
Construction and Maintenance of

Connected Dominating Set as Virtual

Backbone in Wireless Network

Jasaswi Prasad Mohanty

CONSTRUCTION AND MAINTENANCE OF

CONNECTED DOMINATING SET AS

VIRTUAL BACKBONE IN WIRELESS

NETWORK

Thesis submitted to
Indian Institute of Technology Kharagpur

for the award of the degree

of

Doctor of Philosophy

by

Jasaswi Prasad Mohanty

under the guidance of

Dr. Chittaranjan Mandal
Professor

Department of Computer Science and Engineering

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

West Bengal, India
May 2019

Dedicated To,
My parents,

Shri Jagnya Prasad Mohanty

Smt. Annapurna Dei

and

My beloved family,
Sushri, Subham and Shibansu

CERTIFICATE OF APPROVAL

Certified that the thesis entitled “Construction and Maintenance of Con-

nected Dominating Set as Virtual Backbone in Wireless Network”submit-

ted by Jasaswi Prasad Mohanty to Indian Institute of Technology, Kharagpur,

for the award of the degree of Doctor of Philosophy has been accepted by the

external examiners and that the student has successfully defended the thesis in

the viva-voce examination held today.

Sign:

Dr. Arobinda Gupta

(Member of the DSC)

Sign:

Dr. Krothapalli Sreenivasa Rao

(Member of the DSC)

Sign:

Dr. Raja Datta

(Member of the DSC)

Sign:

Dr. Dipanwita Roy Chowdhury

(Chairman)

Sign:

Dr. Chittaranjan Mandal

(Supervisor)

Sign:

Dr.

(External Examiner)

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, India-721302

Certificate

This is to certify that the thesis entitled “Construction and Maintenance

of Connected Dominating Set as Virtual Backbone in Wireless Net-

work” submitted by Jasaswi Prasad Mohanty to Indian Institute of Tech-

nology Kharagpur, is a record of bona fide research work carried out under my

supervision, and is worthy of consideration for the award of the degree of Doctor

of Philosophy of the Institute.

28th May, 2019

Kharagpur

Dr. Chittaranjan Mandal

Professor

Department of Computer Science and Engineering

Indian Institute of Technology

Kharagpur -721 302, INDIA

Declaration

I certify that

a. the work contained in the thesis is original and has been done by me under

the guidance of my supervisor;

b. the work has not been submitted to any other institute for any other degree

or diploma;

c. I have followed the guidelines provided by the Institute in preparing the

thesis;

d. I have conformed to ethical norms and guidelines while writing the thesis;

e. whenever I have used materials (data, models, figures and text) from other

sources, I have given due credit to them by citing them in the text of the

thesis, and giving their details in the references, and taken permission from

the copyright owners of the sources, whenever necessary.

Jasaswi Prasad Mohanty

Acknowledgment

It gives me immense pleasure to convey my deep sense of gratitude to my super-

visor Prof. Chittaranjan Mandal for his expert guidance and support throughout

my research work. He has taught me to work as an independent researcher and

has been a steady source of wise encouragement and support. His suggestions

and ideas provided the platform of my research. This work would not have been

completed without his active involvement.

It gives me immense pleasure to thank my doctoral scrutiny committee (DSC)

members Prof. Dipanwita Roy Chowdhury, Prof. Arobinda Gupta, Prof. Krotha-

palli Sreenivasa Rao, and Prof. Raja Datta for their valuable suggestions during

my research tenure. My sincere thanks to the current research coordinator Prof.

Debdeep Mukhopadhyay, and all former research coordinators namely Prof. De-

basis Samanta, Prof. Shamik Sural who supported me in all phases of this course.

I sincerely remember the support of office staff members.

I am greatly thankful to many of my friends for their constant inspiration.

I thank for my parent institute Silicon Institute of Technology, Bhubaneswar

for granting me three years of research leave. I am thankful to my friends and

colleagues namely Sudhakar Sahu, Bikram Mishra, Bhagwat Choudhury, Sushri

Rout, Pamela Choudhury, Manjula Raja, Mahesh Shirole, Prasanjeet, Barsha Mi-

tra, Anant Nimkar, Shankar Ganesh and Shankar for always providing any help

whenever I required.

It would have been impossible to achieve anything without the support of

my parents. My beloved family Sushri, Subham and Shibansu support made it

possible to embark on such an extraordinary journey. Continuous support and

encouragement from my brother Jiban Jyoti keep me going on this destination.

Finally, I would like to acknowledge the financial support of the All India

Council of Technical Education of Government of India for my study.

Jasaswi Prasad Mohanty

vi

Abstract

A virtual backbone plays an important role in routing packets in a Wireless Sensor

Network where a predefined infrastructure is absent. Some nodes of the network

takes on additional responsibilities in an algorithmic framework to form the virtual

backbone. A connected dominating set (CDS) can work as a virtual backbone in a

wireless network. A dominating set of a graph is a subset of its vertices such that

each node is either within that set or adjacent to one of the nodes present in that

set. If the nodes within the dominating set are connected, then the dominating set

is known as a connected dominating set. As the routing responsibilities lie only

on the CDS nodes, we are interested in minimizing the CDS size. However, the

construction of minimum CDS is an NP-Complete problem. In this dissertation,

we first designed a new centralized degree-based greedy approximation algorithm,

which constructs CDSs of smaller sizes in comparison with other existing algo-

rithms. The proposed algorithm retains the current best approximation ratio and

is also the most time efficient CDS construction algorithm. In our second work,

we developed a novel distributed greedy approximation algorithm for CDS con-

struction which reduces the CDS size effectively. Our simulation shows that this

is the most size optimal distributed CDS construction algorithm with linear mes-

sage complexity. The algorithm constructs the CDSs in lesser number of rounds

in comparison to other degree-based algorithms. In a CDS, a node may fail or

downgrade due to lack of its battery power or some other reason. In this situation,

it is advantageous to repair the current CDS rather than reconstructing a fresh

CDS. In our third work, we developed a distributed CDS maintenance algorithm

which repairs the CDS by changing the role of only a few nodes. The proposed

algorithm has linear time and message complexity. This CDS maintenance scheme

handles the failure of both CDS and non-CDS nodes. To use our distributed CDS

construction and maintenance algorithms each node needs its two-hop neighbours’

information.

Keywords: Connected Dominating Set, Steiner Tree, Unit Disk Graph, Vir-

tual Backbone, CDS maintenance.

vii

Contents

Abstract vii

1 Introduction 1

1.1 Network Models . 3

1.2 Related Definitions . 5

1.3 Backbone Network . 8

1.4 Virtual Backbone in Wireless Network 8

1.5 Connected Dominating Set . 10

1.6 Connected Dominating Set as Virtual Backbone 14

1.7 Construction of Minimum Connected Dominating Set and its Main-

tenance . 15

1.8 Overview and Contribution . 16

1.9 Thesis Organization . 22

2 Review of CDS Construction Algorithms 24

2.1 Overview . 24

2.2 Network Models . 27

2.3 Classification of CDS Construction Algorithms 28

2.3.1 According to the use of topology information: 28

2.3.2 According to the network models: 30

2.3.3 According to the efficiency of the algorithms: 31

2.4 CDS Construction Algorithms . 31

2.4.1 CDS Construction Algorithms with the design goal of min-

imizing CDS size . 32

2.4.2 CDS Construction Algorithms to improve fault tolerance

and robustness . 38

2.4.3 CDS Construction Algorithms to prolong the network lifetime 39

viii

CONTENTS

2.5 Summary of CDS Construction Algorithms 40

2.6 Scope of Work . 40

3 Centralized Construction of CDS 42

3.1 Overview . 42

3.2 Motivations and Objectives . 45

3.2.1 Motivations . 45

3.2.2 Objectives . 46

3.3 Network Model for Centralized CDS Construction 47

3.4 CDS Construction by CPDS2HI . 47

3.4.1 PDS Construction . 48

3.4.2 Improved Steiner Tree Construction 51

3.4.3 Removal of redundant dominators 53

3.4.4 Working Example . 54

3.5 Algorithm Analysis . 58

3.6 Simulation Results . 64

3.7 Summary . 68

4 Distributed Construction of CDS 69

4.1 Overview . 69

4.2 Motivations and Objectives . 71

4.2.1 Motivations . 71

4.2.2 Objectives . 72

4.3 Network Model for Distributed CDS Construction 72

4.4 Distributed DCMCDS scheme . 73

4.4.1 Node Initialization and neighbourhood table creation 75

4.4.2 Distributed PDS construction 76

4.4.3 Distributed Steiner Tree construction 77

4.4.4 Distributed removal of redundant dominators 81

4.4.5 Phase Transition . 88

4.5 Algorithm Analysis . 88

4.6 Simulation Results . 96

4.7 Summary . 102

5 Distributed Maintenance of CDS 104

5.1 Overview . 104

5.2 Motivations and Objectives . 107

5.2.1 Motivations . 107

ix

CONTENTS

5.2.2 Objectives . 109

5.3 Network Model for Distributed CDS Maintenance 110

5.4 Distributed CDS Maintenance by DMCDS 111

5.4.1 A CDS node finds its battery power has reached below the

upper threshold value . 114

5.4.2 A CDS node has completely failed 114

5.4.3 A non-CDS node (dominatee) finds its battery power has

reached below the lower threshold value 118

5.4.4 A non-CDS node (dominatee) has completely failed 121

5.4.5 After recharging, a node is interested to work as a dominatee 121

5.4.6 After recharging a dominatee is looking for its dominator . . 122

5.4.7 Working Example . 123

5.5 Algorithm Analysis . 129

5.6 Simulation Results . 135

5.7 Summary . 140

6 Conclusion 142

6.1 Contributions . 143

6.2 Scope for Future Work . 145

References . 147

x

List of Abbreviations

MANET Mobile Ad Hoc Networks

VANET Vehicular Ad Hoc Networks

WMN Wireless Mesh Networks

WSN Wireless Sensor Networks

DS Dominating Set

CDS Connected Dominating Set

MCDS Minimum Connected Dominating Set

GG General Graph

DG Disk Graph

UDG Unit Disk Graph

UBG Unit Ball Graph

IS Independent Set

MIS Maximal Independent Set

ST Steiner Tree

QoS Quality of Service

VB Virtual Backbone

ABPL Average Backbone Path Length

PDS Pseudo Dominating Set

CPDS2HI Connected Pseudo Dominating Set using 2-Hop Information

DCMCDS Distributed Construction of Minimum Connected Dominating Set

DMCDS Distributed Maintenance of Connected Dominating Set

MI Multi-Initiator

SI Single-Initiator

PTAS Polynomial Time Approximation Scheme

EHCDS Energy Harvest Connected Dominating Set

xi

List of Figures

1.1 Unit Disk Graph Model representing the topology of a wireless net-

work . 3

1.2 Disk Graph Model representing the topology of a wireless network . 4

1.3 Example showing Dominating Set 6

1.4 Example showing Connected Dominating Set 7

1.5 Example showing Maximal Independent Set 7

2.1 UDG Containment Model representing the topology of a wireless

network . 27

2.2 Classification of CDS construction algorithms 29

3.1 Network to illustrate an alternative MIS construction technique . . 45

3.2 Network to illustrate how PDS can improve CDS size over MIS . . 46

3.3 Example showing CDS Construction 50

3.4 CDS formed by the black dominators and blue connectors selec-

tively discarding grey virtual-dominators 50

3.5 Example showing PDS Construction (Phase 1 of CPDSTHI) 56

3.6 Example showing Steiner Tree construction (Phase 2 of CPDSTHI) 57

3.7 Final CDS after removing redundant nodes 57

3.8 Example showing CDS Construction by CPDSTHI 59

3.8 Example showing CDS Construction by CPDSTHI - contd... 60

3.9 Performance comparison of PDS construction phase with MIS se-

lection scheme . 65

3.10 Performance comparison of number of Steiner nodes and number of

independent nodes. 66

3.11 Ratio of ignored virtual-dominators to total virtual-dominators in

pseudo-dominating set for different network sizes. 66

xii

LIST OF FIGURES

3.12 Reduction in CDS size after discarding redundant dominators and

virtual-dominators in post-Steiner Tree construction for different

network sizes . 67

3.13 Performance comparison of CDS construction algorithms 67

4.1 Performance comparison of number of Steiner nodes and number of

independent nodes. 96

4.2 Ratio of ignored virtual-dominators to total virtual-dominators in

pseudo-dominating set for different network sizes 97

4.3 Reduction in CDS size after discarding redundant dominators and

virtual-dominators post-Steiner Tree construction for different net-

work sizes . 98

4.4 Performance comparison of CDS construction algorithms 99

4.5 Performance comparison of number of rounds in CDS construction . 100

4.6 Comparison of message exchanges in CDS construction algorithms . 100

4.7 CDS Size corresponding to DCMCDS for different network densities 101

5.1 Network showing a set of nodes . 107

5.2 CDS of the network shown in Fig. 5.1 108

5.3 An alternative CDS of the network shown in Fig. 5.1 108

5.4 Demonstration on repair of CDS due to the failure of node 8 shown

in Fig. 5.2 . 108

5.5 Demonstration on repair of CDS in case of failure of a dominatee . 109

5.6 Initial Network . 123

5.7 Black coloured nodes forming the CDS of the network shown in

Fig. 5.6 . 124

5.8 Updated CDS after the battery power of node 0 (shown in Fig. 5.7)

reduced below the predefined upper threshold value θ1 125

5.9 Updated CDS after the battery power of node 8 (shown in Fig. 5.7)

reduced below the predefined upper threshold value θ1 125

5.10 Updated CDS after the failure of node 6 shown in the Fig. 5.7 . . . 127

5.11 Updated CDS after the failure of node 12 shown in Fig. 5.7 128

5.12 Updated CDS after the failure of non-CDS node 1 in the network

shown in Fig. 5.10 . 129

5.13 Performance comparison of CDS size due to failure of dominators . 136

5.14 Performance comparison of CDS size due to failure of dominatees . 137

5.15 Performance comparison CDS size due to upgradation of normal

nodes to dominatees . 138

xiii

LIST OF FIGURES

5.16 Performance analysis of DMCDS by comparing the number of mes-

sages generated . 139

5.17 Performance comparison of CDS construction with CDS maintenance140

xiv

List of Tables

2.1 A comparative study of CDS Construction algorithms 37

4.1 Comparison with Collaborative Cover for uniform distribution of

nodes . 99

xv

C H A P T E R 1

Introduction

A wireless ad hoc network consists of computing nodes connected with wireless

links. There is no centralized control over the entire network. Due to the decentral-

ized nature, it is useful in many areas where either central nodes cannot be relied

upon or there is a concern of scalability. Setting up a wireless network is easy and

quick due to the presence of dynamic and adaptive routing protocols. In this type

of network, there is a minimal configuration requirement and the maintenance &

installation cost is very less. Due to the above-mentioned reasons, a wireless net-

work is suitable for various applications like military environment monitoring [1],

natural disasters control [2], traffic information passing, search and rescue, etc.

Mainly wireless ad hoc networks are classified by their application and structure.

Some of the classifications include Mobile Ad Hoc Networks (MANET), Vehicular

Ad Hoc Networks (VANET), Wireless Mesh Networks (WMN), Wireless Sensor

Networks (WSN), etc.

Wireless Sensor Network is the most popular wireless network, which consisting

of MEMS [3, 4] and some sensor nodes which are capable of sensing data from

the deployment area. The sensor nodes are made of small size, low cost and low

processing power devices which are used for data sensing, data processing, and

communication. The major limitation of a sensor node is its battery power. So the

major concern in a wireless sensor network is how to conserve the battery power of

1

each sensor node to extend the lifetime of the entire network. One of the most vital

tasks of the wireless network is to measure various event features like temperature,

humidity, fire, etc. from the physical environment [5]. In case of occurrence of an

event, the sensor nodes collaboratively sense the event data [6], [7] and transmit it

to the sink node or the end user. The sensor nodes create organizational structures

among them. The organizational structure of a wireless sensor network consists of

individual sensor nodes, few clusters head [8] and the sink or base station. A sensor

node rather than forwarding the sensed data directly to the sink node forwards

the data to the cluster head for data fusion and transmission of combined data to

the sink node.

Unlike wired networks, ad hoc network does not rely on any pre-existing infras-

tructure like routers. A node can send and receive messages within its transmission

range. When a node broadcasts a message, the message is received by all the nodes

within its communication range. In case a sender node wants to send a message

to a node which is not within its communication range, the message is forwarded

to the destination through some intermediate nodes. One of the simple methods

of forwarding a message from a node to any other node is pure flooding. How-

ever, it is not an effective mechanism in a wireless network because it consumes

high bandwidth and battery. In a wireless network, we can overcome these chal-

lenges in multi-hop routing through the use of a virtual backbone. In this type

of network, some of the nodes are selected to form a virtual backbone to help in

routing by forwarding data for other nodes. These nodes are selected dynamically

by considering the state of each individual node as well as the state of the entire

network.

A wireless network can be static or dynamic depending on the mobility of

the nodes. We say a wireless network is static when all the nodes are static. A

wireless network is dynamic when some or all of the nodes change their position

frequently. A dynamic wireless network consists of a collection of nodes that can

move on their own and interact with the physical environment. Mobile nodes have

the ability to compute and communicate like static nodes. The key difference

is mobile nodes have the ability to re-position and organize themselves in the

network. A dynamic wireless network can start off with some initial deployment

and nodes can then spread out to gather information. Information gathered by a

2

1.1 Network Models

Figure 1.1: Unit Disk Graph Model representing the topology of a wireless network

mobile node can be communicated to another mobile node when they are within

range of each other. Another key difference is data distribution. In a static

wireless network, data can be distributed using fixed routing or flooding while

dynamic routing is used in a dynamic wireless network. Challenges in the dynamic

wireless network include deployment, localization, self-organization, navigation

and control, coverage, energy, maintenance, and data process. In this dissertation,

all three presented works are on static networks, we assume that the nodes do not

change their position once they are deployed.

1.1 Network Models

The wireless network is modeled as a graph G = (V,E) upon which algorithms

operate. In the graph G, V represents the set of nodes in the network and E

represents the set of all links between the nodes in the network. A node in the

graph represents a wireless device and an undirected edge between two nodes

shows that two devices are within the radio range of each other. A directed edge

from node u to node v shows that node v is within the communication range of

node u. Depending on the radio range of the nodes the network can be formed as

the following models:

3

1.1 Network Models

Figure 1.2: Disk Graph Model representing the topology of a wireless network

1. Unit Disk Graph (UDG): Unit disk graph is used when all nodes of the

wireless network can be assumed to lie in one plane. In this model, all the

nodes in the network are of equal radio range r and deployed in a Euclidean

plane. A graph G = (V,E) is known as a unit disk graph if a pair of nodes

are adjacent if and only if their Euclidean distance is less than or equal to

r. Figure 1.1 shows a UDG, where each circle represents the transmission

range of a node. All the nodes that fall inside this circle are said to be

adjacent to the node at the center. We can observe from the diagram that

the transmission range of all the nodes is the same. In the literature, one

can find most of the wireless network algorithms for different problems are

designed on a unit disk graph. However, in reality, the radio range of the

nodes may vary and radios are not unidirectional.

2. Disk Graph (DG): One can model a wireless network as a disk graph if the

nodes are deployed in an Euclidean plane and their communication ranges

are different. In the disk graph G = (V,E) we can put an edge (vi, vj) ∈ E

4

1.2 Related Definitions

if the Euclidean distance between the node vi and vj is less than or equal

to the transmission range of vi. An edge is unidirectional if (vi, vj) ∈ E and

(vi, vj) /∈ E. An edge is bidirectional if both (vi, vj) ∈ E and (vi, vj) ∈ E.

Figure 1.2 shows a DG, where the circles represent the transmission ranges of

different nodes. We can see in the figure that the undirected edges represent

the bidirectional links and directed edges represent unidirectional links. Note

that each undirected edge between a pair of nodes (vi, vj) is a composition

of two directed edges from vi to vj and vj to vi.

3. Unit Ball Graph (UBG): In some situations, the wireless network is modeled

in a 3-dimensional space instead of the plane [9]. For example, in a 3-

dimensional under-water application, sensor nodes float at different depths

in order to observe a given phenomenon. This kind of network is used for

surveillance applications or monitoring of ocean phenomena (e.g. ocean bio-

geo-chemical processes, water streams, pollution, etc.). Such 3-dimensional

wireless networks are modeled using unit ball graphs. A graph is called

unit ball graph if its vertices can be represented as points in 3-dimensional

Euclidean space and two vertices are adjacent if and only if the distance

between the two corresponding points is less than or equal to radio range of

each node.

In this dissertation, the resultant topology of the wireless network is modeled

as a unit disk graph with transmission ranges of all the nodes being considered as

one unit.

1.2 Related Definitions

In this section, we discuss some of the fundamental concepts that are useful to

understand our work.

Definition 1.1 (DOMINATING SET) In graph theory, a dominating set (DS)

for a graph G(V,E) is a subset V ′ ⊆ V such that for each node v ∈ V − V ′,

Adj[v]
⋂
V ′ 6= φ, where Adj[v] denotes set of adjacent nodes of v. The nodes in

the dominating set, V ′ are called dominators. In Figure 1.3 the red coloured

nodes are forming dominating sets in different networks.

5

1.2 Related Definitions

Figure 1.3: Example showing Dominating Set

Definition 1.2 (CONNECTED DOMINATING SET) A dominating set which

forms a connected sub-graph is a Connected Dominating Set (CDS). So, a CDS of

a graph is a set of vertices with the following properties:

1. Every vertex of the graph is either belongs to the CDS or is adjacent to at

least one vertex of the CDS.

2. We can reach from any node in the CDS to any other node in CDS by a path

which stays entirely within CDS.

The nodes which do not belong to the CDS are called as dominatees. In Figure

1.4 the red coloured nodes are forming the connected dominating set in the network.

Definition 1.3 (INDEPENDENT SET) In a graph, a set of vertices in which

no two vertices are adjacent is called an independent set or stable set.

Definition 1.4 (MAXIMAL INDEPENDENT SET) An independent set to

which by adding any vertex outside the independent set disturbs the property of in-

dependent set is called as Maximal Independent Set (MIS) or maximal stable set.

6

1.2 Related Definitions

Figure 1.4: Example showing Connected Dominating Set

Figure 1.5: Example showing Maximal Independent Set

In other words, a maximal independent set cannot be a subset of any other indepen-

dent set. In Figure 1.5 the red coloured nodes are forming maximal independent

sets in different networks.

Definition 1.5 (STEINER TREE) In a graph G = (V,E), for a given subset

of vertices I ⊆ V , a Steiner Tree is a tree which interconnects the nodes in I using

a set of nodes (known as Steiner nodes) not in I.

Definition 1.6 (m-DOMINATIING SET (m-DS)) In a graph G = (V,E),

an m-DS D is a subset of V such that each node in V −D is adjacent to at least

m nodes in D.

Definition 1.7 (k-CONNECTED m-DOMINATIING SET (k-m-DS)) In

a graph G = (V,E), an k-m-DS D is a subset of V such that D is a m-DS of G

and the sub-graph formed by the nodes of D is k-vertex connected.

Definition 1.8 (DOMATIC PARTITION (DP)) A domatic partition of a

graph G = (V,E) is a partition D = {D1, D2, ..., Dk} of vertices of G such that

each Di ∈ D(1 ≤ i ≤ k) is a DS of G.

7

1.3 Backbone Network

Definition 1.9 (CONNECTED DOMATIC PARTITION (CDP)) In a graph

G = (V,E), a connected domatic partition D = {D1, D2, ..., Dk} is a partition of

vertices of G such that each Di ∈ D(1 ≤ i ≤ k) is a CDS of G.

1.3 Backbone Network

Just like the human backbone carries signals to many smaller nerves in the body,

a backbone network or network backbone is a part of computer network infras-

tructure that interconnects various pieces of network, providing a path for the

exchange of information between different local area networks or sub-networks.

A backbone can tie together diverse networks in the same building, in different

buildings in a campus environment, or over wide areas. Normally, the backbone’s

capacity is greater than the networks connected to it [10]. A bus as a backbone

network connects various local area networks and provides communication among

the inter local area network hosts. Usually, bus backbones connect different build-

ings in an organization. Inside a single building, star backbone is used as a medium

of distribution. A star backbone connects various local area networks through a

switch. In fact, the switch works as the backbone in this case. At the service

provider level, the routers and switches are the main components of the backbone

network.

Wireless local area networks use access point as backbones. Backbone forma-

tion is a cost-effective alternative to the flooding approach that has been exten-

sively studied in wireless sensor and ad hoc networks [11]. In this type of network,

some of the selected nodes work as the backbone and perform the role of forward-

ing data. As there is no real backbone this backbone is known as virtual backbone.

In this dissertation, we are concerned with ad hoc wireless networks that benefit

by assigning forwarding roles to a few nodes belonging to a virtual backbone.

1.4 Virtual Backbone in Wireless Network

As discussed in the previous section, in a wireless network, routing related tasks

are difficult to perform because neither there is any predefined physical backbone

8

1.4 Virtual Backbone in Wireless Network

infrastructure nor there is any topology control mechanism. This is the main mo-

tivation behind the use of virtual backbone in a wireless network. The idea of

virtual backbone was introduced by A. Ephremides et al. [12] in 1987. A virtual

backbone is a collection of some of the selected nodes present in the entire net-

work. The nodes in the virtual backbone besides their regular responsibilities take

the additional load to help in routing. The virtual backbone nodes are connected

among each other. A source node, to send a message to a destination node, for-

wards the message to one of the backbone node, which is adjacent to it. These

backbone nodes forward any message among themselves such that the destination

would receive the message. In this way of message passing, the routing path search

space is reduced only to the set of backbone nodes. The backbone structure sup-

ports unicasting, multicasting with fault-tolerant routing. The major advantage

of using a virtual backbone is, it can avoid the collision problem which occurs in

flooding-based routing.

In a wireless ad hoc network, there is no predefined infrastructure as in wired

network. Because of this reason when a source node needs to send a message

to a destination node, which is outside its communication range it broadcasts

the message. If the destination is within the range of the sender, it receives the

message directly. However, if the destination is not within the range of sender, the

sender requests its neighbouring nodes to forward the message to the destination.

The neighbour of the sender forwards the message to its neighbour and this process

continues until the message is received by the destination node. This method of

forwarding the message is known as broadcasting which uses a lot of messages.

In this approach, a lot of bandwidth, processing power and time of the node is

consumed, which is unnecessary for many of the nodes in the network.

We can model a wireless network either by using a unit disk graph or disk graph

or ball graph as discussed in Section 1.1. A Connected Dominating Set (CDS)

can be used as a virtual backbone in a wireless network. The nodes which are not

within the backbone must be adjacent to at least one node in the backbone. The

non-virtual backbone nodes should keep track of their adjacent backbone nodes

and the backbone nodes should keep track of their adjacent backbone nodes and

also maintain a routing table. In a wireless sensor network, there is a limitation of

battery power and a radio range of most of the nodes. The nodes in this network

9

1.5 Connected Dominating Set

depend on their neighbours to forward messages to the base station or sink node

[13]. If we can use the CDS as the virtual backbone, then they can provide the

path to the base station. To conserve the battery power, the non-backbone nodes

should turn off their radio when they do not have any data to send. When they

are ready with the data, they should make their radio on, send the data and again

should make their radio off. In this process, the routing activities are handed

over to the virtual backbone nodes only, by virtue of which there is a significant

reduction in message overhead due to routing.

1.5 Connected Dominating Set

Domination is one of the important research areas in graph theory and networks.

There are a large number of real-world applications of this field due to which this

area is thoroughly investigated for many years by researchers from different fields

like Computer Science, Mathematics Communication, etc. Consider a directed

graph G(V,E), where V is the set of vertices and E is the set of edges. The classical

k-dominating set D of graph G(V,E) is a subset of V containing k vertices, such

that for every vertex v ∈ V , either v ∈ D or v has a neighbour in D. The minimum

integer k for which G has a k-dominating set is called the dominating number of

G and is denoted by γ(G).

The DOMINATING SET problem is to check for a given graph G(V,E) and

an integer k, whether γ(G) ≤ k or not. There is an optimized version of the same

problem in which we need to find the minimum dominating set. There is a wide

range of real-world applications of the optimized version of DOMINATING SET

problem. The origin of the dominating set concept traces back to the 1850’s, when

the following problem was noticed among chess players in Europe: Determine the

minimum number of queens that can be placed in a chessboard so that all squares

are either attacked by a queen or are occupied by a queen. In the later years, many

variations of this problem were introduced. Some of the fundamental types of

domination problem are given below:

1. VERTEX COVER: A vertex v is said to cover every edge incident to v. A

vertex cover is a set S of vertices which covers every edge in E.

