure6.18(b) are as follows:

T3Mout1,FIFO3 = {[i]→ [i] | 0≤ i ≤ 99}, whereFIFO3Out = i

T4Mout1,FIFO3 = {[i +100]→ [2i +100] | 0≤ i ≤ 99}, whereFIFO3Out = 2i +100

T5Mout2,FIFO3 = {[i]→ [2i +101] | 0≤ i ≤ 99}, whereFIFO3Out = 2i +101

T6Mout2,FIFO3 = {[i]→ [i +200] | 100≤ i ≤ 199}, whereFIFO3Out = i +200.

The individual ADDGs ofP1 andP2 of the KPN in figure6.18(a) can be composed

aroundFIFO1 andFIFO2. Similarly, the individual ADDGs ofP1 andP2 of the KPN

in figure6.18(b) can be composed aroundFIFO3. The ADDGs of the initial and the

transformed KPNs are shown in figure6.19.

The transitive dependence mappings in the ADDG in figure6.19(a) are as follows.

T1S1Mout1,a = T1Mout1,FIFO1⋄ S1MFIFO1,a

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[i]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i +1] | 0≤ i ≤ 99}

T1S2Mout1,a = T1Mout1,FIFO1⋄ S2MFIFO1,a

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[i +100]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199}.

T2S3Mout2,b = T2Mout2,FIFO2⋄ S3MFIFO2,b

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[i]→ [i +1] | 0≤ i ≤ 99}.

= {[i]→ [i +1] | 0≤ i ≤ 99}

210 Chapter 6 Verification of Parallelizing Transformations

T2S4Mout2,b = T2Mout2,FIFO2⋄ S4MFIFO2,b

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[i +100]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199}.

The transitive dependence mappings in the ADDG in figure6.19(b) are as follows.

T3S5Mout1,a = T3Mout1,FIFO3⋄ S5MFIFO3,a

= {[i]→ [i] | 0≤ i ≤ 99} ⋄ {[i]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i +1] | 0≤ i ≤ 99}

T4S6Mout1,a = T4Mout1,FIFO3⋄ S6MFIFO3,a

= {[i +100]→ [2i +100] | 0≤ i ≤ 99} ⋄ {[2i +100]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199}

T5S7Mout2,b = T5Mout2,FIFO3⋄ S7MFIFO3,b

= {[i]→ [2i +101] | 0≤ i ≤ 99} ⋄ {[2i +101]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i +1] | 0≤ i ≤ 99}

T6S8Mout2,b = T6Mout2,FIFO3⋄ S8MFIFO3,b

= {[i]→ [i +200] | 100≤ i ≤ 199} ⋄ {[i +300]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199}

The operation⋄ returns empty for other possible sequences of statements inthe

ADDG in figure6.19(b). For example, let us compute the transitive dependence for

the statement sequenceT3S7.

T3S7Mout1,b = T3Mout1,FIFO3⋄ S7MFIFO3,b

= {[i]→ [i] | 0≤ i ≤ 99} ⋄ {[2i +101]→ [i +1] | 0≤ i ≤ 99}

= /0

Clearly, the operation⋄ returns/0 since the range ofFIFO3Out in T3Mout1,FIFO3

and the domain ofFIFO3In in S7MFIFO3,b are not overlapping.

It may be noted that the number of slices remains the same in both the ADDGs.

In particular, there are four slices in each ADDG. Let us designate the slices of figure

6.19(a) asg1i, 1≤ i ≤ 4, and the same of figure6.19(b) asg2i, 1≤ i ≤ 4. Each slice

involves only one dependence mapping from an output array toan input array. The

characteristic formulae of the slicesg1i , 1≤ i ≤ 4, in the ADDG in figure6.19(a) are

τ11 = 〈 f5(f1(a)), 〈 T1S1Mout1,a〉〉,

6.5 Verification of KPN level transformations 211

τ12 = 〈 f5(f2(a)), 〈 T1S2Mout1,a〉〉,

τ13 = 〈 f6(f3(b)), 〈 T2S3Mout2,b〉〉 and

τ14 = 〈 f6(f4(b)), 〈 T2S4Mout2,b〉〉, respectively.

Similarly, the characteristic formulae of the slicesg2i , 1≤ i ≤ 4, in the ADDG in

figure6.19(b) are

τ21 = 〈 f5(f1(a)), 〈 T3S5Mout1,a〉〉,

τ22 = 〈 f5(f2(a)), 〈 T4S6Mout1,a〉〉,

τ23 = 〈 f6(f3(b)), 〈 T5S7Mout2,b〉〉 and

τ24 = 〈 f6(f4(b)), 〈 T6S8Mout2,b〉〉, respectively.

The equivalence between the two the ADDGs can be shown by our method by

showing thatg1i ≡ g2i , 1≤ i ≤ 4.

Let us now consider the erroneous behaviour of processP2 of the transformed KPN

in figure6.18(c). The dependence mappings in this behaviour are as follows:

T7Mout1,FIFO3 = {[i]→ [i] | 0≤ i ≤ 199}

T8Mout2,FIFO3 = {[i]→ [i +200] | 0≤ i ≤ 199}

The composition of the ADDG of processP2 in figure6.18(c) with the ADDG of

processP1 in figure6.18(b) results in the ADDG given in figure6.19(c). We obtain

the following transitive dependence mappings in the ADDG infigure6.19(c):

T7S5Mout1,a = T7Mout1,FIFO3 ⋄ S5MFIFO3,a

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[i]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i +1] | 0≤ i ≤ 99}

T7S6Mout1,a = T7Mout1,FIFO3 ⋄ S6MFIFO3,a

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[2i +100]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199∧∃α ∈ N(i = 2α)}

T7S7Mout1,b = T7Mout1,FIFO3 ⋄ S7MFIFO3,b

= {[i]→ [i] | 0≤ i ≤ 199} ⋄ {[2i +101]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i−100] | 100≤ i ≤ 199∧∃α ∈ N(i = 2α+1)}

T8S6Mout2,a = T8Mout2,FIFO3 ⋄ S6MFIFO3,a

= {[i]→ [i +200] | 0≤ i ≤ 199} ⋄ {[2i +100]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i +200] | 0≤ i ≤ 99∧∃α ∈ N(i = 2α)}

T8S7Mout2,b = T8Mout2,FIFO3 ⋄ S7MFIFO3,b

212 Chapter 6 Verification of Parallelizing Transformations

= {[i]→ [i +200] | 0≤ i ≤ 199} ⋄ {[2i +101]→ [i +1] | 0≤ i ≤ 99}

= {[i]→ [i +200] | 0≤ i ≤ 99∧∃α ∈ N(i = 2α+1)}

T8S8Mout2,b = T8Mout2,FIFO3 ⋄ S8MFIFO3,b

= {[i]→ [i +200] | 0≤ i ≤ 199} ⋄ {[i +300]→ [i] | 0≤ i ≤ 99}

= {[i]→ [i +200] | 100≤ i ≤ 199}

It may be noted that the operation⋄ over the statement sequencesT7S8 andT8S5

returns empty. There are six slices,g2i, 1≤ i ≤ 6, in this ADDG. The respective

characteristic formulae of the slices are

τ21 = 〈 f5(f1(a)), 〈 T7S5Mout1,a〉〉,

τ22 = 〈 f5(f2(a)), 〈 T7S6Mout1,a〉〉,

τ23 = 〈 f5(f3(b)), 〈 T7S7Mout1,b〉〉,

τ24 = 〈 f6(f2(a)), 〈 T8S6Mout2,a〉〉,

τ25 = 〈 f6(f3(b)), 〈 T8S7Mout2,b〉〉 and

τ26 = 〈 f6(f4(b)), 〈 T8S8Mout2,b〉〉.

Our ADDG based equivalence checking between the ADDGs in figures6.19(a)

and 6.19(c) works as follows. The ADDG in figure6.19(a) consists of four slices

τ11, . . . , τ14. Each slice in both the ADDGs form a slice class since each of the

slices in an ADDG have a unique data transformation. Therefore, the ADDG in figure

6.19(a) consists of four slice classes whereas the ADDG in figure6.19(c) consist of six

slice classes. For the slice classτ11, our algorithm findsτ21 as its equivalent slice class.

It may be noted that the slice classτ22 of the ADDG figure6.19(c) has the same data

transformation (i.e.,f5(f2(a))) asτ12 however the dependence mappingsT7S6Mout1,a

andT1S6Mout1,a are not the same. Therefore, for the slice classτ12, the algorithm fails

to find any equivalent slice class in the ADDG in figure6.19(c). Hence, our algorithm

reports that the ADDGs in figure6.19(a) and in figure6.19(c) are not equivalent.

We have shown here that our ADDG construction mechanism fromKPN works

when channel merging transformation is applied. Also, our ADDG based equivalence

checking method is able to find the non-equivalence if the data dependence is violated.

6.5 Verification of KPN level transformations 213

6.5.2 Channel splitting

The channel splitting transformation breaks a channel between two processes in a

KPN into more than one channel so that the data communicated through the original

channel are now distributed over the split channels. The data parallelism over the

processes are increased due to this transformation. Such transformation is relevant

when parallel communication through multiple channels of parts of the data which are

actually communicated serially through a single channel reduce the execution time

of the KPN behaviour. Let us consider the KPNs in figure6.20 where the channel

FIFO1 of the initial KPN is split into the channelsFIFO2 andFIFO3. The detailed

behaviours of the KPNs are given in figure6.21. In the initial KPN, all the 2000

elements are communicated sequentially throughFIFO1, the first 1000 elements of

which are stored in arrayt1 and the next 1000 elements are stored in arrayt2. The

elements of arrayst1 andt2 are then used to define the elements of the output array

out. In contrast, in the transformed KPN, the elements corresponding to the arrayst1

andt2 are communicated in parallel through channelsFIFO2 andFIFO3. As a result,

the processP2 can compute theith element of the arrayout when theith elements of

the channelsFIFO2 andFIFO3 are available. Clearly, the execution time of the

transformed KPN would be less than that of the initial KPN.

P2
P1

FIFO2

FIFO3

P2
P1

(a) initial KPN (b) transformed KPN

FIFO1

Figure 6.20: Channel Splitting: (a) initial KPN; (b) the transformed KPN

The ADDGs of the initial and the transformed KPN of figure6.21are shown in

figure6.22. In the following, we show that data input-output dependencies remain the

same by checking equivalence of the ADDGs in figure6.22.

The dependence mappings in the processP1 of the initial KPN in figure6.21(a)

are as follows:

S1MFIFO1,a = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO1In = i

S2Mb,a = {[i]→ [i] | 0≤ i ≤ 999}

214 Chapter 6 Verification of Parallelizing Transformations

for(i=0; i<1000; i+=1)
S1: FIFO1.put(f 1(a[i]));
S2: b[i] = f 2(a[i]);

for(i=0; i<1000; i+=1)
S3: FIFO1.put(f 3(b[i]));

process P1

for(i=0; i<1000; i+=1)
S4: t1[i] = FIFO1.get();

for(i=0; i<1000; i+=1)
S5: t2[i] = FIFO1.get();

for(i=0; i<1000; i+=1)
S6: out[i] = f 4(t1[i], t2[i]);

process P2

(a)

for(i=0; i<1000; i+=1)
S7: FIFO2.put(f 1(a[i]));
S8: b[i] = f 2(a[i]);
S9: FIFO3.put(f 3(b[i]));

process P1

for(i=0; i<1000; i+=1)
S10: out[i] = f 4(FIFO2.get(),

FIFO3.get());
process P2

(b)

Figure 6.21: Channel Splitting: (a) A KPN with two processes and one channels; (b)

The KPN after splitting the channel into two

S3MFIFO1,b = {[i +1000]→ [i] | 0≤ i ≤ 999}, whereFIFO1In = i +1000

The transitive dependence from FIFO1 toa in this process can be computed as

follows:

S3S2MFIFO1,a = S3MFIFO1,b⋄ S2Mb,a = {[i +1000]→ [i] | 0≤ i ≤ 999}

The dependence mappings in the processP2 of the initial KPN in figure6.21(a)

are as follows:

S4Mt1,FIFO1 = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO1Out = i

S5Mt2,FIFO1 = {[i]→ [i +1000] | 0≤ i ≤ 999}, whereFIFO1Out = i +1000

S6Mout,t1 = {[i]→ [i] | 0≤ i ≤ 999}

S6Mout,t2 = {[i]→ [i] | 0≤ i ≤ 999}

The transitive dependence mappings fromout to FIFO1 in this process can be

obtained as follows:

S6S4Mout,FIFO1 = S6Mout,t1⋄ S4Mt1,FIFO1 = {[i]→ [i] | 0≤ i ≤ 999}

S6S5Mout,FIFO1 = S6Mout,t2⋄ S5Mt2,FIFO1 = {[i]→ [i +1000] | 0≤ i ≤ 999}

6.5 Verification of KPN level transformations 215

(a)

b

f1

II

f4

t2

S1

t1

a

S2

S3

S4

f2

FIFO1

f3

S6

S5

(b)

b

f1

FIFO2 FIFO3

f4

out

a

f2

f3

S8

S7 S9

S10

out

ADDG of P1

ADDG of P2

ADDG of P1

ADDG of P2

Figure 6.22: Channel Splitting: (a) Composed ADDG of the inputKPN; (b) Com-

posed ADDG of the transformed KPN

For figure6.21(b), the dependence mappings in the processP1 of the transformed

KPN are as follows:

S7MFIFO2,a = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO2In = i

S8Mb,a = {[i]→ [i] | 0≤ i ≤ 999}

S9MFIFO3,b = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO3In = i

The transitive dependence fromFIFO3 toa can be obtained as follows:

S9S8MFIFO3,a = {[i]→ [i] | 0≤ i ≤ 999}

In figure6.21(b), the dependence mappings in the processP2 of the transformed

KPN are as follows:

216 Chapter 6 Verification of Parallelizing Transformations

S10Mout,FIFO2 = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO2Out = i

S10Mout,FIFO3 = {[i]→ [i] | 0≤ i ≤ 999}, whereFIFO3Out = i

The individual ADDGs ofP1 andP2 of the KPN in figure6.21(a) can be composed

aroundFIFO1. Similarly, the individual ADDGs ofP1 andP2 of the KPN in figure

6.21(b) can be composed aroundFIFO2 andFIFO3. The ADDGs of the initial and

the transformed KPNs are shown in figure6.22.