10

1.5 Connected Dominating Set

2. EDGE COVER: A set S of edges is an edge dominating set (edge cover), if

for every edge e ∈ E \ S there exists an edge f ∈ S, such that e and f have

a common vertex.

3. INDEPENDENT SET : A dominating set D is an independent dominating

set if no two vertices in D are adjacent.

4. CONNECTED DOMINATION : A dominating set D is a connected domi-

nating set if the sub-graph induced by D is a connected subgraph of G.

The DOMINATING SET problem has been proved to be NP-Complete [14] in

1979. However, due to the practical applications of this problem, it is one of the

hot subjects of many researchers during the last 40 years. Dominating sets are

known to perform well in clustering [15], backbone formation [16, 11], multicast

routing [17], and some other issues in wireless sensor and ad hoc networks. A

dominating set is related to an independent set. An independent set is also a

dominating set if and only if it is a maximal independent set. So any maximal

independent set in a graph is necessarily also a minimal dominating set. Thus,

the smallest maximal independent set is also the smallest independent dominating

set. The minimum dominating set in a graph will not necessarily be independent,

but the size of a minimum dominating set is always less than or equal to the size

of a minimum maximal independent set.

If the nodes present in the dominating set (D) of a graph are connected, the set

is called Connected Dominating Set. Formally, a CDS of a graph G is a sub-graph

C of the given graph G (of connected nodes) such that each node in G is either

in C or adjacent to a node in C.

If S is a connected dominating set, one can form a spanning tree of G in which

S is the set of non-leaf nodes of the tree. Conversely, if T is any spanning tree in

a graph with more than two vertices, the non-leaf nodes of T form a connected

dominating set. Therefore, finding a minimum connected dominating set is the

same as finding spanning trees with the maximum possible number of leaves. A

total dominating set is a set of vertices such that all vertices in the graph (including

the vertices in the dominating set itself) have a neighbour in the dominating

set. Nodes in the dominating set are called dominators. The nodes which are

11

1.5 Connected Dominating Set

adjacent to a dominator are called dominatees. The minimum size of a connected

dominating set of G is called Connected Dominating Number of G and is denoted

by γc(G). Finding the minimum connected dominating set of a graph is known

to be NP-Complete [14]. Connected-Dominating-Set is a representative technique

for constructing virtual backbones of wireless networks and this facilitates the

implementation of many tasks including broadcasting, routing, etc. Most of the

existing works on CDS aim at constructing the minimum CDS (MCDS), so as to

reduce the communication overhead over the CDS.

Application of Connected Dominating Set in Wireless Network:

Due to the unique characteristics of mobile ad hoc networks and wireless sensor

networks, the necessary protocols are developed specifically to their purpose only.

For better result, most of the protocols first organize the network by constructing

the dominating set before doing any specific task. These protocols address routing,

power management, etc.

Constructing a dominating set is nothing but forming clusters in the network.

At the Data Link Layer, clustering helps in reducing collisions, providing a guar-

antee of Quality of Service (QoS) [18, 19, 20, 21]. The nodes in the dominating set

interact with each other and use orthogonal spreading of codes in between their

neighbours. This helps in improving spatial reuse with code division spread spec-

trum techniques [22]. Later on, these nodes can coordinate access to the wireless

media by their neighbours to provide a guarantee of QoS or to avoid collisions.

In 1987, Ephremedis et al. first proposed that CDS can be used as a vir-

tual backbone network for routing of messages [12]. Any message can be sent

from a source node to one of the neighbouring CDS nodes, from this node to

the closest CDS neighbour of the destination node and from that node to the

destination node finally. This is known as backbone based routing [23] or domi-

nating set based routing [24, 25], or spine based routing[26, 27]. We could reduce

a significant amount of message overheads related to routing updates [28] by re-

stricting the routing activities only to the CDS nodes. The dominating set can

also be structured into a hierarchy to further minimize the control message over-

head [29, 20, 21]. In location-based routing, a CDS can also be used. In this type

of routing the messages are forwarded based on the geographical location of the

12

1.5 Connected Dominating Set

hosts. The intermediate nodes are selected based on the vicinity of the destination

node.

A CDS is also useful for location-based routing. In location-based routing,

messages are forwarded based on the geographical coordinates of the hosts, rather

than topological connectivity. Intermediate nodes are selected based on their prox-

imity to the destination of messages. In this scheme, we may reach a situation

where all the neighbours of the recently selected intermediate node would be far-

ther from the destination node. In this situation, the routing must recover from

this stage by using backtracking method to find another path. If messages are

only forwarded to nodes in the dominating set, the inefficiency associated with

this recovery phase can greatly be reduced [30].

We can also improve the multicast/broadcast routing by using CDS. In multi-

cast/broadcast routing the intermediate nodes unnecessarily forward the messages

most of the time. Many nodes receive the same messages again and again. This

problem is known as broadcast storm problem [31]. If the messages would be for-

warded through the CDS nodes only then the unnecessary forwarding of messages

can be eliminated [32, 33, 34, 35, 36].

In a wireless sensor network, the major limitation of sensor nodes is their

battery power. There is no facility of charging these sensor nodes again and again

because they are deployed in remote locations most of the time. By using CDS we

can allow the non-CDS nodes to be in sleep mode. By this, we can increase the

number of nodes in a sleep mode. During the non-CDS nodes are in sleep mode

the CDS nodes can forward the messages [37, 38]. In this way, they would be able

to conserve energy among nodes [39, 40, 41, 36].

One more application of CDS is extraction of topology information in large-

scale dense networks [42]. A CDS can be used to serve as database servers. We

can also use CDS as the virtual backbone to spread “link quality” information for

route selection in multimedia traffic [20].

13

1.6 Connected Dominating Set as Virtual Backbone

1.6 Connected Dominating Set as Virtual Back-

bone

As the CDS can be used as the virtual backbone in a wireless network, we need to

construct the CDS first before using it. After construction, we need to evaluate

how efficiently we have constructed the CDS. There are many parameters used for

the evaluation of the CDS, which is to act as virtual backbone [13]. Some of these

parameters are:

• Size: The size of a CDS is the number of nodes present in it. The CDS

size should be as small as possible for many reasons. Firstly, the backbone

nodes are in charge of relaying packets and thus are more likely to drain

their battery. In that case, fewer backbone nodes mean that fewer nodes are

intensively used. So a smaller virtual backbone suffers less from the inter-

ference problem. One more reason is related to the purpose of creating such

a structure. As virtual backbones are likely to be used by routing proto-

cols, having a lesser number of backbone nodes induce less protocol-related

messages, such as routing table updates, and thus increase the available

bandwidth for real communications. For better performance, we should try

to construct a CDS of the smallest possible size.

• Diameter : In a connected graph the diameter is the length of the longest

path among the shortest paths between any pair of nodes in the graph. In a

constructed CDS the diameter of the CDS is the diameter of the subgraph

formed by the CDS nodes. So, the diameter of a CDS is the length of

the longest path between any two vertices forming the CDS. For improved

performance, it is desirable that the diameter is minimized. In a wireless

network, when a message travels a longer distance (in terms of hop) error

rate increases. Hence, for better performance, it is desirable to construct a

CDS of smaller diameter also.

• ABPL (Average Backbone Path Length): The average backbone path length

is the average of distances traveled by different packets before reaching their

destination. ABPL of a CDS is the sum of the hop distances between any

14

1.7 Construction of Minimum Connected Dominating Set and its
Maintenance

pair of nodes u and v divided by the number of all possible pairs. We need to

construct CDSs of smaller ABPL so that the average cost of communication

can be reduced. Communication cost can be in terms of the average number

of intermediate hops, processing power, bandwidth usage, battery power,

etc.

• Failure Tolerant : The backbone should be node-failure tolerant. This char-

acteristic is also vital as the failure of one node among the CDS nodes may

result in a useless backbone because it may either disconnect the CDS or

it may create a hole in the network. Many propositions have been made

to increase the robustness of the structure namely k-connectivity, i.e. hav-

ing k independent paths between any pair of nodes, empirical criteria (and

their combination) such as remaining battery level, low relative speed (stable

surroundings), etc.

In this dissertation, the proposed CDS construction algorithms have consid-

ered the CDS size as a parameter for CDS evaluation. Moreover, the selection

of the connected dominating set must be distributed. Based on neighbourhood

knowledge, a node must decide whether or not it is in the dominating set. A CDS

is a good candidate for a virtual backbone of wireless networks because any non-

CDS node in the network has 1-hop distance from a CDS node. With the help of

the CDS, routing is easier and can adapt quickly to network topology changes.

1.7 Construction of Minimum Connected Dom-

inating Set and its Maintenance

For efficient routing and connectivity management in wireless networks, a CDS can

be used as a virtual backbone. During routing, broadcasting responsibilities lie

only with the CDS nodes, instead of all the nodes in the network. As only the CDS

nodes maintain routing information, storage space can be reduced by reducing the

CDS size. Due to this reason researchers are interested to construct Minimum

Connected Dominating Sets (MCDS). However, MCDS construction is an NP-

Complete problem. Therefore, only polynomial time approximation algorithms

15

1.8 Overview and Contribution

are practically usable. The performance of the CDS depends on its approximation

ratio, which is the ratio of the size of the constructed CDS to the size of the

MCDS. So, we should construct CDSs with a smaller approximation ratio. The

construction cost is also measured by the overall message and time complexities.

The nodes in a CDS do some extra work of computation and communication

to support routing and energy conservation of the entire network. Due to this

extra load, the CDS nodes deplete their energy faster than the non-CDS nodes.

If some of the CDS nodes fail, then the entire CDS would not be useful at all. In

that case, we should either switch over to other CDS or repair the CDS. In case of

failure of a single node, it is not wise to reconstruct a fresh CDS because very few

nodes are affected and reconstruction will be performed over the entire network.

So, it is better to maintain the CDS in case of failure of the CDS nodes. During

the maintenance, we should ensure that we are not making too many changes to

the current CDS. We should change the roles of very few nodes to maintain the

current CDS.

1.8 Overview and Contribution

This section describes and lists the statements of the problems that have been

addressed in this dissertation. Later on, the outline of the adopted methodologies

for the solutions is given. Also, the specific contribution made in each case is

mentioned in this section. The problems on wireless sensor network addressed in

this thesis are:

1. Centralized Construction of MCDS in Wireless Sensor Networks

Using Pseudo Dominating Set : In a wireless network, messages need

to be sent in an optimized manner to preserve the energy of the network.

A minimum connected dominating set (MCDS) offers an optimized way of

sending messages. A Dominating Set of a network is a subset of nodes such

that any node not in the subset is a neighbour of some element of that subset.

It forms a Connected Dominating Set if the sub-graph induced by this set

is connected. In a wireless network, as there is no fixed infrastructure or

centralized management, a CDS can be used as a virtual backbone or spine

16

1.8 Overview and Contribution

for efficient routing and connectivity management [43]. The CDS can receive

a packet from any node in the network and can retransmit it to any other

remote node. A node, which is not in the CDS can send a message to any

other node through the CDS nodes. It first sends its message to one of its

neighbouring CDS nodes. Now, the search space for any route is reduced to

the CDS. If the destination node is within the CDS it can get the message

directly, otherwise, it gets the message from one of its neighbouring CDS

nodes. Thus, during routing, broadcasting responsibility lies only with the

CDS nodes, instead of all the nodes in the network.

As only the CDS nodes maintain routing information, we can save the

storage space by reducing the CDS size. A small sized CDS makes routing

easier, reduces the communication overhead, increases the convergence speed

and simplifies connectivity management. So, it is desirable to construct a

minimum connected dominating set (MCDS) of the network. However, com-

puting MCDS is an NP-complete problem [44]. So, only polynomial time

approximation algorithms are practical for finding out MCDS in wireless

networks. For energy-constrained wireless networks, an approximation al-

gorithm should not only construct smaller CDSs but also construct CDSs

with low computation and communication costs. Generally, the quality of

the CDS is measured by its approximation ratio, which is the ratio of its size

to that of the MCDS. The construction cost is measured by the overall mes-

sage and time complexities. The computation time of the CDS should also

be appreciably small in order to schedule speedy switches between disjoint

CDSs to extend battery lifetime and optimize power consumption [45, 46].

In this work, we propose a new centralized degree-based greedy ap-

proximation algorithm which we name as Connected Pseudo Dominating

Set Using 2-Hop Information (CPDS2HI) to construct smaller CDSs. Our

scheme CPDS2HI works in three phases. In the first phase, a smaller maxi-

mal independent set (MIS), designated as a pseudo-dominating set (PDS) is

constructed. The dominating set is pseudo dominating set because some of

the elements may be omitted in the final dominating set. The second phase

of our algorithm constructs an improved Steiner Tree which interconnects

17

1.8 Overview and Contribution

the PDS nodes in an improved way. In the final phase, some of the selected

PDS nodes are excluded cleverly to reduce the CDS size further without any

connectivity or coverage loss. Through simulation, we also show that our

proposed algorithm CPDS2HI outperforms all the existing CDS construction

algorithms in terms of CDS size and construction costs. CPDS2HI retains

the current best performance ratio of (4.8 + ln 5)|opt| + 1.2, |opt| being the

size of an optimal CDS of the network, and has the best time complexity of

O(D), where D is the network diameter. To the best of our knowledge, this

is the most time efficient and size-optimal CDS construction algorithm.

2. Distributed Construction of Minimum Connected Dominating Set

in Wireless Sensor Network Using Two-Hop Information: We may

construct a CDS either in centralized or in a distributed manner. Although

centralized algorithms provide more accurate information than distributed

algorithms, they suffer from scalability problem and hence are not feasible for

large size WSNs. In centralized algorithms, the reliability of the information

accumulated at a centralized processor is low because of the losses involved in

multi-hop transmission. Distributed algorithms are difficult to design. They

require only local information exchange between neighbouring nodes. For

any WSN in which the average number of hops from any node to the central

processor is greater than the number of iterations required to perform a task,

distributed algorithms are more energy efficient than centralized algorithms

[47].

In this work, we propose a new distributed degree-based greedy ap-

proximation algorithm which we name as Distributed Construction of Mini-

mum Connected Dominating Set (DCMCDS) to construct smaller CDSs.

The proposed scheme DCMCDS works in three phases and constructs the

CDS using 2-hop information only. In the first phase, it constructs the Max-

imal Independent Set (MIS) in a distributed manner. The MIS is designated

as a Pseudo Dominating Set (PDS) because some of the elements may be

omitted in the final dominating set. In the second phase, the algorithm con-

structs a Steiner Tree by adding some more nodes to the PDS, which are

needed to interconnect the PDS nodes. In the last phase, the algorithm drops

18

1.8 Overview and Contribution

some of the selected PDS nodes to reduce the CDS size further without any

loss in coverage or connectivity. Simulation results show that DCMCDS is

better than existing CDS construction algorithms in terms of CDS size and

construction costs. The performance ratio of the proposed algorithm, which

is the best at the current moment, is (4.8 + ln 5)|opt|+ 1.2, where |opt| is

the size of an optimal CDS of the network. Its time complexity is O(D),

where D is the diameter of the network. It has a linear message complexity

of O(nR), where n is the network size and R is the maximum between num-

ber of rounds needed to construct the PDS and number of rounds needed to

interconnect the PDS nodes. The distributed greedy algorithm DCMCDS

does not depend on any specific initiating node. It identifies non-trivial

CDSs of smaller size for both uniform and random distribution of nodes in

a distributed manner. The algorithm constructs the CDS in lesser number

of rounds in comparison to other degree-based algorithms.

3. Maintenance of CDS as Virtual Backbone in Wireless Sensor Net-

work: A Wireless Sensor Network (WSN) consists of a group of distributed

sensor nodes deployed in the area to be monitored. As there is no fixed in-

frastructure, for efficient routing, some of the nodes come forward to form a

virtual backbone. A Minimum Connected Dominating Set (MCDS) can be

used as a virtual backbone. In the literature there are many approximated

MCDS construction algorithms available as the construction of MCDS is an

NP-Hard problem.

The CDS nodes deplete their energy faster than non-CDS nodes be-

cause of extra computation and communication load. After a certain period

of time, these CDS nodes would run out of their battery and hence would not

able to handle the routing responsibilities anymore. In that situation, either

we should switch over to a new CDS [45, 46] or repair the current CDS by

finding some other non-CDS nodes to hand over the responsibilities of the

failed CDS node. Also, it is a well-known fact that the battery performance

can be greatly improved by using pulsed discharge instead of constant dis-

charge [48, 49]. It is better to handover the routing responsibilities of the

CDS node, which is about to fail in the near future rather than waiting for

19

1.8 Overview and Contribution

its failure. This will allow the recharge recovery effect in electrochemical

batteries to extend their lifetime. If a node is chargeable from other sources

like sunlight [50] then it can recharge itself for future use. A CDS node

may also fail due to processor failure, radio failure, etc. So, whatever may

be the reason for the failure of a CDS node, it may disconnect the CDS,

as a result, the data transmission may stop also. In this scenario, it is not

wise to re-construct the CDS fresh since very few nodes are affected and

reconstruction will be performed on the entire network, so it is wastage of

resource. Therefore, it is a better approach to repair the CDS by assigning

new responsibilities to some of the non-CDS nodes and the affected CDS

nodes are freed from their earlier responsibilities. Maintenance of a CDS

is initiated by a particular CDS node when it finds that its battery power

has reduced below a threshold value. The affected CDS node after being

relieved as a backbone node can recharge itself from any available resources

like sunlight and make itself ready for future use. However, if a CDS node

fails due to any reason other than power failure, the nearby nodes should

take the initiatives to repair the CDS.

In this work, we propose a new distributed CDS maintenance approach

which we name as Distributed Maintenance of Connected Dominating Set

(DMCDS). Our proposed approach handles the following situations: (1) a

CDS node finds that its battery power has reduced below a threshold value

due to which it is about to fail in near future (2) a CDS node has already

failed due to some reason (3) a non-CDS node finds its battery power has

reduced below a threshold value due to which it is about to fail in near future

(4) a non-CDS node has already failed due to some reason (5) a non-CDS

node is ready to sense the required data after recharging. The proposed

approach also takes care of the situation in which the CDS becomes discon-

nected by the failure of any CDS node. When the connectedness property

of the CDS is lost due to the failure of any CDS node, multiple components

are formed containing some of the CDS nodes. In this work, the non-CDS

nodes come forward to connect these components by changing their role. Ac-

cording to the knowledge of the authors, this is the first CDS maintenance

algorithm which handles multiple components. Simulation results show that

20

1.8 Overview and Contribution

the proposed algorithm is able to repair the CDS in all possible situations.

The proposed distributed CDS maintenance scheme only changes the cur-

rent CDS by a factor of ∆, where ∆ is the maximum degree of a node in

the entire network. Its time complexity is O(C), where C is the size of the

largest component of the network during the application of the proposed

CDS maintenance algorithm. It has a linear message complexity of O(n),

where n is the number of nodes present in the network.

Contributions : The thesis has three contributions, which are summarized

below:

1. We have proposed a new centralized degree-based greedy approximation al-

gorithm to construct smaller CDSs with the current best approximation ratio

of (4.8 + ln 5)|opt| + 1.2, where |opt| is the size of an optimal CDS of the

network. The algorithm has the best time complexity of O(D), where D is

the network diameter. To the best of our knowledge, this is the most time

efficient and size-optimal CDS construction algorithm.

2. We have developed a distributed degree based algorithm for the minimum

connected dominating set problem with the current best approximation fac-

tor of (4.8 + ln 5)opt + 1.2, where |opt| is the size of an optimal CDS of the

network. Simulation results show that DCMCDS is better than existing CDS

construction algorithms in terms of CDS size and construction costs using

a slightly higher expense of a number of messages exchanged as compared

to previous degree-based CDS construction techniques. Its time complexity

is O(D), where D is the diameter of the network. It has a linear message

complexity of O(nR), where n is the network size and R is the maximum of

the number of rounds needed to construct the PDS and number of rounds

needed to interconnect the PDS nodes. The distributed greedy algorithm

DCMCDS does not depend on any specific initiating node. It identifies non-

trivial CDSs of smaller size for both uniform and random distribution of

nodes in a distributed manner. The algorithm constructs the CDS in lesser

number of rounds in comparison to other degree-based algorithms.

21

1.9 Thesis Organization

3. We have developed a new distributed CDS maintenance approach to handle

the following situations: (1) a CDS or non-CDS node is about to fail due

to the depletion of its battery power below a threshold level (2) a CDS or

non-CDS node has already failed due to some reason (3) a non-CDS node

becomes ready to sense the required data after recharging. The proposed

distributed CDS maintenance scheme only changes the current CDS by a

factor of ∆, where ∆ is the maximum degree of a node in the entire network.

Hence, the performance ratio of the CDS holds after each maintenance. Its

time complexity is O(C), where C is the size of the largest component of the

network during the application of the proposed CDS maintenance algorithm.

It has a linear message complexity of O(n), where n is the number of nodes

present in the network.

1.9 Thesis Organization

The thesis has three working chapters, besides chapters on introduction, a review

of the various works on CDS construction and maintenance in wireless sensor

networks and conclusions.

The organization of the thesis is as given below.

Chapter 1: Introduction This chapter gives an overview of network models

and related definitions to be used in the entire thesis. The chapter first introduces

the virtual backbone and its importance in a wireless network. Later, the appli-

cation of Connected Dominating Set as the virtual backbone is discussed. At the

end of the chapter, the contribution of the thesis is presented.

Chapter 2: Review of CDS Construction Algorithms This chapter

provides the state-of-the survey on existing CDS construction algorithms which

are classified depending on various design goals. At the end of the chapter scope

of our work is presented.

22

1.9 Thesis Organization

Chapter 3: Centralized Construction of CDS in WSN In this chapter, a

centralized algorithm for the minimum connected dominating set problem based on

a pseudo dominating set is proposed. An approximation factor for the computed

MCDS has been derived. Simulation results show that the method constructs

CDSs of smaller sizes than other similar techniques.

Chapter 4: Distributed CDS Construction in WSN Here a distributed

algorithm for the minimum connected dominating set problem based on two hop

information is proposed. An approximation factor, time and message complexity

for the computed MCDS have been derived. Simulation results demonstrating the

usefulness of this technique for effective aggregation over other competitive CDS

schemes are presented.

Chapter 5: Distributed Maintenance of CDS in WSN This last working

chapter contains an algorithm for CDS maintenance. The proofs describe that the

method does not change the current CDS too much while maintaining. Also, the

time and message complexity of the algorithm is derived.

Chapter 6: Conclusion In this chapter we summarize the contributions of

this thesis and present our conclusions. Possible future extensions to this work

are also identified.

23

C H A P T E R 2

Review of CDS Construction

Algorithms

2.1 Overview

Wireless ad hoc and sensor networks play a pivotal role in the next-generation

network in providing flexible deployment and mobile connectivity. These types of

networks are popularly used in the health-care industry, agriculture, food industry,

automated battlefield, disaster control, etc. However, unlike wired networks or

cellular networks, no physical backbone infrastructure is required in wireless ad

hoc and sensor networks, which offers new paradigms for routing. These types

of networks consist of either static or mobile or a mixture of both static and

mobile nodes. Each of the nodes of these types of networks has an omnidirectional

antenna and can broadcast messages within its communication range. When a

node broadcast a message, the message can be reached to the nodes within the

communication range of the sender. If the receiver is outside the single hop radio

transmission range of the sender then the message is sent through intermediate

nodes by establishing a communication session between them. This is known as

multi-hop routing. In a wireless network, one of the simple and intuitive methods

of forwarding messages between non-adjacent nodes is pure flooding. In flooding,

24

2.1 Overview

each node broadcasts the packet once it has received from its adjacent node.

The transmission in pure flooding is redundant due to which it consumes the

available bandwidth of the channels and battery power of the nodes. Therefore,

pure flooding is not an efficient communication mechanism in a wireless network.

To overcome these challenges and to achieve scalability and efficiency a virtual

backbone infrastructure can be used in multi-hop routing. A virtual backbone

organizes ordinary nodes into a hierarchy. Generally, a Connected Dominating

Set (CDS) is used as a virtual backbone in a wireless network. The protocols

which use CDS can perform a wide range of communication functions. Some

of the protocols which use CDSs as their underlying architecture includes media

access coordination [18, 19, 20], multicast/broadcast [33, 34, 41, 36, 30], topology

control [42], location-based routing [30]; energy conservation [37, 38, 39, 40, 51].

In the energy constrained ad hoc and sensor networks small size CDSs help

to extend the network lifetime. The problem of finding the CDS with minimum

cardinality is called Minimum Connected Dominating Set (MCDS) problem and is

known to be NP-complete [44]. Therefore, most of the researchers are interested to

design polynomial time approximation algorithms for small size CDS construction.

In recent years many algorithms for CDS constructions have been proposed. For

each of the CDS construction algorithms, the size of the CDS, its energy saving

capability, time and message complexity, performance ratio, degree of localization

have been studied deeply. In this chapter, we present the works on a large number

of existing CDS construction techniques proposed in the context of wireless ad

hoc and sensor networks.

In this chapter, we examine several centralized algorithms and their corre-

sponding distributed implementations in detail. Distributed or even localized

algorithms are useful in wireless ad hoc and sensor networks. The algorithms

should rely on limited knowledge of network topology. Although there are many

parameters to evaluate a CDS, most of the works are on construction of minimum

connected dominating set (MCDS) in unit-disk graphs. So their main design goal

is performance ratio. In fact, minimizing the size of the CDS can help us to de-

crease the control overhead since broadcasting and topology update is restricted

to a small subset of nodes [32]. Therefore, by using size optimal CDSs, one can

greatly decrease the overhead due to the broadcast storm problem [31] in a wire-

25

2.1 Overview

less network. The existing routing algorithms adopt different methodologies to

construct virtual backbones. We first describe various network models and then

in the following sections discuss various CDS construction techniques and examine

their characteristics.

In a wireless network, the sensor nodes are randomly deployed in an inaccessible

terrain due to which it is difficult to recharge the sensor nodes. Therefore, people

are interested to design energy efficient protocols for wireless sensor networks.

Generally, in a sensor network, the data are gathered in individual nodes combined

in different cluster-head and then communicated to the base station or sink node.

Clustering helps them to improve the lifetime [52] and scalability goals for data

gathering applications. In a wireless network where a CDS is used as a virtual

backbone, the dominators can be treated as cluster-heads. The cluster-heads or

dominators do some extra amount of work for combining and forwarding data to

the base station due to which they exhaust their battery power more often. The

nodes may also fail due to other reason like hardware failure etc. Because of the

failure of either a single node or a group of nodes, the entire network fails from data

transmission which needs maintenance. In this scenario, the adaptive protocols

identify a new set of cluster-heads for their next round [53] whereas, in the fixed

clustering scheme, the new set of nodes are identified within the fixed clusters [54].

In the scenario where CDS nodes are used as a virtual backbone, to maximize the

lifetime of the network large number of disjoint dominating sets [55] can be used

and can be activated one after another in round wise. The problem of finding a

maximum number of disjoint dominating sets is called domatic partitioning and

the maximum number of disjoint dominating sets is called domatic number of a

graph. Thus, the problem of rotating the responsibility of being cluster-head (or

coordinator) is abstracted as the domatic partition problem. The last part of the

chapter discusses the works on this problem.

The remaining of this chapter is organized as follows. In Section 2.2, we

provide the network models which are used by various researchers during the CDS

construction. Section 2.3, provides the classification of various CDS construction

algorithms. In the next section (Section 2.4), we discuss the various types of CDS

construction algorithms in detail. At the end of this chapter, in Section 2.5, we

summarize the CDS construction algorithms.

26

2.2 Network Models

Figure 2.1: UDG Containment Model representing the topology of a wireless net-
work

2.2 Network Models

Here, we discuss a network model which is used by most of the authors in their

CDS construction algorithm. This model is the most popular network model in the

community working on the virtual backbone. Consider a wireless sensor network

with n nodes, each with an omnidirectional antenna of the maximum transmission

range of R. We can model this network as a unit disk graph in the Euclidean plane

as discussed in Section 1.1 of Chapter 1. The Unit disk graphs are nothing but the

intersection of equal sized circles in the plane which represents the communication

range of each node. In unit disk graph for representing the ad hoc network there

are three kinds of models available:

1. Proximity Model : In this model, the network is represented by a graph in

which each vertex represents a node. A pair of vertices are connected by

an edge if the nodes corresponding the vertices are within some specified

Euclidean distance bound of d.