The output arrayout to the input arraya dependence mappings in the ADDG in

figure6.22(a) are as follows:

S6S4S1Mout,a = S6S4Mout,FIFO1⋄ S1MFIFO1,a

= {[i]→ [i] | 0≤ i ≤ 999} ⋄ {[i]→ [i] | 0≤ i ≤ 999}

= {[i]→ [i] | 0≤ i ≤ 999}

S6S5S3S2Mout,a = S6S5Mout,FIFO1⋄ S3S2MFIFO1,a

= {[i]→ [i +1000] | 0≤ i ≤ 999} ⋄ {[i +1000]→ [i] | 0≤ i ≤ 999}

= {[i]→ [i] | 0≤ i ≤ 999}

It may be noted that the operation⋄ returns empty for statement sequencesS6S5S1

andS6S4S3S2. Following transitive dependence computations elaborate this fact:

S6S4S3S2Mout,a = S6S4Mout,FIFO1 ⋄ S3S2MFIFO1,a

= {[i]→ [i] | 0≤ i ≤ 999} ⋄ {[i +1000]→ [i] | 0≤ i ≤ 999}

= /0

S6S5S1Mout,a = S6S5Mout,FIFO1 ⋄ S1MFIFO1,a

= {[i]→ [i +1000] | 0≤ i ≤ 999} ⋄ {[i]→ [i] | 0≤ i ≤ 999}

= /0

The output arrayout to the input arraya dependence mappings in the ADDG in

figure6.22(b) are as follows.

S10S7Mout,a = S10Mout,FIFO2⋄ S7MFIFO2,a

= {[i]→ [i] | 0≤ i ≤ 999} ⋄ {[i]→ [i] | 0≤ i ≤ 999}

= {[i]→ [i] | 0≤ i ≤ 999}

S10S9S8Mout,a = S10Mout,FIFO3⋄ S9S8MFIFO3,b

= {[i]→ [i] | 0≤ i ≤ 999} ⋄ {[i]→ [i] | 0≤ i ≤ 999}

6.5 Verification of KPN level transformations 217

= {[i]→ [i] | 0≤ i ≤ 999}.

There is one slice in each of the ADDGs. The characteristic formula of the slice

in figure6.22(a) isτ1 = 〈 f4(f1(a), f3(f2(a))), 〈 S6S4S1Mout,a, S6S5S3S2Mout,a〉〉. It may

be noted that both the mappings are from the arrayout to the arraya. Therefore,

we need to put them in a proper order so that equivalence between the mappings with

corresponding slice can be established. The simplificationrules for normalized depen-

dence mappings presented in subsection5.4.2helps us to achieve that. The character-

istic formula of the slice in figure6.22(b) is τ2 = 〈 f4(f1(a), f3(f2(a))), 〈 S10S7Mout,a,

S10S9S8Mout,a〉〉. Our ADDG based equivalence checking method shows thatτ1≡ τ2.

The channel merging transformation is usually used in combination with process

splitting transformation which will be discussed in the next subsection.

6.5.3 Process splitting

An arbitrary process of a KPN behaviour can be split into a number of autonomously

running processes by applying process splitting transformation. Process splitting

transformation increases the parallelism in the KPN (Turjan, 2007). It also helps dis-

tribute the workload of a single process over multiple processes to better balance the

network which results in improvement in the total executiontime of the KPN (Meijer

et al., 2009). Let us consider the KPNs, for example, in figure6.23where the KPN

in figure6.23(b) is obtained from the KPN in figure6.23(a) by splitting its processP2

into processesP2a andP2b. The behaviours of the processes are given in figure6.24. It

may be noted that the processP2 of the initial KPN is computation intensive compared

to the processP1 sinceP1 has 100 iterations of the loop to execute whereasP2 has 5000

iterations to execute. The processP2 is split into processesP2a andP2b such that the

even iterations of the outer loop iterator (i.e.,i) are now executed in processP2a and

the odd iterations of the outer loop iterator (i.e.,i) are now executed in processP2b.

The corresponding transformed KPN has now two processes in place ofP2 computing

the outputout resulting in a more balanced network. More importantly, processesP2a

andP2b are executed in parallel in the transformed KPN. In most of the cases, splitting

a process causes splitting of its associated channels. The FIFO FIFO1 in the KPN in

figure6.23(a), for example, is also split intoFIFO2 andFIFO3 along with process

P2 in the transformed KPN.

218 Chapter 6 Verification of Parallelizing Transformations

FIFO1

P2
P1

(a) initial KPN

P1

P2a

P2b

(b) transformed KPN

FIFO3

FIFO2

Figure 6.23: Process Splitting: (a) initial KPN; (b) transformed KPN after process

splitting

The process splitting transformation has the following twoeffects in a KPN be-

haviour: (i) Iteration domain of a statement is partitioned into sub-domains and the

sub-domains in the partition are placed in the processes obtained after splitting, and

(ii) Two data dependent statements are placed in two different processes obtained af-

ter splitting. In the following, we elaborate these two cases, highlight the verification

goals for them and then show that those verification goals canbe achieved using our

ADDG based equivalence checking method.

Case (i): In course of process splitting transformations, the iteration domains of

some statements are partitioned into sub-domains which areplaced in the processes

obtained after splitting. In this case, the statement in question occurs (in duplication)

in each of the processes obtained after splitting. Since, the iteration domain of the

original statement is partitioned over many processes, we need to ensure that the iter-

ation domain of the original statement is equal to the union of the iteration domains

of its instances in the split processes. The example in figure6.24reflects this situa-

tion. Here, the iteration domains of the statementsS2, S3 andS4 of the processP2

are partitioned into two sub-domains and are placed in the processesP2a andP2b such

that the even iterations of the outer loop iterator (i.e.,i) of the processP2 are executed

in the processP2a and the odd iterations of the same are executed in the processP2b.

Specifically, the statementsS7 andS10 of the transformed consumer processesP2a

andP2b, respectively, are the two instances ofS2 of the original consumer processP2.

Similarly, S8 andS11 (of P2a andP2b, respectively) are the two instances of the state-

mentS3 of P2 andS9 andS12 (of P2a andP2b, respectively) are the two instances of

S4 in P2. Let us now discuss how the equivalence of these two KPNs are established

by our method.

6.5 Verification of KPN level transformations 219

for(i=0; i<100; i+=1)
S1: FIFO1.put(f 1(a[i]));

process P1

for(i=0; i<100; i+=1){
S2: t[i] = FIFO1.get();
for(j=0; j<50; j+=1){

if(i < 25)
S3: out[i][j] = f 2(t[i]);

else
S4: out[i][j] = f 3(t[i]);

}}
process P2

(a)

for(i=0; i<100; i+=1){
if(i%2==0)

S5: FIFO2.put(f 1(a[i]));
else

S6: FIFO3.put(f 1(a[i])); }
process P1

for(i=0; i<100; i+=2){
S7: t1[i] = FIFO2.get();
for(j=0; j<50; j+=1){

if(i < 25)
S8: out[i][j] = f 2(t1[i]);

else
S9: out[i][j] = f 3(t1[i]);

}}
process P2a

for(i=1; i<100; i+=2){
S10: t2[i] = FIFO3.get();
for(j=0; j<50; j+=1){

if(i < 25)
S11: out[i][j] = f 2(t2[i]);

else
S12: out[i][j] = f 3(t2[i]);

}}
process P2b

(b)

Figure 6.24: Process Splitting: (a) A KPN with two processesand one channel; (b)

The KPN after splitting the processP2 into two processesP2a andP2b

The dependence mapping in the processP1 of the initial KPN in figure6.24(a) is

as follows:

S1MFIFO1,a = {[i]→ [i] | 0≤ i ≤ 99}.

In figure 6.24(a), the dependence mappings in the processP2 of the initial KPN

are as follows:

S3S2Mout,FIFO1 = {[i][j]→ [i] | 0≤ i ≤ 24∧0≤ j ≤ 49}

S4S2Mout,FIFO1 = {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49}

In figure6.24(b), the dependence mappings in the processP1 of the transformed

KPN are as follows:

220 Chapter 6 Verification of Parallelizing Transformations

f3f2

(a)

out

f2 f2

out

(b)

f3f3

FIFO1

a

f1

S1

S3
S4

I

t2

f1f1

FIFO2

a

FIFO3

S5

I

t1

S6

S7

S9

S10

S11

S12
S8

I

S2

t

Figure 6.25: Process Splitting: (a) ADDG of the input KPN and(b) ADDG of the

transformed KPN

S5MFIFO2,a = {[i]→ [i] | 0≤ i ≤ 99∧ i%2== 0}

S6MFIFO3,a = {[i]→ [i] | 0≤ i ≤ 99∧ i%2 6= 0}

In figure6.24(b), the dependence mappings in the processP2a of the transformed

KPN are as follows:

S8S7Mout,FIFO2 = {[i][j]→ [i] | 0≤ i ≤ 24∧0≤ j ≤ 49∧∃α ∈ N(i = 2α)}

S9S7Mout,FIFO2 = {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49∧∃α ∈ N(i = 2α)}

In figure6.24(b), the dependence mappings in the processP2b of the transformed

KPN are as follows:

S11S10Mout,FIFO3 = {[i][j]→ [i] | 1≤ i ≤ 24∧0≤ j ≤ 49∧∃α ∈ N(i = 2α+1)}

S12S10Mout,FIFO3 = {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49∧∃α ∈ N(i = 2α+1)}

6.5 Verification of KPN level transformations 221

The individual ADDGs ofP1 andP2 of the KPN in figure6.24(a) can be composed

aroundFIFO1. The individual ADDGs ofP1 andP2a of the KPN in figure6.24(b)

can be composed aroundFIFO2. Similarly, the ADDGs ofP1 andP2b of the KPN

in figure6.24(b) can be composed aroundFIFO3. The ADDGs of the initial and the

transformed KPNs are shown in figure6.25.

The output to input dependence mappings in the ADDG in figure6.25(a) are as

follows.

S3S2S1Mout,a = S3S2Mout,FIFO1⋄ S1MFIFO1,a

= {[i][j]→ [i] | 0≤ i ≤ 24∧0≤ j ≤ 49}

S4S2S1Mout,a = S4S2Mout,FIFO1⋄ S1MFIFO1,a

= {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49}

The output to input dependence mappings in the ADDG in figure6.25(b) are as

follows.

S8S7S5Mout,a = S8S7Mout,FIFO2⋄ S5MFIFO2,a

= {[i][j]→ [i] | 0≤ i ≤ 24∧0≤ j ≤ 49∧∃α ∈ N(i = 2α)}

S9S7S5Mout,a = S9S7Mout,FIFO2⋄ S5MFIFO2,a

= {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49∧∃α ∈ N(i = 2α)}

S11S10S6Mout,a = S11S10Mout,FIFO3⋄ S6MFIFO3,a

= {[i][j]→ [i] | 1≤ i ≤ 24∧0≤ j ≤ 49∧∃α ∈ N(i = 2α+1)}

S12S10S6Mout,a = S9S7Mout,FIFO2⋄ S5MFIFO2,a

= {[i][j]→ [i] | 25≤ i ≤ 99∧0≤ j ≤ 49∧∃α ∈ N(i = 2α+1)}.

There are two slices,g11 andg12 in the ADDG in figure6.25(a). Their respective

characteristic formula of the slices areτ11 = 〈 f2(f1(a)), 〈 S3S2S1Mout,a〉〉 andτ12 =

〈 f3(f1(a)), 〈 S4S2S1Mout,a〉〉. There are four slicesg2i , 1≤ i ≤ 4, in the ADDG in figure

6.25(b). Their respective characteristic formula of the slicesare τ21 = 〈 f2(f1(a)),

〈 S8S7S5Mout,a〉〉, τ22 = 〈 f3(f1(a)), 〈 S9S7S5Mout,a〉〉, τ23 = 〈 f2(f1(a)), 〈 S11S10S6Mout,a〉〉

andτ24 = 〈 f3(f1(a)), 〈 S12S10S6Mout,a〉〉. The data transformation of slicesτ21 andτ23

are the same. Hence they form a slice class, sayg21. The characteristic formula ofg21

is τg21 = 〈 f2(f1(a)), 〈 g21Mout,a〉〉, whereg21Mout,a = S8S7S5Mout,a ∪ S11S10S6Mout,a. So,

our algorithm establishes thatτg21 ≡ τ11. Similarly, the slicesτ22 andτ24 form a slice

class,g22 say, which is shown to be the equivalent ofτ12 by our method. Therefore,

the two ADDGs in figure6.25are equivalent.

222 Chapter 6 Verification of Parallelizing Transformations

(a) KPN after process splitting

P2

FIFO2

P1a

P1b

FIFO3
FIFO4

for(i=0; i<1000; i+=1){
S7′: FIFO2.put(f 1(a[i]));
S8′: FIFO4.put(f 2(a[i]));}

process P1a

for(i=0; i<1000; i+=1)
S9′: FIFO3.put(f 2(FIFO4.get()));

process P1b

for(i=0; i<1000; i+=1)
S10′: out[i] = f 3(FIFO2.get(), FIFO3.get());

process P2

(b) behaviours of the processes

Figure 6.26: The KPN after splitting processP1 of KPN in figure6.21; (b) into two

processP1a andP1b

Case (ii):Two data dependent statements (of an original process),SandS′, say, the

latter having dependence on the former, are placed in two different processes obtained

after splitting. In this case, therefore, a FIFO is to be added from the process that

containsS to the process containingS′ after splitting.

Let us consider the KPN in figure6.21(b). The processP1 of this KPN is split into

two processP1a andP1b. The structure of the KPN after splitting is shown in figure

6.26(a) and the behaviours of the processes are shown in figure6.26(b). Here, the

statements corresponding toS7 andS8 of the processP1 of KPN in figure6.21(b) are

placed in the processP1a of the transformed KPN in figure6.26(b) and the statement

corresponding toS9 of the processP1 is placed in the processP1b. It may be noted

that the statementS9 is dependent on the statementS8 sinceS8 computes the elements

of the arrayb which are used inS9. Therefore, a channelFIFO4 is added between

processesP1a andP1b to communicate these elements.

The ADDG of the KPN in figure6.26would be the same as the ADDG (in figure

6.22(b)) of its initial KPN with the array nodeb replaced byFIFO4. So, the number

of slices of the original ADDGs remains the same in the transformed ADDG in this

case. Only the computation of transitive dependence fromout to a for the statement

sequenceS10′S9′S8′ would be different from the ADDG in figure6.22(b). Similarly,

when two data independent statements are placed in two different processes obtained

after splitting, no FIFO is required between those processes. So, the ADDGs of the

6.5 Verification of KPN level transformations 223

initial and the transformed KPNs would be identical. Therefore, the number of slices

of the ADDG obtained by composition of the ADDGs of the processes after splitting

would be the same as the number of slices of the ADDG of the original KPN process

in both the cases. Our equivalence checking method is able toshow equivalence in

such case.