2. Intersection Model : In this model also the nodes in the network form the

vertices of the graph and two vertices are connected with an edge when

circles formed around the nodes (which represent the transmission range

27

2.3 Classification of CDS Construction Algorithms

of each node) intersect. Two tangent circles are considered as intersecting

circles.

3. Containment Model : In this model, each vertex of the graph represent a

node in the wireless network. Each vertex is at the center of a disk formed

around the corresponding node which represents the communication range

R. Two vertices u and v are connected through an edge if their Euclidean

distance is less than or equal to R. In other words, there will be an edge

between u and v if the circle centered at u contains v and the circle centered

at v contains u. Figure 2.1 shows the containment model of UDG. This

model is used by the authors in their approaches for CDS construction to

be used as a virtual backbone.

We have restricted our discussion to the Containment Model of UDG only and

skipped other network models.

2.3 Classification of CDS Construction Algorithms

In the literature, many CDS construction algorithms have been proposed by many

authors. In this section, we discuss three major types of CDS construction algo-

rithms.

2.3.1 According to the use of topology information:

According to the topology information of the network the CDS construction algo-

rithms can be divided into following two categories as shown in Figure 2.2.

1. Centralized Algorithms : These types of algorithms use the complete topology

information present at a single node. The decision is taken at a single node

where the topology information is present. These algorithms construct the

CDSs of smaller size with a better approximation factor.

2. Decentralized Algorithms : The decision taking capability is distributed among

all the nodes of the network. These algorithms are further divided into two

categories.

28

2.3 Classification of CDS Construction Algorithms

Figure 2.2: Classification of CDS construction algorithms

(a) Distributed Algorithms : The decision process is decentralized and the

decision may be taken after a number of rounds which may depend on

the size of the network.

(b) Localized Algorithms : The decision making process is fully distributed

among the nodes in the network. The decision should be taken after

a constant number of communication rounds. These algorithms are

further divided into two categories.

i. Addition-based CDS construction: These types of algorithms start

from a subset of CDS nodes and keep on adding the nodes to make

it connected to form the CDS. Addition-based algorithms further

divided into the following two categories.

A. MIS-based CDS algorithms : These types of algorithms works

in two stages. In the first stage, they construct a maximal

independent set in a distributed manner using the local infor-

mation. In the later stage, these MIS nodes are connected to

form the CDS.

B. Tree-based CDS algorithms : These type of algorithms execu-

tion start from one or more nodes called initiators. The tree

29

2.3 Classification of CDS Construction Algorithms

is grown from each of the initiators. These algorithms work on

three phases. In the first phase the initiators are chosen, in the

second phase, the trees are grown so that each node belongs to

at least one tree or adjacent to a node of any tree. In the last

phase, additional nodes are chosen to connect the trees. The

communication overhead is less in these types of algorithms

[56].

ii. Subtraction-based CDS construction: These types of algorithms

starts with all nodes in the network and then removes some of

the nodes in a systematic manner to find the CDS. Some of the al-

gorithms of this kind are the algorithm proposed by Wu and Li [25]

and Dai and Wu [57]. In general addition-based algorithms con-

structs CDSs of smaller size in comparison to subtraction-based

algorithms.

2.3.2 According to the network models:

According to the network models CDS construction algorithms are divided into

two types.

1. Undirected Graphs : The undirected graphs are further divided into two

types.

(a) General Undirected Graphs : The wireless network is modeled as a gen-

eral undirected graph G where the communication range of the nodes

are different. The approximation factor of the algorithms depends on

the maximum degree of G.

(b) Unit Disk Graph: Here, the network is modeled as a graph with nodes

having the same communication range. The approximation factor is

constant. The UDG model is more idealistic than practical.

2. Directed Graphs : Here, the transmission range of the nodes are not neces-

sarily the same. We may have a situation where a node u is adjacent to v

and v may not be adjacent to u. In this situation, the network is modeled as

30

2.4 CDS Construction Algorithms

a directed graph. Instead of normal CDS, a strongly connected dominating

set is used as a virtual backbone.

2.3.3 According to the efficiency of the algorithms:

According to the efficiency of the algorithms in forming size optimal CDSs, mes-

sage and time complexities the algorithms are classified into the following types.

1. Global Protocols : These protocols use the global topology information present

at a central point. Although these protocols construct small sized CDSs,

their maintenance cost is high.

2. Quasi-global Protocols : In these type of protocols, the computation for CDS

construction starts from a central point and spread to the entire network.

They have a small constant approximation ratio in UDG. These are not

preferable in dynamic networks due to the high overhead of global infras-

tructure.

3. Quasi-local Protocols : These protocols do not consider a central point. The

information is still spread over the network. Although these protocols have

a large constant approximation ratio in UDG, the overhead is less as the

nodes are selected in parallel to form an MIS.

4. Local Protocols : These protocols use only the local information. Each node

changes its status by looking at the information within its k-hop neigh-

borhood, where k is a small constant. These protocols have a constant

approximation ratio.

2.4 CDS Construction Algorithms

The idea to use the CDS as a virtual backbone for routing was first proposed by

Ephermides in 1987 [12]. Since then many CDS construction algorithms are re-

ported. In the literature, one can find many CDS-related problems. Depending on

the use of the CDS, the CDS construction algorithms have different design goals.

Most of the CDS construction algorithms try to minimize the size of the CDS.

31

2.4 CDS Construction Algorithms

However, finding an MCDS in a UDG is an NP-Hard problem. Therefore, most

of the authors have proposed polynomial time approximation algorithms for CDS

construction. Besides the size of the CDS, the other parameter considered in CDS

construction is its time and message complexities, fault tolerance, degree of local-

ization, etc. In the first subsection, we discuss the CDS construction algorithms

which focused on minimizing the CDS size. In the later subsections, we discuss

other CDS construction algorithms which have different design goals. The major

CDS construction algorithms found in the literature are summarized in Table 2.1.

2.4.1 CDS Construction Algorithms with the design goal

of minimizing CDS size

The CDS nodes working as the backbone of the wireless network send most of the

control messages. So by minimizing the size of the CDS can reduce the control

messages. A minimum size CDS can also reduce the global flooding caused by

the broadcast storm. Therefore, most of the CDS construction algorithms focus

on reducing the CDS size. In this subsection, we discuss the CDS construction

algorithms whose major design objective was to reduce the CDS size.

In 1998, Guha and Khullar [58] first proposed two centralized greedy algorithms

for CDS construction in general graphs. The first algorithm initially builds a

spanning tree rooted at the node with maximum degree. The tree is grown to

contain all the nodes of the network. In the end, the internal nodes and the root

node form the CDS. In the beginning, the colour of all the nodes in a network

is white. The algorithm uses a greedy function which chooses and adds a single

or a pair of nodes to the tree with maximum white neighbours. The color of the

chosen node(s) are changed to black and the colour of its (their) neighbouring

nodes are changed to grey. When all the white nodes are changed either to black

or grey, the CDS construction is over. The approximation ratio of the algorithm is

2(H(D) + 1), where H is a harmonic function. Their second algorithm constructs

the CDS in two phases. In the first phase, a dominating set is constructed and in

the second phase, these dominating sets are connected using the approximation

algorithms for the Steiner Tree problem. The second algorithm has improved the

approximation ratio to H(D) + 2. In 1997, Das et al. [26] provided a centralized

32

2.4 CDS Construction Algorithms

CDS construction. Later on, he provided its distributed version and proposed a

routing algorithm based on the constructed MCDS.

Guha’s second algorithm uses a potential function which is based on the num-

ber of pieces available in the network. It selects the vertex which reduces the

number of pieces more. Ruan et al. [59] improved the potential function and

proposed another greedy algorithm. This algorithm consists of a single step. Here

also the initial colour of each node is white. The algorithm selects either a white

or a grey node such that by colouring it to black and all its neighbours to grey,

the potential function is reduced to the maximum. The approximation ratio of

the algorithm is O(3 + lnD).

Mostly CDS construction algorithms are distributed in nature. Wu and Li [25]

proposed a distributed CDS construction algorithm in which they first construct

a trivial CDS and then delete the redundant nodes based on two sets of pruning

rules. The algorithm requires each node to have knowledge of its 2-hop neigh-

bourhood. The approximation ratio of Wu and Li’s algorithm as reported in [60]

is O(n), where n denotes the total number of nodes present in the network. The

approximation ratio of distributed algorithms reported by Stojmenovic et al. in

[61] is also O(n), while that of Das et al. [43] is O(log n). None of these algo-

rithms guarantee to generate a CDS of small size and also incur high message and

time complexities. Most of the recent distributed CDS construction algorithms

construct the CDS by first selecting an MIS and then connecting the nodes in the

MIS. Note that an MIS is also a DS in an undirected graph. Wan in [62] gave

an ID based two-phase single leader initiated distributed algorithm to construct a

CDS tree rooted at the leader. They use a spanning tree. After the construction

of the spanning tree, each node in the tree is labeled as either a dominator or a

dominatee. For UDGs, the algorithm has an approximation factor of 8|opt| + 1,

time complexity of O(n) and message complexity of O(n log n), where |opt| be-

ing the size of an optimal CDS in the network. Adjih [63] reported a localized

algorithm for CDS construction based on multipoint relays (MPR). However, no

approximation analysis of that algorithm is known till now. Based on the MPR

approach, several extensions have been reported, leading to localized MPR based

CDS construction. However, the localized approaches provided in [63] are not

highly effective without an approximation factor to ensure an upper bound on

33

2.4 CDS Construction Algorithms

CDS size.

The above-discussed CDS construction algorithms first construct the MIS and

then add more nodes to it to make it connected. Islam et al. in [64] used a

different approach to construct the CDS. In spite of constructing the MIS of the

whole network, the algorithm first constructs a small connected sub-graph of the

network and then finds the MIS of that sub-graph. Later on, it connects other

nodes to the already constructed MIS. The approximation ratio of the algorithm

is 38.

In [25], Wu and Li proposed a CDS construction algorithm which uses con-

nectivity information of 2-hop neighbours to construct the CDS quickly. The

algorithm uses a marking process in which it marks a node as true if it has two

unconnected neighbours. All the true marked nodes form the CDS. They have

also used some pruning rules to drop some of the nodes from the CDS to reduce

the CDS size further. Based on the pruning rule given by Wu and Li, Dai and Wu

proposed a general pruning rule known as Rule K [57]. This rule omits the marked

nodes which are covered by other k marked nodes. Using Rule K, they reduced the

CDS size further. The computational complexity and message complexity of the

proposed approach are O(∆2) and O(∆) respectively, where ∆ is the maximum

degree of the network.

Cardei et al. [65] improved the ID-based, two-phase, single leader initiated,

distributed algorithm proposed by Wan et al. [62]. They improved the approxi-

mation ratio to 8|opt|. Cardei’s 2-phase distributed algorithm grows from a single

leader and uses 1-hop connectivity information with degree-based heuristics and

degree aware optimization for identifying Steiner nodes as connectors in the CDS

construction. In the proposed method, the improvement is that the root not

necessarily waits for the COMPLETE messages from the farthest nodes. The

algorithm has O(n) message complexity and O(∆n) time complexity. Alzoubi’s

multiple leaders based localized distributed 2-phase approach [60] uses local infor-

mation at each node. It first constructs an MIS by comparing node IDs within a

1-hop neighbourhood without spanning a tree or selecting a leader. If the node

has the smallest ID within its 1-hop neighbourhood, it becomes a dominator. In

the next phase, the MIS nodes are interconnected to form a CDS. The algorithm

has an approximation factor of 192|opt| + 48. In a similar work [66], the authors

34

2.4 CDS Construction Algorithms

reported a distributed algorithm with a approximation ratio of 172.

Cheng et al. [67] provided a multiple leaders based CDS construction algorithm

which first selects the nodes with minimum ID in their 1-hop neighbourhood as

the leaders. These leader nodes become the root of different trees. Later, each

adjacent pair of constructed trees are connected through one or two nodes. The

approximation ratio of this algorithm is 147. In [68], Funke et al. proposed another

distributed algorithm with a better approximation ratio of 6.91. This algorithm

first constructs a connected set S and then finds an independent set I of the set S.

The nodes are represented with different colors black, grey, blue, red, and white.

The colour of the nodes belongs to I are black. The node which is in S but not in

I is of colour grey. Blue coloured nodes are in S and are connected with a node

of I. If a node is of colour red then it is a neighbour of either a grey node or a

blue node. Otherwise, the node is white in colour.

In [69] Qayyum et al. introduced a broadcast scheme called multi-point relying

(MPR). In this scheme, each host selects some set of 1-hop neighbours to cover its

2-hop neighbours. Other tree-based algorithms like Single-Initiator (SI) version

[56] and Multi-Initiator (MI) version [70] start from some initiator nodes which

are some subset of nodes and grow CDS trees from each of the initiators. These

tree-based algorithms, work in three phases. In the first phase, the initiators are

selected from the entire network. In the second phase, these initiators grow their

respective trees by adding nodes which have more neighbours. In the last phase,

additional nodes are added to connect the neighbouring trees.

Among all the approximation algorithms for distributed CDS construction in

UDGs, Li’s S-MIS algorithm [71] and Misra’s collaborative cover heuristic [72]

achieve the best approximation factor of (4.8 + ln5)|opt| + 1.2. Both these al-

gorithms, first construct an MIS and then tap the MIS nodes through a Steiner

Tree construction. The collaborative cover heuristic [72] constructs the MIS us-

ing effective coverage as a metric. However, it has a high message complexity

of O(n∆2) and time complexity of O(n). Both these algorithms use the prop-

erty that any node in a UDG is adjacent to at most five nodes. In [73], Du et

al. proposed a polynomial-time constant approximation algorithm that leads to

a CDS with bounded CDS size and guaranteed routing cost in terms of routing

path length. In the CDS constructed by their algorithm, for each pair of vertices

35

2.4 CDS Construction Algorithms

u and v there exists a routing path of maximum length of seven times the shortest

path between u and v. The algorithm produces the CDS of size less than or equal

to 148|opt|+ 208 which is very high in comparison to collaborative cover [72].

In the literature, some CDS construction algorithms with an energy model

can also be found. Wu et al. [40] first proposed a CDS construction algorithm

which uses an energy model. Using this idea Yuanyuan et al. [74] proposed a

distributed algorithm which uses energy parameters to construct a CDS. Later on,

Meghanathan [75] proposed an energy-aware CDS based data gathering algorithm

for collection, fusion, and transmission of data periodically in WSN.

The design goal of all the above-discussed algorithms was to minimize the

CDS size. Kim et al. [13] first investigated the problem of constructing quality

CDS in terms of size, backbone path length, diameter, etc. They also proposed

two centralized algorithms with constant approximation ratio. Later on Yu et al.

introduced diameter is the new quality factor for CDS construction algorithms.

They also proposed two algorithms based on new heuristics with constant approx-

imation ratio for the size and diameter of the constructed CDS.

Neiberg and Hurink [76] developed a local algorithm where any vertex in the

network itself decides whether or not it is part of the dominating set depending

only on the vertices which are a constant number of hops away from it. Their

polynomial time approximation scheme (PTAS) presents a theoretical method for

computing a dominating set of a connected UDG without the geometric embedding

of the graph in polynomial time with 1 + ε approximation (ε > 0). The processing

time of a vertex is bounded by a polynomial in the number of vertices present

in its locality (i.e. the radius of the area that needs to be explored). The better

the approximation (smaller ε) required, the larger will be the locality distance.

This, in turn, implies that the processing time for each vertex increases and that

the network messages may propagate uncontrollably far. Furthermore, the work

also includes the concept of a 2-separated collection. It emphasizes the fact that

cardinality of the dominating set can be reduced if the topology is divided into

local 2-separated collections, each separated from its nearest collection by two

intermediate hops. Our approach develops this concept and also investigates the

trade-off required between the approximation ratio and the locality that needs to

be surveyed.

36

2.4 CDS Construction Algorithms

Table 2.1: A comparative study of CDS Construction algorithms

Algorithm

Ref
Classification Model

Time and Msg

Complexity

Approximation

Ratio

Guha et al. [58] - 1 Centralized GG O(n+ |C|∆), 2(H(∆) + 1)

O(n|C|+m+ lg n)

Guha et al. [58] - 2 Centralized GG O(|C|+ (∆ + |C|)), H(∆) + 2

O(n(|C|))
Ruan et al. [59] Centralized GG - 3 + ln ∆

Li et al. [71] Centralized GG - 4.8 + ln 5

Kim et al. [13] - 1 Centralized UDG - 10.395

Kim et al. [13] - 2 Centralized UDG - 6.906

Wan et al. [62] Distributed UDG O(n), O(n lg n) 8

Carei et al. [65] Distributed UDG O(n), O(n∆) 8

Cheng et al. [67] Distributed UDG O(n), O(n lg n) 8

Zeng et al. [?] Distributed UDG O(n), O(n) 7.6

Funke et al. [68] Distributed UDG O(n), O(n2) 6.91

Alzoubi et al. [60] Distributed UDG O(n), O(n) 192

Islam et al. [64] Distributed UDG O(∆), Ω(∆) 38

Wu & Li[25] Localized GG O(∆3), Θ(m) O(n)

Dai & Wu[57] - 1 Localized UDG O(∆2), O(∆2) -

Dai & Wu[57] - 2 Localized UDG O(∆), O(∆) -

Zou et al. [77] Localized UBG - 13 + ln 10

Butenko et al. [9] Localized UBG - 22

Misra et al. [72] Distributed UDG O(n), O(n4 2) (4.8 + ln 5)|OPT |
1.2

All the above-discussed CDS construction algorithms are 2-dimensional. That

means the entire network of nodes is deployed in a 2-dimensional plane. However,

we may have a situation where the nodes of the network may be present in the

3-dimensional space. Under water sensor network is one such example. Zou et

al. [77] proposed an MCDS construction algorithm in a UBG. The algorithm first

constructs an MIS in the UBG. Initially, all the nodes are white in colour. The

37

2.4 CDS Construction Algorithms

root node is selected randomly and colored black. All its neighbours become grey.

As long as there exists a white node in the network it is coloured as black and

its neighbours become grey. Later on, the algorithm selects some other nodes to

connect the nodes in the MIS. The approximation ratio of the algorithm is 13 +

ln 10. Later, Butenko et al. [9] proposed another MCDS construction algorithm

on UBG with a constant approximation ratio of 22.

2.4.2 CDS Construction Algorithms to improve fault tol-

erance and robustness

In wireless networks, there is a greater chance of failure of nodes. Nodes may fail

due to energy depletion or external damage. In case a CDS is used as a virtual

backbone and if some of the CDS nodes fail, then the virtual backbone would

be of no use. If we do not provide enough fault-tolerance and robustness to the

dominators then we have to reconstruct a fresh CDS. In case of failure of backbone

nodes, k-connected m-dominating sets are really useful for their extended lifetime.

In 2000, Amis et al. [78] introduced the concept of k-dominating set problem.

They proved that k-dominating set is NP-complete and also proposed a distributed

cluster-based algorithm with constant time complexity. Later, Dai et al. [79]

proposed three localized algorithms on the same problem, out of that one algorithm

is deterministic and the other two algorithms are probabilistic. In 2008, Wu et

al. [80] proposed a new distributed algorithm to construct k-m-CDS with a low

message overhead, where k and m are arbitrary integers. The approximation ratio

of the proposed approach is constant for the networks with constant maximum

node degree.

In [81], Thai et al. proposed two approximation algorithms for 1-m-CDS and

k-k-CDS problems. Later, they developed an algorithm for the general k-m-CDS

problem by combining the ideas of the algorithms for the above two problems. In

[82], Zhang et al. proposed an algorithm for minimum 3-connected m-dominating

set (m ≥ 3) problem and in [83] Wang et al. constructed a minimum 4-connected

m-dominating set in UDG. In [84] Kim et al. proposed an algorithm for con-

structing (3, m)-CDS. The algorithm is a polynomial time algorithm and the

approximation ratio is also constant.

38

2.4 CDS Construction Algorithms

To improve the fault tolerance of the virtual backbone, Wang et al. [85]

proposed a 2-connected CDS construction algorithm. They also proved that

|MCDS| ≤ |opt| − 2, where opt is the minimum 2-CDS. The algorithm first con-

structs a CDS using any CDS construction algorithm. Then all the CDS blocks are

computed. Then, the shortest path in the original graph meeting the requirements

is found out. Finally, the nodes in the shortest path are added to the CDS.

2.4.3 CDS Construction Algorithms to prolong the net-

work lifetime

The major limitation of the wireless node is its battery as it is not easy to recharge

the battery of a node once deployed. In order to extend the lifetime of the network,

we need to save the energy of each node as much as possible. We can use domatic

partition for this purpose. In this sub-section, we discuss some of the major works

in this field.

In [86], Slijepcevic et al. proposed a novel energy saving scheme which selects

and activates a mutually exclusive set of nodes. Each set covers the entire network

to be monitored. In [37], a randomly distributed algorithm is proposed which takes

the decision locally to determine whether a node would be in a sleeping state or

join the DS. Each node in the network becomes a dominator rotation wise.

Cardei et al. [87] proposed another two-phased efficient algorithm to save en-

ergy. The algorithm organizes the nodes of the network into a maximum number

of disjoint sets. These disjoint sets are activated one after another. In the first

phase of this algorithm, all the nodes are coloured using a sequential colouring

algorithm. Based on the colouring, a heuristic is used to construct disjoint domi-

nating sets. Misra et al. [45] first introduced the connected dominating partition

problem. It divides the entire network of nodes into a number of disjoint CDSs.

These CDSs are rotated to reduce the energy consumption which increases the

network lifetime. The proposed algorithm first divides the entire network into a

number of clusters and find the level of each cluster approximately. The level of

nodes is compared to generate disjoint CDS trees. The main advantage of this

algorithm is that it maximizes the size of the CDP and the rotation of CDSs are

through a local switching operation.

39

2.5 Summary of CDS Construction Algorithms

Shi et al. [88] defined a unique problem named as Energy Harvest CDS (EH-

CDS) to discover the maximum number of CDSs in a static network which takes

the advantages of rechargeable nodes to become energy harvest networks.

2.5 Summary of CDS Construction Algorithms

The CDS construction algorithms found in the literature are summarized as fol-

lows:

• The workload of the CDS nodes are much more than normal nodes in a

wireless network. Therefore, by minimizing the size of the CDS can greatly

reduce the control messages. This would extend the battery power of CDS

nodes and hence indirectly extend the virtual backbone lifetime. However,

the construction of minimum CDS is an NP-Complete problem. Therefore,

researchers are interested to design approximated MCDS construction algo-

rithms of lower approximation ratio in polynomial time.

• Some CDS construction algorithms also considered the diameter of the net-

work, average backbone path length, etc. while designing the CDS construc-

tion algorithms.

• In wireless network node failure is not rare. Therefore, the CDSs should

provide fault-tolerance and robustness to the dominators. The algorithms

provide fault-tolerance and robustness to the dominators by constructing

k-m-CDSs or r-k-DSs.

• Wireless nodes are battery powered and it is not easy to recharge them as

and when required. To prolong the battery power, we can rotate the role of

dominators in a wireless network. To achieve this, algorithms for Domatic

Partition problem were proposed by the researchers.

2.6 Scope of Work

To use CDS as a virtual backbone in a wireless network (especially in WSN), the

CDS size should be as small as possible. This would help in reducing the generation

40

2.6 Scope of Work

of control messages by the CDS nodes and also extend the battery power of the

CDS nodes. Although many authors have worked on this problem to construct

CDS of smaller size, we felt that the CDS size can further be reduced. To take a

decision about a node (whether to include it in the DS or not), we use its one-hop

information. For a better approximation, the information of larger locality may be

used. However, to get the information of a larger locality we need more processing

time and propagation of more number of messages. Therefore, there is a definite

scope of investigation of the trade-off required between the approximation ratio

and the locality that needs to be surveyed. Many of the algorithms first construct

the MIS (which is a DS) and later connect the MIS nodes using some connectors

(Known as Seiner nodes) to form a CDS. There is always a chance of dropping some

of the dominators from the CDS if the dominatees dominated by the dominators

are now dominated by some of the selected Steiner nodes. Before downgrading

some of the dominators to dominatees, we should ensure the connectivity between

the remaining dominators.

Centralized algorithms provide more accurate information. However, they are

not applicable to networks of larger sizes. In the other hand, although distributed

algorithms are difficult to design, they need local information exchange only. So

the use of distributed algorithms would be more feasible. Hence, we should design

distributed CDS construction algorithms to reduce CDS size further.

In the literature, most of the works are on CDS construction. In case of failure

of even a single CDS node, either we need to reconstruct another CDS or replace

the failed CDS node with some non-CDS nodes. We find some works on CDS

rotation among some pre-computed CDSs. However, there is no work reported

on CDS maintenance. We should look for CDS maintenance algorithms for the

failure of CDS nodes either due to battery or due to any other reason like hardware

failure etc.

41

C H A P T E R 3

Centralized Construction of CDS

3.1 Overview

In a wireless ad hoc and sensor network, unlike wired networks or cellular networks,

no physical backbone infrastructure is required, thus offering new paradigms for

routing. Each node in the network broadcasts messages to all the nodes within

its transmission range. Therefore, through broadcasting, a node can reach all of

its nearby nodes with one emission. If communicating nodes are not within the

single hop radio transmission range of each other, then a communicating session is

established through multi-hop links by some intermediate nodes for relaying mes-

sages (multi-hop routing). One simple and intuitive method for multi-hop routing

between non-adjacent nodes in wireless networks is flooding, in which each node re-

transmits a packet only once after receiving it. However, owing to the low available

bandwidth of the wireless channels and the redundant retransmissions generated

through pure flooding, the latter is not used as a communication mechanism in

wireless networks. The most popular means of multi-hop routing in wireless net-

works is through the use of a virtual backbone. In this chapter, we mainly focus

on constructing a minimum size Connected Dominating Set (CDS) as a virtual

backbone of the network. A CDS is more particularly used as a data aggregation

42

3.1 Overview

backbone in remote data gathering applications to optimize network communica-

tion, which in turn saves communication energy and extends the network lifetime

[89].

A Dominating Set of a network is a subset of nodes such that any node not in

the subset is a neighbour of some element of that subset. It forms a Connected

Dominating Set if the sub-graph induced by this set is connected. In a wireless

network, as there is no fixed infrastructure and centralized management, a CDS

can be used as a virtual backbone or spine for efficient routing and connectivity

management in such networks [43]. The CDS can receive a packet from any node

in the network and can retransmit it to any other remote node. A node, which is

not in the CDS can send a message to any other node through the CDS nodes.

It first sends its message to one of its neighbouring CDS nodes. Now, the search

space for any route is reduced to the CDS. If the destination node is within the

CDS it can get the message directly, otherwise, it gets the message from one of its

neighbouring CDS nodes. Thus, during routing, broadcasting responsibility lies

only with the CDS nodes, instead of all the nodes in the network. As only the CDS

nodes maintain routing information, we can save the storage space by reducing

the CDS size. A small sized CDS makes the routing easier, reduces the com-

munication overhead, increases the convergence speed and simplifies connectivity

management. So, it is desirable to construct a minimum connected dominating set

(MCDS) of the network. However, computing MCDS is an NP-complete problem

[44]. So, only polynomial time approximation algorithms are practical for finding

out MCDS in wireless networks. For energy-constrained wireless networks, an ap-

proximation algorithm should not only construct thinner CDSs but also construct

CDSs with low computation and communication costs. Generally, the quality of

the CDS is measured by its approximation ratio, which is the ratio of its size to

that of the MCDS. In a centralized CDS construction algorithm, the construction

cost is its time complexity. The computation time of the CDS should also be

appreciably small in order to schedule speedy switches between disjoint CDSs to

extend battery life and optimize power consumption [45, 46].

Although theoretically any centralized algorithm can be implemented in a dis-

tributed fashion, with the trade-off of higher protocol overhead, distributed al-

gorithms are very important for sensor networks and MANETs. CDS must be

43

3.1 Overview

constructed efficiently to be applicable in a mobile or large scale network. Due to

the dynamism of wireless links and nodal mobility, algorithms should rely on lim-

ited knowledge of the current network topology. However, for applications where

node mobility is rare, centralized CDS construction algorithms are very useful. In

those applications, once the topology of the entire network is known to a particu-

lar node (maybe the sink node), it can construct the CDS without waiting for the

information from the other nodes in every step.