6.5.4 Process merging

The process merging transformation reduces the number of processes in a KPN by

serializing some processes in a single compound process. This transformation may

be applied when (i) the number of processes is larger than thenumber of processing

elements, or ii) the network is not well balanced and therefore the same overall per-

formance can be achieved using less resources (Meijer et al., 2010b). To illustrate the

second case, let three be parallel processesP1,P2 andP3 say, in a KPN. LetP1 be a

computation intensive process and takes much higher time tocomplete its execution

compared toP2 andP3. In this case, even if the parallelism decreases in the KPN

due to merging of two less computation intensive processesP2 and p3, the overall

execution time may not differ due to the computation intensive processP1. However,

FIFO communication cost among less computation intensive processes is eliminated

by merging them. A process merging example is given in figure6.27. Here, the pro-

cessesP2 andP3 of the initial KPN are merged into a single process. The detailed

behaviours of the processes are shown in figure6.28.

P1

P2

P3

P4

FIFO2 FIFO4

FIFO3FIFO1

(a) initial KPN

FIFO2

P2a
P1 P4

FIFO4

FIFO1 FIFO3

(b) transformed KPN

Figure 6.27: Process Merging: (a) the initial KPN; (b) the transformed KPN

The composed ADDGs of the initial and the transformed KPNs infigure 6.28

are shown in figures6.29(a) and6.29(b), respectively. Even though the number of

processes decreases by process merging transformation, the number of FIFO channels

and the number of statements remain the same in both the KPNs.Therefore, the

ADDGs of both the KPNs have exactly identical structure in this case.

224 Chapter 6 Verification of Parallelizing Transformations

for(i=0; i<100; i+=1){
if(i%2 == 0)

S1: FIFO1.put(f 1(a[i]));
S2: FIFO2.put(f 2(a[i])); }

process P1

for(i=0; i<50; i+=1)
S3: FIFO3.put(f 3(FIFO1.get()));

process P2

for(i=0; i<100; i+=1)
S4: FIFO4.put(f 4(FIFO2.get()));

process P3

for(i=0; i<100; i+=2){
S5: out[i] = f 5(FIFO3.get());
S6: out[i+1] = f 5(FIFO4.get()); }

for(i=100; i<150; i+=1)
S7: out[i] = f 5(FIFO4.get());

process P4

(a)

for(i=0; i<100; i+=1){
if(i%2 == 0)

S3′: FIFO3.put(f 3(FIFO1.get()));
S4′: FIFO4.put(f 4(FIFO2.get()));}

process P2a

(b)

Figure 6.28: Process Merging: A KPN with four processes and four channels; (b) The

KPN comprisingP1, P2a andP4 obtained after merging two processesP2 andP3 (into

P2a)

The individual loop bodies of the merged process may again becombined into

a single loop body. This may reduce the overall execution time of the transformed

KPN since the number of iterations of the loops of the merged process is decreased

by loop merging. An erroneous loop merging, however, may alter the cardinalities of

the iteration domains of some of the statements which, in turn, results in (i) deadlock

in the KPN or (ii) some of the output elements remain undefined. For both cases,

therefore, it is required to ensure that the iteration domains of the statements of the

transformed process are not altered by process merging.

In figure6.28, for example, the loop bodies of processP2 andP3 are merged into

a single loop body in the merged processP2a. In case theif statement is missed out

in the processP2a by mistake, the cardinality of the iteration domain of the statement

S3′ (i.e., |IS3′|) would contain 100 elements in processesP2a whereas|IS3| for S3 in the

original processP2 contains 50 elements causing a deadlock in the transformed KPN.

The deadlock in the KPN can be identified by our method given insection6.4.

Let us consider another erroneous situation where the statement S4′ is placed

6.5 Verification of KPN level transformations 225

(b)(a) (c)

a

f1 f2

FIFO1

f3

FIFO3

f5

out

S12

S10

S9
S8

f4

S11

S5

FIFO4FIFO3

a

f1 f2

f5

FIFO1 FIFO2

f4f3

f5f5

out

S1 S2

S6 S7

S3 S4

S5

FIFO4FIFO3

a

f1 f2

f5

FIFO1 FIFO2

f4f3

f5f5

out

S1 S2

S6 S7

S3′ S4′

Figure 6.29: Process Merging: (a) ADDG of the input KPN; (b) ADDG of the trans-

formed KPN; (c) ADDG of the KPN in figure6.30

within the scope ofif statement in the processP2a. In this case,|IS4′| = 50 whereas

|IS4| = 100. If an output array is defined in the statementS4′ (instead of communi-

cating data toFIFO4), then 50 elements of that output array remain undefined in the

transformed KPN. This kind of errors can be identified by our ADDG based equiva-

lence checking method as follows: the domains of the transitive dependencies from

that output array to the input arrays includes only those elements which are defined.

Consequently, our method finds a sliceg1 starting from that output array in the ADDG

of the original KPN for which there would exist a sliceg2 in the ADDG of the trans-

formed KPN such that the domains of dependence mappings ing2 are the subset of

the domains of the dependence mappings ing1. Therefore, our method can show the

non-equivalence for the incorrect cases of process mergingtransformations.

Merging processes sometimes create scope of applying channel merging. The

channelsFIFO1 andFIFO2 and also the channelsFIFO3 andFIFO4 in figure

6.28(b), for example, can be merged. The transformed KPN after merging channels

FIFO1 andFIFO2 intoFIFO2 and channelsFIFO3 andFIFO4 intoFIFO3 of the

226 Chapter 6 Verification of Parallelizing Transformations

for(i=0; i<100; i+=1){
if(i%2 == 0){

S8: FIFO1.put(f 1(a[i]));}
S9: FIFO1.put(f 2(a[i])); }

process P1

for(i=0; i<100; i+=1){
if(i%2 == 0){

S10: FIFO3.put(f 3(FIFO1.get()));}
S11: FIFO3.put(f 4(FIFO1.get()));}

process P2

for(i=0; i<150; i+=1)
S12: out[i] = f 5(FIFO3.get());

process P4

Figure 6.30: KPN after merging channels FIFO1 and FIFO2 intoFIFO2 and channels

FIFO3 and FIFO4 into FIFO3

KPN of figure6.28(b) is shown in figure6.30. The ADDG of this KPN is shown in

figure6.29(c). Working of our method for channel merging transformations has been

discussed in subsection6.5.1. It can be shown that our method can establish the equiv-

alence for this case also. The details of the working of our method for this example

are omitted for brevity of presentation.

6.5.5 Message vectorization

This transformation vectorizes (or buffers) the messages communicated between two

processes, thereby reducing the number of inter process communications (Fei et al.,

2007). The number of messages reduces significantly by this transformation. This

transformation is effective as long as the energy overheadsof buffering do not out-

weigh the gains of reducing the number of messages communicated. Let us consider,

for example, the KPNs in figure6.31. There are 100 messages (each of size 1) sent

from P1 to P2 through channelFIFO1. In the transformed KPN of figure6.31(b), ob-

tained by applying message vectorization to this KPN, in theprocessP1, the messages

are first vectorized or buffered with vector size 10. They arethen transmitted through

FIFO1 to processP2 in a burst. Let us assume thatputline(M,k) andgetline(k) be

the version ofput andget, respectively, that captures the communication of messages

of sizek. Specifically,F.putline(M,k) indicates thatk elements starting from location

6.5 Verification of KPN level transformations 227

M are put into the FIFOF . Similarly, M = F.getline(k) indicates thatk elements are

obtained from the FIFOF into the location starting from M. The number of messages

in the transformed KPN is, therefore, 10 (each of size 10). The number of messages

are reduced by this transformation. Therefore, it is required to ensure that the total

volume of messages passed between the two processes remainsthe same as in the

original KPN.

for(i=0; i<10; i+=1)
for(j=0; j<10; j+=1)

S1: FIFO1.put(f 1(a[i][j]));
process P1

for(i=0; i<10; i+=1)
for(j=0; j<10; j+=1)

S2: out[i][j]= f 2(FIFO1.get());
process P2

(a)

for(i=0; i<10; i+=1){
for(j=0; j<10; j++)

S3: line[i][j] = f 1(a[i][j]);
S4: FIFO1.putline(line[i], 10);

//whole line }
process P1

for(i=0; i<10; i+=1){
S5: tmp[i] = FIFO1.getline(10);

//get a row into tmp
for(j=0; j<10; j++)

S6: out[i][j] = f 2(tmp[i][j]);}
process P2

(b)

Figure 6.31: Message Vectorization: (a) initial KPN with two processes and one chan-

nel; (b) The KPN when message is sent as a vector of 10 elements

for(i=0, f1In=-1; i<10; i+=1){
for(j=0; j<10; j++)

S3: line[i][j] = f 1(a[i][j]);
for(k=0; k<10; k++) //in place of S4: FIFO1.putline(line[i], 10);

S7: FIFO1[++f1In] = line[i][k]; }
process P1

for(i=0, f1Out=-1; i<10; i+=1){
for(k=0; k<10; k++) //in place of S5: tmp[i] = FIFO1.getline(10);

S8: tmp[i][k] = FIFO1[++f1Out];
for(j=0; j<10; j++)

S6: out[i][j] = f 2(tmp[i][j]);}
process P2

Figure 6.32: Message de-vectorization: Modified behaviourof the KPN in figure

6.31(b)

For theput andget primitives the message size is one. Therefore, the in-pointer

and the out-pointer of the linear array corresponding to a FIFO are increased by one

228 Chapter 6 Verification of Parallelizing Transformations

f1

out

FIFO1

f2

a

S2

S1

(a)

(b)

a

tmp

f1

I

I

f2

out

FIFO1

line

S3

S7

S8

S6

Figure 6.33: Message de-vectorization: (a) ADDG of the input KPN; (b) ADDG of

the transformed KPN

for these primitives, respectively. The current ADDG construction mechanism can

be enhanced for thegetlineandputlineprimitives as follows to handle message vec-

torization. Theputline (getline) primitive is de-vectorized by replacing it by a loop

body withk iterations each involving put (get) primitive of one element to (from) the

linear array. The modified behaviours of the processes of theKPN in figure6.31(b),

for example, is given in figure6.32. With this modification, our method can handle

message vectorization. In the following, we show the details of the working of our

method for the example given in6.31.

The dependence mapping in the processP1 of the initial KPN in figure6.31(a) is

as follows:

S1MFIFO1,a = {[10∗ i + j]→ [i][j] | 0≤ i ≤ 9 ∧ 0≤ j ≤ 9}.

The dependence mapping in the processP2 of the initial KPN in figure6.31(a) is

as follows:

6.5 Verification of KPN level transformations 229

S2Mout,FIFO1 = {[i][j]→ [10∗ i + j] | 0≤ i ≤ 9 ∧ 0≤ j ≤ 9}.

Since the relation betweenFIFO1In (FIFO1Out) and the loop indices(i, j) are

linear and there is additional condition here, the relationcan be obtained by the equa-

tion 6.5. The ADDG given in figure6.33(a) of the KPN in figure6.31(a) can be

obtained by composing the ADDGs ofP1 andP2 aroundFIFO1. Therefore, the de-

pendence betweenout anda in the ADDG in figure6.33(a) is

S2S1Mout,a = S2Mout,FIFO1⋄ S1MFIFO1,a

= {[i][j]→ [i][j] | 0≤ i ≤ 9 ∧ 0≤ j ≤ 9}.

The dependence mappings in the processP1 of the transformed KPN in figure

6.32which is semantically equivalent to the transformed KPN of figure6.31(b) are as

follows:

S3Mline,a = {[i][j]→ [i][j] | 0≤ i ≤ 9∧0≤ j ≤ 9}

S7MFIFO1,line = {[10∗ i +k]→ [i][k] | 0≤ i ≤ 9∧0≤ k≤ 9}

FIFO1In is 10∗ i +k in S7MFIFO1,line. Again, this relation can be obtained by the

equation6.5.

The transitive dependence betweenFIFO1 anda can be obtained by

S7S3MFIFO1,a = S7MFIFO1,line⋄ S3Mline,a

= {[10∗ i + j]→ [i][j] | 0≤ i ≤ 9∧0≤ j ≤ 9}.

The dependence mappings in the processP2 of the transformed KPN in figure6.32

are as follows:

S8Mtmp,FIFO1 = {[i][k]→ [10∗ i +k] | 0≤ i ≤ 9∧0≤ k≤ 9}

S6Mout,tmp = {[i][j]→ [i][j] | 0≤ i ≤ 9∧0≤ j ≤ 9}

The transitive dependence betweenout andFIFO1 can be obtained by

S6S8Mout,FIFO1 = S6Mout,tmp⋄ S8Mtmp,FIFO1

= {[i][j]→ [10∗ i + j] | 0≤ i ≤ 9∧0≤ j ≤ 9}

The ADDG of the KPN in figure6.32 is depicted in figure6.33(b) which is ob-

tained by composing the ADDGs ofP1 andP2 aroundFIFO1. Therefore, the depen-

230 Chapter 6 Verification of Parallelizing Transformations

dence betweenout anda in the ADDG in figure6.33(b) is

S6S8S7S3Mout,a = S6S8Mout,FIFO1⋄ S7S3MFIFO1,a

= {[i][j]→ [i][j] | 0≤ i ≤ 9∧0≤ j ≤ 9}.

Each of the ADDGs consists of one slice. The characteristic formula of the slice,

g1 say, of the ADDG in figure6.33(a) isτg1 = 〈 f2(f1(a)),〈 S2S1Mout,a〉〉. The charac-

teristic formula of the slice,g2 say, of the ADDG in figure6.33(b) isτg2 = 〈 f2(f1(a)),

〈 S6S8S7S3Mout,a〉〉. Omega calculator used in our method can established the equiva-

lence ofS6S8S7S3Mout,a andS2S1Mout,a. Hence, our method shows thatg1≡ g2.

6.5.6 Computation migration

This transformation relocates computations from one process to another so that the

overheads of synchronization and interprocess communication get reduced (Fei et al.,

2007). The number of processes remains the same under this transformation. How-

ever, the number of communication channels between processes may change. Some

of the channels of the original process are removed and some new channels are added

to the KPN. The primary motivation of this transformation isto reduce the number of

channels or the total volume of communication over all the channels.

Let us consider the KPNs in figure6.34. The initial KPN consists of three pro-

cesses and four FIFO channels. Each rectangular box within aprocess defines an

array. In figure6.34(a), the FIFOFIFO1 from the arraya of the processP1 to the

arrayc of the processP2 indicates that the elements ofa is defined in processP1,

then is communicated throughFIFO1 to the processP2 and then is used to define the

elements of the arrayc. All such edges between processes in the KPNs in figure6.34

have similar meaning. In figure6.34(b) where botha andc reside in the processP1,

the directed edge froma to c simply indicates that the elements of the arraya are used

to define the elements of the arrayc. All such edges with the processes in the KPNs in

figure6.34are interpreted likewise. In short, the directed edges capture the define-use

relation between the arrays. The transformed behaviour after computation migration

is shown in figure6.34(b). It may be noted that the computation defining the arrayc is

migrated from processP2 to processP1. As a result, the FIFOsFIFO1 andFIFO3

are not required and hence removed. A new FIFOFIFO5, however, is to be added

6.5 Verification of KPN level transformations 231

(a) initial KPN

a c e

f

P1 P2 P3

FIFO1

FIFO3

FIFO4

FIFO2

in1 in2

db

(b) KPN after computation migration

a

f

d

P1 P3 P2

FIFO4

FIFO5

in2in1

c

e

b

FIFO2

Figure 6.34: Computation Migration: (a) the structure of theinitial KPN; (b) the

structure of the KPN after computation migrations

between processP1 andP3. The detailed behaviours of the processes of these two

KPNs are given in figure6.35.

The ADDG of the initial and the transformed KPNs of figure6.35obtained by our

method are depicted in figure6.36. Both the ADDGs in figure6.36have three slices.

They areg11(b,〈in1, in2〉), g12(d,〈in1, in2〉) andg13(f ,〈in1, in2〉) in the ADDG in fig-

ure6.36(a) andg21(b,〈in1, in2〉), g22(d,〈in1, in2〉) andg23(f ,〈in1, in2〉) in the ADDG

in figure6.36(b). Since some FIFOs are removed and some new FIFOs are introduced

in the transformed KPN by computation migration transformation, the computation of

the transitive dependencies from the output arrays to the inputs arrays would be dif-

ferent in the ADDGs. Our ADDG based method establishes the equivalence between

the ADDGs as follows.

The characteristic formulas of the slices in ADDG in figure6.36(a) are

τg11 = 〈 f2(f3(f1(in1), f5(in2))),〈 S3S6S4S2S1Mb,in1, S3S6S4S9S8Mb,in2〉〉,

232 Chapter 6 Verification of Parallelizing Transformations

for(i=0; i<100; i+=1){
S1: a[i] = f 1(in1[i]);
S2: FIFO1.put(a[i]);
S3: b[i] = f 2(FIFO3.get()); }

process P1

for(i=0; i<100; i+=1){
S4: c[i] = f 3(FIFO1.get(),

FIFO2.get());
S5: d[i] = f 4(c[i]);
S6: FIFO3.put(c[i]);
S7: FIFO4.put(c[i]); }

process P2

for(i=0; i<100; i+=1){
S8: e[i] = f 5(in2[i]);
S9: FIFO2.put(e[i]);
S10: f[i] = f 6(FIFO4.get()); }

process P3

(a)

for(i=0; i<100; i+=1){
S1: a[i] = f 1(in1[i]);
S4: c[i] = f 3(a[i], FIFO2.get());
S3: b[i] = f 2(c[i]);
S11: FIFO4.put(c[i]);
S12: FIFO5.put(c[i]); }

process P1

for(i=0; i<100; i+=1){
S5: d[i] = f 4(FIFO5.get()); }

process P2

for(i=0; i<100; i+=1){
S8: e[i] = f 5(in2[i]);
S9: FIFO2.put(e[i]);
S10: f[i] = f 6(FIFO4.get()); }

process P3

(b)

Figure 6.35: Computation Migration: (a) A KPN with three processes and four chan-

nels; (b) The KPN after migration of computationf3 from process P2 to P1

τg12 = 〈 f4(f3(f1(in1), f5(in2))),〈 S5S4S2S1Mb,in1, S5S4S9S8Mb,in2〉〉 and

τg13 = 〈 f6(f3(f1(in1), f5(in2))),〈 S10S7S4S2S1Mb,in1, S10S7S4S9S8Mb,in2〉〉, where all the

mappings are of the form{[i]−> [i] | 0≤ i ≤ 99}. The details of computation of the

dependence mappings of the slices are intuitive and hence, are not shown explicitly.

The characteristic formulas of the slices in ADDG in figure6.36(b) are

τg21 = 〈 f2(f3(f1(in1), f5(in2))),〈 S3S4S1Mb,in1, S3S4S9S8Mb,in2〉〉,

τg22 = 〈 f4(f3(f1(in1), f5(in2))),〈 S5S12S4S1Mb,in1, S5S12S4S9S8Mb,in2〉〉 and

τg23 = 〈 f6(f3(f1(in1), f5(in2))),〈 S10S11S4S1Mb,in1, S10S11S4S9S8Mb,in2〉〉, where all the

mappings are of the form{[i]−> [i] | 0≤ i ≤ 99}. The details of computation of the

dependence mappings are not shown explicitly for the same reason. Clearly,g1k ≡

g2k, 1≤ k≤ 4. Hence, the two ADDGs are equivalent.

6.6 Experimental results 233

in1

f5

c

I

S4

S10

in2

f1

a e

I

FIFO2

f3

FIFO4

f6

f

S11

I

FIFO5

S12

b

f2 f4

d

S3 S5

S9

S8S1

in1

f5

c

I

d

S1

S2

in2

f1

a e

II

FIFO1 FIFO2

f3

I

FIFO3 FIFO4

f6f4f2

b f

S8

S9

S7

S10S5S3

S6

S4

(b)(a)

Figure 6.36: Computation Migration: (a) ADDG of the initial KPN; (b) ADDG of the

transformed KPN

6.6 Experimental results

The methodology described in this note has been implementedand run on a 2.0 GHz

Intel R©CoreTM2 Duo machine. We have integrated the SMT solver Yices (Yices, 2010)

in our tool to find the relation betweenf In (f Out) and the loop indices. For obtaining

the dependence mappings of the slices, our tool relies on theOmega calculator (Kelly

et al., 2008). The method has been tested on the sequential behaviours ofexample

21 (PRG), the Sobel edge detection (SOB), Daubechies 4-coefficient wavelet filter

(WAVE) and Laplace algorithm for edge enhancement of northerly directional edges

(LAP). The KPNs are generated from the sequential behaviours using the method

given in (Turjan, 2007). The number of processes and FIFOs in the KPN, the numbers

of arrays, slices and slice classes in the sequential behaviours and its corresponding

234 Chapter 6 Verification of Parallelizing Transformations

KPN array slice slice class Exec

Benchmark process fifo seq kpn seq kpn seq kpn (sec)

PRG 4 4 6 10 2 6 2 2 03.49

SOB 5 14 4 18 1 1 1 1 11.30

WAVE 5 16 2 18 4 4 2 2 09.22

LAP 2 9 2 11 1 1 1 1 06.17

Table 6.1: Results for sequential to KPN transformation

KPN behaviours and the execution times are tabulated for each of the test cases in

table6.1. In all the cases, our method was able to establish the equivalence in less

than twelve seconds.

processes FIFOs slices time

Benchmark src trans src trans src trans (sec)

Channel merging 2 2 2 1 4 8 0.601

Channel splitting 2 2 1 2 2 1 0.398

Process splitting 2 3 1 2 2 4 0.367

Process merging 4 3 4 4 3 3 0.500

Computation migration 3 3 4 3 3 3 1.204

Table 6.2: Results for KPN level transformations

To test the KPN level transformations, we consider examplesprovided in this

chapter. The number of processes, the number of FIFOs, the number of slices and

the execution time of our method are tabulated in table6.2. We could not run the ex-

ample of message vectorization since the present implementation of our method does

not support message de-vectorization. For all other cases,our method succeeds in

establishing the equivalence in less than two seconds.

6.7 Conclusion

This chapter presents an equivalence checking method for verification of sequential

to parallel KPN code transformations often used in multimedia and signal processing

6.7 Conclusion 235

applications. The problem is suitably mapped to the equivalence problem of ADDGs.

The FIFO communication among the KPN processes has necessitated non-trivial en-

hancement of the basic ADDG construction method from sequential programs. The

individual KPN processes are sequential; application of the basic ADDG construc-

tion mechanism on each of them, however, necessitates that FIFO communication be

properly captured. The method visualizes the FIFOs as linear arrays, each with two

pointers, one for the consumer and the other for the producer. Significant process-

ing is needed to obtain the relationship of these pointers with the loop iterators; the

association can be non-linear even for simple cases. The method then composes the

individual ADDGs into a single ADDG around the FIFOs. It has formally established

that as long as the association of the FIFO pointers with loopiterators are linear and

there is no deadlock, the composed ADDG captures the dependencies across all KPN

processes. It has, however, been identified that while deadlocks due to circular de-

pendencies among the processes get accounted for automatically in the composition

process, the deadlock due to insufficient communication of data eludes the mecha-

nism; an enhancement is presented to take case of such cases.The effectiveness of the

mechanism for verification of various optimizing transformations on KPN behaviours

are also presented. The experimental results on several test cases demonstrate the

effectiveness of our method.

Chapter 7

Conclusion and Future Scopes

The formal verification of embedded systems is an emerging area of research requiring

several verification problems, with different objectives,to be addressed. Verification

of behavioural transformations that are applied during embedded system design is one

of the major problems from the gamut of embedded system verification problems. We

have addressed following six such behavioural transformation verification problems

in this thesis:

1. Verification of code motion techniques

2. Verification of RTL generation phase in high-level synthesis

3. Verification of RTL transformations

4. Verification of loop and arithmetic transformations of array intensive behaviours

5. Verification of sequential to KPN code transformations

6. Verification of KPN level transformations.

In this chapter, we first summarize the contributions of thisthesis. We then discuss

some directions of future research.

237

238 Chapter 7 Conclusion and Future Scopes

7.1 Summary of contributions

Verification of code motion transformations:An equivalence checking method for

checking correctness of both uniform and non-uniform code motion techniques is

presented in Chapter3. Both the input and the output behaviours are represented as

FSMDs. Our method introduces cutpoints in one FSMD, visualizes its computations

as concatenation of paths from cutpoints to cutpoints, and then identifies equivalent

finite path segments in the other FSMD; the process is then repeated with the FS-

MDs interchanged. A path is extended when its equivalent path cannot be found in

the other FSMD. However, a path cannot be extended beyond loop boundaries. It is

shown that blind path extension does not work for non-uniform cases of code mo-

tions. We have underlined that for non-uniform code motions, identifying equivalent

path segments is effectively handled by model checking of some data-flow related

properties. Specifically, if the property‘always defined before being used’is true for

a variablev at the end state of a path, then the value ofv at that state can be ignored

for checking equivalence of the rest of the behaviour since that particular value ofv

has no further use. Accordingly, a path will be extended onlywhen its equivalent

path cannot be found due to mismatch of value of a variablev in the other FSMD and

the property‘always defined before being used’is false forv at the end state of the

path. The property is encoded as the CTL formula E[(¬dv) U uv] and the FSMD is

suitably converted to an equivalent Kripke structure. Our method automatically identi-

fies situations where such properties need to be checked during equivalence checking,

generates the appropriate properties and invokes the modelchecking tool NuSMV to

verify them. The method also applies normalization of arithmetic expressions over in-

teger and some simplification rules to handle arithmetic transformations. The method

has been proved to be sound and always terminating. The complexity of the method is

exponential in the worst case and polynomial in the best caseon the number of states

in the FSMDs. We have implemented our method and have tested on the results of the

scheduling steps of the HLS tool SPARK which applies a wide range of code motion

techniques during the scheduling process. It is shown through experimentation that

our method is capable of handling code motions applied by SPARK and the worst

case time complexity situation is usually not encountered for the practical cases of

equivalence checking.

7.1 Summary of contributions 239

Verification of RTL generation phase in high-level synthesis: A verification frame-

work for the RTL generation phase of high-level synthesis ispresented in Chapter

4. The input of this phase is a scheduled behaviour and the output is an RTL design

which consists of a description of the datapath netlist and acontroller FSM. The input

behaviour can be modelled as an FSMD. In this work, we developa method to repre-

sent the RTL designs generated through high level synthesisas FSMDs. The method

is strong enough to handle pipelined and multicycle operations, if any, spanning over

several states. The goal is achieved in two steps. In the firststep, the datapath in-

terconnection and the controller FSM description of the RTLdesign generated by a

high-level synthesis procedure are analyzed to obtain the register transfer (RT) oper-

ations executed in the datapath for a given control assertion pattern in each control

step. In the second step, the FSMD based equivalence checking method developed for

the previous problem is deployed to establish equivalence between the input and the

output behaviours of this phase. For a multicycle operation, our method automatically

checks in the first step (i) whether the controller generatesproper control signals so

that the data are held constant on the FU inputs over all the control steps it takes to ex-

ecute that operation and (ii) the registers feeding the inputs to the FU are not updated

(by any other operations) during execution of the multicycle operation. For ak-stage

pipelined operation scheduled in theith time step, our method automatically checks

whether the datapath from the source registers to the FU inputs are set at theith time

step and the datapath from the output of the FU to the destination register is set at the

(i + k− 1)th time step by the controller. An FSMD is abstracted out from the RTL

design by performing the above tasks for each state of the controller FSM. We have

shown that several inconsistencies both in the datapath andin the controller can be

detected during construction of the FSMD from the RTL. It hasbeen shown that the

application of normalization techniques to represent arithmetic expressions over inte-

gers during equivalence checking of FSMDs helps us handle algebraic transformation

techniques based on commutativity, associativity and distributivity of arithmetic oper-

ations that are often used during datapath synthesis to improve interconnection cost.

The FSMD construction mechanism is proven to be sound and complete. The com-

plexity of the construction method is shown to be polynomialin terms of the datapath

and controller sizes. The method is implemented and integrated with an existing HLS

tool, called SAST. Experimental results supporting this scheme are provided.

240 Chapter 7 Conclusion and Future Scopes

Verification of RTL transformations:A verification framework for RTL transfor-

mations are also presented in Chapter4. Specifically, we analyze commonly applied

low power RTL transformation techniques such as, restructuring multiplexer networks

(to enhance data correlations and eliminate glitchy control signals), clocking control

signals, and inserting selective rising/falling delays, etc., and show that the number of

control signals and the datapath interconnections may change due to these transforma-

tions. We then show that our rewriting mechanism by which theconcurrent register

transfer operations are identified can handle these transformations.

Verification of loop and arithmetic transformations of array intensive behaviours:

In Chapter5, we propose a formal verification method for checking correctness of

loop transformations and arithmetic transformations applied on the array and loop

intensive behaviours in design of area/energy efficient systems in the domain of mul-

timedia and signal processing applications. Loop transformations hinge more on data

dependence and index space of the arrays than on the control flow of the behaviour.