In this chapter, we propose a new centralized degree-based greedy approxi-

mation algorithm which we name as Connected Pseudo Dominating Set Using

2-Hop Information (CPDS2HI) to construct smaller CDSs. The proposed scheme

CPDS2HI works in three phases. In the first phase, a smaller maximal indepen-

dent set (MIS), designated as a pseudo-dominating set (PDS) is constructed. The

dominating set is pseudo dominating set because some of the elements may be

omitted in the final dominating set. The second phase of our algorithm constructs

an improved Steiner Tree which interconnects the PDS nodes in an improved way.

In the final phase, some of the selected PDS nodes are excluded cleverly to reduce

the CDS size further without any connectivity or coverage loss. Through simu-

lation, we also show that our proposed algorithm CPDS2HI outperforms all the

existing CDS construction algorithms in terms of CDS size and construction costs.

CPDS2HI retains the current best performance ratio of (4.8+ln 5)|opt|+1.2, |opt|
being the size of an optimal CDS of the network, and has the best time complexity

of O(D), where D is the network diameter. To the best of our knowledge, this is

the most time efficient and size-optimal CDS centralized construction algorithm.

The rest of the chapter is organized as follows. Section 3.2 discusses the mo-

tivation behind this work and state its objective. In Section 3.3, we state our

assumptions regarding the development of ad hoc network model. Section 3.4 ex-

plains our algorithm in detail. Section 3.5 provides an analysis of our algorithm.

Supporting simulation results are given in Section 3.6. Our conclusions are finally

presented in Section 3.7.

44

3.2 Motivations and Objectives

3.2 Motivations and Objectives

3.2.1 Motivations

The recent competitive distributed algorithms in [62, 65, 71, 72], to achieve con-

stant satisfactory approximation ratio, construct MISs with a specific property

stated in [71]. The characteristic property of such MISs is that any pair of com-

plementary subsets of the MIS must have a distance of exactly two hops between

them. This underlying property assists in interconnecting the MIS nodes in the

next phase. However, intuitively in an MIS, a node can be separated from its

nearest node by at most three hops. These MISs with lower cardinalities can

effectively reduce the CDS size further and improve the ratio of number of con-

nectors to number of independent nodes. The ratio has a significant impact on

the lifetime of the network. We cite an example to demonstrate this point. For

the graph shown in Fig. 3.1, these MIS selection schemes would select an MIS of

size 5 comprising nodes 1, 3, 5, 8 and 10. Each MIS node is separated from its

nearest neighbour in the MIS by exactly two hops. However, nodes 1, 4 and 9

alone can also form an MIS of the same graph. In the latter case, each MIS node

is separated from its nearest MIS neighbour by three hops. However, to construct

such MISs, at least 2-hop neighbourhood connectivity information of each node is

required. Furthermore, Steiner Tree construction [71], [90] in the post-MIS selec-

tion phase will also incur a higher number of message exchanges. Consequently,

the communication overhead will be higher.

Figure 3.1: Network to illustrate an alternative MIS construction technique

We also note that in post Steiner Tree construction, some dominators from the

45

3.2 Motivations and Objectives

Figure 3.2: Network to illustrate how PDS can improve CDS size over MIS

MIS can be downgraded to dominatees without any loss in connectivity or coverage

of the CDS. This is intuitively true when the neighbours (if any) of the MIS node

to be downgraded are covered either by some Steiner nodes or by some other MIS

nodes. We illustrate this through an example. In the graph given in Fig. 3.2 the

MIS with minimum size consists of nodes 5, 6 and 7. We will essentially require

nodes 2 and 10 to connect the MIS nodes. Thus, nodes 7, 2, 6, 10 and 5 form

the CDS. But after CDS construction, node 6 in the CDS becomes redundant.

Nodes 7, 2, 10 and 5 alone can also form a CDS. Thus, ideally, an MIS should

be treated as a pseudo-dominating set (PDS), since post-CDS construction some

of the MIS nodes can be removed from the CDS to reduce CDS size further. We

are motivated towards dealing with the issues cited above to reduce the CDS size

further at an optimal trade-off in the number of messages exchanged.

3.2.2 Objectives

Centralized Construction of CDS in a static Wireless Network: Consider

a wireless network consisting of n number of nodes deployed in a geographical

region. All the nodes are static. Each node is mounted with an omnidirectional

antenna with the transceivers having the same maximum transmission range of

R. The ad hoc network is a unit disk graph G = (V,E) where |V | = n be all the

nodes, E be the edges and edge between any pair of node exists if the distance is

at most R, taken as a unit radius. The problem is to find a minimum cardinality

CDS of G. Since this is an NP-complete problem, our aim is to develop a heuristic

based approximation algorithm to construct minimum size CDS. Assume that the

topology information of the entire network is available at a single node where the

centralized algorithm would be executed. Our objective is to design a centralized

46

3.3 Network Model for Centralized CDS Construction

CDS construction algorithm which could contribute towards improving the CDS

size further than previous approximation algorithms. In the final CDS, we should

not have any redundant dominators.

3.3 Network Model for Centralized CDS Con-

struction

The assumptions regarding the development of ad hoc network model for the

above-mentioned objective are as follows:

• Each node has a unique ID.

• All the hosts are deployed in a 2-dimensional plane and their maximum

transmission ranges are the same.

• The nodes do not have any topological information. They do not even have

knowledge of their distances to their neighbours.

• Two nodes are adjacent to each other if both are present within the com-

munication range of the other.

• The number of nodes present within the communication range of a node is

known as its degree.

• The topology information of the entire network is available at a single node

where the centralized CDS construction algorithm would run.

• The centralized CDS construction algorithm has the information of 1-hop

and 2-hoptwo neighbours of each node with their degree.

3.4 CDS Construction by CPDS2HI

Our CDS construction scheme CPDS2HI works in the following three phases:

A. Pseudo-dominating set construction

47

3.4 CDS Construction by CPDS2HI

B. Improved Steiner tree construction

C. Removal of redundant dominators

3.4.1 PDS Construction

In this phase of our proposed algorithm, we greedily construct a PDS as an MIS

with lower cardinality as compared to other MIS algorithms. Any pair of com-

plementary subsets of our PDS can have a distance of either two or three hops.

Some of the nodes in the PDS may not be included in the CDS after the second

phase depending on the coverage of the connectors connecting them to the rest of

the CDS. We construct the PDS through a simple degree-based algorithm. The

algorithm uses 1-hop and 2-hop neighbours information of each node. As an MIS

node can be separated from its nearest MIS nodes by at most three hops, it is

sufficient for a node to examine only its 1-hop and 2-hop neighbours during this

phase. In each round of the algorithm, several nodes may get elected as domina-

tors from their respective local 2-hop neighbourhood pockets; this, in turn, yields

an excellent linear time complexity. Thus, the first phase of our approach for

an optimal CDS construction maintains overall low time complexity retaining the

basic characteristic of degree-based algorithms and at the same time successfully

reduces the CDS size by reducing the cardinality of MIS. Our greedy algorithm,

for determining the PDS of a graph is given in Algorithm 1. The algorithm starts

with all nodes coloured white and produces sets of dominators (D) coloured black

and virtual-dominators (VD) coloured grey. The PDS is the union of black and

grey nodes. Some white nodes are temporarily coloured yellow during the process

to indicate that they have been removed from consideration in identifying the

dominators and virtual dominators.

Next, we compare our PDS selection approach with a popular MIS construction

algorithm reported in [62] for the same example cited there. Their dominating tree

construction mechanism forms an MIS of size 4, as shown by the black nodes in

Fig. 3.3a. The black nodes in Fig. 3.3b presents the PDS constructed from our

first phase. In the figure, the blue nodes are coloured later and should be regarded

as white at this stage. The cardinality of our PDS is 3. In our PDS, first node 5

is selected as a dominator over all its rivals in its 1-hop and 2-hop neighbourhood

48

3.4 CDS Construction by CPDS2HI

Algorithm 1 Construction of PDS of a graph

Input: A connected graph G(V,E) in which the colour of each node is white.
Output: PDS of the graph G(V,E) formed by black and grey nodes.

1: PDS ← φ, D ← φ, V D ← φ, i← 1
2: while there is a white node in G with degree > 0 do
3: Roundi ← φ
4: for all white nodes u ∈ V do
5: if u satisfies any one of the following conditions:

(i) u has a degree strictly higher than each of its 1-hop and 2-hop white
neighbours.

(ii) Each of the white nodes in the 1-hop and 2-hop neighbourhood of u has a
degree lower than or same as that of u, but u has a higher original degree
than its white 1-hop and 2-hop neighbours with the same current degree
as that of u.

(iii) None of the white nodes in the 1-hop and 2-hop neighbourhood of u has
a degree higher than that of u and there exists 1-hop or 2-hop white
neighbour(s) of u that has the same current and original degrees as that
of u, but u has the least node ID among them.

then
6: Add u to Roundi . u is selected as a dominator in the ith round
7: end if
8: end for

. Roundi contains dominator(s) selected at the ith round where no two
dominators are within a 2-hop neighbourhood of each another

9: for all white nodes v ∈ Roundi do
10: Change colour of v from white to black
11: E ← E − ((N1(v)× V) ∪ (V ×N1(v)))
12: V ← V −N1(v) . Delete all the adjacent nodes of v by changing its

colour to yellow and edges incident on them from G
13: Update degree of the remaining white nodes in G
14: end for
15: D ← D ∪Roundi
16: i← i+ 1
17: end while
18: V D ← V −D . Each of the undeleted white nodes (with degree 0) are

considered as virtual-dominators
19: All the nodes in V D are marked grey
20: PDS ← D ∪ V D . Dominators & Virtual-Dominators both form the PDS

49

3.4 CDS Construction by CPDS2HI

(a) CDS formed by dominating tree
construction (b) CDS formed by CPDS2HI

Figure 3.3: Example showing CDS Construction

Figure 3.4: CDS formed by the black dominators and blue connectors selectively
discarding grey virtual-dominators

as node 5 has a higher initial degree and a lower node ID (when compared with

node 6 which also has the same initial degree). In the next turn, node 6, with

an effective degree of 3, is chosen as a dominator. Although node 3 has the same

degree as that of node 6 in this turn, it lost to node 6 as the latter has a higher

original degree. In the next round, 0 is selected as the dominator.

We illustrate the PDS selection process with one more example. For a distri-

bution of nodes shown in Fig. 3.4, nodes 4, 6 and 10 form the PDS. In the first

round, both nodes 4 and 10 are selected as dominators. In the next round, the

remaining white node is 6 with an effective degree of zero. Hence, node 6 is chosen

as a virtual-dominator and its colour is changed to grey. The recent collabora-

tive cover heuristic [72], which produces smaller MISs than previous MIS selection

techniques [62], [65] and gives marginally better bound when the distribution of

50

3.4 CDS Construction by CPDS2HI

nodes is uniform, yields an MIS size of 3 or 5 for the same graph in Fig. 3.4 de-

pending on whether node 6 is selected as the initiator or not. Selecting a leader

to initiate the MIS construction can also add to the time and message complexi-

ties. The best distributed leader-election algorithm takes time O(n) and message

O(n log n) [91]. In addition, the border effect that arises when dealing with the

border nodes such as 3, 5, 9 and 11 is also responsible for a 67% increment in

MIS size as compared to our PDS size. Our scheme does not suffer from leader

selection problems or border effects.

3.4.2 Improved Steiner Tree Construction

In this phase, we tap all the dominators and virtual-dominators in the PDS by

selecting Steiner nodes from the dominatees greedily to construct a Steiner Tree

spanning all the nodes in the PDS. For a graph G(V,E), our objective is to find a

Steiner Tree with a minimum number of Steiner nodes from {V −PDS}, thereby

reducing the CDS size. At the beginning of this phase, each of the dominators

and virtual-dominators forms separate components. The dominatees are selected

as Steiner node based on their connection with separate components. Based on

this idea, we formulate our approach for the second phase in Algorithm 2. The

algorithm starts with a mixture of black (dominator), grey (virtual-dominator),

and white (other) nodes. It proceeds to convert some white nodes to blue (Steiner

connector) nodes. The resulting CDS consists of the sub-graph formed by the

union of the grey, black, and blue nodes.

Post-PDS construction in the network shown in Fig. 3.4, only nodes 7 and

8 are adjacent to two independent components. All the remaining dominatees

are adjacent to exactly one component (either dominator 4 or 10). Node 7 has

a connection-load of 2 higher than that of dominatees 2, 3 and 5 and a lower

node-id than dominatee 8 sharing the same connection-load and nodal degree.

So, in the first round of the improved Steiner Tree construction, node 7 is chosen

as a Steiner node over rival dominatees 2, 3, 5 (adjacent to dominator 4) and 8

(adjacent to virtual-dominator 6) to tap dominator 4 and virtual-dominator 6.

In the subsequent round, only dominatee 8 connects two separate components

(dominator 10 and component 6-7-4). Therefore, in the next round, node 8 is

51

3.4 CDS Construction by CPDS2HI

Algorithm 2 Improved Steiner Tree Construction

Input: A connected graph G(V,E) with its PDS formed by black and grey nodes.
Output: CDS of the graph G(V,E) formed by black, grey and blue nodes.

1: All (black) dominators and (grey) virtual-dominators form separate compo-
nents (as isolated vertices).

2: Dominatees which are adjacent to the same component are rival dominatees.
3: for all white dominatees u ∈ V − PDS do
4: connection-load of u← Number of independent components adjacent to u.
5: end for
6: i← 1
7: repeat
8: Roundi ← φ
9: for all white dominatees u ∈ V − PDS do

10: if u satisfies any one of the following three conditions:

(i) Vertex u has a connection-load strictly higher than each of its rival dom-
inatees.

(ii) The white rival dominatees of u has a connection-load lower than or same
as that of u, but u has higher nodal degree than the rival dominatees with
the same connection-load.

(iii) None of the white rival dominatees of u has a connection-load higher than
that of u and there exists rival dominatees that have the same connection-
load and nodal degree as that of u, but u has the least node ID among
them.

then
11: Add u to Roundi . u is selected as a connector from its white rival

dominatees in the ith round
12: end if
13: end for . Roundi contains connector(s) selected as Steiner nodes at the

ith round
14: for all connectors v ∈ Roundi do
15: Make connector v and the separate components, that v connects, a

single component.
16: Change color of v from white to blue
17: end for
18: i← i+ 1
19: Update the connection-load of each of the remaining white nodes (if any).
20: until all dominators and virtual-dominators in PDS are in the same compo-

nent
21: CDS ← connected component formed by black, grey and blue nodes. . PDS

nodes are joined to form a single component.

52

3.4 CDS Construction by CPDS2HI

selected as a connector to connect dominator 10 to the component 6-7-4. So, we

have the component 10-8-6-7-4. For the network shown in Fig. 3.3b, CPDS2HI

will choose node 8 as the first Steiner node followed by the selection of node 12 as

a connector to produce a CDS size of 5; whereas the dominating tree construction

[62] produces a CDS of size 6 as shown in Fig. 3.3a.

3.4.3 Removal of redundant dominators

This phase of CPDS2HI helps to reduce the CDS size as much as possible. In this

phase, we downgrade all the redundant (black) dominators and (grey) virtual-

dominators to (white) dominatees. The remaining virtual-dominators are up-

graded to (black) dominators. A dominating node is redundant if by removing it

from the CDS, the resultant CDS is still connected and covers all the nodes of

the network. We know already a virtual-dominator does not cover any uncovered

node, so we can omit virtual-dominators from the CDS if its removal does not

disconnect the CDS nodes. We can also omit a dominator from the CDS if the

dominatees covered by it can be covered by some other dominators/connectors

and its removal does not disconnect the CDS nodes. The CDS after discarding

the redundant dominator(s) / virtual-dominator(s) still covers the entire network,

as the downgraded nodes are covered by their adjacent connectors. Based on this,

we formulate our approach for the third phase in Algorithm 3. At the end of this

phase, the CDS is the sub-graph formed by the union of the remaining black and

blue nodes. All the remaining nodes are white.

After getting the initial CDS shown in Fig. 3.4, we can reduce the size of it

by downgrading the virtual-dominator 6 as it is connected to two connectors 7 &

8 which are adjacent. Therefore, node 6 is discarded from the CDS. The nodes

4, 7, 8 and 10 form a CDS of size 4 even without virtual-dominator 6. The CDS

size obtained from collaborative cover heuristic [72] for the same graph shown

in Fig. 3.4 will be 5 or 7 depending on the choice of the leader to initiate the

construction.

53

3.4 CDS Construction by CPDS2HI

Algorithm 3 Removal of redundant dominators

Input: A connected graph G(V,E) with its CDS formed by black, grey and blue
nodes.

Output: A probable smaller CDS of the graph G(V,E) formed by black and blue
nodes.

1: for all (grey) virtual-dominators w ∈ V D do
2: if w is connected to the CDS by one connector or by exactly two connectors

and they are adjacent to each other then
3: CDS ← CDS − {w} . Omit virtual-dominator
4: Change the colour of w from grey to white.
5: else
6: Change the color of w from grey to black.
7: end if
8: end for
9: for all (black) dominators w ∈ D do

10: if All the dominatees of w are connected to some other domina-
tors/connectors then

11: if w is connected to the CDS by one connector or by exactly two con-
nectors that are adjacent to each other then

12: CDS ← CDS − {w} . Omit dominator
13: Change the colour of w from black to white.
14: end if
15: end if
16: end for

3.4.4 Working Example

In this subsection, we illustrate the complete working procedure of our centralized

algorithm CPDS2HI through two examples.

Example 1:

We illustrate the PDS construction process with a distribution of nodes shown

in Fig. 3.5a, in which the nodes 1, 2, 5, 7, 9, 11 and 12 form the PDS. Fig. 3.5b

- 3.5f shows the construction of the PDS in stepwise. In the first round, node 7 is

selected as dominator as it is having highest degree among all its 1-hop neighbours

(3, 4, 6, 8) and 2-hop neighbours (1, 2, 5, 9, 11, 12). Nodes 10 and 13 are not

selected as dominators because they have degree lesser than their 1-hop neighbours

11 and 12 respectively. After the selection of node 7 as dominator, all its 1-hop

neighbours with their incident edges are removed from the network. In the next

54

3.4 CDS Construction by CPDS2HI

round, among the nodes with an effective degree greater than zero (10, 11, 12,

13), node 11 and 12 are selected as dominators. Although node 11 has an effective

degree the same as that of node 10, node 11 is selected because of its higher original

degree. Similarly, node 12 is chosen over 13. After the selection of dominator (7,

11, 12), the remaining white nodes 1, 2, 5, 9 are with effective degree zero. So,

these nodes are selected as virtual dominators and are coloured grey.

We illustrate the Steiner Tree construction phase through the PDS computed

in Phase 1 of this algorithm. Post PDS construction is shown in Fig. 3.6. Fig. 3.6a

shows the PDS in which we find the nodes 7, 11, 12 are dominators and nodes

1, 2, 5, 9 are virtual-dominators. The remaining nodes 3, 4, 6, 8, 10, 13 are

dominatees. The dominators and virtual-dominators form individual components.

The connection-load of the dominatees 3, 4, 6, 8, 10, 13 are 3, 2, 3, 3, 1, 1

respectively. In the first round, node 3 is chosen as the connector although its

rival dominatees 6 and 8 have same connection-load (3) and degree (3), however,

node 3 is with least node-ID. Node 3 forms a new component 1-2-3-7. Now, the

connection-load of the remaining dominatees 4, 6, 8, 10 becomes 1, 3, 3, 1, 1

respectively. So, among nodes 6 and 8, node 6 is chosen as the connector in the

second round since it has smaller node-ID (connection-load and degree are the

same as node 8). Node 6 forms a new component 1-2-3-6-7-11. In a similar way,

in the next round, node 8 is chosen as the connector and forms a single component

consisting of all the dominators and virtual-dominators.

After getting the initial CDS as shown in Fig. 3.6d, we can reduce the size of

it by downgrading the virtual-dominators 1, 2, 5 and 9 as they are connected to

the CDS by one connector. The final CDS is shown in Fig. 3.7

Example 2:

Consider a network shown in Fig. 3.8a. The nodes in the network are randomly

positioned. An edge between a pair of a node indicates that the nodes are within

their communication range. Assume that the colour of each node is white, each

node’s 1-hop and 2-hop neighbours information is known. The stepwise construc-

tion of PDS is shown in the Fig. 3.8b- 3.8e. In the first round of this phase, node

1 becomes the dominator. Nodes coloured yellow were neighbours of a dominator

and have been disconnected (removed from consideration) in identifying further

dominators. In the second round node 5, 19 and in the third round node 4, 15

55

3.4 CDS Construction by CPDS2HI

(a) Initial Network (b) Node 7 becomes dominator

(c) Adjacent nodes of node 7
with their edges removed

(d) Node 11, 12 become domi-
nators

(e) Adjacent nodes of node 11,
12 with their edges removed

(f) Nodes 1, 2, 5, 9 becomes
virtual dominator

Figure 3.5: Example showing PDS Construction (Phase 1 of CPDSTHI)

56

3.4 CDS Construction by CPDS2HI

(a) PDS of the initial network (b) Node 3 becomes connector

(c) Node 6 becomes connector (d) Node 8 becomes connector

Figure 3.6: Example showing Steiner Tree construction (Phase 2 of CPDSTHI)

Figure 3.7: Final CDS after removing redundant nodes

57

3.5 Algorithm Analysis

become dominators. At the end nod, 23 and 24 become virtual-dominators. The

stepwise construction of Steiner Tree is shown in Fig. 3.8f- 3.8k. At the start

of this phase, the dominators and virtual-dominators construct the isolated com-

ponents (marked by the red line) shown in Fig. 3.8f. In the first round of this

phase, the dominatees 16 and 17 becomes the connectors. They form new com-

ponents by merging some earlier components. In the subsequent rounds node 14,

11 and 8 become connectors. The CDS after this phase is shown in Fig. 3.8k. In

the last phase of CPDS2HI the redundant dominating nodes 19, 23 and 24 are

removed from the CDS. The virtual-dominators 23 and 24 are connected to the

CDS by one connection. Similarly, the dominator 19 is connected to the CDS by

one connector and its dominatees are adjacent to some other connectors. So these

redundant dominating nodes are downgraded to dominatees. The final CDS is

shown in Fig. 3.8l.

3.5 Algorithm Analysis

In this section, we find the approximation ratio of our proposed algorithm with

its time complexity.

Lemma 3.1 All black and grey nodes resulting from PDS construction (steps of

Algorithm 1) forms an MIS.

Proof. The while loop present in step 2 of the Algorithm 1 would continue

as long as there is a white node present in the graph with degree greater than

zero. When a node is selected as dominator, its colour is changed to black and all

its adjacent nodes are deleted. At the end of the while loop, each node is either

selected as a dominator (black in colour) or deleted (as it is adjacent to some

dominator) or its degree has become zero. The white nodes with degree zero are

changed to colour grey and also included in the PDS. In the PDS, the colour of

each node is either black or grey. The neighbours of black nodes (yellow nodes)

are not there in the PDS and the grey coloured nodes are not the neighbour of any

black coloured nodes (in that case we would have deleted it before). Hence, the

PDS is independent. The PDS is maximal because we can’t add any more nodes

to the list because the other nodes (yellow nodes) are dominated by black nodes.

58

3.5 Algorithm Analysis

(a) Initial Network (b) Node 1 becomes dominator

(c) Node 23, 24 become VD (d) Node 5, 19 become dominators

(e) PDS of initial network (f) Initial components

Figure 3.8: Example showing CDS Construction by CPDSTHI

59

3.5 Algorithm Analysis

(g) Node 16, 17 become connectors (h) Node 14 becomes connector

(i) Node 11 becomes connector (j) Node 8 becomes connector

(k) Initial CDS of the network (l) Final CDS

Figure 3.8: Example showing CDS Construction by CPDSTHI - contd...

60

3.5 Algorithm Analysis

Lemma 3.2 Improved Steiner Tree construction on a PDS (Algorithm 2) forms

a single connected component.

Proof. The algorithm for Steiner tree construction (Algorithm 2) first forms

separate components by using the black and grey nodes. Next, in each iteration,

from the remaining yellow nodes, it selects the nodes as the connector which con-

nects a maximum number of components among its rivals. So, each connector

either connects two or more components or increases the size of any existing com-

ponent at least by one. At the beginning of the Steiner tree construction phase,

each component is separated from its nearest component by a maximum of two

hops. Therefore, in each iteration, after the addition of a connector to an exist-

ing component, the distance of some component from its nearest component either

would become zero or one. That means in each iteration, the selected connector ei-

ther decreases the number of components or reduces the distance between any pair

of components. Therefore, after a finite number of iterations, all the components

would be connected and a single component would be formed.

Lemma 3.3 Removal of redundant dominators (by Algorithm 3) does not discon-

nect the CDS nodes.

Proof. Algorithm 3 removes a virtual dominator w from the CDS in the

following situations: (1) w is connected to the CDS by one connector. In this

case, w can be dominated by the connector. (2) w is connected to the CDS by two

connectors and they are adjacent. In this case, by removing w from the CDS does

not disconnect the CDS.

The algorithm also removes some of the dominators whose dominatees are

connected to some other dominators or connectors. Let s be a dominator whose

dominatees are connected to some other dominators or connectors. So, if s is

connected to the CDS either by one connector or by two connectors and they are

adjacent then by the similar argument (for virtual dominator w) we can conclude

that s can be removed from the CDS without disconnecting the CDS.

Theorem 3.1 Given a network, CPDS2HI determines the corresponding CDS in

finite time.

Proof. In Lemma 3.1 we proved that Algorithm 1 constructs an MIS. In each

iteration of Algorithm 1, a positive number of nodes are removed from considera-

61

3.5 Algorithm Analysis

tion, so the number of iteration is bounded. The process terminates when all the

remaining nodes have degree zero (and become virtual dominators).

Algorithm 2 starts with a PDS which is a dominating set of nodes (each con-

sidered as a separate component). Adding a positive number of connector nodes in

each iteration preserves the dominating set property, strictly increases the size of

one or more components so the number of iterations is bounded. The connectors

added may also reduce the number of components, and since the original graph

is connected, the process must terminate with a dominating set forming a single

component (hence a CDS).

In phase 3, any virtual dominator or dominator removed from the CDS is cho-

sen in such a way that the reduced CDS remain both connected and a dominating

set. All the virtual dominators and the dominators are considered for down grada-

tion to dominatee one at a time. As there is a finite number of virtual dominators

and dominators, so it will take a finite time.

Lemma 3.4 In any unit disk graph, the size of every MIS is upper-bounded by

3.8|opt|+ 1.2, where |opt| is the size of the MCDS in this unit disk graph.

Proof. From the result reported in [92].

Lemma 3.5 The size of Steiner nodes obtained from CPDS2HI is at most (1 +

ln 5)|opt|, where |opt| is the size of any optimal CDS.

Proof. The proof follows directly from theorem 2 of [71].

Theorem 3.2 CPDS2HI produces a CDS with size bounded by (4.8 + ln 5)|opt|+
1.2, where |opt| is the size of the MCDS.

Proof. CPDS2HI in its first phase constructs the PDS as an MIS. In the sec-

ond phase it obtains the Steiner nodes. In the last phase it removes the redundant

dominating nodes.

Therefore, we have,

|CDS| ≤ |PDS|+ |Steiner nodes|

Since PDS is an MIS, it follows from lemma 3.4 and 3.5 that:

62

3.5 Algorithm Analysis

|CDS| ≤ 3.8|opt|+ 1.2 + (1 + ln 5)|opt|

= (4.8 + ln 5)|opt|+ 1.2

Thus we conclude that the performance ratio of CPDS2HI is (4.8+ln 5)|opt|+1.2.

Theorem 3.3 CPDS2HI has time complexity of O(D) time, where D is the net-

work diameter.

Proof. In our PDS construction algorithm, multiple dominators may be se-

lected simultaneously. Each dominator is chosen from its local 2-hop neighbourhood

and all its adjacent nodes become dominatees. Then, the search for the next set of

dominators, from the remaining white nodes in the locality, commences in the sub-

sequent iterations. The worst case time for the PDS construction is the maximum

time required to select the largest stretch of dominators and virtual-dominators,

where each member is selected one after another because the former choice of the

dominator influences the choice of the next dominator. In the worst case, this

longest stretch of dominators and virtual-dominators can exist along the network

diameter, which is largest of all the shortest distances of the farthest nodes from

the first set of chosen dominators. In the worst case, as discussed, the number of

iterations is at most O(D). Therefore, the time complexity for PDS construction

is O(D) time. However, as multiple dominators can be selected in each iteration,

the average time complexity of this phase is much lower than O(D).

In the Steiner Tree construction, multiple Steiner nodes are selected simulta-

neously. Each connector is selected to connect the components surrounding it. By

a similar argument, Steiner Tree construction will also require O(D) time.

Finally, to remove the redundant dominating nodes, each PDS nodes is checked

once whether to be removed or not from the PDS. The maximum distance between

any pair of PDS nodes in the network is the diameter D of the network. If we

consider each PDS nodes one by one whether to remove or not, then the maxi-

mum required time is O(D). Hence, the proposed algorithm has an overall time

complexity of O(D) time.

63

3.6 Simulation Results

3.6 Simulation Results

In this section, we present the simulation results to show the accuracy and perfor-

mance of our CPDS2HI scheme and compare it with the existing approaches. In

the experimentation, the deployment area (M) is of dimension 100 × 100 square

units. We generate N number of hosts in the area M randomly, by choosing

each of their abscissa and ordinate using a uniform random number generator.

We used randomly generated instances because although deterministic node de-

ployment has many advantages, in large WSNs we deploy the nodes randomly to

reduce the installation cost. The transmission range of each node is considered

as R. In the network, two nodes are connected through an edge, if the distance

between them is at most R. As the transmission range of all the nodes is the same,

the underlying network is a UDG. In experimentation, we consider only connected

networks. In the following simulations, we have considered R = 25. We run the

algorithm 100 times for each of the different network sizes. The average results

are reported in the accompanying figures and table. The complete simulation is

carried out in NS-2, a network simulator for wireless networks.

In the first experiment, we perform a simple experiment to substantiate that

our PDS has smaller cardinality than the MIS selected from other CDS construc-

tion schemes. For varying sizes of connected networks in UDGs, we compare the

cardinality of our PDSs with that of the MISs obtained from collaborative cover.

The results reported in Fig. 3.9 illustrates that our PDS has smaller sizes compared

to the MIS selected from collaborative cover.

Next, we compare the Steiner nodes required to connect the independent set

nodes (i.e. the dominators and virtual-dominators) as a function of network size.

We use a metric, which is the ratio of a number of Steiner nodes to the number of

independent set nodes. We compare the results with the best existing algorithm,

collaborative cover heuristic [72], for the network sizes varying from 25 to 225 as

given there. The results are reported in Fig. 3.10. The ratio provides a good

measure for the average effective connector degree. From the figure, one can

observe that for large size networks, the ratio for collaborative cover becomes

less than 0.3, which indicates that on average a Steiner node connects more than

three independent set nodes. However, the same ratio for our CPDS2HI scheme

64

3.6 Simulation Results

50 100 150 200
6

8

10

12

Network Size

C
ar

d
in

al
it

y

MIS by Collaborative Cover
PDS by CPDS2HI

Figure 3.9: Performance comparison of PDS construction phase with MIS selection
scheme

in large network sizes tends to be around 0.5, which implies that one Steiner

node often connects nearly two PDS elements. So, the average effective connector

degree resulting from CPDS2HI scheme is less than that of collaborative cover

approach. Less effective degree of a connector indicates that the connection load

of the connector is less which helps in enhancing the battery life and hence the

network lifetime.

In the next experiment, we analyse the significance of ignoring virtual-dominators

from PDS in the post-CDS construction. The network size is varied from 25 to

250 to determine the fraction of total virtual-dominators being discarded and its

impact on the reduction of CDS size. Fig. 3.11 shows that post-Steiner Tree con-

struction, nearly all of the virtual-dominators are discarded, occasionally at most

one virtual-dominator is retained as a connector for bridging two disjoint compo-

nents of the CDS. We also find that post-Steiner Tree construction some of the

dominators are also discarded. Results reported in Fig. 3.12 describe that for net-

works of large sizes, ignoring virtual-dominators and dominators according to the

specified criteria, results in a reduction of around 1/10th of CDS size.

65

3.6 Simulation Results

50 100 150 200

0.4

0.6

0.8

1

Network Size

N
o

of
S
te

in
er

n
o
d
es

/N
o

of
in

d
ep

en
d
en

t
n
o
d
es

Collaborative Cover
CPDS2HI

Figure 3.10: Performance comparison of number of Steiner nodes and number of
independent nodes.

50 100 150 200 250

0.85

0.9

0.95

1

Network SizeN
u
m

b
er

of
ig

n
or

ed
v
ir

tu
al

-d
om

in
at

or
s

/
N

o
of

v
ir

tu
al

-d
om

in
at

or
s

in
P

D
S

CPDS2HI

Figure 3.11: Ratio of ignored virtual-dominators to total virtual-dominators in
pseudo-dominating set for different network sizes.

66

3.6 Simulation Results

50 100 150 200 250

10

12

14

16

18

Network Size

R
ed

u
ct

io
n

of
C

D
S

in
P

er
ce

n
ta

ge

CPDS2HI

Figure 3.12: Reduction in CDS size after discarding redundant dominators and
virtual-dominators in post-Steiner Tree construction for different network sizes

20 40 60 80 100

10

20

30

Network Size

C
D

S
S
iz

e

Collaborative Cover
Y. Li

Cardei
Alzoubi

CPDS2HI
GOC-MCDS-D

Figure 3.13: Performance comparison of CDS construction algorithms

Next, we compare the performance of our CPDS2HI scheme by comparing

its CDS size with the CDS sizes of the existing techniques reported in [62], [65],

[71], [72], [73]. In comparison, we considered the random distribution of nodes.

Firstly, we determine the CDS size for the networks of sizes 20, 40, 60, 80 and

100. The result shown in Fig. 3.13 demonstrates that CPDS2HI outperforms the

67

3.7 Summary

dominating tree construction technique [62], 8-approximate CDS algorithm [65],

S-MIS approach [71], collaborative cover heuristic [72] and GOC-MCDS-D [73] in

identifying a smaller size CDS. The result shows that our approach reduces the

CDS size by 16% compared to the previous best collaborative cover heuristic.

Furthermore, the S-MIS [71] algorithm involving Steiner Tree construction and

the degree-based 8-approximate CDS algorithm [65] result in 29% and 34% higher

CDS sizes respectively, when compared with CPDS2HI. Our proposed algorithm

is able to construct smaller CDS because of the tricks in Phase 2 and Phase 3. In

Phase 2, it constructs the Steiner Tree by including the nodes which can connect

a maximum number of components. In Phase 3, it omits the redundant nodes

cleverly to reduce the CDS size further without any coverage or connection loss.

3.7 Summary

In this work, we designed a new centralized degree-based greedy approximation

algorithm CPDS2HI. The CDS is constructed in three steps, firstly by Pseudo-

Dominating Set (PDS) selection the PDS nodes are selected, then through an

improved Steiner Tree construction technique the PDS nodes are connected and

finally, the redundant virtual-dominators and dominators from the CDS are dis-

carded. The constructed PDS helps in identifying the MISs of smaller sizes.

An improved Steiner Tree is constructed to connect the PDS nodes and some

of them are selectively removed in the later stage to build the CDS of smaller

size. CPDS2HI identifies non-trivial CDSs of smaller sizes for any random distri-

bution of sensor nodes. The simulation results show that our algorithm constructs

smaller sized CDSs in comparison to all other existing schemes for a wide variety

of distributions of sensor nodes. The performance ratio of our reported algorithm

is (4.8 + ln 5)|opt| + 1.2, where |opt| is the size of an optimal CDS. The results

indicate that our algorithm outperforms all the existing approaches that were sur-

veyed, in terms of CDS size. Our algorithm constructs the CDS once the topology

information is known. It does not wait for the messages from other nodes in each

stage of construction. Although the network model used in the algorithm is UDG,

our reported algorithm is applicable for CDS construction when hosts in a network

have different transmission ranges.

68

C H A P T E R 4

Distributed Construction of CDS

4.1 Overview

In a wireless network, each node of the network helps in routing by forwarding

data of other nodes and which node will forward the data is decided dynamically

based on the state of the network. WSN is ad-hoc because it does not depend on

any existing infrastructure such as a router in a wired network. In WSN, nodes

can communicate efficiently through the use of a virtual backbone. A virtual

backbone is a connected subset of nodes deployed in the entire network which

helps in routing. A pair of nodes in the network can communicate with each other

through the backbone nodes. As there is no fixed infrastructure and centralized

control in a WSN, a Connected Dominating Set (CDS) can work as a virtual

backbone for efficient routing and connectivity [43].

A Dominating Set (DS) of a network is formed by any subset of nodes of

the entire network such that, each node either belong to the subset or neighbour

of some element of that subset. If the nodes of a DS are connected, then they

form a CDS. The CDS is responsible for transmitting messages from any node

to any other node. A source node which does not belong to the CDS sends its

message to the destination node by first sending it to one of its neighbouring CDS

69

4.1 Overview

nodes. If the destination node belongs to the CDS, it gets the message directly,

otherwise, it gets the message from one of its neighbours which belongs to the

CDS. During routing, a CDS node forwards the message to its CDS neighbours

only. So, these CDS nodes only maintain the routing information. Therefore,

reduction of CDS size can save the storage space and also makes the routing

easier and faster. Also by using a smaller sized CDS as a virtual backbone the

total energy consumption of the network can be reduced if the non-CDS nodes

switch off their radio when they don’t have any data to send. Therefore, the

construction of Minimum Connected Dominating Set (MCDS) of the network is

desirable. However, MCDS construction is an NP-complete problem [44]. For this

reason, researchers are interested in polynomial time approximation algorithms for

CDS construction. As there is no centralized management in WSN, distributed

algorithms can be useful for finding the MCDS. Energy is vital in WSN because

the nodes can’t be recharged. Therefore, the distributed approximation algorithms

should construct smaller CDSs with low computation and communication costs.

The quality of CDS is measured by its approximation ratio, which is the ratio

of the size of the constructed CDS (by the proposed algorithm) to the size of

MCDS. The construction cost is also measured by the overall message and time

complexities. To extend the lifetime of the network, in spite of relying on a

single CDS, the network should switch between disjoint CDSs [45, 46]. Therefore,

to switch between CDSs quickly the computation time of the CDS construction

algorithm should be small enough.

We can construct a CDS either in centralized or in a distributed manner. Al-

though centralized algorithms provide more accurate information than distributed

algorithms, they suffer from scalability problem and hence not feasible for large

size WSNs. In centralized algorithms, the reliability of the information accumu-

lated at a centralized processor is low because of the losses involved in multi-hop

transmission. Distributed algorithms are difficult to design. They require only

local information exchange between neighbouring nodes. For any WSN in which

the average number of hops from any node to the central processor is greater than

the number of iterations required to perform a task, distributed algorithms are

more energy efficient than centralized algorithms [47]. In this chapter, we propose

a new distributed degree-based greedy approximation algorithm which we name as

70

4.2 Motivations and Objectives

Distributed Construction of Minimum Connected Dominating Set (DCMCDS)

to construct smaller CDSs.

The proposed scheme DCMCDS works in four phases and constructs the CDS

using 2-hop information only. In the first phase, it initializes the data items stored

in each individual node and creates the 1-hop and 2-hop neighbours table. In the

second phase, it constructs a Maximal Independent Set (MIS) in a distributed

manner. The MIS is designated as a Pseudo Dominating Set (PDS) because some

of the elements may be omitted in the final dominating set. In the third phase,

the algorithm constructs a Steiner Tree by adding some more nodes to the PDS,

which are needed to interconnect the PDS nodes. In the last phase, the algorithm

drops some of the selected PDS nodes to reduce the CDS size further without any

loss in coverage or connectivity. Simulation results show that DCMCDS is better

than existing CDS construction algorithms in terms of CDS size and construction

costs. The approximation ratio of the proposed algorithm, which is the best at

the current moment, is (4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of an optimal

CDS of the network. Its time complexity is O(D), where D is the diameter of the

network. It has a linear message complexity of O(nR), where n is the network size

and R is the maximum between the number of rounds needed to construct the

PDS and number of rounds needed to interconnect the PDS nodes.

The remaining of the chapter is organized as follows. In Section 4.2, we dis-

cuss the motivation behind the work and state our objective. In Section 4.3, we

state our assumptions regarding the development of ad hoc network model. In

the next section (Section 4.4), the distributed CDS construction algorithm is pre-

sented in detail. The analysis of our proposed distributed algorithm is discussed

in Section 4.5. Supporting simulation results are given in Section 4.6. Finally, we

present the summary in Section 4.7.

4.2 Motivations and Objectives

4.2.1 Motivations

Centralized algorithms provide more accurate information. However, they are not

applicable to networks of larger sizes. In the other hand, although distributed

71

4.3 Network Model for Distributed CDS Construction

algorithms are difficult to design, they need local information exchange only. So

the use of distributed algorithms would be more feasible. The centralized CDS

constructions algorithms construct small sized CDSs with better approximation

ratio, the construction is based on the assumption that the complete network

topology is known to a single node where the CDS construction is carried out.

However, this assumption is not practical in a wireless network. Therefore, we

were motivated to design distributed CDS construction algorithms which can be

used practically in a wireless network to construct smaller size CDSs.

4.2.2 Objectives

Distributed Construction of CDS in a static Wireless Network We can

construct a CDS either in centralized or in a distributed manner. Although central-

ized algorithms provide more accurate information than distributed algorithms,

they suffer from scalability problem and hence not feasible for large size WSNs.

In centralized algorithms, the reliability of the information accumulated at a cen-

tralized processor is low because of the losses involved in multi-hop transmission.

Distributed algorithms are difficult to design. They require only local informa-

tion exchange between neighbouring nodes. For any WSN in which the average

number of hops from any node to a central processor is greater than the number

of iterations required to perform a task, distributed algorithms are more energy

efficient than centralized algorithms [47]. Our second objective was to design a

distributed approximation algorithm to construct smaller size CDSs.

4.3 Network Model for Distributed CDS Con-

struction

The assumptions regarding the development of ad hoc network model for the

above-mentioned objective are as follows:

• The nodes do not have any topological information. They do not even have

knowledge of their distances to their neighbours.

• Each node has a unique ID.

72

4.4 Distributed DCMCDS scheme

• Nodes exchange HELLO messages to identify their 1-hop neighbours and

ascertain their degree. Later on, they build and maintain two tables to store

their 1-hop and 2-hop neighbours information by sending other required

messages.

• All the hosts are deployed in a 2-dimensional plane and their maximum

transmission ranges are the same.

• The resultant topology of the network is modelled as a unit disk graph

(UDG) with the transmission range of the nodes considered as one unit i.e.

two nodes are connected by a wireless link if their distance does not exceed

the transmission range. All the nodes are bidirectional.

• The communication overhead due to interference is negligible.

• The computation is partitioned into rounds, where the nodes receive the

messages sent in the previous round, execute local computations and send

messages to the neighbours in the next round.

4.4 Distributed DCMCDS scheme

In this section, we discuss the details of the distributed algorithm of DCMCDS

scheme. During the execution of the algorithm, each node of the network u,

maintains the following variables:

• colour (ucolour): This variable shows the current status of the node. The

initial colour of each node is white. The nodes change their colours either

to black, grey, yellow or blue when their status changes to either dominator,

virtual-dominator, dominatee or connector respectively.

• nodeID (uID): An ID, which is unique for each node.

• originalDegree (uodegree): This variable stores the initial degree of the node

in the graph.

73

4.4 Distributed DCMCDS scheme

• effectiveDegree (uedegree): This variable stores the effective degree of a

node u in the graph. Effecive degree of a node varies from time to time.

Effective degree of a node at a particular moment is the number of white

nodes adjacent to that node at that particular moment.

• componentID (ucID): An ID to demarcate nodes belonging to differ-

ent components. The nodes present in a single component have the same

componentID, which is the least nodeID of all the dominators / connectors

forming the component.

• 1HopNebsTable (N1(u)): A table stored at node u which records the

nodeID, colour, originalDegree and effectiveDegree of all its adjacent nodes.

• 2HopNebsTable (N2(u)): A table stored at node u which records the

nodeID, colour, originalDegree, effectiveDegree, mutualNeighbour, mnColour

for its distance-2 neighbours (excluding itself). N2(u) contains even those

2-hop neighbours of u which are also adjacent to u. The multi-valued at-

tribute mutualNeighbour in N2(u), corresponding to a 2-hop neighbour v,

contains the nodeIDs of all the nodes that are adjacent to both u and v.

The multi-valued attribute mnColour stores the colour of the corresponding

mutualNeighbour.

• cdsList (ucdsList): This list contains the nodeIDs of the members (domina-

tors / virtual-dominators / connectors) of the component, to which node u

belongs.

• connectionCount (uccnt): This variable records the number of independent

components adjacent to u.

• rivalList (urivalList): This list contains the nodeIDs of the dominatees which

are adjacent to the same component, to which node u is adjacent.

In the following sub-sections, first, we discuss each of the phases of our dis-

tributed DCMCDS scheme in detail. At the end of this section, we discuss the

phase transition of the proposed distributed algorithm.

74

4.4 Distributed DCMCDS scheme

4.4.1 Node Initialization and neighbourhood table creation

In this phase of the distributed DCMCDS scheme, each of the nodes initializes

their variables and neighbourhood tables by sending and receiving the following

messages:

• HELLO: Each node broadcasts this message to inform about its presence to

its neighbours.

• OWN INFO: Through this message, a node informs its originalDegree to its

neighbours.

• NEB INFO: This message is sent by a node, to pass on its detailed neighbour

information, to all of its neighbours.

Algorithm 4 describes the detail initialization procedure.

Algorithm 4 Node Initialization

1: Each node u, initializes its variables as 〈ucolour ← white〉, 〈ucID ← nil〉,
〈uodegree ← 0〉, 〈uedegree ← 0〉, 〈uccnt ← 0〉, 〈N1(u)← nil〉, 〈N2(u)← nil〉.

2: Each node broadcasts a HELLO message and receive the same message from

other nodes.

3: A node u ascertains its number of neighbours from the number of HELLO mes-

sages received and updates its state variable originalDegree and effectiveDegree

as uodegree ← uedegree ← number of HELLO messages received.

4: A node u after updating its state variable originalDegree, broadcasts a message

OWN INFO = 〈uID, uodegree〉.
5: A node v adjacent to u, on receiving OWN INFO message from u, adds a tuple

〈uID, white, uodegree, uodegree〉 to N1(v).

6: When all the OWN INFO messages are delivered, each node v broadcasts a

message NEB INFO = 〈vID, N1(v)〉.
7: Every node w, which is a 2-hop neighbour of u, on receiving message NEB INFO

from v, adds all tuples in N1(v) − {〈wID, white, wodegree, wodegree〉} to N2(w)

with mutualNeighbor← vID and mnColor ← white.

75

4.4 Distributed DCMCDS scheme

4.4.2 Distributed PDS construction

In this phase, each node uses its neighbourhood information (stored in its 1HopNeb-

Table and 2HopNebTable) to decide whether it can become a dominator or not. A

node on becoming a dominator, virtual-dominator or a dominatee, spread its new

status information up to two hops so that its 1-hop and 2-hop neighbours can up-

date their tables. In each round, one or more nodes become either a dominator or

a virtual-dominator. At the beginning of each round, the white nodes check their

updated 1HopNebsTable and 2HopNebsTable, to decide whether they can become

a dominator in the current round or not. When all the nodes change their colour

from white to some other colour, the PDS construction is over.

This phase constructs the PDS in a distributed manner using the following

messages:

• DOMINATOR: A node broadcasts this message when it becomes a domina-

tor.

• DOMINATEE: A node broadcasts this message when it becomes a dominatee.

• VIRTUAL DOMINATOR: A node broadcasts this message when it becomes

a virtual-dominator.

• UPDATE NEB INFO: When the effectiveDegree of a node is changed, it in-

forms this to its neighbours through this message.

• UPDATE NODE COL: This message is sent by a dominatee node, to inform

about the change in colour of any of its neighbours to its other neighbours.

The detailed procedure for distributed PDS construction is given in Algo-

rithm 5. It is worth mentioning that unlike PTAS [76], which first selects the

approximation 1 + ε and then determines the locality around a node that needs to

be explored, in our algorithm a node surveys only up to its 2-hop neighbourhood.

If we expand this locality further, then a higher number of message exchanges

will be required. Hence, this agreement of exploring up to 2-hop neighbourhood

only in our algorithm can significantly reduce CDS size without any considerable

compromise in a number of messages exchanged as is evident from our simulation

76

4.4 Distributed DCMCDS scheme

results. Besides this locality distance of two hops in our algorithm is sufficient

to divide the connected graph into 2-separated independent dominating sets (i.e.

neighbouring local smaller MISs separated from each other by two intermediate

hops). If we reduce the locality distance further, then this will result in 1-separated

local MISs that will increase the approximation ratio.

4.4.3 Distributed Steiner Tree construction

At the beginning of this phase, the colour of each node is either black, grey, or

yellow. Each of the black and grey nodes form separate components and store

their own nodeId in their cdsList as they are the only node of their component. In

each round of this phase, the CDS members (black / grey / blue nodes) of each

component send a request message to their adjacent yellow nodes (dominatees)

to get their connectionCount (number of independent components they are con-

nected to). The dominatees after getting all the request messages, reply to their

adjacent CDS members with their own connectionCount. The CDS members of

each component after getting these reply messages, prepare a list of their adjacent

dominatees (known as rivalList). They circulate their own rivalList among other

CDS members of the same component to prepare the complete rivalList of the

whole component. Once the CDS members of a component prepare the complete

rivalList, they send this rivalList along with their cdsList together, to their yellow

neighbours. The rivalList contains the node − IDs of the rival members along

with their original degree. Each of the yellow dominatees, after getting the rival

information (rivalList) of the components they are connected with, arranges the

rival nodes in non-increasing order of connectionCount. After this, it also decides

to participate in this process or not. If a yellow node finds all its rivals are con-

nected to the same component to which it is connected, and each of its 2-hop

black neighbours are present in one of the received cdsLists, then it decides not

to participate in this process anymore. If a yellow node decides to participate

and finds itself ranked first in its rivalList, then it becomes a connector. A node

on becoming a connector changes its colour to blue, forms a new component by

merging the components it connects with itself. It assigns the componentID of the

new component as the minimum of the componentIDs of the merged components

77

4.4 Distributed DCMCDS scheme

and its own nodeID. The cdsList of the new component contains all the existing

CDS member of the merged components and the connector. The connector sends

the updated component information to all its neighbours which in turn spread the

component information to all the members of the same component. The colour

of the connector is also sent to its 2-hop neighbours. All the CDS nodes start

their next round by sending the request messages for getting the connectionCount

of their yellow neighbours. This phase continues until there is no yellow node

that can still participate in this phase. This phase uses the following messages to

constructs the Steiner Tree:

• CONN INFO REQ: The black/grey/blue nodes of a component broadcast

this message to their yellow neighbours to get their connectionCount.

• CONN INFO REP: The yellow dominatees send their connectionCount to

their blue/grey/black neighbours through this message.

• COMP RIVAL INFO: The black/grey/blue nodes of a component broadcast

this message, to inform the yellow nodes about their rivalList. They also

send their cdsList with this message, which is used by the yellow nodes to

decide whether to participate in this phase or not.

• RIVAL INFO: The black/grey/blue nodes of a component, send this message

to their component members, to prepare the complete rivalList of the whole

component to which they belong.

• CONNECTOR: A node broadcasts this message when it becomes a connector

to notify its neighbours about its new role.

• UPDATE COMP INFO: Black/grey/blue nodes of a component, send this

message to their component members, to update their componentID and

cdsList.

• UPDATE NODE COL: This message is sent by a dominatee node, to inform

about the change in colour of any of its neighbours to its other neighbours.

The detailed procedure for distributed construction of Steiner Tree is given in the

Algorithm 6.

78

4.4 Distributed DCMCDS scheme

Algorithm 5 Distributed PDS Construction

Input: A connected graph G(V,E).

Output: PDS of the graph G(V,E) formed by black and grey nodes.

1: In each round, a white node u checks itself to decide whether it can be a

dominator or not.

2: A white node u, elects itself as a dominator, if any of the following conditions

apply:

(i) uedegree > vedegree∀ white nodes v ∈ N1(u) ∪N2(u).

(ii) uedegree ≥ vedegree∀ white nodes v ∈ N1(u)∪N2(u), but uodegree > wodegree∀
white nodes w ∈ N1(u) ∪N2(u) where uedegree = wedegree.

(iii) uedegree ≥ vedegree and uodegree ≥ vodegree∀ white nodes v ∈ N1(u)∪N2(u),

but uID < wID∀ white nodes w ∈ N1(u)∪N2(u) where uedegree = wedegree

and uodegree = wodegree.

3: A white node u on becoming a dominator, performs the following operations:

(i) Updates its colour as 〈ucolour ← black〉.

(ii) Updates the colour of each of its 1-hop white neighbours to yellow in

N1(u)

(iii) Update its componentID as 〈ucID ← uID〉.

(iv) Broadcasts message DOMINATOR(uID).

4: A white node v on receiving DOMINATOR(uID) message from a node u, per-

forms the following operations:

(i) Updates its state variable as 〈vcolour ← yellow〉

(ii) Updates the colour of node u in N1(v) and N2(v) as 〈ucolour ← black〉.

(iii) Changes the colour of the node x ∈ N2(v) to yellow if xcolour = white

and the mutualNeighbour of x is u.

(iv) Broadcasts message DOMINATEE(vID, uID).

5: A white node w on receiving DOMINATEE(vID, uID) message from node v,

performs the following operations:

(i) Updates its effectiveDegree as 〈wedegree ← wedegree − 1〉

(ii) Updates the colour of node v in N1(w) and N2(w) as 〈vcolour ← yellow〉.
79

4.4 Distributed DCMCDS scheme

Algorithm 5 Distributed PDS Construction - contd...

(iii) Updates the colour of node u in N2(w) as 〈ucolour ← black〉.

(iv) Updates the colour of the mutualNeighbor v in N2(w).

(v) Broadcasts UPDATE NEB INFO (wID, wedegree, vID) message .

[Note that when v becomes a dominatee it is deleted from the network

(refer to Step 12 of Algorithm 1). So, the 2-hop neighbours of w, only through

v, are no more the 2-hop neighbours. Henceforth, the 2-hop neighbours with

non-white mutual neighbour only are not considered as 2-hop neighbours of w

during dominator election process in the next round (Step 2).]

6: A yellow node w on receiving DOMINATEE(vID, uID) message from node v,

performs the following operations:

(i) Updates the colour of node v in N1(w) as 〈vcolour ← yellow〉.

(ii) Updates the colour of node u in N2(w) as 〈ucolour ← black〉.

(iii) Broadcasts UPDATE NODE COL (vID, yellow) message.

7: A node p on receiving UPDATE NEB INFO (wID, wedegree, vID) message from

w, performs the following operations:

(i) Updates the colour of node v in N1(p) and N2(p) as 〈vcolour ← yellow〉.

(ii) Updates the effectiveDegree of w in N1(p) as wedegree.

8: At any instance, when the effectiveDegree of a white node u gets

decremented to zero, it become a virtual-dominator and updates its

colour as 〈ucolour ← grey〉. It informs its new role by broadcasting

VIRTUAL DOMINATOR (uID) message to its neighbours.

9: A yellow dominatee v on receiving the DOMINATOR message from u:

(i) Updates the colour of node u in N1(v) as 〈ucolour ← black〉.

(ii) Broadcasts UPDATE NODE COL (uID, black) message.

10: A yellow node v on receiving the VIRTUAL DOMINATOR message from u:

(i) Updates the colour of node u in N1(v) as 〈ucolour ← grey〉.

(ii) Broadcasts UPDATE NODE COL (uID, grey) message.

80

4.4 Distributed DCMCDS scheme

Algorithm 5 Distributed PDS Construction - contd...

11: A node p on receiving UPDATE NODE COL (nid, ncolor) message, updates

the colour of node x ∈ N1(p) ∪N2(p) with xID = nid as 〈xcolour ← ncolor〉.
12: Each white node u broadcasts the message NEB INFO = 〈uID, N1(u)〉, if the

effective degree of any of its 1-hop neighbours has changed in the last round.

13: A node v on receiving NEB INFO = 〈vID, N1(u)〉 message from u updates its

2-hop neighbours’ information present in N2(u).

14: Phase-II terminates when eventually all nodes change their colour from white

to some other colour.