Hence, array data dependence graphs (ADDGs), proposed by Shashidhar (Shashidhar,

2008), are used for representing array intensive behaviours. They proposed an ADDG

based equivalence checking method to validate the loop transformations. Possible en-

hancements of his method to handle associative and commutative transformations are

also discussed in (Shashidhar, 2008; Shashidhar et al., 2005a). In this work, we re-

define the equivalence of ADDGs based on a slice level characterization of ADDGs

to verify loop transformations along with a wide range of arithmetic transformations.

Specifically, we introduce the notion of data transformation of a slice. A slice is char-

acterized based on the data transformation and the dependence mappings involved in

the slice. Arithmetic transformation of expressions can involve arrays; in such sit-

uations, the ordering of terms in the normalized expressionneeds to be carried out

using the order of the normalized dependence mappings of theseveral occurrences of

the arrays in the terms. Accordingly, a normalization method is proposed for integer

arithmetic expressions involving array references which uniformly represents both the

data transformation and the dependence mappings of a slice.We also propose some

simplification rules of normalized expressions to handle arithmetic transformations.

The equivalence checking method proposed in this work relies on this normalization

technique and the simplification rules to handle arithmetictransformations over ar-

rays. Correctness and complexity of the method have been dealt with. Experimental

results supporting this scheme are provided.

7.1 Summary of contributions 241

Verification of sequential to parallel code transformations: A formal verification

method for checking correctness of sequential to KPN transformations is presented in

Chapter6. The idea is to model both the initial sequential behaviour and the output

KPN behaviour as ADDGs and then apply our ADDG based equivalence checker to

establish the equivalence. We describe a method to represent a KPN behaviour com-

prising inherently parallel processes as an ADDG. The basicsteps involved in mod-

elling a KPN as an ADDG are as follows: (i) each process of the KPN is first modelled

as an ADDG and (ii) the ADDGs corresponding to the processes are then composed

to obtain the ADDG of the KPN. In the first step, each FIFO channel in a process of a

KPN is first replaced by a linear array associated with two indices, one each for han-

dling the primitive operationsgetandput on FIFO. In order to encode these modified

sequential behaviours (corresponding to the processes) byADDGs, we need to iden-

tify the dependence mappings of the FIFO pointers with the indices of the loop where

a FIFO is used/defined. The ADDGs of two processes are composed when they are

communicated through a FIFO. To compute the dependence mappings across a FIFO,

we use thefirst-if-first-out property of FIFO. The correctness of the ADDG compo-

sition step is proven for a deadlock free KPN. The presence ofdeadlock, however,

is found to impair the correctness of composition. Two kindsof deadlock situations

have been identified, one of which is accounted for during composition whereas the

other needs extra processing step which has been incorporated. Experimental results

supporting this scheme are provided.

Verification of parallel code transformations:We have also addressed the problem

of verifying KPN level transformations in Chapter6. We model both the input and

the transformed KPNs as ADDGs and apply our ADDG based equivalence method

for establishing the equivalence between the two KPNs. Specifically, we consider

commonly applied KPN transformations such as, channel merging, channel splitting,

process merging, process splitting, message vectorization and computation migration,

etc. and show that the number of FIFOs and the number of processes in a KPN, the

level of parallelism in the KPN and the communication order in the FIFO may be

modified due to these transformations. We then show how thesetransformations can

be verified in our verification framework. Experimental results supporting this scheme

are provided.

242 Chapter 7 Conclusion and Future Scopes

7.2 Scope for future work

The methods developed in this work can be enhanced to overcome their limitations.

Also, there is scope of application of the developed methodsin other verification prob-

lems. In the following, we discuss both aspects of future works.

7.2.1 Enhancement of the present work

Verification of code motion across loop boundaries:The inherent limitation of our

path extension based equivalence of FSMDs is that a path cannot be extended beyond

loop boundaries as that is prevented by the definition of a path cover. As a result,

the method fails when code segment is moved beyond a loop boundary. In situations

where code segments are moved completely across loops, our method results in a

number of extensions of paths before being failing encountering a loop barrier. One

solution can be to propagate the mismatched variable valuesto all the subsequent

path segments. One immediate objective can be consolidating this approach of value

propagation to enhance our equivalence checking method to remedy the aforesaid

limitation of our path extension based method.

Combining ADDG and FSMD based methods:The FSMD based equivalence

checking method is developed with the intention of verification of code motion tech-

niques and control structure modification transformationsprimarily in control inten-

sive behaviours. The ADDG based equivalence checking method, on the other hand, is

developed to verify loop and arithmetic transformations ofdata intensive behaviours.

However, this model does not support data dependent conditions. Interestingly, the

FSMD based modelling supports data dependent conditions but it does not support

most of the loop transformations. A combination of the powerof these two models,

therefore, appears to be promising to realize a more powerful equivalence checker.

7.2.2 Scope of application to other research areas

Evolving programs:Software is not written entirely from scratch. In general, asoft-

ware is gradually evolved over time. In industrial softwaredevelopment projects,

7.2 Scope for future work 243

this complexity of software evolution is explicitly managed via check-in of program

versions. Validation of such evolving programs remains a huge problem in terms of

software development (Qi et al., 2009). An interesting study would be to check the

applicability of the formal methods developed in this work to establish equivalence of

evolving programs.

Automatic code generation:Automatic code generation is an enabling technology

for model based software development and has significant potential to improve the

entire software development process. While model based automatic code generation

tools exist, they do not offer any verification guarantees for the generated code. When

embedded software is employed in safety-critical applications such as, automobiles,

autonomous medical devices, etc., the need of high assurance is obvious. The appli-

cation of formal method into verification of code generationprocess is an interesting

research challenge which introduces rigor into the code generation step. Testing based

approaches for verifying auto-code generators exist (Majumdar and Xu, 2007; Sam-

path et al., 2008). Therefore, identifying the scope of applications of the equivalence

checking methods developed in this work in verification of code generation process

can have a significant impact on reliability of control software.

Automatic program evaluation:All large educational institutions or universities

across the world, specifically in India, have a very large cohorts of students where the

intake of undergraduates is around 1000 (Mandal et al., 2007). As a part of their cur-

riculum, the students need to attend laboratories and each student has to submit about

9 to 12 assignments and up to 3 laboratory based tests. That amounts to nearly 15,000

submissions per semester. Due to increase in number of seatsin the government in-

stitutions, the situation will become ever worse. Without automation, the instructor

would be busy most of the time in testing and grading work at the expense of time

that could be spent interacting with students. A formal automatic evaluation system

would add a significant value to the education system. The evaluation tool assists

instructors by automatically evaluating, marking, and providing critical feedback for

programming assignments. It would be an interesting study to check how our FSMD

based equivalence checking method whereupon each student program is analyzed with

respect to a model program can be enhanced for these purposes.

Application to architecture mapping:The processes of the KPN are finally mapped

to processors and the FIFO channels are mapped to local or shared memory. Several

244 Chapter 7 Conclusion and Future Scopes

properties, such as “system will never reach a deadlock” or “the system will satisfy all

the real time timing constraints”, etc., need to be verified for which model checking

may be a better choice for this phase compared to equivalencechecking. However, the

final systems may be viewed as globally asynchronous locallysynchronous (GALS)

systems on which the application tasks are performed in the spatial domain and com-

munication among the component modules is achieved by message passing. So, it is

possible to construct an abstract model of the overall system and then show the equiv-

alence with the KPN behavioural model. This task is a nontrivial one and the scope of

equivalence checking in this phase is worth examining.

7.3 Conclusion

Embedded system design flow comprises various phases where each phase performs

some specific tasks algorithmically providing for ingenious intervention of experts.

The gap between the original behavior and the finally synthesized circuit is too wide to

be analyzed by any monolithic reasoning mechanism. The validation tasks, therefore,

must be planned to go hand in hand with each phase of the designflow. This thesis

addressed verification of certain behavioural transformation phases in the embedded

system design flow. We believe integrating these methods with embedded system

design tools will increase the dependability of embedded systems.

Bio-data

Chandan Karfa was born in Shyamsundar, Burdwan, West Bengal on 9th of May,

1982. He received the B.Tech. degree in Information Technology from University

Science Instrumentation Center of University of Kalyani in 2004 and the M.S. (by

research) degree in Computer Science and Engineering from Indian Institute of Tech-

nology, Kharagpur in 2007. He has worked as a Junior Project Assistance (JPA) in

sponsored project from July 2004 to February 2007 and as a Research Consultant from

March 2007 to August 2008 in the VLSI Consortium project undertaken by the Ad-

vanced VLSI Design Laboratory, IIT Kharagpur. His current research interests include

formal verification, electronic design automation and embedded system verification.

He has published twelve research papers in different reputed IEEE/ACM international

journals and conferences. He has received Innovative Student Projects Award from In-

dian National Academy of Engineers in 2008, Best Student Paper Award in ADCOM

conference in 2007, Microsoft Research India PhD Fellowshipin 2008 and First prize

in EDA contest in VLSI Design conference in 2009.

245

List of Publications / Communications

out of this work

1. C. Karfa , C. Mandal, D. Sarkar;Formal Verification of Code Motion Techniques using

Data-flow Driven Equivalence Checking; ACM Transactions on Design Automation of

Electronic Systems (TODAES). (under revision)

2. C. Karfa , D. Sarkar, C. Mandal;Verification of Datapath and Controller Generation

Phase in High-level Synthesis of Digital Circuits; IEEE Transactions on COMPUTER-

AIDED DESIGN of Integrated Circuits and Systems (TCAD); page 479-492, Vol. 29,

No. 3, March, 2010.

3. C. Karfa , D. Sarkar, C. Mandal;An Equivalence Checking Method for Scheduling Ver-

ification in High-level Synthesis; IEEE Transactions on COMPUTER-AIDED DESIGN

of Integrated Circuits and Systems (TCAD); page 556-569, Vol 27, No.3, March, 2008.

4. C. Karfa , D. Sarkar, C. Mandal;Verification of Register Transfer Level Low Power

Transformations; IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2011;

page 313-314, July 4-6, Chennai, India, 2011.

5. C. Karfa , K. Banerjee, D. Sarkar, C. Mandal; Equivalence Checking of Array-Intensive

Programs; IEEE Computer Society Annual Symposium on VLSI (ISVLSI);page 156-

161, July 4-6, Chennai, India, 2011.

6. C. Karfa , D. Sarkar, C. Mandal;Data-flow Driven Equivalence Checking for Verifica-

tion of Code Motion Techniques; IEEE Computer Society Annual Symposium on VLSI

(ISVLSI) 2010; page 428-433, July 5-7, Lixouri Kefalonia, Greece, 2010.

247

Bibliography

Aho, A. V., Sethi, R. and Ullman, J. D. (1987). COMPILERS Principles, Techniques

and Tools, Addison-Wesley Publishing Company.

Ahuja, S., Zhang, W., Lakshminarayana, A. and Shukla, S. K. (2010). A Methodol-

ogy for Power Aware High-Level Synthesis of Co-processors from Software Algo-

rithms, in Proc. of the VLSID ’10, pp. 282–287, ISBN 978-0-7695-3928-7.

Ashar, P., Bhattacharya, S., Raghunathan, A. and Mukaiyama, A. (1998). Verification

of RTL generated from scheduled behavior in a high-level synthesis flow, in Proc. of

the 1998 IEEE/ACM international conference on Computer-aided design, ICCAD

’98, pp. 517–524, ACM, ISBN 1-58113-008-2.

Bacon, D. F., Graham, S. L. and Sharp, O. J. (1994). Compiler transformations for

high-performance computing, ACM Comput. Surv., vol. 26, pp. 345–420.

Barrett, C. W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A. and Zuck, L. D. (2005).

TVOC: A Translation Validator for Optimizing Compilers, in CAV, pp. 291–295.

Bergamaschi, R. A., Lobo, D. and Kuehlmann, A. (1992). Control optimization in

high-level synthesis using behavioral don’t cares, in Proc. of the DAC, pp. 657–

661, ISBN 0-89791-516-X.

Bharath, N., Nandy, S. and Bussa, N. (2005). Artificial Deadlock Detection in Process

Networks for ECLIPSE, in IEEE International Conference on Application-Specific

Systems, Architecture Processors 2005, pp. 22–27, ISBN 0-7695-2407-9.

Borrione, D., Dushina, J. and Pierre, L. (2000). A compositional model for the func-

tional verification of high-level synthesis results, IEEE Transactions on VLSI Sys-

tems, vol. 8, no. 5, pp. 526–530.

249

250 BIBLIOGRAPHY

Bouchebaba, Y., Girodias, B., Nicolescu, G., Aboulhamid, E. M., Lavigueur, B. and

Paulin, P. (2007). MPSoC memory optimization using programtransformation,

ACM Trans. Des. Autom. Electron. Syst., vol. 12, no. 4, pp. 43:1–43:39.

Brandolese, C., Fornaciari, W., Salice, F. and Sciuto, D. (2004). Analysis and Model-

ing of Energy Reducing Source Code Transformations, in Proc. of the conference

on Design, automation and test in Europe, DATE ’04, pp. 306–311, IEEE Computer

Society, Washington, DC, USA, ISBN 0-7695-2085-5.

Buck, J. T. (1993). Scheduling Dynamic Dataflow Graphs with Bounded Memory

Using the Token Flow Model, Ph.D. thesis, University of California, EECS Dept.,

Berkeley, CA.

Camposano, R. (1991). Path-Based Scheduling for Synthesis, IEEE transactions on

computer-Aided Design of Integrated Circuits and Systems, vol. Vol 10 No 1, pp.

85–93.

Carpenter, P. M., Ramirez, A. and Ayguade, E. (2010). Buffer sizing for self-timed

stream programs on heterogeneous distributed memory multiprocessors, in 5th In-

ternational Conference on High Performance Embedded Architectures and Compil-

ers, HiPEAC 2010, pp. 96–110, Springer.

Castrillon, J., Velasquez, R., Stulova, A., Sheng, W., Ceng, J., Leupers, R., Ascheid,

G. and Meyr, H. (2010). Trace-based KPN composability analysis for mapping si-

multaneous applications to MPSoC platforms, in Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’10, pp. 753–758, European

Design and Automation Association, 3001 Leuven, Belgium, Belgium, ISBN 978-

3-9810801-6-2.

Catthoor, F., D., E. and Greff, S. S. (1998). HICSS. Custom Memory Management

Methodology:Exploration of Memory Organisation for Embedded Multimedia Sys-

tem Design, Kluwer Academic Publishers.

Ceng, J., Castrillon, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., Meyr,

H., Isshiki, T. and Kunieda, H. (2008). MAPS: an integrated framework for MPSoC

application parallelization, in Proceedings of the 45th annual Design Automation

Conference, DAC ’08, pp. 754–759, ACM, New York, NY, USA, ISBN 978-1-

60558-115-6.

BIBLIOGRAPHY 251

Chandrakasan, A., Potkonjak, M., Mehra, R., Rabaey, J. and Brodersen, R. (1995a).

Optimizing power using transformations, IEEE Transactions on CAD of ICS,

vol. 14, no. 1, pp. 12 –31.

Chandrakasan, A., Sheng, S. and Brodersen, R. (1992). Low-power CMOS digital

design, IEEE Journal of Solid-State Circuits, vol. 27, no. 4,pp. 473 –484.

Chandrakasan, A. P., Potkonjak, M., Mehra, R., Rabaey, J. and Brodersen, R. W.

(1995b). Optimizing Power Using Transformations, IEEE Transactions on CAD of

ICS, vol. 14, no. 1, pp. 12–31.

Chen, G., Kandemir, M. and Li, F. (2006a). Energy-aware computation duplication

for improving reliability in embedded chip multiprocessors, in ASP-DAC ’06: Pro-

ceedings of the 2006 conference on Asia South Pacific design automation, pp. 134–

139, IEEE Press, Piscataway, NJ, USA, ISBN 0-7803-9451-8.

Chen, X., Hsieh, H. and Balarin, F. (2006b). Verification approach of metropolis de-

sign framework for embedded systems, Int. J. Parallel Program., vol. 34, pp. 3–27.

Chen, X., Hsieh, H., Balarin, F. and Watanabe, Y. (2003). Formal Verification for

Embedded System Designs, Design Automation for Embedded Systems, vol. 8, pp.

139–153.

Cheung, E., Chen, X., Hsieh, H., Davare, A., Sangiovanni-Vincentelli, A. and Watan-

abe, Y. (2009). Runtime deadlock analysis for system level design, Design Automa-

tion for Embedded Systems, vol. 13, pp. 287–310.

Cheung, E., Hsieh, H. and Balarin, F. (2007). Automatic buffersizing for rate-

constrained KPN applications on multiprocessor system-on-chip, in Proceedings of

the 2007 IEEE International High Level Design Validation and Test Workshop, pp.

37–44, IEEE Computer Society, Washington, DC, USA, ISBN 978-1-4244-1480-2.

Chiang, T.-H. and Dung, L.-R. (2007). Verification method of dataflow algorithms in

high-level synthesis, J. Syst. Softw., vol. 80, no. 8, pp. 1256–1270.

Cimatti, A., Clarke, E. M., Giunchiglia, F. and Roveri, M. (2000). NuSMV: A New

Symbolic Model Checker, International Journal on Software Tools for Technology

Transfer, vol. 2, no. 4, pp. 410–425.

Clarke, E. M., Grumberg, O. and Peled, D. A. (2002). Model Checking, The MIT

Press.

252 BIBLIOGRAPHY

Cockx, J., Denolf, K., Vanhoof, B. and Stahl, R. (2007). SPRINT: atool to gener-

ate concurrent transaction-level models from sequential code, EURASIP J. Appl.

Signal Process., vol. 2007, no. 1, pp. 1–15.

Cordone, R., Ferrandi, F., Santambrogio, M. D., Palermo, G. and Sciuto, D. (2006).

Using speculative computation and parallelizing techniques to improve scheduling

of control based designs, in Proceedings of the 2006 Asia andSouth Pacific Design

Automation Conference, ASP-DAC ’06, pp. 898–904, IEEE Press, Piscataway, NJ,

USA, ISBN 0-7803-9451-8.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001).Introduction to

Algorithms, The MIT Press, Cambridge , Massachusetts London, England.

Davare, A., Zhu, Q. and Sangiovanni-Vincentelli, A. (2006). A Platform-based Design

Flow for Kahn Process Networks, Tech. Rep. 2006-30, UC Berkeley.

de Kock, E. A. (2002). Multiprocessor mapping of process networks: a JPEG decod-

ing case study, in ISSS ’02: Proceedings of the 15th international symposium on

System Synthesis, pp. 68–73, ISBN 1-58113-576-9.

Dos Santos, L. C. V., Heijligers, M. J. M., Van Eijk, C. A. J., VanEijnhoven, J. and

Jess, J. A. G. (2000). A code-motion pruning technique for global scheduling, ACM

Trans. Des. Autom. Electron. Syst., vol. 5, no. 1, pp. 1–38.

Dos. Santos, L. C. V. and Jress, J. (1999). A reordering technique for efficient code

motion, in Procs. of the 36th ACM/IEEE Design Automation Conference, DAC

’99, pp. 296–299, ACM, New York, NY, USA, ISBN 1-58113-109-7.

E. Özer, A. P. N. and Gregg, D. (2003). Classification of Compiler Optimizations

for High Performance, Small Area and Low Power in FPGAs, Tech. rep., Trinity

College, Dublin, Ireland, Department of Computer Science.

Eveking, H., Hinrichsen, H. and Ritter, G. (1999). Automaticverification of schedul-

ing results in high-level synthesis, in Proceedings of the conference on Design, au-

tomation and test in Europe, DATE ’99, pp. 260–265, ACM, New York, NY, USA,

ISBN 1-58113-121-6.

Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M. and Rauch, F.(2007). Model Check-

ing Software at Compile Time, in Proceedings of the First Joint IEEE/IFIP Sympo-

BIBLIOGRAPHY 253

sium on Theoretical Aspects of Software Engineering, pp. 45–56, IEEE Computer

Society, Washington, DC, USA, ISBN 0-7695-2856-2.

Fehnker, A., Huuck, R., Schlich, B. and Tapp, M. (2009). Automatic Bug Detec-

tion in Microcontroller Software by Static Program Analysis, in Proceedings of the

35th Conference on Current Trends in Theory and Practice of Computer Science,

SOFSEM ’09, pp. 267–278, Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-540-

95890-1.

Fei, Y., Ravi, S., Raghunathan, A. and Jha, N. K. (2007). Energy-optimizing source

code transformations for operating system-driven embedded software, Trans. on

Embedded Computing Sys., vol. 7, no. 1, pp. 1–26.

Ferrandi, F., Fossati, L., Lattuada, M., Palermo, G., Sciuto, D. and Tumeo, A. (2007).

Automatic Parallelization of Sequential Specifications for Symmetric MPSoCs,

IFIP International Federation for Information Processing, vol. 231, no. 2, pp. 179–

192.

Fisher, J. (1981). Trace Scheduling: A Technique for GlobalMicrocode Compaction,

IEEE Transactions on Computers, vol. C-30, no. 7, pp. 478 –490.

Floyd, R. W. (1967). Assigning Meaning to programs, in Schwartz, J. T. (Ed.), Pro-

ceedings the 19th Symposium on Applied Mathematics, pp. 19–32, American Math-

ematical Society, Providence, R.I., mathematical Aspects of Computer Science.

Fraboulet, A., Kodary, K. and Mignotte, A. (2001). Loop fusion for memory space

optimization, in ISSS ’01: Proceedings of the 14th international symposium on

Systems synthesis, pp. 95–100, ISBN 1-58113-418-5.

Freisleben, B. and Kielmann, T. (1995). Automated Transformation of Sequential

Divide-and-Conquer Algorithms into Parallel Programs, Computers and Artificial

Intelligence, vol. 14, pp. 579–596.

Fujita, M. (2005). Equivalence checking between behavioral and RTL descriptions

with virtual controllers and datapaths, ACM Trans. Des. Autom. Electron. Syst.,

vol. 10, no. 4, pp. 610–626.

Gajski, D. D., Dutt, N. D., Wu, A. C. and Lin, S. Y. (1992). High-Level Synthesis:

Introduction to Chip and System Design, Kluwer Academic Publishers.

254 BIBLIOGRAPHY

Geilen, M. and Basten, T. (2003). Requirements on the execution of Kahn process net-

works, in Proceedings of the 12th European conference on Programming, ESOP’03,

pp. 319–334, Springer-Verlag, Berlin, Heidelberg, ISBN 3-540-00886-1.

Gesellensetter, L., Glesner, S. and Salecker, E. (2008). Formal verification with Is-

abelle/HOL in practice: finding a bug in the GCC scheduler, in Proceedings of

the 12th international conference on Formal methods for industrial critical systems,

FMICS’07, pp. 85–100, Springer-Verlag, Berlin, Heidelberg,ISBN 3-540-79706-8,

978-3-540-79706-7.

Ghodrat, M., Givargis, T. and Nicolau, A. (2008). Control flowoptimization in loops

using interval analysis, in Proceedings of the 2008 international conference on

Compilers, architectures and synthesis for embedded systems, CASES ’08, pp.

157–166, ACM, New York, NY, USA, ISBN 978-1-60558-469-0.

Ghodrat, M., Givargis, T. and Nicolau, A. (2009). Optimizing control flow in loops us-

ing interval and dependence analysis, Design Automation for Embedded Systems,

vol. 13, pp. 193–221.

Girkar, M. and Polychronopoulos, C. D. (1992). Automatic Extraction of Functional

Parallelism from Ordinary Programs, IEEE Trans. Parallel Distrib. Syst., vol. 3,

no. 2, pp. 166–178.

Graphics, M. (2006). Catapult C Synthesis.

http://www.mentor.com/products/esl/high_level_synthesis/

Gries, D. (1987). The Science of Programming, Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, ISBN 0387964800.

Gupta, R. and Soffa, M. (1990). Region scheduling: an approachfor detecting and re-

distributing parallelism, IEEE Transactions on Software Engineering, vol. 16, no. 4,

pp. 421 –431.

Gupta, S., Dutt, N., Gupta, R. and Nicolau, A. (2003a). Dynamic Conditional Branch

Balancing during the High-Level Synthesis of Control-Intensive Designs, in Pro-

ceedings of DATE’03, pp. 270–275, IEEE Computer Society, Washington, DC,

USA, ISBN 0-7695-1870-2.

http://www.mentor.com/products/esl/high_level_synthesis/

BIBLIOGRAPHY 255

Gupta, S., Dutt, N., Gupta, R. and Nicolau, A. (2003b). Dynamically Increasing the

Scope of Code Motions during the High-Level Synthesis of Digital Circuits, IEE

Proceedings: Computer and Digital Technique, vol. 150, no. 5, pp. 330–337.

Gupta, S., Dutt, N., Gupta, R. and Nicolau, A. (2003c). SPARK: ahigh-level synthe-

sis framework for applying parallelizing compiler transformations, in Proc. of Int.

Conf. on VLSI Design, pp. 461–466, IEEE Computer Society, Washington, DC,

USA.

Gupta, S., Dutt, N., Gupta, R. and Nicolau, A. (2004a). Loop Shifting and Compaction

for the High-level Synthesis of Designs with Complex Control Flow, in Proceedings

of the DATE ’04, vol. 1, pp. 114–119.

Gupta, S., Dutt, N., Gupta, R. and Nicolau, A. (2004b). Using global code motions to

improve the quality of results for high-level synthesis, IEEE Transactions on CAD

of ICS, vol. 23, no. 2, pp. 302–312.

Gupta, S., Gupta, R., Dutt, N. and Nicolau, A. (2004c). Coordinated Parallelizing

Compiler Optimizations and High-Level Synthesis, ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 9, no. 4, pp. 1–31.

Gupta, S., Miranda, M., Catthoor, F. and Gupta, R. (2000). Analysis of high-level

address code transformations for programmable processors, in Proceedings of the

conference on Design, automation and test in Europe, DATE ’00, pp. 9–13, ACM,

New York, NY, USA, ISBN 1-58113-244-1.

Gupta, S., Reshadi, M., Savoiu, N., Dutt, N., Gupta, R. and Nicolau, A. (2002). Dy-

namic common sub-expression elimination during scheduling in high-level synthe-

sis, in Proceedings of the 15th international symposium on System Synthesis, ISSS

’02, pp. 261–266, ACM, New York, NY, USA, ISBN 1-58113-576-9.

Gupta, S., Savoiu, N., Dutt, N., Gupta, R. and Nicolau, A. (2001a). Conditional Spec-

ulation and its Effects on Performance and Area for High-Level Synthesis, in Inter-

national Symposium on System Synthesis, pp. 171–176.

Gupta, S., Savoiu, N., Kim, S., Dutt, N., Gupta, R. and Nicolau, A. (2001b). Specula-

tion techniques for high level synthesis of control intensive designs, in Proceedings

of DAC’01, pp. 269–272.

256 BIBLIOGRAPHY

Hall, M. W., Anderson, J. M., Amarasinghe, S. P., Murphy, B. R.,Liao, S.-W.,

Bugnion, E. and Lam, M. S. (1996). Maximizing MultiprocessorPerformance with

the SUIF Compiler, Computer, vol. 29, no. 12, pp. 84–89.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming, Commun.

ACM, vol. 12, pp. 576–580.

Holzmann, G. J. (1997). The Model Checker SPIN, IEEE Trans. Softw. Eng., vol. 23,

pp. 279–295.

Howden, W. E. (1987). Functional program testing and analysis, McGraw-Hill, New

York.

Hu, Y., Barrett, C., Goldberg, B. and Pnueli, A. (2005). Validating More Loop Opti-

mizations, Electronic Notes in Theoretical Computer Science, vol. 141, no. 2, pp.

69–84, proceedings of the Fourth International Workshop onCompiler Optimiza-

tion meets Compiler Verification (COCV 2005).

Hwu, W. M. W., Mahlke, S. A., Chen, W. Y., Chang, P. P., Warter, N.J., Bringmann,

R. A., Ouellette, R. G., Hank, R. E., Kiyohara, T., Haab, G. E., Holm, J. G. and

Lavery, D. M. (1993). The superblock: An effective technique for VLIW and su-

perscalar compilation, The Journal of Supercomputing, vol. 7, pp. 229–248.

Jain, R., Majumdar, A., Sharma, A. and Wang, H. (1991). Empirical evaluation

of some high-level synthesis scheduling heuristics, in Proceedings of the 28th

ACM/IEEE Design Automation Conference, DAC ’91, pp. 686–689,ACM, New

York, NY, USA, ISBN 0-89791-395-7.

Jiang, B., Deprettere, E. and Kienhuis, B. (2008). Hierarchical run time deadlock

detection in process networks, in IEEE Workshop on Signal Processing Systems,

2008, pp. 239 –244.

Jiong, L., Lin, Z., Yunsi, F. and Jha, N. (2004). Register binding-based RTL power

management for control-flow intensive designs, IEEE Transactions on CAD of ICS,

vol. 23, no. 8, pp. 1175 – 1183.

Johnson, N. E. (2004). Code Size Optimization for Embedded Processors, Ph.D. the-

sis, University of Cambridge.