4.4.4 Distributed removal of redundant dominators

In this phase, each grey and black node checks whether to downgrade itself or not

to reduce the overall CDS size. If a grey node finds that either it is connected to the

CDS by only one CDS node or the CDS nodes (in case of multiple connections with

CDS nodes) are connected without it, then it downgrades itself to a dominatee,

otherwise, it upgrades itself to a dominator. After it upgrades/downgrades it sends

its new role to its neighbours, which in turn inform their neighbours. However,

if a black node satisfies the same condition (as discussed above for a grey node),

it has to check whether all its dominatees have some alternative dominators or

not. If it finds that all its dominatees have some alternative dominators, then

it downgrades itself to a dominatee and informs its neighbours, which in turn

inform their neighbours, otherwise, it remains as a dominator. A black node, to

find out the availability of the alternative dominators of its dominatees, sends a

request message to its dominatees and waits for their replies. If it gets the TRUE

reply from all of them, then it downgrades itself, otherwise, it cancels its previous

request by sending a cancel message to all of them. A dominatee which gets a

request message to check its alternative dominators, sends a TRUE reply to the

first dominator from which it has received the request. After that, it waits for

either the change in the status of that dominator (to which it has sent the TRUE

reply) or the cancel message from it. If it finds that the dominator has downgraded

to a dominatee, it sends a FALSE reply to all of the alternative dominator requests.

81

4.4 Distributed DCMCDS scheme

Algorithm 6 Distributed Steiner Tree Construction

Input: A connected graph G(V,E) with its PDS formed by the black and grey

nodes.

Output: Connected Dominating set of the graph G(V,E) formed by black, grey

and blue nodes.

1: At the end of PDS construction phase, each black and grey node x, forms

isolated separate components and initiates the Steiner Tree construction phase

as follows:

(i) Updates its cdsList as 〈xcdsList ← {xID}〉.

(ii) Initializes its componentID as its ID by 〈xcID ← xID〉

(iii) Broadcasts the CONN INFO REQ(xID, xcID, xcdsList) message.

2: Each yellow node u, after getting the CONN INFO REQ messages from all of

its black/grey/blue neighbours:

(i) Calculates its connectionCount (uccnt), which is the count of number of

independent components it is connected to.

(ii) Broadcasts a reply message CONN INFO REP(uccnt, uID, uodegree) to all

its black / grey / blue neighbours.

3: Each black / grey / blue node w, on receiving a CONN INFO REP message

from one of its yellow neighbours u, updates its rivalList by including the node

u in it with its details.

4: Each black / grey / blue node w, after receiving CONN INFO REP messages

from all of its yellow neighbours:

(i) Circulates its rivalList among other component members (if any) to pre-

pare the rivalList of the whole component.

(ii) After preparing the complete rivalList of the whole component, it broad-

casts the message COMP RIVAL INFO(wID, wRivalList, wcdsList).

5: Each black / grey / blue node w, to prepare the complete rivalList of the

whole component, circulates its rivalList among other component members in

the following way:

(i) If it is the only member of the component, then its rivalList is the rivalList

of the whole component.

82

4.4 Distributed DCMCDS scheme

Algorithm 6 Distributed Steiner Tree Construction - contd...

(ii) Else if it has only one component neighbour, then it sends the message

RIVAL INFO(wcID, wRivalList) to that component neighbour.

(iii) Else it waits to receive the RIVAL INFO message from all its component

neighbours except one.

6: Each black / grey / blue node z, on receiving RIVAL INFO(wcID, wrivalList)

message from the same component neighbour w:

(i) Updates its cdsList as 〈zrivalList ← zrivalList ∪ wrivalList〉.

(ii) If it has received the RIVAL INFO message from all its component neigh-

bours except one, then it sends the message RIVAL INFO(zcID, zrivalList) to

the component neighbour from which it has not received the RIVAL INFO

message.

(iii) Else if it has received the RIVAL INFO message from all its component

neighbours, then it sends the message RIVAL INFO(wcID, wRivalList) to the

component neighbours to which it has not sent the RIVAL INFO message.

7: Each yellow node after receiving COMP RIVAL INFO messages from all its

adjacent black / grey / blue nodes, orders its received rival nodes according

to the following criteria:

(i) All the dominatees are arranged in non-increasing order of their

connectionCount.

(ii) If two dominatees have the same connectionCount, then the one with a

higher originalDegree is ranked higher.

(iii) If two dominatees have the same connectionCount and originalDegree,

then the one with a smaller nodeID is ranked higher.

8: Each yellow node w, after preparing the rivalList, decides whether to further

participate in this phase or not. It participates no longer in the process if it

satisfies the following two conditions:

a) The conectionCount of itself and its rivals is 1. This indicates that the

yellow node and its rivals are adjacent to the same component.

b) There is no black node in its 2HopNebsTable that does not occur in any

of the received cdsLists from their black/grey/blue nodes.

83

4.4 Distributed DCMCDS scheme

Algorithm 6 Distributed Steiner Tree Construction - contd...

9: If a yellow node w decides to participate in the process and finds itself ranked

first in its rivalList, then it becomes a connector and executes the following

actions:

(i) Updates its state variable as 〈wcolour ← blue〉

(ii) wcdsList ← union of cdsList of the black/blue nodes it is connected with

and its own ID, wID.

(iii) wcID ← minimum of componentIDs of the black / blue nodes it is con-

nected with and its own ID, wID.

(iv) Broadcasts CONNECTOR(wID, wcID, wcdsList) message for its neighbours

to notify them about its new role.

10: A node x, on receiving CONNECTOR (wID, wcID, wcdsList) message from w,

executes the following:

(i) Update the colour of w as 〈wcolour ← blue〉 in its N1(x).

(ii) Broadcasts UPDATE NODE COL (wID, blue) to its neighbours.

(iii) If xID ∈ wcdsList

a) Update its componentID as 〈xcID ← wcID〉

b) Update its cdsList as 〈xcdsList ← wcdstList〉

c) Broadcast UPDATE COMP INFO (wcID, wcdsList) to its neighbours if

it has not send the same 〈wcID, wcdsList〉 before through any of the

CONNECTOR or UPDATE COMP INFO message.

11: A node y, on receiving UPDATE COMP INFO (wcID, wcdsList) message from

w, executes the following: If it has not send the same 〈wcID, wcdsList〉 before

through either of the CONNECTOR or UPDATE COMP INFO message and

yID ∈ wcdsList then

(i) Update its componentID as 〈ycID ← wcID〉.

(ii) Update its cdsList as 〈ycdsList ← wcdstList〉.

(iii) Broadcasts UPDATE COMP INFO (wcID, wcdsList) message.

84

4.4 Distributed DCMCDS scheme

Algorithm 6 Distributed Steiner Tree Construction - contd...

12: In the next round, each black / grey / blue node sends the

CONN INFO REQ(xID, xcID, xcdsList) message to all its neighbours again and

the procedure from step 2 onwards is repeated.

13: This phase of connector selection ends when no yellow dominatee participates

further. When no yellow node participates further, no new connectors will

be created. Due to which no more UPDATE COMP INFO messages will be

sent. So black / grey / blue nodes will not send any more CONN INFO REQ

messages.

However, if it gets a cancel message from the dominator to which it has already

sent the TRUE reply, then it sends the TRUE reply to the next dominator out

of the dominators waiting in the queue for its reply. This phase removes some of

the redundant dominating nodes in a distributed manner by using the following

messages:

• UPGRADE DOM: A grey virtual-dominator broadcasts this message to its

neighbours when it decides to change its role from a virtual-dominator to a

dominator.

• DOWNGRADE DOM: This message is sent by either a virtual-dominator or

a dominator when it decides to downgrade itself to a dominatee.

• ALT DOMINATOR REQ: A black node sends this request message to its

dominatees to know whether they have some alternative dominators or not.

• ALT DOMINATOR REP: A yellow dominatee sends a TRUE reply with this

message if it is adjacent to some dominator/connector other than the dom-

inator from which it received the ALT DOMINATOR REQ message. Other-

wise, it returns FALSE reply with this message.

• ALT DOMINATOR REQ CANCEL: If a black node receives a FALSE mes-

sage from any one of the yellow nodes through the ALT DOMINATOR REP

message it sends this message to all its yellow neighbours.

85

4.4 Distributed DCMCDS scheme

Algorithm 7 Distributed removal of redundant dominators

Input: A connected graph G(V,E) with its CDS formed by the black, grey and

blue nodes.

Output: A potentially smaller CDS of the graph G(V,E) after removing some of

the redundant dominators and virtual-dominators.

1: Each grey node v changes its state according to the following (Steps 2 - 10):

2: if there exists only one connector x ∈ N1(v) with xcolour = blue or there exists

at least two connectors x, y ∈ N1(v) ∩N2(v) with xcolour = ycolour = blue and

mutualNeighbour corresponding to x being y and vice-versa then

3: Updates its colour as 〈vcolour ← yellow〉.
4: Broadcasts the UPDATE NODE COL(vID, yellow) message.

5: Broadcasts the DOWNGRADE DOM(vID) message.

6: else

7: Updates its colour as 〈vcolour ← black〉
8: Broadcasts the UPDATE NODE COL(vID, black) message.

9: Broadcasts the UPGRADE DOM(vID) message.

10: end if

11: Each black node v may changes its state according to the following (Steps 12

- 21):

12: if there exists only one connector x ∈ N1(v) with xcolour = blue or there exists

at least two connectors x, y ∈ N1(v) ∩N2(v) with xcolour = ycolour = blue and

mutualNeighbour corresponding to x being y and vice-versa then

13: Node v broadcasts a request message ALT DOMINATOR REQ for all its

yellow neighbours and wait for their replies.

14: if It receives ALT DOMINATOR REP(TRUE) message from all its yellow

neighbours then

15: Updates its colour as 〈vcolour ← yellow〉.
16: Broadcasts the UPDATE NODE COL(vID, yellow) message.

17: Broadcasts the DOWNGRADE DOM(vID) message.

18: else

19: Broadcasts the ALT DOMINATOR REQ CANCEL message.

20: end if

21: else

22: The black node v does not change its state.

23: end if 86

4.4 Distributed DCMCDS scheme

Algorithm 7 Distributed removal of redundant dominators - contd...

24: A yellow node after receiving the first ALT DOMINATOR REQ message, sends

the ALT DOMINATOR REP(TRUE) message to that node and enters into the

waiting state if it is connected to some other dominator or connector. Other-

wise, it sends the ALT DOMINATOR REP(FALSE) message.

25: A yellow node in the waiting state remains in that state until it receives either

ALT DOMINATOR REQ CANCEL or DOWNGRADE DOM message from the

node to which it has already sent the ALT DOMINATOR REP(TRUE) message.

26: A yellow node in the waiting state, inserts the new nodes in a queue from

which it receives the new ALT DOMINATOR REQ messages.

27: When a yellow node in the waiting state receives the DOWNGRADE DOM(vID)

message:

(i) It sends ALT DOMINATOR REP(FALSE) message to the nodes in the

queue and comes out of the waiting state.

(ii) After this if it receives ALT DOMINATOR REQ messages from any node,

it sends the ALT DOMINATOR REP(FALSE) message to that node imme-

diately.

28: When a yellow node in the waiting state receives

the ALT DOMINATOR REQ CANCEL message, it sends

ALT DOMINATOR REP(TRUE) message to the first nodes in the queue

(if the queue is non-empty) and remains in the waiting state. In case of

empty queue it comes out of the waiting state.

29: A node x on receiving DOWNGRADE DOM(vID) from node v:

(i) Updates the colour of node v in N1(x) ∪N2(x) as 〈vcolour ← yellow〉

(ii) Broadcasts the UPDATE NODE COL(vID, yellow) message..

30: A node x on receiving UPGRADE DOM(vID) from node v:

(i) Updates the colour of node v in N1(x) ∪N2(x) as 〈vcolour ← black〉

(ii) Broadcasts the UPDATE NODE COL(vID, black) message.

The detail distributed procedure for removing the redundant dominating nodes

87

4.5 Algorithm Analysis

is given in the Algorithm 7.

4.4.5 Phase Transition

In any distributed algorithm, the phase transition is very important. We han-

dle the phase transition of our distributed algorithm in the following way. Each

node after creating its 1HopNebTable and 2HopNebTable should start the Dis-

tributed PDS Construction phase. A non-white node can begin the Distributed

Steiner Tree Construction phase if it finds all its neighbours are non-white. The

Distributed Steiner Tree Construction phase messages are queued by any node

that still has white neighbours until all its neighbours become non-white. These

queued messages are handled by the node when it finds all its neighbours have

become non-white. In the Distributed Steiner Tree Construction phase, each black

dominator and grey virtual-dominator keeps on sending CONNECTION INFO REQ

messages while they find some of the yellow nodes participate in this phase (See

the Step number 8 of Algorithm 6 for yellow node participation condition). If

none of the yellow nodes participates in this phase, then the black or grey nodes

will not receive any UPDATE COMP INFO messages. So, if a black or grey node

do not receive any UPDATE COMP INFO message, then it can ensure that the

Distributed Steiner Tree Construction phase is over. Any black dominator or grey

virtual-dominator which finds the Distributed Steiner Tree Construction phase is

over can start the last phase of the distributed CDS construction algorithm to

remove the redundant dominators or virtual-dominators.

4.5 Algorithm Analysis

In this section, first, we find the approximation ratio of our proposed distributed

algorithm. Later, we also find the time and message complexity of our proposed

scheme. To do this, we use certain lemmas and theorems. The detail proofs of all

of these can be found in this section.

Lemma 4.1 At the end of distributed PDS construction phase, an MIS is formed

by the black and grey nodes resulting from the Algorithm 5.

88

4.5 Algorithm Analysis

Proof. The distributed PDS construction terminates when each white node

changes its colour. Algorithm 5 ensures that every yellow node is adjacent to at

least one black node. Hence, by definition, the set of black and grey nodes form a

Dominating Set. We can also observe that when a node changes its colour to black

all its neighbours become yellow. Similarly, a node changes its colour to grey when

it finds that all its neighbours have changed their colour to yellow. So, no node in

the DS will find its neighbour in the set. So, the DS is independent. Also, DS is

maximal because every omitted (yellow) node in the graph is dominated. Hence,

by definition, the set of black and grey nodes form an MIS.

Theorem 4.1 Distributed DCMCDS constructs a PDS with the property: the

distance between any pair of complementary subsets of the PDS have a distance of

exactly two or three hops.

Proof. In order to prove this property about our constructed PDS, we first need

to show that for a |PDS| > 1, if u ∈ PDS, then the nearest black or grey neighbour

of u in terms of number of hops is separated from u by at most three hops. We

prove this by contradiction for any PDS whose cardinality is greater than 1. Let

us assume that u ∈ PDS and the nearest black or grey node to u, in terms of a

number of hops, is separated from u by more than three hops. Let v be a strictly

2-hop neighbour of u which is not adjacent to u. If such a v does not exist, then it

implies that all 2-hop neighbours of u are also its 1-hop neighbours, which in turn

indicates that u dominates the whole connected graph. This contradicts |PDS| > 1.

So, for |PDS| > 1, let v be a non-adjacent 2-hop neighbour of u.

Case I: v is either a dominator or a virtual-dominator. This implies that v

is in PDS. So, we have a node v ∈ PDS which is two hops away from u. This

contradicts our assumption. So this case is not possible.

Case II: v is neither a dominator nor a virtual-dominator. By lemma 4.1, the

PDS, which comprises all the black and grey nodes, is a maximal independent set.

This implies that v is adjacent to at least one node in the PDS. Let w ∈ PDS be

adjacent to v. This means that u and w are 3-hop neighbours. This also contradicts

our assumption. So, this case is not possible as well. Thus, our assumption does

not hold true for any u ∈ PDS. This implies that u is separated from its nearest

black or grey neighbour by at most three hops. Again, from lemma 4.1, it follows

89

4.5 Algorithm Analysis

that any two nodes in the PDS are separated by at least two hops. Therefore, any

pair of complementary subsets of the PDS have a distance of exactly two or three

hops.

Lemma 4.2 The Distributed Steiner Tree construction phase of the proposed scheme

(Algorithm 6) constructs a single connected component from the PDS obtained

from the Distributed PDS Construction phase.

Proof. Here, we focus on the situation at the end of the connector selection

phase. From the step 8 of Algorithm 6, we know that at the end of the connector

selection phase, each yellow node w satisfies:

(i) The conectionCount of itself and its rivals is 1.

(ii) There is no black node in its 2HopNebsTable that does not occur in wcdsList.

We show by contradiction that all black, blue and grey nodes are in one component.

Suppose otherwise, let A be one component and let B be a nearest different compo-

nent (minimum number of hops away). Since, we have considered the network as

a connected graph, A and B must be connected by one or a chain of yellow nodes.

Let us consider the shortest chain joining A and B.

Case I: A and B are joined by a single yellow node, let u be that node. So,

the connectionCount of u will be 2, which violates the above condition (i).

Case II: A and B are joined by a chain of two yellow nodes, say u (adjacent to

A) and v (adjacent to B). Dominatee u must be adjacent to at least one black node.

If a black node is adjacent to u belongs to B, then A and B can be joined only by

u. In that case, the shortest chain length joining components A and B will be one

which contradicts the assumption of this case. In the other hand, if the dominator

adjacent to u belongs to a separate component (other than A and B), then B no

longer remains the nearest component to A. Therefore, these contradictions imply

that u is adjacent to at least one black node that belongs to component A. Similarly,

v is adjacent to at least one black node that belongs to the component B. Hence,

without any loss of generality, we can consider the end nodes in both components

A and B to be black. Let u be adjacent to a black node x of component A and v be

adjacent to a black node y of component B. So y is a 2-hop neighbour of u. In this

90

4.5 Algorithm Analysis

case, as y belongs to a different component, u will not find y in its cdsList. This

violates the above condition (ii).

Case III: A and B are joined by a chain of yellow nodes with a chain length

greater than two. Let us consider the second yellow node from the end (nearest to

component A). If the second yellow node is adjacent to a black node belonging to

A, then we could have made this the first node in the chain contradicting this as

our choice of the shortest chain. If the second yellow node is not adjacent to A,

then it must have a black node in its 1-hop neighbourhood that is not in A. Either

this node is in B (contradicting that the shortest chain is more than 2), or it is

in some other component different from both A and B (contradicting B being the

nearest neighbouring component). So, in all these cases we have a contradiction.

Therefore, we conclude that there is only one component at the end of the process.

This concludes the proof.

Theorem 4.2 From a given a network, DCMCDS constructs a CDS in finite time

period.

Proof. We present the correctness proof of our proposed scheme in two parts.

First, we show that DCMCDS operates in a finite time and then, we prove that a

CDS is definitely obtained. In order to prove that DCMCDS works in a finite time,

we individually prove that all three phases of the algorithm namely distributed PDS

construction, distributed Steiner Tree construction and distributed removal of re-

dundant dominating nodes all takes a finite time. In each round, the distributed

PDS construction algorithm searches for a potential dominator locally from the

remaining white nodes in the local 2-hop neighbourhood. At every round, a white

node is selected as the dominator and its colour is updated to black and all its ad-

jacent nodes are updated as dominatees by changing their colours to yellow. When

any white node discovers all its adjacent nodes to be yellow, it updates itself as

virtual-dominator by changing its colour to grey. The PDS construction algorithm

terminates when there is no white node left. We now prove by contradiction that

this terminating condition must result in termination of the algorithm after a few

rounds. Let u be a node which is still white.

Case I: If all adjacent nodes of u are yellow, then u must be a virtual-

dominator. Hence, u must change its colour to grey.

91

4.5 Algorithm Analysis

Case II: If a black node v is adjacent to u, then u is a dominatee. Hence, u

must change its colour to yellow.

Case III: If there are one or more white nodes around u, then one white node

among them can be selected as dominator. If u is selected, then u changes its colour

to black, otherwise cases I, II and III are followed until u changes its colour after a

few rounds. Therefore, u will eventually change its colour from white. Thus, each

white node will eventually change its colour either to black, yellow or grey accord-

ingly completing the PDS construction. Lemma 4.2 shows that distributed Steiner

Tree construction post-PDS selection results in a single connected component after

a finite number of operations. Now, the selective removal of virtual-dominators

and dominators (Algorithm 7) takes constant time as each grey node performs

these steps independently. Hence, DCMCDS completes execution in a finite time.

We next show that the proposed algorithm determines a CDS. Lemma 4.1 proves

that the set of all black and grey nodes, obtained from PDS construction, is an

independent dominating set (MIS). Lemma 4.2 shows that the Steiner Tree con-

struction forms one connected black-blue-grey component. The latter itself is a

CDS as it connects all the nodes in the PDS. It can also be shown that after the

removal of the selected virtual-dominators and dominators the resulting compo-

nent is still a CDS as the algorithm takes care of connection and coverage while

removing these nodes from the CDS. This concludes the proof.

Lemma 4.3 In any UDG, each MIS size is upper-bounded by 3.8|opt|+ 1.2, where

|opt| is the size of the MCDS.

Proof. Directly from the result found in [92].

Lemma 4.4 Maximum number of Steiner nodes obtained from distributed DCM-

CDS is (1 + ln 5)|opt|, where |opt| is the size of any optimal CDS.

Proof. The proof is direct from the theorem 2 of [71].

Theorem 4.3 The size of the CDS obtained by DCMCDS is upper bounded by

(4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of the MCDS.

Proof. In the first phase, DCMCDS constructs the PDS as an MIS. In the

second phase, it finds the Steiner nodes to construct the Steiner Tree. In the last

92

4.5 Algorithm Analysis

phase, it removes the redundant dominating nodes (both dominators and virtual-

dominator) to reduce the CDS size.

Therefore, we have,

|CDS| ≤ |PDS|+ |Steinernodes|

As PDS is an MIS, from lemma 4.3 and 4.4 we have:

|CDS| ≤ 3.8|opt|+ 1.2 + (1 + ln 5)|opt|

= (4.8 + ln 5)|opt|+ 1.2

Therefore, the performance ratio of DCMCDS is (4.8 + ln 5)|opt|+ 1.2.

Theorem 4.4 The time complexity of DCMCDS is O(D) time or O(D) rounds,

where D is the network diameter.

Proof. In the proposed distributed scheme multiple dominators are selected in

a single round. After the selection of a dominator from its 2-hop neighbours, all its

adjacent neighbours become dominatees. In the next round, the algorithm selects

the dominators from the remaining white nodes. The worst case occurs when

in each round only one node is selected as the dominator or virtual-dominator,

that means the dominator are selected one after another. The longest stretch

of dominators and virtual-dominators should exist along the network diameter.

Note that network diameter is the largest of all the shortest distances between

any pair of nodes. In the worst case, as discussed, the number of rounds is at

most O(D). Therefore, the time complexity for PDS construction is O(D) time or

O(D) rounds. However, in the proposed scheme there is a chance of selection of

multiple dominators in each round. So on average, the time complexity is much

lower that O(D). Also in the second phase of distributed Steiner Tree construction,

there is a chance of selection of multiple Steiner nodes in each round. After the

selection of each single connector number of component decrease by one. By a

similar argument, the Steiner Tree construction will also need O(D) time or O(D)

rounds. In the last phase each dominators and virtual-dominators checks itself

whether to upgrade or downgrade. All the dominators and virtual-dominators can

do this checking simultaneously. Therefore, only one round is needed to do this.

93

4.5 Algorithm Analysis

Hence the overall running time of the proposed algorithm is O(D) time or O(D)

rounds.

Theorem 4.5 DCMCDS has message complexity of O(nR), where n is the net-

work size and R is the maximum between number of rounds needed to construct

the PDS and number of rounds needed to interconnect the PDS nodes.

Proof. We present the message complexity of each phase of the distributed

DCMCDS to find out the message complexity of the whole algorithm. In the initial-

ization and neighbourhood table creation phase, each node broadcasts the messages

HELLO, OWN INFO and NEB INFO once each. Therefore, the message complexity

of this phase is Θ(n).

In the distributed PDS construction phase, the total number of DOMINATOR

and VIRTUAL DOMINATOR messages broadcast is Θ(|PDS|). Similarly, the num-

ber of DOMINATEE messages sent is Θ(n− |PDS|). So, for each DOMINATOR or

VIRTUAL DOMINATOR message, a total of ∆ DOMINATEE and UPDATE NODE COL

messages are generated in the worst case, where ∆ is the maximum degree of all

the nodes. As we have a total of |PDS| dominators/virtual-dominators, the to-

tal number of DOMINATEE and UPDATE NODE COL messages generated will be

∆|PDS|. For each DOMINATEE message, a total of ∆ UPDATE NEB INFO and

UPDATE NODE COL messages are generated in the worst case. For n− |PDS|
DOMINATEE messages, a total of ∆(n− |PDS|) number of UPDATE NEB INFO

and UPDATE NODE COL messages will be generated.

Therefore, the total number of UPDATE NEB INFO and UPDATE NODE COL

messages = ∆(n− |PDS|) + ∆|PDS| − (n− |PDS|) = |PDS|+ ∆n− n = O(n∆).

At the end of each round of this phase, some of the white nodes (those who

find a change in the effective degree of their 1-hop neighbours in last round) broad-

cast their updated neighbour information through the NEB INFO message. So, the

message count of this message will be O(nRPDS), where RPDS is the number of

rounds needed to construct the PDS. Hence, the message complexity of this phase

is O(nRPDS), assuming RPDS is greater than ∆.

To find out the message complexity of distributed Steiner Tree construction

phase, let us assume the algorithm runs for RST rounds to interconnect the PDS

nodes. In each round, the total number of CONN INFO REQ and CONN INFO REP

94

4.5 Algorithm Analysis

messages sent is n. So the total count of these two messages in all rounds is

O(nRST). The COMP RIVAL INFO messages are sent by each node of the compo-

nents once in each round. In the first round, the count of this message is |PDS|.
It keeps on increasing up to |CDS| in the last round. So, the total count of this

message in all rounds is O(RST|CDS|). As the RIVAL INFO message is sent by the

component members twice in each round, the total count of this message in all

rounds is O(RST|CDS|). The number of CONNECTOR messages sent in all rounds

is Θ(|CDS| − |PDS|). The UPDATE COMP INFO message is sent by the compo-

nent members once in each round. So, the total number of UPDATE COMP INFO

messages sent in all rounds is O(RST|CDS|). For each dominator, ∆ number of

UPDATE NODE COL messages are sent. Total UPDATE NODE COL messages

sent in all rounds is O(n∆). Hence, the total message complexity of this phase is

O(nRST) assuming RST is greater than ∆.

In the last phase of removing redundant dominating nodes, some of the virtual-

dominators who want to upgrade themselves to dominators, send the UPGRADE DOM

message, only once. So, the total count of this message sent is O(|VD|). Simi-

larly, the dominators or virtual-dominators who want to downgrade themselves to

dominatees send the DOWNGRADE DOM message only once. So, the total count

of this message is O(|CDS|). A dominator to downgrade itself needs to send the

ALT DOMINATOR REQ message once to its dominatees. The dominatees send the

ALT DOMINATOR REP message for their dominators. So, the total count of these

two messages is O(|DS|). The dominators which do not receive the TRUE reply

through the ALT DOMINATOR REP messages from all their dominatees, withdraw

their intent to become dominatees by sending the ALT DOMINATOR REQ CANCEL

message. So, the count of this cancel message sent is O(|DS|). For each up-

grade/downgrade of virtual-dominators, and downgrade of dominators, ∆ number

of UPDATE NODE COL messages are sent. So, the total UPDATE NODE COL

messages sent is O(|DS|∆). Hence, the message complexity of this phase is O(n∆).

Thus, the overall message complexity for DCMCDS is O(nR), where R is the

maximum of RPDS and RST. This completes the proof.

95

4.6 Simulation Results

4.6 Simulation Results

In this section, we present the results of the simulations conducted by us to com-

pare our proposed scheme with the existing approaches. The WSN is modelled

in a fixed area of dimension 100× 100 square units. We have generated the hosts

randomly by choosing their abscissa and ordinate using a uniform random num-

ber generator. The transmission range of each node was taken as R for each node.

Two nodes are connected if their distance is less than equal to R. In the en-

tire experimentation, we considered connected networks only. In the simulation,

we considered R = 25. The proposed algorithm is run for 100 times for different

network sizes from 50 to 250. The average results are reported in the figures

and table. We conducted the entire simulation in NS-2, a network simulator for

wireless networks.

50 100 150 200

0.4

0.6

0.8

1

Network Size

N
o

of
S
te

in
er

n
o
d
es

/N
o

of
in

d
ep

en
d
en

t
n
o
d
es

Collaborative Cover
DCMCDS

Figure 4.1: Performance comparison of number of Steiner nodes and number of
independent nodes.

In our first experiment, we found the average effective degree of a connector.

It is the ratio of the total number of connectors to the number of accepted PDS

nodes (connector and virtual-connector). We calculated the same ratio for the

96

4.6 Simulation Results

50 100 150 200 250

0.85

0.9

0.95

1

Network SizeN
o.

of
ig

n
or

ee
d

v
ir

tu
al

d
om

in
at

or
s

/
T

ot
al

n
o.

of
v
ir

tu
al

-d
om

in
at

or
s

in
P

D
S

DCMCDS

Figure 4.2: Ratio of ignored virtual-dominators to total virtual-dominators in
pseudo-dominating set for different network sizes

best existing algorithm, collaborative cover heuristic [72], for the network sizes

varying from 25 to 225. The results are shown in fig. 4.1. We found that the

average effective degree for collaborative cover is 0.3 and for our proposed scheme

it is 0.5. That means in the collaborative cover a Steiner node connects more than

three PDS nodes whereas in our algorithm a Steiner node connects nearly two

PDS nodes. This is a significant result and it has many positive consequences.

Less effective degree of a connector indicates that the connector is less loaded.

This enhances the lifetime of the network.

In our second experiment, we did an analysis of how much PDS nodes change

their status in the post-Steiner Tree construction phase and what is its impact on

the reduction of overall CDS size. For varied network sizes from 25 to 250, we

determine the ratio of total virtual-dominators being downgraded to dominatee

and its impact on the reduction of CDS size. The results in fig. 4.2 shows that

almost all of the virtual-dominators are downgraded to dominatee. Very few of

them retained their earlier state because they are actually bridging two disjoint

components of the CDS. The results found in fig. 4.3 implies that for networks of

97

4.6 Simulation Results

50 100 150 200 250

10

12

14

16

18

Network Size

R
ed

u
ct

io
n

of
C

D
S

si
ze

in
P

er
ce

n
ta

ge

DCMCDS

Figure 4.3: Reduction in CDS size after discarding redundant dominators and
virtual-dominators post-Steiner Tree construction for different network sizes

larger sizes, by changing the status of some of the PDS nodes from dominator or

dominatee according to the specified criteria reduces the CDS size by 10%.

In the next experiment, we compare the performance of our proposed scheme

with the existing CDS constructions techniques found in [62], [65], [71], [72], [73]

in two steps. Firstly, we found the CDS for the network where the nodes are

distributed randomly. We considered the network of sizes 20, 40, 60, 80 and

100. The results found are shown in fig. 4.4. It is clear from the result that our

scheme outperforms all above mentioned CDS construction techniques in identi-

fying smaller CDSs. Our result is at least 16% better than the collaborative cover

heuristic which is best among the above mentioned algorithms. We are getting

better results because of our “Steiner Tree Construction” phase and “Removal

of redundant dominator” phase. During Steiner Tree construction we select the

connectors which connects maximum number of components. In the redundant

dominator removal phase it omits the redundant dominating nodes cleverly with-

out any loss in coverage or connectivity.

Secondly, we compare our proposed scheme with the collaborative cover based

heuristic [72], for ideal uniform distribution of nodes. Illustrations provided in [72]

shows that the coverage based heuristic achieves significantly better results in op-

98

4.6 Simulation Results

20 40 60 80 100

10

20

30

Network Size

C
D

S
S
iz

e

Collaborative Cover
Y. Li

Cardei
Alzoubi

DCMCDS
GOC-MCDS-D

Figure 4.4: Performance comparison of CDS construction algorithms

Table 4.1: Comparison with Collaborative Cover for uniform distribution of nodes

For Uniform Distribution of Nodes
Network Sizes

50 100 150 200 250
Ratio of CDS size by DMCDS to
CDS size by collaborative cover

0.74 0.75 0.67 0.78 0.84

timizing CDS size for uniform distributions by identifying optimal sub-structures

than previously reported degree-based schemes. We vary the network size from

50 to 250 and determine the ratio of CDS sizes obtained by the DCMCDS scheme

and collaborative cover heuristic for uniform distribution. The results summa-

rized in Table 4.1 illustrate that DCMCDS produces smaller CDS sizes for the

above-mentioned distribution.

A good CDS construction algorithm not only should construct the CDSs of

smaller sizes but also should construct it in less time. In our next experiment, we

compare the number of rounds needed to construct a CDS by our proposed scheme

with 8-approximate CDS algorithm [65]. We use the number of rounds as the met-

ric to compare the performance of our scheme with the existing approaches where,

a round is a total time needed by the nodes to receive messages from their neigh-

bours in the previous round, execute local computations and consequently send

messages to their neighbours. The reason for comparing with only 8-approximate

99

4.6 Simulation Results

50 100 150 200 250
10

15

20

25

Number of nodes

N
u
m

b
er

of
ro

u
n
d
s

8-approximate CDS Algorithm
DCMCDS

Figure 4.5: Performance comparison of number of rounds in CDS construction

100 200 300 400 500

200

400

600

800

1,000

Network Size

M
ea

n
n
u
m

b
er

of
m

es
sa

ge
s Other degree based

Collaborative Cover
DCMCDS

Figure 4.6: Comparison of message exchanges in CDS construction algorithms

100

4.6 Simulation Results

20 40 60 80 100

9

10

11

12

13

14

Network Density

C
D

S
S
iz

e

DCMCDS

Figure 4.7: CDS Size corresponding to DCMCDS for different network densities

CDS algorithm [65] is, it represents the class of CDS construction techniques which

first forms an MIS and then connect the MIS nodes greedily using different tech-

niques. The S-MIS approach [71] and collaborative cover heuristic [72] belongs

to this class of algorithms. However, the number of rounds required by all of the

algorithms is hardly any different. For the comparative study, we varied the size

of the networks from 25 to 250. For each of the network size, we find the number

of rounds for constructing the CDS both by DCMCDS and 8-approximate CDS

algorithm. The comparison is shown in fig. 4.5. Theoretically, the upper bound

of both these algorithm is O(D) rounds, D, being the network diameter. How-

ever, our proposed scheme needs fewer rounds than 8-approximate CDS. For large

network sizes the number of rounds required by the proposed algorithm is nearly

(2
3
)rd of that required by 8-approximate CDS. This reduces 33% execution time.

We also observe that the slope of the curve representing the proposed scheme is

significantly smaller than that for 8-approximate CDS. This means with an in-

crease in network size, the corresponding increment in the number of rounds is

much smaller for the proposed scheme than other CDS construction techniques.

Next, we analyse the message exchanges needed for CDS construction of DCM-

CDS by comparing with previous degree-based [65] and collaborative cover [72]

approaches. We vary the network size N from 100 to 500 and compare the mean

101

4.7 Summary

number of messages required. From Fig. 4.6, one can observe that the mean num-

ber of broadcasted messages by our proposed algorithm is closer to degree-based

approach [65] and better than the collaborative cover heuristic [72]. The result

is justified because the message complexity of 8-approximate degree based CDS

scheme is O(n∆) and that of collaborative cover is O(n∆2), where n is the number

of nodes in the network and ∆ is the maximum degree of a node. The message

complexity of DCMCDS is O(nR), where R is the number of rounds. Although the

message complexity of both degree-based 8-approximate CDS algorithm [65] and

DCMCDS are linear, the former requires slightly fewer messages than the latter.

This is because 8-approximate CDS technique [65] uses only 1-hop connectivity

information whereas DCMCDS uses 2-hop neighbourhood knowledge to obtain a

better CDS. So from this experiment, we can conclude that DCMCDS constructs

the CDSs of smaller sizes using a slightly higher expense of a number of messages

exchanged as compared to previous degree-based CDS construction techniques.

The advantages of DCMCDS is that it identifies much smaller CDSs than

8-approximate CDS or collaborative cover for all network sizes. In fact, after

the network density crosses a certain threshold, the CDS size will hardly change

much irrespective of how many nodes more added to the fixed deployment area.

Fig. 4.7 explains this scenario. For DCMCDS this threshold is reached earlier

than collaborative cover or 8-approximate CDS. Therefore a significant increment

in average dominator degree coupled with a marginal increment in CDS size for

DCMCDS would lead to a slower rise in energy dissipation for small as well as

large scale networks.

4.7 Summary

In this chapter, we presented our novel distributed degree-based greedy approxi-

mation algorithm for Minimum Connected Dominating Set problem where there is

no specific initiating node. The algorithm first identifies smaller size, MISs, using

PDS constructed in a distributive manner. Next, Steiner Tree is constructed to

connect the PDS nodes in a distributed manner. In the later stage, the algorithm

selectively removes some nodes of the Steiner Tree to minimize the CDS size. The

time and message complexities of our algorithm are O(D) and O(nR) respectively,

where n is the network size, D is the diameter of the network and R is the max-

102

4.7 Summary

imum between the number of rounds needed to construct the PDS and number

of rounds needed to interconnect the PDS nodes. The approximation ratio of our

proposed scheme is found to (4.8 + ln 5)|opt|+ 1.2, where |opt| is the size of an

optimal CDS. The simulation results show that the proposed algorithm constructs

smaller CDSs in comparison to all other existing CDS construction algorithms for

both uniform and random distribution of nodes. Also, it needs a small number of

rounds than all degree-based algorithms. The distributed nature of our algorithm

makes it useful for situations where a centralised approach is not suitable. The

proposed algorithm can construct CDS construction in the network of nodes with

different transmission ranges.

103

C H A P T E R 5

Distributed Maintenance of CDS

5.1 Overview

In a wireless sensor network, the nodes are operated through their battery power.

They communicate either through single hop or through multiple hops. The nodes

consume their battery power while performing computation and communication.

So, after a series of communications, the nodes become powerless and hence are not

be able to communicate. Therefore, researchers are interested to design protocols

to optimize the power consumption of the nodes to extend their battery life. Unlike

a wired network, a wireless ad hoc network does not have a predefined network

infrastructure. In a wireless network, when a node is interested to send a message

to some other node, which is not within its communication range, it broadcasts

the packet. The intermediate nodes keep on broadcasting the message until it

is not reached the destination node. This method of message passing from any

source to destination could cause broadcast storm which wastes bandwidth, time

and processing power of the nodes. One way of avoiding this problem is to use

Connected Dominating Set (CDS) as virtual backbone [43]. Each node in the

network becomes either a member of the CDS or adjacent to at least one of the

CDS nodes. Each non-CDS node should keep track of its adjacent CDS nodes.

104

5.1 Overview

To reduce the power consumption, each non-CDS node should keep its radio off

by default. When it becomes ready to send any data it should make its radio on,

send the data to its adjacent CDS node and should again make its radio off after

sending. The CDS nodes should work as a virtual backbone for sending messages

to any destination node. So, by restricting the routing activities only to CDS

nodes we are able to reduce a significant amount of messages related to routing.

The CDS nodes deplete their energy faster than non-CDS nodes due to their

extra computation and communication load. After a certain period of time, these

CDS nodes would run out of their battery and hence would not be able to handle

the routing responsibilities anymore. In that situation, either we should switch

over to a new CDS [45, 46] or repair the current CDS by finding some other non-

CDS nodes to hand over the responsibilities of the failed CDS nodes. Also, it is

a well-known fact that the battery performance can be greatly improved by using

pulsed discharge instead of constant discharge [48, 49]. It is better to handover

the routing responsibilities of the CDS node, which is about to fail in the near

future rather than waiting for its failure. This allows the recharge recovery effect

in electrochemical batteries in extending their lifetime. If a node is chargeable

from other sources like sunlight [50] then it can recharge itself for future use. A

CDS node may also fail due to processor failure, radio failure, etc. So, whatever

may be the reason for the failure of a CDS node, it may disconnect the CDS, as a

result, the data transmission may stop as well. In this scenario, it is not wise to

re-construct the CDS fresh since very few nodes are affected and reconstruction

would be performed on the entire network, so it is wastage of resource. Therefore,

it is a better approach to repair the CDS by assigning new responsibilities to some

of the non-CDS nodes and the affected CDS nodes are freed from their earlier

responsibilities. Maintenance of a CDS is initiated by a particular CDS node

when it finds that its battery power has reduced below a threshold value. The

affected CDS node after relieved as a backbone node can recharge itself from any

available resources like sunlight and make itself ready for future use. However, if

a CDS node fails due to any reason other than power failure, the nearby nodes

should take the initiatives to repair the CDS. In the literature, one can find many

approaches for CDS construction. However, algorithms for CDS maintenance are

very rare.

105

5.1 Overview

In this chapter, we propose a new distributed CDS maintenance approach

which we name as Distributed Maintenance of Connected Dominating Set (DM-

CDS). Our proposed approach handles the following situations: (1) a CDS node

finds its battery power has reduced below a threshold value due to which it is

about to fail in near future (2) a CDS node has already failed due to any rea-

son (3) a non-CDS node finds its battery power has reduced below a threshold

value due to which it is about to fail in near future (4) a non-CDS node has al-

ready failed due to any reason (5) a non-CDS node has become ready to sense

the required data after recharging. The proposed approach also takes care of the

situation in which the CDS becomes disconnected by the failure of any CDS node.

When the connectedness property of the CDS is lost due to the failure of any

CDS node, multiple components are formed containing some of the CDS nodes.

In this work, the non-CDS nodes come forward to connect these components by

changing their role. According to the knowledge of the authors, this is the first

CDS maintenance algorithm which handles multiple components. Simulation re-

sults show that the proposed algorithm is able to repair the CDS in all possible

above mentioned situations. The proposed distributed CDS maintenance scheme

only changes the current CDS by a factor of ∆, where ∆ is the maximum degree

of a node in the entire network. Its time complexity is O(C), where C is the size

of the largest component of the network during the application of the proposed

CDS maintenance algorithm. It has a linear message complexity of O(V), where

V is the network size.

The remaining of the chapter is organized as follows. In the following section

(Section 5.2), we discuss the motivation and objective of the proposed work. In

Section 5.3 we state our assumptions regarding the development of the ad hoc

network model. Section 5.4 discusses the proposed distributed CDS maintenance

algorithm in detail with a sufficient number of working examples. The analysis

of the proposed distributed algorithm is discussed in Section 5.5. Supporting

simulation results are given in Section 5.6. Finally, the conclusion is presented in

Section 5.7.

106

5.2 Motivations and Objectives

5.2 Motivations and Objectives

5.2.1 Motivations

In the literature, one can find many distributive CDS construction algorithms

like [62, 65, 71, 72] to achieve a good approximation ratio. Many researchers

are trying to improve the time and message complexities of CDS construction

algorithms also. A CDS works efficiently as long as there is no issue of battery

power in any of the CDS nodes. A node may fail either due to lack of its battery

power or due to hardware failure. In case of failure of any CDS node, the CDS

may become disconnected and may not be able to pass the sensed information to

the sink or base station. In this situation we have two options, either construct a

new CDS or repair the existing CDS. Construction of new CDS is not wise because

the current CDS is useless due to very few nodes. It is rare that a group of CDS

nodes fail together at a time. Therefore, it is wise to repair the current CDS rather

than constructing a fresh CDS in this situation. To demonstrate this point, let

us consider a graph shown in Fig. 5.1. In this graph, each node represents one

sensor node and an edge between a pair of nodes indicate that these sensor nodes

are within the communication range of each other. Suppose, the current network

contains a CDS consisting of node 2, 5, 8 as shown in Fig. 5.2. Now, suppose a

CDS node 8 fails. In that case, the current CDS would be of no use. We can

construct a new CDS as shown in Fig. 5.3. However, without constructing a new

CDS if we could replace the failed node 8 by node 7 as a CDS node (shown in

Fig. 5.4), then we can avoid many changes in the network. Clearly, it is a better

technique than constructing the entire CDS once again.

Figure 5.1: Network showing a set of nodes

Further, if a CDS node’s battery power is reduced below a level, then without

107

5.2 Motivations and Objectives

waiting for the complete discharge of its battery if we could allow that CDS node

to downgrade itself from a dominator to a dominatee then it could again work as

a dominator after recharge. This is better for the lifetime of that particular node

and hence for the entire network.

Figure 5.2: CDS of the network shown in Fig. 5.1

Figure 5.3: An alternative CDS of the network shown in Fig. 5.1

Figure 5.4: Demonstration on repair of CDS due to the failure of node 8 shown in
Fig. 5.2

The role of a dominatee is to sense the data and send the information to its

dominator. So, when a dominatee is discharged below a certain level we could

allow the dominatee to enter into sleep mode, during which it can recharge and

make itself ready to sense data again in the future. In the case of depletion of

108

5.2 Motivations and Objectives

Figure 5.5: Demonstration on repair of CDS in case of failure of a dominatee

battery power or complete failure of a dominatee, maintenance of CDS is necessary.

To understand this point, let us consider a graph as shown in Fig. 5.5 with a CDS

formed by nodes 1, 2 and 6. Node 3, 4, 5 and 7 are dominatees. Suppose node 7

either completely failed or discharged below a level. In that case, node 7 would

no longer sense the data for the network. Node 6 which was working as the

dominator of node 7 only, would not have any other dominatees. So, if node 6 can

be downgraded to a dominatee, then it can save its battery power. In the later

stage, when node 7 after recharging would be ready to work as a dominatee, node

6 can again become a dominator. From this, it is very clear that downgradation

of a dominatee to a normal node is also needed in CDS maintenance.

5.2.2 Objectives

Maintenance of CDS in a static wireless network: Consider a situation

where initially all the nodes in the wireless network are static. Let us assume,

initially, the virtual backbone (CDS) for the entire network was working fine and

then a single node failed. If the failed node is a CDS node then either the CDS

may be disconnected or the network may have some nodes which do not have

any dominator at all. In that case, the CDS need to be repaired by assigning

new responsibilities to some of the non-CDS nodes. In case of failure of the non-

CDS node, there is a need for CDS maintenance also. The CDS maintenance

algorithm needs to be executed for failure of both a CDS and non-CDS node. The

maintenance algorithm needs to be executed in only those nodes that have failed

or those that have been affected due to the failure of some other nodes. So our

third objective is to design a distributed CDS maintenance algorithm which could

repair the CDS by changing the role of very few nodes so that the new CDS would

109

5.3 Network Model for Distributed CDS Maintenance

work fine for the current state of all the nodes.

5.3 Network Model for Distributed CDS Main-

tenance

In order to describe the proposed algorithm the following assumptions are made:

1. The nodes do not have any geometric or topological information. They do

not have knowledge of their distances to their neighbours.

2. Each node has a unique ID.

3. All the nodes are deployed in a 2-D plane and their maximum communication

ranges are the same.

4. The resultant topology of the network is modelled as a unit disk graph

(UDG) with the transmission range of the nodes considered as one unit i.e.

two nodes are connected by a wireless link if their distance does not exceed

the transmission range. All the links are bidirectional.

5. The communication overhead due to interference is negligible.

6. Each node maintains its 1-hop and 2-hop neighbours’ information in it.

7. Initially some CDS is working fine.

8. The nodes belong to the CDS transmits the data and the non-CDS nodes

sense the information from their surroundings.

9. At a time only one CDS node fails due to shortage of its battery power or

any other reason.

10. Node density remains almost the same (not change drastically) during the

network lifetime.

11. The nodes whose battery power is reduced currently can always join as a

CDS node later after recharging.

110

5.4 Distributed CDS Maintenance by DMCDS

12. Each node knows its remaining battery power. The maximum and minimum

battery power of a node is 1.0 and 0.0 respectively.

5.4 Distributed CDS Maintenance by DMCDS

This section describes the proposed distributed CDS maintenance approach DM-

CDS. It is assumed that an already constructed CDS is working fine as a virtual

backbone in a wireless network and a single node either failed due to any reason

or about to fail due to depletion of its battery power. Failure of CDS nodes is

frequent since these nodes have some extra load of computation and communi-

cation, due to which their battery depletes at a faster rate. Therefore, during

processing and transmitting the data some of the CDS nodes may find their bat-

tery has been drained out below a predefined threshold value and would not able

to participate in the data transmission process. A CDS node may also fail due to

processor failure, radio failure etc. Failure of any CDS node may disconnect the

CDS, as a result, the data transmission may stop as well. In this scenario, it is

not wise to re-construct the CDS fresh since very few nodes are affected and re-

construction will be performed on the entire network, so it is wastage of resource.

Therefore, it is wise to repair the CDS by assigning new responsibilities to some

other nodes and the affected CDS nodes are made free from their earlier respon-

sibilities. Maintenance of CDS is initiated by each CDS node when it finds that

its battery power has reached below a predefined threshold value. However, if a

CDS node has already failed due to any reason, its nearby nodes should take the

initiative to repair the CDS. An affected CDS node may recharge itself from any

of the resources like sunlight and make itself ready to work as a CDS node in the

future. A non-CDS node or dominatee can also deplete its battery power below

the predefined threshold value or it can fail altogether. If a dominatee fails, and

it was the only dominatee of its dominator, then that dominator can also down-

grades itself to a dominatee. Therefore, maintenance of CDS is also necessary in

case of failure of a non-CDS node.

In the proposed approach, two thresholds for battery power are considered:

upper threshold θ1 and lower threshold θ2, where 0.0 < θ2 < θ1 < 1.0. For

example we may take θ1 = 0.4 and θ2 = 0.25. Initially, the battery power of all

111

5.4 Distributed CDS Maintenance by DMCDS

nodes is the same (1.0). So, all nodes are eligible to work as either a dominatee or

a dominator. When the battery power of a dominator is reduced below θ1, it would

not be interested to work as a CDS node and may work as a dominatee. During

that period, it may re-charge itself and again becomes eligible for a dominator

when its battery power becomes more than 90%. Similarly, a dominatee enters

into sleep mode when its battery power is reduced below θ2. In the sleep mode,

it never senses any data and only charges its battery. After re-charging, it would

be again ready to work as a dominatee when its battery power reaches above θ1.

During the discussion of CDS maintenance, it is assumed that the network

already has a CDS running successfully. All the nodes store their 1-hop and 2-

hop neighbourhood information in two tables 1HopNebTable and 2HopNebTable

respectively. Each node knows about its own status (dominator or dominatee) and

its 1-hop and 2-hop neighbours status. A node notifies to its neighbours about

any changes in either its own status or its neighbours status. Whenever a CDS

node receives any information from any of its CDS neighbours it circulates that

information immediately among its other CDS neighbours.

The proposed algorithm takes care of each of the following situations:

1. A CDS node (dominator) find its battery power has reached below the upper

threshold value.

2. A CDS node (dominator) has completely failed.

3. A non-CDS node (dominatee) finds its battery power has reached below the

lower threshold value.

4. A non-CDS node (dominatee) has completely failed.

5. After recharging, a node is interested to work as a dominatee.

In the following discussion, both dominators and connectors are considered

as CDS nodes, the non-CDS nodes are generally the dominatees if their battery

power is more than the lower threshold value.

In the proposed distributed CDS maintenance algorithm, the nodes send and

receive the following messages:

112

5.4 Distributed CDS Maintenance by DMCDS

• DOMINATOR: A node sends the message DOMINATOR when it becomes a

dominator.

• DOMINATEE: A node sends the message DOMINATEE when it becomes a

dominatee.

• CRTD: A node u sends the message CRTD (Change Role To Dominator) to

a node v to notify node v about its new role as a dominator.

• RYS: A CDS node sends the message RYS (Rescue YourSelf) to a non-CDS

node to be attached with other CDS node (if possible).

• UCI: A node sends the message UCI (Update Component-Id) to its neigh-

bours when its component-ID has changed.

• CCID: A CDS node sends the message CCID (Change Component-ID) to

its CDS neighbours to change their component-ID.

• DPROMREQ: A non-CDS node (dominatee) sends the message DPROM-

REQ (Dominatee PROMotion REQuest) to its adjacent CDS nodes to in-

form them about its willingness to become a dominator.

• GDPROMREQ: Two adjacent non-CDS nodes (dominatees) send the mes-

sage GDPROMREQ (Group Dominatee PROmotion REQuest) to their re-

spective adjacent CDS nodes to inform them about their willingness to be-

come dominators.

• GETPOW: A node sends the message GETPOW (Get Power) to its adjacent

node to inform about its current battery power and also requests for the

current battery power of its adjacent node.

• POW: A node sends the message POW (Power) to its adjacent node to

inform its current battery power.

• TOSLEEP: A dominatee node sends the message TOSLEEP to its adjacent

CDS node when its battery power has reached below a lower predefined

threshold value.

113

5.4 Distributed CDS Maintenance by DMCDS

In the following subsections, we discuss each of the cases that our proposed

algorithm handles in detail.

5.4.1 A CDS node finds its battery power has reached be-

low the upper threshold value

When a CDS node Di finds that its battery power has reached below the upper

threshold value θ1, it would be interested to downgrade itself from dominator

to dominatee to stop the quick discharge of its battery. The CDS node Di itself

initiates the CDS maintenance process by executing Algorithm 8. First, Di notifies

to its dominatees (if any) to be connected with other alternative CDS nodes by

sending the RYS message. Next, the dominator Di checks about its connectedness

with other CDS nodes. If Di finds that it is adjacent to only one CDS node Dj,

then the dominator Di becomes a dominatee and starts recharging. It notifies its

new role by sending the DOMINATEE message. If Di finds that it is adjacent

to multiple CDS nodes, then the failure of Di would make the CDS disconnected

assuming there is no cycle in between the CDS nodes. In that case, multiple

components would be created. So the dominator Di sends the message CCID to

its adjacent CDS nodes to form new components. The CDS node which receives

the CCID message changes its component-ID to its own node-ID and forwards

the new component-ID to other members of the same component by sending the

UCI message. The other members update their component-ID and forward the

UCI message. In this way, all the members of each newly created components

would update their new Component-ID which would be used later to combine all

components together. Later, the dominator Di becomes a dominatee and starts

recharging. It notifies its new role by sending the DOMINATEE message. One of

the adjacent CDS nodes of Di becomes the dominator of the new dominatee Di.

5.4.2 A CDS node has completely failed

When a CDS node fails completely due to some reason, its adjacent nodes (both

CDS and non-CDS) initiate the maintenance process. If a CDS node notices that

its adjacent CDS node has failed, it executes the Algorithm 9. When a dominator

114

5.4 Distributed CDS Maintenance by DMCDS

Algorithm 8 To be executed by any CDS node Di when its battery power has
reached below a predefined upper threshold value θ1.

1: The dominator Di sends the message RYS to all its dominatees (if any).
2: if the dominator Di is adjacent to exactly one CDS node Dj then it executes

the following steps:

(a) The dominator Di becomes a dominatee and sends the DOMINATEE
message to all its neighbours.

(b) The CDS node Dj becomes the dominator of the new dominatee Di.

3: else if the dominator Di is adjacent to more than one CDS nodes then it
executes the following steps:

(a) The dominator Di informs its adjacent CDS nodes to change their
component-IDs to their own node-IDs by sending the CCID message.

(i) The CDS nodes on receiving the message CCID, should change their
component-ID and pass their updated component-ID to their neigh-
bours by sending the message UCI.

(ii) A CDS node on receiving the message UCI, should update its
component-ID and send the same CCID message to its neighbours.

(iii) A non-CDS node (dominatee) on receiving the message UCI, updates
its dominators component-ID in its 1HopNebTable and broadcasts it
to its neighbours to update their 2HopNebTable.

(b) The dominator Di becomes a dominatee and sends the DOMINATEE
message to all its neighbours. One of the adjacent CDS nodes of Di

becomes the dominator of the new dominatee Di.

4: end if

Di finds that its adjacent CDS node Dj has failed, it first checks whether the

failed dominator was a leaf node of the CDS or not. If it was a leaf node that

means Di is the only adjacent CDS node of Dj, then Di updates its status in its

1HopNebTable. It also updates the 2HopNebTable if there was any 2-hop neighbour

of Di through Dj. However, if Di finds that there is some other CDS neighbour

of Dj present in the CDS, then it understands that the failure of Dj has created

multiple numbers of components and it is in one of them. CDS node Di creates a

new component by updating the component-ID as its own node-ID and forwards

the updated component-ID to its other adjacent CDS neighbours through UCI

message. If a CDS node receives the UCI message it updates its component-

115

5.4 Distributed CDS Maintenance by DMCDS

ID and again forwards the UCI message to its neighbours. If a non-CDS node

receives the UCI message it only updates its CDS neighbour’s component-ID in

its 1HopNebTable and forwards it to its neighbours to update their 2HopNebTable.

So, in this manner, all the members of the component to which Di belongs would

update their component-ID. In a similar manner, the other CDS neighbours of

Dj would be able to pass the new Component-ID among other members of the

same component. The adjacent non-CDS neighbours of each of the newly created

components would come to know about the change in component structure by

receiving UCI messages. In the latter stage, they would try to connect some of

the partitioned components by using Algorithm 11.

Algorithm 9 To be executed by any CDS node Di when it finds one of its CDS
neighbour Dj has failed.