Kadayif, I. and Kandemir, M. (2005). Data space-oriented tiling for enhancing local-

ity, Trans. on Embedded Computing Sys., vol. 4, no. 2, pp. 388–414.

BIBLIOGRAPHY 257

Kahn, G. (1974). The Semantics of a Simple language for Parallel Programming, in

Proceedings of IFIP Congress, pp. 471–475, North Holland Publishing Company.

Kandemir, M., Son, S. W. and Chen, G. (2005). An evaluation of code and data opti-

mizations in the context of disk power reduction, in ISLPED ’05: Proceedings of

the 2005 international symposium on Low power electronics and design, pp. 209–

214, ISBN 1-59593-137-6.

Kandemir, M., Vijaykrishnan, N., Irwin, M. J. and Ye, W. (2001). Influence of com-

piler optimizations on system power, IEEE Trans. Very LargeScale Integr. Syst.,

vol. 9, pp. 801–804.

Kandemir, M. T. (2006). Reducing energy consumption of multiprocessor SoC archi-

tectures by exploiting memory bank locality, ACM Trans. Des.Autom. Electron.

Syst., vol. 11, no. 2, pp. 410–441.

Karakoy, M. (2005). Optimizing Array-Intensive Applications for On-Chip Multipro-

cessors, IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 5, pp. 396–411.

Karfa, C. (2007). Hand-in-hand Verification and Synthesis ofDigital Circuits, MS

Thesis, IIT Kharagpur.

Karfa, C., Reddy, J., Mandal, C. R., Sarkar, D. and Biswas, S. (2005). SAST: An

interconnection aware high-level synthesis tool, in Proc.9th VLSI Design and Test

Symposium, Bangalore, pp. 285–292.

Karp, R. M., Miller, R. E. and Winograd, S. (1967). The Organization of Computa-

tions for Uniform Recurrence Equations, J. ACM, vol. 14, pp. 563–590.

Kastner, R., Gong, W., Hao, X., Brewer, F., Kaplan, A., Brisk, P.and Sarrafzadeh, M.

(2006). Layout driven data communication optimization forhigh level synthesis, in

Proceedings of the conference on Design, automation and test in Europe: Proceed-

ings, DATE ’06, pp. 1185–1190, European Design and Automation Association,

3001 Leuven, Belgium, Belgium, ISBN 3-9810801-0-6.

Kelly, W., Rosser, E., Pugh, B., Wonnacott, D., Shpeisman, T. and Maslov,

V. (2008). The Omega Calculator and Library, version 2.1, available at

http://www.cs.umd.edu/projects/omega/.

258 BIBLIOGRAPHY

Keutzer, K., Malik, S., Newton, A. R., Rabaey, J. M. and Sangiovanni-Vincentelli, A.

(2000). System-Level Design: Orthogonalization of Concerns and Platform-Based

Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 19, no. 12, pp. 1523–43.

Kienhuis, B., Rijpkema, E. and Deprettere, E. F. (2000). Compaan: Deriving Pro-

cess Networks from Matlab for Embedded Signal Processing Architectures, in

CODES’00, pp. 13–17.

Kim, T. and Liu, X. (2010). A functional unit and register binding algorithm for inter-

connect reduction, Trans. Comp.-Aided Des. Integ. Cir. Sys.,vol. 29, pp. 641–646.

Kim, Y., Kopuri, S. and Mansouri, N. (2004). Automated Formal Verification of

Scheduling Process Using Finite State Machines with Datapath (FSMD), in Pro-

ceedings of the 5th International Symposium on Quality Electronic Design, ISQED

’04, pp. 110–115, IEEE Computer Society, Washington, DC, USA,ISBN 0-7695-

2093-6.

Kim, Y. and Mansouri, N. (2008). Automated formal verification of scheduling with

speculative code motions, in Proceedings of the 18th ACM Great Lakes symposium

on VLSI, GLSVLSI ’08, pp. 95–100, ACM, New York, NY, USA, ISBN 978-1-

59593-999-9.

King, J. C. (1980). Program correctness: On inductive assertion methods, IEEE Trans.

on Software Engineering, vol. SE-6, no. 5, pp. 465–479.

Knoop, J., Ruthing, O. and Steffen, B. (1992). Lazy Code Motion,in PLDI, pp. 224–

234.

Krol, T., van Meerbergen, J., Niessen, C., Smits, W. and Huisken, J. (1992). The

Sprite Input Language-an intermediate format for high levelsynthesis, in Proceed-

ings. [3rd] European Conference on Design Automation, pp. 186–192.

Kundu, S., Lerner, S. and Gupta, R. (2008). Validating High-Level Synthesis, in Pro-

ceedings of the 20th international conference on Computer Aided Verification, CAV

’08, pp. 459–472, Springer-Verlag, Berlin, Heidelberg, ISBN978-3-540-70543-7.

Kundu, S., Lerner, S. and Gupta, R. (2010). Translation Validation of High-Level

Synthesis, IEEE Transactions on CAD of ICS, vol. 29, no. 4, pp. 566–579.

BIBLIOGRAPHY 259

Kundu, S., Tatlock, Z. and Lerner, S. (2009). Proving optimizations correct using

parameterized program equivalence, in Proceedings of the 2009 ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’09, pp.

327–337, ACM, New York, NY, USA, ISBN 978-1-60558-392-1.

Lakshminarayana, G., Khouri, K. and Jha, N. (1997). Wavesched: A novel scheduling

technique for control-flow intensive behavioural descriptions, in Proc. of ICCAD,

pp. 244–250.

Lakshminarayana, G., Raghunathan, A. and Jha, N. (2000). Incorporating Speculative

Execution into Scheduling of Control-Flow-Intensive Design, IEEE Transactions

on CAD of ICS, vol. 19, no. 3, pp. 308–324.

Lakshminarayana, G., Raghunathan, A., Jha, N. K. and Dey, S. (1999). Power man-

agement in high-level synthesis, IEEE Trans. Very Large Scale Integr. Syst., vol. 7,

pp. 7–15.

Lam, M. S. and Wilson, R. P. (1992). Limits of control flow on parallelism, in Proceed-

ings of the 19th annual international symposium on Computer architecture, ISCA

’92, pp. 46–57, ACM, New York, NY, USA, ISBN 0-89791-509-7.

Landwehr, B. and Marwedel, P. (1997). A New Optimization Technique for Improving

Resource Exploitation and Critical Path Minimization, in ISSS, pp. 65–72, ACM,

New York, NY, USA.

Lee, J.-H., Hsu, Y.-C. and Lin, Y.-L. (1989a). A new integer linear programming

formulation for the scheduling problem in data path synthesis, in Procs. of the In-

ternational Conference on Computer-Aided Design, pp. 20 –23,IEEE Computer

Society, Washington, DC, USA.

Lee, J.-H., Hsu, Y.-C. and Y-L, L. (1989b). A New Integer Linear Formulation for the

Scheduling Program in High Level Synthesis, in Procs. of theIEEE Conference on

Computer-Aided Design, pp. 20–23.

Li, F. and Kandemir, M. (2005). Locality-conscious workload assignment for array-

based computations in MPSOC architectures, in Proceedingsof DAC ’05, pp. 95–

100, ISBN 1-59593-058-2.

Li, P., Agrawal, K., Buhler, J. and Chamberlain, R. D. (2010). Deadlock avoidance for

streaming computations with filtering, in Proceedings of the 22nd ACM symposium

260 BIBLIOGRAPHY

on Parallelism in algorithms and architectures, SPAA ’10, pp. 243–252, ISBN 978-

1-4503-0079-7.

Lin, Z. and Jha, N. (2005). Interconnect-aware low-power high-level synthesis,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 24, no. 3, pp. 336 – 351.

lp_solve (2010).

http://lpsolve.sourceforge.net/5.5/

Majumdar, R. and Xu, R.-G. (2007). Directed test generation using symbolic gram-

mars, in The 6th Joint Meeting on European software engineering conference and

the ACM SIGSOFT symposium on the foundations of software engineering: com-

panion papers, ESEC-FSE companion ’07, pp. 553–556, ACM, New York, NY,

USA, ISBN 978-1-59593-812-1.

Mandal, A., Mandal, C. and Reade, C. (2007). A System for Automatic Evaluation of

C Programs: Features and Interfaces, International Journal of Web-Based Learning

and Teaching Technologies, vol. 2, no. 4, pp. 24–39.

Mandal, C. and Chakrabarti, P. P. (2003). Genetic Algorithms for High-Level Syn-

thesis in VLSI Design, Materials and Manufacturing Processes, vol. 18, no. 3, pp.

355–383.

Mandal, C. and Zimmer, R. M. (2000). A Genetic Algorithm for theSynthesis of

Structured Data Paths, in 13th International Conference on VLSI Design, pp. 206–

211, IEEE Computer Society Press, ISBN 0-7695-0487-6.

Manna, Z. (1974). Mathematical Theory of Computation, McGraw-Hill Kogakusha,

Tokyo.

Mansouri, N. and Vemuri, R. (1998). A Methodology for Automated Verification of

Synthesized RTL Designs and Its Integration with a High-Level Synthesis Tool,

in Proceedings of the Second International Conference on Formal Methods in

Computer-Aided Design, FMCAD ’98, pp. 204–221, Springer-Verlag, London,

UK, ISBN 3-540-65191-8.

Mansouri, N. and Vemuri, R. (1999). Accounting for various register allocation

schemes during post-synthesis verification of RTL designs,in Proceedings of the

http://lpsolve.sourceforge.net/5.5/

BIBLIOGRAPHY 261

conference on Design, automation and test in Europe, DATE ’99, pp. 223–230,

ACM, New York, NY, USA, ISBN 1-58113-121-6.

Marwedel, P. (2006). Embedded System Design, Springer(India) Private Limited,

New Delhi, India.

Meijer, S., Kienhuis, B., Turjan, A. and de Kock, E. (2007). Interactive presentation: A

process splitting transformation for Kahn process networks, in DATE ’07: Proceed-

ings of the conference on Design, automation and test in Europe, pp. 1355–1360,

ISBN 978-3-9810801-2-4.

Meijer, S., Nikolov, H. and Stefanov, T. (2009). On Compile-time Evaluation of

Process Partitioning Transformations for Kahn Process Networks, in Proc. of

IEEE/ACM/IFIP Int. Conf. on HW/SW Codesign and System Synthesis(CODES-

ISSS’09), pp. 31–40.

Meijer, S., Nikolov, H. and Stefanov, T. (2010a). Combining process splitting and

merging transformations for Polyhedral Process Networks,in 8th IEEE Workshop

on Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010, pp. 97 –106.

Meijer, S., Nikolov, H. and Stefanov, T. (2010b). Throughput Modeling to Evaluate

Process Merging Transformations in Polyhedral Process Networks, in Proc. of Int.

Conf. Design, Automation and Test in Europe (DATE’10), pp. 747–752.

Menon, V., Pingali, K. and Mateev, N. (2003). Fractal symbolic analysis, ACM Trans.

Program. Lang. Syst., vol. 25, no. 6, pp. 776–813.

Moon, S.-M. and Ebciŏglu, K. (1992). An efficient resource-constrained global

scheduling technique for superscalar and VLIW processors,in Proceedings of the

25th annual international symposium on Microarchitecture, MICRO 25, pp. 55–71,

IEEE Computer Society Press, Los Alamitos, CA, USA, ISBN 0-8186-3175-9.

Muchnick, S. S. (1997). Advanced compiler design and implementation, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-320-4.

Musoll, E. and Cortadella, J. (1995). High-level synthesis techniques for reducing the

activity of functional units, in Proceedings of the ISLPED ’95, pp. 99–104, ISBN

0-89791-744-8.

262 BIBLIOGRAPHY

Nicolau, A. and Novack, S. (1993). Trailblazing: A Hierarchical Approach to Perco-

lation Scheduling, in ICPP 1993. International Conference onParallel Processing,

1993, vol. 2, pp. 120 –124.

Nikolov, H., Stefanov, T. and Deprettere, E. (2008). Systematic and Automated Mul-

tiprocessor System Design, Programming, and Implementation, IEEE Transactions

on CAD of Integrated Circuits and Systems, vol. 27, no. 3, pp. 542–555.

Olson, A. and Evans, B. (2005). Deadlock detection for distributed process networks,

in IEEE International Conference on Acoustics, Speech, and Signal Processing,

200, vol. 5, pp. v/73 – v/76 Vol. 5.

Palkovic, M., Catthoor, F. and Corporaal, H. (2009). Trade-offs in loop transforma-

tions, ACM Trans. Des. Autom. Electron. Syst., vol. 14, pp. 22:1–22:30.

Panda, P. and Dutt, N. (1995). 1995 high level synthesis design repository, in Pro-

ceedings of the 8th international symposium on System synthesis, ISSS ’95, pp.

170–174, ACM, New York, NY, USA, ISBN 0-89791-771-5.

Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,

Vandercappelle, A. and Kjeldsberg, P. G. (2001). Data and memory optimization

techniques for embedded systems, ACM Trans. Des. Autom. Electron. Syst., vol. 6,

pp. 149–206.

Parker, A. C., Pizarro, J. T. and Mlinar, M. (1986). MAHA: a program for datapath

synthesis, in Proceedings of the 23rd ACM/IEEE Design Automation Conference,

DAC ’86, pp. 461–466, IEEE Press, Piscataway, NJ, USA, ISBN 0-8186-0702-5.

Parks, T. M. (1995). Bounded Scheduling of Process Networks,Ph.D. thesis, EECS

Department, University of California, Berkeley.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html

Paulin, P. G. and Knight, J. P. (1987). Force–Directed Scheduling in Automatic Data

Path Synthesis, Procs. of the 24th Design Automation Conference.

Paulin, P. G. and Knight, J. P. (1989). Scheduling and binding algorithms for high-level

synthesis, in Proceedings of the 26th ACM/IEEE Design Automation Conference,

DAC ’89, pp. 1–6, ACM, New York, NY, USA, ISBN 0-89791-310-8.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html

BIBLIOGRAPHY 263

Potkonjak, M., Dey, S., Iqbal, Z. and Parker, A. (1993). Highperformance embedded

system optimization using algebraic and generalized retiming techniques, in Proc.

of ICCD, pp. 498 –504, IEEE Computer Society, Washington, DC, USA.

Qi, D., Roychoudhury, A., Liang, Z. and Vaswani, K. (2009). Darwin: an approach

for debugging evolving programs, in Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on

The foundations of software engineering, ESEC/FSE ’09, pp. 33–42, ACM, New

York, NY, USA, ISBN 978-1-60558-001-2.

Qiu, M., Sha, E. H. M., Liu, M., Lin, M., Hua, S. and Yang, L. T. (2008). Energy

minimization with loop fusion and multi-functional-unit scheduling for multidi-

mensional DSP, J. Parallel Distrib. Comput., vol. 68, no. 4, pp. 443–455.

Radhakrishnan, R., Teica, E. and Vermuri, R. (2000). An approach to high-level syn-

thesis system validation using formally verified transformations, in Proceedings of

the IEEE International High-Level Validation and Test Workshop (HLDVT’00),

HLDVT ’00, pp. 80–85, IEEE Computer Society, Washington, DC, USA, ISBN

0-7695-0786-7.

Raghavan, V. (2010). Principles of Compiler Design, Tata McGraw Hill Education

Private Limited, New Delhi.

Raghunathan, A., Dey, S. and Jha, N. (1999). Register transferlevel power optimiza-

tion with emphasis on glitch analysis and reduction, IEEE Transactions on CAD of

ICS, vol. 18, no. 8, pp. 1114 –1131.

Rajan, S. P. (1995). Correctness of Transformations in High Level Synthesis, in CHDL

’95: 12th Conference on Computer Hardware Description Languages and their Ap-

plications, pp. 597–603, Chiba, Japan.

Raudvere, T., Sander, I. and Jantsch, A. (2008). Applicationand Verification of Local

Nonsemantic-Preserving Transformations in System Design, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 6, pp. 1091

–1103.

Rim, M., Fann, Y. and Jain, R. (1995). Global scheduling with code motions for high-

level synthesis applications, IEEE Transactions on VLSI Systems, vol. 3, no. 3, pp.

379–392.

264 BIBLIOGRAPHY

Ruthing, O., Knoop, J. and Steffen, B. (2000). Sparse Code Motion, in IEEE POPL,

pp. 170–183.

Sampath, P., Rajeev, A. C., Ramesh, S. and Shashidhar, K. C. (2008). Behaviour Di-

rected Testing of Auto-code Generators, in Proceedings of the 2008 Sixth IEEE

International Conference on Software Engineering and Formal Methods, pp. 191–

200, IEEE Computer Society, Washington, DC, USA, ISBN 978-0-7695-3437-4.

Samsom, H., Franssen, F., Catthoor, F. and De Man, H. (1995). System level ver-

ification of video and image processing specifications, in Proceedings of the 8th

international symposium on System synthesis, ISSS ’95, pp.144–149, ACM, New

York, NY, USA, ISBN 0-89791-771-5.

Sarkar, D. and De Sarkar, S. (1989). Some inference rules forinteger arithmetic for

verification of flowchart programs on integers, IEEE Trans Software. Engg., vol. 15,

no. 1, pp. 1–9.

Shashidhar, K. C. (2008). Efficient Automatic Verification ofLoop and Data-flow

Transformations by Functional Equivalence Checking, Ph.D.thesis, Department of

Computer Science, Katholieke Universiteit Leuven, Belgium.

Shashidhar, K. C., Bruynooghe, M., Catthoor, F. and Janssens, G. (2002). Geometric

Model Checking: An Automatic Verification Technique for Loopand Data Reuse

Transformations, Electronic Notes in Theoretical ComputerScience (ENTCS),

vol. 65, no. 2, pp. 71–86.

Shashidhar, K. C., Bruynooghe, M., Catthoor, F. and Janssens, G. (2005a). Functional

Equivalence Checking for Verification of Algebraic Transformations on Array-

Intensive Source Code, in Proc. of DATE’05, pp. 1310–1315, ISBN 0-7695-2288-2.

Shashidhar, K. C., Bruynooghe, M., Catthoor, F. and Janssens, G. (2005b). Verifica-

tion of Source Code Transformations by Program Equivalence Checking, in 14th

International Conference on Compiler Construction (CC’05), pp.221–236.

Sllame, A. and Drabek, V. (2002). An efficient list-based scheduling algorithm for

high-level synthesis, in Euromicro Symposium on Digital System Design, 2002,

pp. 316 – 323.

BIBLIOGRAPHY 265

Strehl, K. and Thiele, L. (2000). Interval diagrams for efficient symbolic verification

of process networks, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 19, no. 8, pp. 939 –956.

Synopsys (2011). Synphony C Compiler.

www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx

Trickey, H. (1987). Flamel: A High Level Hardware Compiler, IEEE Trans. on CAD.,

vol. 6, pp. 259–269.

Tsai, F.-S. and Hsu, Y.-C. (1992). STAR - An Automatic Data Path Allocator, IEEE

Trans. on CAD., vol. 11, no. 9, pp. 1053–1064.

Tseng, C. J. and Siewiorek, D. P. (1986). Automated Synthesisof Data Paths in

Digital-Systems, IEEE Trans. on CAD., vol. 5, no. 3, pp. 379–395.

Turjan, A. (2007). Compiling Nested Loop Programs to ProcessNetworks, Ph.D. the-

sis, Leiden University.

Turjan, A., Kienhuis, B. and Deprettere, E. (2004). Translating affine nested-loop pro-

grams to process networks, in CASES ’04: Proceedings of the 2004 international

conference on Compilers, architecture, and synthesis for embedded systems, pp.

220–229, ISBN 1-58113-890-3.

Verdoolaege, S., Janssens, G. and Bruynooghe, M. (2009). Equivalence Checking of

Static Affine Programs Using Widening to Handle Recurrences,in Proceedings of

CAV ’09, pp. 599–613, ISBN 978-3-642-02657-7.

Verdoolaege, S., Palkovič, M., Bruynooghe, M., Janssens, G. and Catthoor, F. (2010).

Experience with Widening Based Equivalence Checking in Realistic Multimedia

Systems, J. Electron. Test., vol. 26, no. 2, pp. 279–292.

Viswanath, V., Vasudevan, S. and Abraham, J. (2009). Dedicated Rewriting: Auto-

matic Verification of Low Power Transformations in RTL, in 22nd International

Conference on VLSI Design, 2009, pp. 77 –82.

Šimuníc, T., Benini, L., De Micheli, G. and Hans, M. (2000). Source code optimiza-

tion and profiling of energy consumption in embedded systems, in Proceedings of

the 13th international symposium on System synthesis, ISSS’00, pp. 193–198,

IEEE Computer Society, Washington, DC, USA, ISBN 1-58113-267-0.

www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx

266 BIBLIOGRAPHY

Wakabayashi, K. and Yoshimura, T. (1989). A resource sharing and control synthesis

method for conditional branches, in IEEE International Conference on Computer-

Aided Design, 1989 (ICCAD-89), pp. 62 –65, IEEE Computer Society, Washing-

ton, DC, USA.

Wolf, M. E. and Lam, M. S. (1991). A Loop Transformation Theory and an Algorithm

to Maximize Parallelism, IEEE Trans. Parallel Distrib. Syst., vol. 2, no. 4, pp. 452–

471.

Xing, X. and Jong, C. C. (2007). A look-ahead synthesis technique with backtracking

for switching activity reduction in low power high-level synthesis, Microelectron.

J., vol. 38, pp. 595–605.

Xue, L., Ozturk, O. and Kandemir, M. (2007). A memory-conscious code paralleliza-

tion scheme, in Proceedings of the 44th annual Design Automation Conference,

DAC ’07, pp. 230–233, ACM, New York, NY, USA, ISBN 978-1-59593-627-1.

Yices (2010).

http://yices.csl.sri.com/

ZamanZadeh, S., Najibi, M. and Pedram, H. (2009). Pre-synthesis Optimization for

Asynchronous Circuits Using Compiler Techniques, in Advances in Computer Sci-

ence and Engineering, vol. 6 ofCommunications in Computer and Information Sci-

ence, pp. 951–954, Springer Berlin Heidelberg, ISBN 978-3-540-89985-3.

Zhang, C. and Kurdahi, F. (2007). Reducing off-chip memory access via stream-

conscious tiling on multimedia applications, Int. J. Parallel Program., vol. 35, no. 1,

pp. 63–98.

Zhu, H. W. and Jong, C. C. (2002). Interconnection optimization in data path alloca-

tion using minimal cost maximal flow algorithm, Microelectronics Journal, vol. 33,

no. 9, pp. 749 – 759.

Zhu, Y., Magklis, G., Scott, M. L., Ding, C. and Albonesi, D. H.(2004). The En-

ergy Impact of Aggressive Loop Fusion, in PACT ’04: Proceedings of the 13th In-

ternational Conference on Parallel Architectures and Compilation Techniques, pp.

153–164, ISBN 0-7695-2229-7.

Zory, J. and Coelho, F. (1998). Using Algebraic Transformations to Optimize Ex-

pression Evaluation in Scientific Code, in Proceedings of the1998 International

http://yices.csl.sri.com/

BIBLIOGRAPHY 267

Conference on Parallel Architectures and Compilation Techniques, PACT ’98, pp.

376–384, IEEE Computer Society, Washington, DC, USA, ISBN 0-8186-8591-3.

Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y. and Hu,Y. (2005). Transla-

tion and Run-Time Validation of Loop Transformations, Form.Methods Syst. Des.,

vol. 27, no. 3, pp. 335–360.

Zuck, L., Pnueli, A., Y. Fang and Goldberg, B. (2003). VOC: A translation validator

for optimizing compilers, Journal of Universal Computer Science, vol. 9, no. 3, pp.

223–247.

	Title Page
	Title Page
	Approval Page
	Certificate Page
	Declaration Page
	Acknowledgments
	Abstract
	Abstract
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	1 Introduction
	1.1 Embedded system design flow
	1.2 Behavioural transformations
	1.2.1 Code motion transformations
	1.2.2 Loop transformations
	1.2.3 Arithmetic transformations
	1.2.4 High-level to RTL transformations
	1.2.5 Sequential to parallel transformations

	1.3 Motivations and objectives
	1.3.1 Problem statements

	1.4 Contributions
	1.5 Organization of the thesis

	2 Literature Survey
	2.1 Code motion transformations
	2.1.1 Applications of code motion transformations
	2.1.2 Verification of code motion transformations

	2.2 High-level to RTL and RTL transformations
	2.2.1 Applications of High-level to RTL and RTL transformations
	2.2.2 Verification of High-level to RTL and RTL transformations

	2.3 Loop transformations and arithmetic transformations
	2.3.1 Applications of loop transformations
	2.3.2 Applications of arithmetic transformations
	2.3.3 Verification of loop and arithmetic transformations

	2.4 Parallelizing transformations
	2.4.1 Applications of parallelizing transformations
	2.4.2 Verification of parallelizing transformations

	2.5 Conclusion

	3 Verification of Code Motion Transformations
	3.1 Introduction
	3.2 Basic equivalence checking method
	3.2.1 FSMDs and its paths
	3.2.2 Normalization of arithmetic expressions

	3.3 Equivalence problem formulation
	3.3.1 Path cover and equivalence of FSMDs
	3.3.2 A method to handle uniform code motions

	3.4 Verification of non-uniform code motions
	3.4.1 An example of non-uniform code motion
	3.4.2 A scheme for verifying non-uniform code motions
	3.4.3 Strong and weak equivalence of paths
	3.4.4 Formulation of the path extension procedure
	3.4.5 Encoding and model checking the data-flow properties
	3.4.6 The equivalence checking method
	3.4.7 Illustration of working of the equivalence checking method
	3.4.8 Justification of the initial cutpoints

	3.5 Multicycle and pipelined execution of operations
	3.6 Correctness and complexity
	3.6.1 Correctness
	3.6.2 Complexity

	3.7 Experimental results
	3.7.1 Limitations of the method

	3.8 Conclusion

	4 Verification of RTL Generation Phase
	4.1 Introduction
	4.2 Verification challenges
	4.3 Construction of FSMDs from RTL designs
	4.3.1 Representation of the datapath description
	4.3.2 A Method of obtaining the micro-operations for a control assertion pattern
	4.3.3 Identification of RT operations realized by a set of micro-operations
	4.3.4 Multicycle, pipelined and chained operations

	4.4 The Overall construction framework of FSMD
	4.4.1 Handling of multicycle operations
	4.4.2 Handling of pipelined operations
	4.4.3 Handling chained operations
	4.4.4 Verification during construction of FSMD

	4.5 Correctness and complexity of the algorithm
	4.5.1 Correctness and complexity of the module findRewriteSeq
	4.5.2 Correctness and complexity of the module RTLV-1
	4.5.3 Correctness and complexity of the modules Multicycle and Pipelined
	4.5.4 Correctness and complexity of the module RTLV-0

	4.6 Verification by equivalence checking
	4.7 Verification of low power RTL transformations
	4.7.1 Alternative datapath architecture
	4.7.2 Restructuring of multiplexer networks to enhance data correlation
	4.7.3 Restructuring of multiplexer networks to eliminate glitchy control signals
	4.7.4 Clocking of control signals
	4.7.5 Glitch reduction using delays

	4.8 Experimental results
	4.9 Conclusion

	5 Verification of Loop Transformations
	5.1 Introduction
	5.2 Array data dependence graphs
	5.2.1 Representation of data dependencies of the behaviour
	5.2.2 Transitive dependence
	5.2.3 Recurrence in ADDG
	5.2.4 Construction of the ADDG from a sequential behaviour

	5.3 Slices
	5.4 Equivalence of ADDGs
	5.4.1 Normalization of the characteristic formula of a slice
	5.4.2 Some simplification rules for data transformations
	5.4.3 Equivalence problem formulation

	5.5 A case study
	5.6 Correctness and complexity
	5.6.1 Complexity

	5.7 Error diagnosis
	5.8 Experimental results
	5.9 Conclusion

	6 Verification of Parallelizing Transformations
	6.1 Introduction
	6.2 Verification framework
	6.2.1 Kahn process networks
	6.2.2 Verification approach

	6.3 Modelling a KPN as an ADDG
	6.3.1 Modelling KPN processes as ADDGs
	6.3.2 Computation of the dependence mappings involving FIFOs
	6.3.3 Composition of ADDGs of KPN processes
	6.3.4 Correctness of the composition operation

	6.4 Deadlock detection in a KPN
	6.4.1 Deadlock due to insufficient communication
	6.4.2 Deadlock due to circular dependence in a KPN

	6.5 Verification of KPN level transformations
	6.5.1 Channel merging
	6.5.2 Channel splitting
	6.5.3 Process splitting
	6.5.4 Process merging
	6.5.5 Message vectorization
	6.5.6 Computation migration

	6.6 Experimental results
	6.7 Conclusion

	7 Conclusion and Future Scopes
	7.1 Summary of contributions
	7.2 Scope for future work
	7.2.1 Enhancement of the present work
	7.2.2 Scope of application to other research areas

	7.3 Conclusion

	Bibliography