1: if a dominator Di finds that its neighbouring dominator Dj has failed and

Dj’s only adjacent CDS node was Di then Di removes the node Dj from its

1HopNebTable and forwards it to its neighbours to update their 2HopNebTable.

2: else if a dominator Di finds that its adjacent dominator Dj has failed and Dj

was adjacent to other dominators also then Di executes the following steps:

(a) Removes the node Dj from its 1HopNebTable and forwards it to its neigh-

bours to update their 2HopNebTable.

(b) The dominator Di updates its own component-ID to its node-ID and pass

its new component-ID to its neighbours by sending the UCI message.

(c) A CDS node on receiving the UCI message updates its component-ID

and sends the same message UCI to its neighbours.

(d) A non-CDS node (dominatee) on receiving the UCI message, updates

its dominators component-ID in its 1HopNebTable and sends it to its

neighbours to update their 2HopNebTable.

3: end if

When a non-CDS node (dominatee) Ei either notices about the failure of any

of its adjacent CDS node Di, or receives a RYS message from one of its adjacent

CDS node Di, then it executes the Algorithm 10. In that situation, the dominatee

116

5.4 Distributed CDS Maintenance by DMCDS

Ei first checks about its adjacency with any dominator other than Di if any. If it

finds, then it becomes attached to one of it and updates its dominator information.

However, if Ei does not find any 1-hop CDS neighbour other than Di but finds a

2-hop CDS neighbour Dj through a mutual neighbour M i, then it sends a CRTD

message to M i which becomes a dominator after receiving this message. Later,

Ei become attached to the newly created dominator Di. If the non-CDS node

(dominatee) Ei neither finds a 1-hop CDS neighbour nor a 2-hop CDS neighbour

then it becomes an isolated dominatee and waits for any of the above-discussed

situations arise.

Algorithm 10 To be executed by any non-CDS node (dominatee) Ei when either
it receives a RYS message from its dominator Di or finds its dominator Di has
failed.

1: if the dominatee Ei is adjacent to some dominators other than Di then it is

attached to one of them and updates its dominator information.

2: else if the dominatee Ei is not adjacent to any dominator other than Di,

however, it has a 2-hop neighbouring dominator other than Dj then

(a) It sends a CRTD message to the mutual neighbour Mi which changes to

a dominator by sending the DOMINATOR message to all its neighbours.

(b) Dominatee Ei should be attached to the mutual neighbour Mi (now be-

comes a dominator) and updates its dominator information.

3: else

4: the dominatee Ei becomes an isolated node until one of the above condition

(1 or 2) is satisfied.

5: end if

Now, we discuss how a non-CDS (dominatee) node repairs the CDS by con-

necting multiple components. The detailed procedure can be found in the Al-

gorithm 11. In fact, when a dominatee finds that it is adjacent to more than

one components and its current battery power is more than 75% of the full bat-

tery power, it initiates the CDS maintenance process (step 1 of Algorithm 11)

by sending a promotion request DPROMREQ to its adjacent CDS nodes. In the

request, it sends the component-ids of the components it is adjacent with and its

117

5.4 Distributed CDS Maintenance by DMCDS

current battery power. Any CDS node which receives the DPROMREQ message

forwards this message to the other CDS members of the same component and also

receives DPROMREQ messages (if any) from other CDS members of the same

component. Each CDS node which receives DPROMREQ message from a dom-

inatee prepares a list of dominatees interested to become dominators and selects

the dominatee, which is connecting more number of components. In case of a tie,

it selects the dominatee with highest battery power. Finally, the CDS node sends

the reply to the selected dominatee as a CRTD message. The dominatees who re-

ceive the CRTD message from their respective CDS nodes become the dominator

and send the DOMINATOR message to notify their new status. It sends the new

component-ID, which is the minimum of the component-IDs of the components it

has connected, through the UCI message.

When a dominatee Ei finds that although it is not adjacent with CDS nodes

of different components, but one of its 1-hop adjacent neighbour Di and one of its

2-hop adjacent neighbour Dj are from different components then also Ei initiates

the maintenance process (step 2 of Algorithm 11). Suppose the mutual neighbour

of Ei and CDS node Dj is Ej. Dominatee Ei sends its power and requests for

the power of Ej through the message GETPOW. Both Ei and Ej calculates the

minimum power of Ei & Ej and send group promotion requests to their respective

adjacent CDS nodes Di and Dj through the message GDPROMREQ by providing

the calculated minimum power and component-ids of the components they are

connected with. Both the CDS nodes Di and Dj spread the group promotion

request among other component members and take the decision of selecting the

best dominatee group which can connect a maximum number of components in

the similar way as discussed above. Finally, they send the CRTD message to

the selected dominatees. The dominatees become the dominator and connect the

components exactly in a similar way as discussed above.

5.4.3 A non-CDS node (dominatee) finds its battery power

has reached below the lower threshold value

When a dominatee finds that its battery power has reached below a predefined

threshold value θ2 it enters into sleep mode by sending a message TOSLEEP

118

5.4 Distributed CDS Maintenance by DMCDS

Algorithm 11 To be executed by any non-CDS node (dominatee) when it finds
that the component-ID of its adjacent CDS node has changed.

1: if a dominatee Ei finds that it is adjacent to more than one CDS nodes with

different component-ID then it executes the following steps:

(a) The dominatee Ei should send a request to its adjacent CDS nodes by

sending the message DPROMREQ(cmid[], power) message where cmid

is an array of unique component-IDs of the CDS nodes adjacent to Ei

and power is the current battery power of dominatee Ei. The dominatee

Ei should send this request only if its battery power is above 75% of the

full battery power.

(b) A CDS node Di on receipt of message DPROMREQ from a dominate

Ei stores the request information and forwards it to its CDS neighbours,

and receives the same message (if any) from its CDS neighbours.

(i) It combines the requests from the dominatees adjacent to different

CDS nodes of the same component and prepares a list. Referring to

the prepared list, Di selects dominatees which can connect to different

components. If multiple dominatees connect same components then

their battery power is considered for their selection.

(ii) The CDS node Di sends CRTD message to the selected dominatees.

(iii) A dominatee after receiving the CRTD message becomes a domina-

tor to connect these components and sends a DOMINATOR message

to all its neighbours. It also sends the UCI message with the new

component-ID which is the minimum of component-IDs of the com-

ponents it has connected.

2: else if a dominatee Ei finds that the component-ID of its 1-hop CDS neighbour

Di and component-ID of its 2-hop CDS neighbour Dj are different then it

executes the following steps:

(a) It sends a message GETPOW(power) message to its neighbour Ej (mutual

neighbour of Ei and Dj) to notify its current power. The dominatee Ei

should send this message only if its battery power is above 75% of the

full battery power.

119

5.4 Distributed CDS Maintenance by DMCDS

Algorithm 11 To be executed by any non-CDS node (dominatee) when it finds
that the component-ID of its adjacent CDS node has changed. - contd...

(b) On receipt of GETPOW message by Ej:

(i) Ej sends a POW(power) to Ei to notify its power to Ei if its battery

power is above 75% of full battery power.

(ii) Ej sends a GDPROMREQ(cmid[], minpower) message to Dj where

cmid is an array of component IDs of the CDS nodes Di and Dj are

adjacent with and power is the minimum battery power of dominatee

Ei and Ej.

(c) On receipt of POW by Ei it sends the same message GDPROMREQ

(cmid[], minpower) to Di also.

(d) A CDS node Di on receipt of message GDPROMREQ from a dominate

Ei stores the request information, forwards it to its CDS neighbours, and

receives the same message from its CDS members.

(i) It combines the requests from different dominatee groups and selects

the dominatee group which is having more battery power.

(ii) The CDS node Di sends CRTD message to dominate Ei

(e) Dominatee Ei (or Ej) after receiving the CRTD message becomes a dom-

inator to connect these components and also notifies its group member

Ej(or Ei) by sending CRTD message. Ei (or Ej) sends a DOMINATOR

message to all its neighbours. It also sends the UCI message with the new

component-ID which is a minimum of component-IDs of the components

it has connected.

3: end if

Algorithm 12 To be executed by a non-CDS node (dominatee) Ei when its
battery power has reached below a predefined lower threshold value θ2.

1: The dominatee Ei should send the message TOSLEEP to its dominator Di.

2: The dominatee Ei enters in the sleep mode and recharge.

120

5.4 Distributed CDS Maintenance by DMCDS

5.4.4 A non-CDS node (dominatee) has completely failed

When a dominator Di either finds that one of its dominatee Ei has completely

failed or received a TOSLEEP message from one of its dominatee Ei, first it

removes the dominatee from its dominatee list. If the removed dominatee Ei was

the only dominatee of the dominator Di, then Di becomes a dominatee by sending

the DOMINATEE message to its neighbours. The detail steps can be found from

Algorithm 13.

Algorithm 13 To be run by a CDS node (dominator) Di when either it receives a
TOSLEEP message from one of its dominatee Ei or finds that one of its dominatee
Ei has failed completely.

1: Dominator Di removes Ei from its 1HopNebTable.

2: if the dominatee list of Di (after removal of Ei) is empty and Di is adjacent

to only one CDS node then

3: Node D i becomes a dominatee and informs to its neighbours about its new

role by sending the DOMINATEE message.

4: end if

to its dominator. In the sleep mode, the dominatee does not sense any information

and recharges only. The steps a dominator follows after getting the TOSLEEP

method is described in the next subsection. The exact steps can be found from

Algorithm 12.

5.4.5 After recharging, a node is interested to work as a

dominatee

In the proposed approach, when a dominator finds its battery power has reached

below the upper threshold θ1, it downgrades itself to dominatee. It remains as

dominatee unless it finds a situation where it needs to be promoted to a dominator

to connect the CDS nodes once again. In that period, it senses the data only.

However, when a dominatee finds its battery power has reached below the lower

threshold θ2, it enters into the sleep mode and does not sense any information

during that period. After recharging enough, when it finds that its battery power

has become more than the predefined upper threshold θ1, it promotes itself to

121

5.4 Distributed CDS Maintenance by DMCDS

a dominatee and notifies its neighbours by sending the DOMINATEE message.

After its promotion, when it finds that one of its adjacent nodes is a dominator,

it becomes the dominatee of one of the dominators. The detail steps can be found

in Algorithm 14.

Algorithm 14 To be executed by a normal node (neither dominator nor domina-
tee) Ei when its battery power has reached above the predefined upper threshold
of θ1.

1: The non-CDS node Ei becomes a dominatee and informs to its neighbours

about its new role by sending the DOMINATEE message.

2: if the dominatee Ei finds that it is adjacent to some dominators, it is attached

to one of them and updates its dominator information then

3: else if the dominatee Ei is not adjacent to any dominator, however it has a

2-hop neighbouring dominator Di then it executes the following:

(a) It sends a CRTD message to the mutual neighbour Mi which changes to

a dominator after receiving the CRTD message and sends the DOMINA-

TOR message to all its neighbours.

(b) Dominatee Ei is attached to the mutual neighbour Mi (now becomes a

dominator) and updates its dominator information.

4: else

5: The dominatee Ei becomes an isolated node and waits.

6: end if

5.4.6 After recharging a dominatee is looking for its dom-

inator

As discussed in the above sub-section when a node becomes a dominatee after

recharging it looks for a dominator to be attached. If it finds one dominator as

its 1-hop neighbour then its task becomes easier. However, if it does not find a

1-hop dominator, but finds a 2-hop dominator then it executes the steps given

in Algorithm 14. It sends a CRTD message to the mutual neighbour between

the 2-hop dominator and itself to change the role of the mutual neighbour from

the dominatee to dominator. After the mutual neighbour changes its role, the

122

5.4 Distributed CDS Maintenance by DMCDS

dominatee is attached to the new dominator (mutual neighbour). If a dominatee

neither finds a 1-hop CDS neighbour nor finds a 2-hop CDS neighbour it becomes

an isolated dominatee and waits for the time until it finds one of its 1-hop or 2-hop

neighbour becomes a dominator.

5.4.7 Working Example

This subsection illustrates the proposed distributed CDS maintenance approach

through a network diagram shown in Fig. 5.6. The nodes in the diagram represent

randomly placed sensor nodes. In the above network, any two nodes are connected

through an edge if they are within the communication range of each other.

Figure 5.6: Initial Network

Assume that the communication range of all the nodes is the same. Let us

also assume that the nodes {0, 5, 6, 8, 12} have formed a CDS as shown in

the Fig. 5.7. Note that the black coloured nodes are dominators (CDS nodes)

and the grey coloured nodes are dominatees (non-CDS nodes). The remaining of

the subsection discusses the proposed approach by considering one example from

each of the cases as described at the beginning of the current section. For easier

understanding, without loss of generality let us assume that from the beginning

node 0, 5, 6, 8, and 12 are providing the service of dominators to the group of

nodes {2, 4}, {9, 11}, {1, 7}, {3}, and {10} respectively.

123

5.4 Distributed CDS Maintenance by DMCDS

Figure 5.7: Black coloured nodes forming the CDS of the network shown in Fig. 5.6

Case 1: Battery power of CDS node 0 (shown in Fig. 5.7) has reduced below

the predefined upper threshold value θ1.

First, the dominator 0 would send an RYS message to its dominatees 2 and

4. In this case, node 0 is a CDS node (dominator) which is adjacent to only one

CDS node 12. Node 0 would become a dominatee and node 12 would become its

dominator. Node 4 after getting the RYS message would find that it is adjacent

to another alternative dominator 8, so it would update its dominator from 0 to

8. Node 2 after getting the RYS message would find that it is not adjacent to

any alternative dominator other than 0. However, its 2-hop neighbour 8 is a CDS

node. Node 2 would send a CRTD message to the mutual neighbour 3, which

becomes a dominator after getting the CRTD message. When node 3 becomes a

dominator, node 2 would be attached to it. After all these changes, the updated

CDS consisting of CDS nodes 3, 5, 6, 8 and 12 is shown in Fig. 5.8.

Case 2: Battery power of node 8 (shown in Fig. 5.7) reduced below the prede-

fined upper threshold value θ1.

First, the dominator 8 would send an RYS message to its dominatee 3. Node 3

after getting the RYS message would find that it is adjacent to another alternative

dominator 6, so it would update its dominator from 8 to 6. In this case, node 8

is adjacent to more than two CDS nodes 5 and 6. So, node 8 would send the

message CCID to node 5 and 6. These CDS nodes on receiving the CCID message

124

5.4 Distributed CDS Maintenance by DMCDS

would change their component-ID to their own node-ID and pass their updated

component-ID to their other adjacent nodes through the message UCI.

Figure 5.8: Updated CDS after the battery power of node 0 (shown in Fig. 5.7)
reduced below the predefined upper threshold value θ1

Figure 5.9: Updated CDS after the battery power of node 8 (shown in Fig. 5.7)
reduced below the predefined upper threshold value θ1

The component-ID of CDS node 5, 12 and 0 would be changed to 5 and the

component-Id of CDS node 6 would be changed to 6. The dominatees would

update their adjacent dominators’ component-ID. The dominator 8 would be-

come a dominatee. Anyone of its adjacent dominator would become its dominator

125

5.4 Distributed CDS Maintenance by DMCDS

(let it be 6). When the dominatee 7 would find that it is adjacent to two CDS

nodes 6 and 12 with different component-IDs 6 and 5 respectively it would send

a DPROM REQ 〈{5, 6}, bat7〉 message to its adjacent CDS nodes 6 and 12 if its

battery power bat7 is more than θ1. Similarly, dominatee 9 would also find that

it is adjacent to two CDS nodes 6 and 5 with different component-IDs 6 and 5

respectively, it would send a DPROM REQ 〈{5, 6}, bat9〉 message to its adjacent

CDS nodes 6 and 5 if its battery power bat9 is more than θ1. The CDS nodes

of each component would forward the DPROM REQ messages to their adjacent

CDS nodes and wait for any DPROM REQ from them. Assuming bat7 is more

than bat9, node 7 would receive CRTD message from both CDS nodes 6 and 12.

Dominatee 7 on receiving the CRTD message from 6 and 12 would become the

dominator and send the UCI message to pass the new component-ID 5 (minimum

of 5 and 6) to all its neighbours. Finally, node 8 would become a dominatee of

one of its adjacent dominator (let it be 5). It would send its new role through the

DOMINATEE message. The resultant CDS is in Fig. 5.9.

Case 3: Node 6 (shown in Fig. 5.7) failed without informing to its neighbours.

When the dominatee neighbours 1, 3, 7, 9 of the failed CDS node 6 find

that their neighbouring CDS node has already failed, they would first remove

node 6 from their 1HopNebTable. Next, all these dominatees would look for any

other alternative dominators to which they can be connected. Dominatee 3, 7

and 9 would find their alternative dominators 8, 12 and 5 respectively. They

would update their dominator information and forward their 1HopNebTable to

their neighbours. Dominatee 1 would find that it is not adjacent to any dominator

other than 6 (which has already failed). However, it has a 2-hop neighbour 8 which

is a dominator. Therefore, node 1 would send a CRTD message to node 3 which

is the mutual neighbour of node 1 and 8. Node 3 after getting the CRTD message

becomes a dominator and forwards the DOMINATOR message.

Node 1 would update its dominator information. When node 8 would come to

know that its adjacent CDS node 6 has already failed and the only CDS neighbour

of 6 was itself, it would remove node 6 from its 1HopNebTable and would forward

it to its neighbours to update their 2HopNebTable. The resultant CDS is shown

in Fig. 5.10.

Case 4: Node 12 (shown in Fig. 5.7) failed without informing to its neighbours.

126

5.4 Distributed CDS Maintenance by DMCDS

When the dominatee neighbours 7 and 10 of the failed CDS node 12 find that

their neighbouring CDS node has already failed, they would first remove node 12

from their 1HopNebTable. Next, all these dominatees would look for any other

alternative dominators to which they can be connected. Dominatee 7 and 10 would

find their alternative dominators 6 and 5 respectively. They would update their

dominator information and forward their 1HopNebTable to their neighbours.

Figure 5.10: Updated CDS after the failure of node 6 shown in the Fig. 5.7

When dominator 0 and 5 would come to know that their CDS neighbour 0 has

already failed, they would check their 2HopNebTable to know the other adjacent

CDS nodes (if any) of the failed node 12. Both nodes 0 and 5 would come to

know that node 12 had more than one adjacent CDS nodes. Hence node 0 and

5 would change their component-ID to 0 and 5 respectively and forward their

new component-ID to the other dominators through UCI message. After that

node 0 would form its component with component-ID 0 and node 5, 6, 8 would

form another component with component-ID 5. This new component information

would also be circulated among the dominatees of these CDS nodes.

When dominatee 4 would find that it is adjacent to two different components

it would send a DPROM REQ 〈{0, 5}, bat4〉 message to both 0 and 8, if its battery

power bat4 is more than θ1. The CDS node 0 and 5 would forward this message

among their other adjacent CDS nodes and wait for the DPROM REQ message

from any other dominatees. As except node 4 there is no other dominatee, which is

127

5.4 Distributed CDS Maintenance by DMCDS

adjacent to more than one component, no more DPROM REQ message would be

received. So both 0 and 8 would send CRTD message to node 0. After receiving the

CRTD message, dominatee 4 would become a dominator and send the UCI message

to pass the new component-ID 0 (minimum of 0 and 5) to all its neighbours. When

the adjacent dominatees 10 and 7 of the failed CDS node 12 would find that

their adjacent dominator has failed, they would first remove node 12 from their

1HopNebTable. Next, they would check for other alternative dominators. Node

10 would find its alternative dominator 5 and node 7 would find its alternative

dominator 6. They would update their dominator information and forward their

1HopNebTable to their neighbours. The resultant CDS is shown in Fig. 5.11.

Case 5: Dominatee node 2 (shown in Fig. 5.7) finds that its battery power has

reached below the predefined threshold value θ2

When dominatee node 2 would find that its battery power has reached below

the lower threshold θ2, it would be interested to enter into the sleep mode and

during this mode, it would not sense any information. Before entering the sleep

mode, it would send a message TOSLEEP to its dominator 0. After sending the

TOSLEEP message, dominatee 2 would enter into the sleep mode. Dominator 0

after receiving the TOSLEEP message, would remove the dominatee 2 from its

1HopNebTable and would pass it to its adjacent nodes. The dominatee list of node

0 after removing node 2 would not be empty since it contains node 4. Therefore,

no more work would be done.

Figure 5.11: Updated CDS after the failure of node 12 shown in Fig. 5.7

128

5.5 Algorithm Analysis

Case 6: Non-CDS node 1 (in Fig. 5.10) failed completely

When the CDS node 3 would find that its dominatee 1 has failed, first it would

remove its information from its 1HopNebTable. After removing, node 3 would find

that node 1 was its only dominatee and node 3 is adjacent to only one CDS node

8. Therefore, it would downgrade itself to a dominatee by sending the message

DOMINATEE. The final CDS is shown in Fig. 5.12.

Figure 5.12: Updated CDS after the failure of non-CDS node 1 in the network
shown in Fig. 5.10

Case 7: Node 2 (in Fig. 5.7) currently in sleep mode finds that it has charged

above the predefined upper threshold value θ1

If node 2 currently in sleep mode finds that it has charged above θ1, it would

become a dominatee by sending the message DOMINATEE. Node 2 after becoming

a dominatee would find that one of its adjacent node 0 is a dominator, so it would

be attached to it by updating its dominator information.

5.5 Algorithm Analysis

Analysis of the proposed distributed CDS maintenance algorithm is three fold.

Initially, the performance ratio of the algorithm is calculated. Later the time and

message complexities of the proposed scheme are presented. To do this, we use

certain theorems. The detail proofs of all of these can be found in this section.

129

5.5 Algorithm Analysis

Theorem 5.1 The distributed CDS maintenance scheme DMCDS changes the

current CDS size by a factor of ∆, where ∆ is the maximum degree of a node in

the entire network.

Proof. Suppose initially D number of nodes formed the CDS. We need to

apply the CDS maintenance algorithm due to one of the following cases arises:

(1) One of the existing CDS node fails. (2) Battery power of one of the existing

CDS node has reached below the upper threshold of θ1 (3) A non-CDS node fails

(4) Battery power of a non-CDS node has reached below the lower threshold of θ2

(5) Battery power of a non-CDS node has increased above the upper threshold of

θ1 after recharging.

Case 1: When a CDS node either completely failed or its battery

power has reached below a predefined threshold value θ1 In this case,

first the dominatees of the failed CDS node would try to find their alternative

dominators. If a dominatee of the failed CDS nodes does not find any alternative

dominator in its 1-hop neighbourhood but it finds at least one 2-hop dominator,

then it sends the message to its mutual neighbour to become a dominator. So, for

each dominatee a maximum of one number of CDS node would be added to the

existing CDS. In the worst case, the failed dominatee would have ∆ dominatees,

where ∆ is the maximum degree of each node in the network. So, the maximum

increase in CDS size to attach the dominatees to some alternative dominators is

O(∆). The failed CDS node is adjacent to either one or more CDS nodes. If it is

adjacent to one CDS node then there is no increase in CDS size after its failure.

However, if it is adjacent to multiple CDS nodes, then a number of components

would be formed. In the worst case, a maximum of ∆ components would be formed.

In that case, some of the dominatees would promote themselves to dominators to

connect multiple components. According to the proposed mechanism, either one

or two nodes (dominatees) are needed to connect each pair of components. So,

in the worst case, 2(∆ − 1) number of nodes would be needed to connect these

components. Hence, the change in CDS size due to the failure (or about to fail)

of CDS node is O(∆ + 2(∆− 1)− 1) = O(∆).

Case 2: When a non-CDS node either completely failed or its bat-

tery power has reached below a predefined threshold value θ2 If the

dominatee was the only dominatee of its dominator and the dominator was adja-

130

5.5 Algorithm Analysis

cent to only one CDS node then the dominator downgrades itself to dominatee.

This decreases the CDS size by 1.

Case 3: When a node (neither dominatee nor dominator) currently

in sleep mode finds that it has charged above θ1 and is ready to work

as dominatee In this case the node becomes a dominatee and searches for its

dominator. If it finds a CDS node in its 1-hop neighbourhood then it becomes its

dominatee. However, if there is no 1-hop neighbour of the new dominatee, but it

has 2-hop CDS neighbour then their mutual neighbour would become the dominator

which increases the CDS size only by 1.

Considering all these three cases it can be concluded that in the case of CDS

maintenance the CDS size would change at most by a factor of ∆. However, in

practice, it is much less than that.

Theorem 5.2 In a given a network already with a working CDS, DMCDS main-

tains the CDS in time O(C) where C is the size of the largest component at the

moment the CDS maintenance algorithm DMCDS is applied.

Proof. According to the discussion in the above Theorem 5.1 the CDS mainte-

nance is needed due to any one of the above-mentioned cases. When a CDS node’s

battery power reduced below θ1, first it would inform to its dominatees through

RYS message in constant time. All its dominatees would check for their alter-

native dominator by looking their 1HopNebTable in the next unit of time. If a

dominatee finds any alternative dominator it would update its dominator informa-

tion in the 1HopNebTable in one unit of time. If it does not find any alternative

dominator it looks for any 2-hop dominator in the 2HopNebTable in one unit

of time. If it finds a 2-hop dominator it sends a CRTD message to the mutual

neighbour to become a dominator. The mutual neighbour after getting the CRTD

message becomes a dominator and sends a DOMINATOR message in one unit of

time. Now the dominatee updates its dominator information in the next unit of

time. So the total time needed to rescue all the dominatees of the CDS node whose

battery power reduced below θ1 is constant.

If the CDS node whose battery power falls below the predefined threshold value

θ1 is adjacent to one CDS node then it sends a DOMINATEE message in one unit

time. It becomes a dominatee and records its dominator information in the next

131

5.5 Algorithm Analysis

unit time. In the same time, its neighbours update their neighbour information.

However, if the CDS node whose battery power falls below the predefined threshold

value θ1 is adjacent to more than one CDS node then it would send the CCID

message to all its adjacent CDS nodes in one unit of time. The CDS nodes after

receiving the CCID message would update their component-ID and pass their new

component-ID among their neighbours of the same component in time O(C), where

C is the size of the largest component. The dominator becomes dominatee and

records its dominator information by sending the DOMINATEE message in one

unit of time. The dominatees which would be interested to become the dominators

send the DPROM-REQ in one unit of time. The CDS nodes of each component

would circulate the message among their neighbours in O(C) time. The selected

dominatees receives the CRTD message in the next unit of time. They become

dominator in the next unit of time. Also, it sends the UCI message in one unit

of time. If a dominatee does not find any 1-hop CDS neighbour then it tries to

merge the components through 2-hop CDS neighbours. For that, it needs three

extra units of time: one for GETPOW message, one for POW message and one

for extra CRTD message. So, the total running time for maintaining the CDS in

case of decrement of battery power below predefined threshold value θ1 is O(C),

where is the size of the largest component.

If a CDS node fails without informing any of its neighbours then the adjacent

dominatees and adjacent dominators would follow the above-discussed procedure

after knowing that their neighbour failed. So, the running time would be the same

as above. Now, we can conclude that the running time of CDS maintenance either

in case of failure of CDS node or decrement of battery power of the CDS node

below the predefined threshold value θ1 is O(C), where C is the size of the largest

component after the failure of the CDS node.

If a dominatee finds that its battery power has reached below the predefined

lower threshold value θ2 it first sends a TOSLEEP message in one unit of time.

A dominator after receiving the TOSLEEP message first removes the node from

its dominatee list in one unit of time. If the dominatee was its only dominatee,

then the dominator becomes the dominatee and sends the DOMINATEE message

in the next unit of time. Hence, the total CDS maintenance time, in this case, is

constant.

132

5.5 Algorithm Analysis

Similarly, if a dominator finds that one of its dominatees has failed, first the

dominator removes the dominatee from its dominatee list in one unit of time. If

the dominatee was its only dominatee, then the dominator becomes the dominatee

and sends the DOMINATEE message in the next unit of time. Hence, the total

CDS maintenance time either due to the failure of a dominatee or decrement of

battery power of a dominatee below the predefined threshold value θ2 is constant.

When a non-CDS node after charging finds that its battery power has reached

above the predefined threshold value θ2, then first it sends a DOMINATEE message

in one unit of time. If it finds a dominator in its 1-hop neighbourhood it updates its

dominator information in one unit of time. Else if it has a 2-hop CDS neighbour,

then it first sends a CRTD message to its mutual neighbour in one unit of time and

the mutual neighbour becomes a dominator by sending the DOMINATOR message

in next unit of time. The neighbours update their neighbour information in one

more unit of time. Hence, the time for maintaining the CDS in case of a non-CDS

node becomes a dominatee after recharging is also constant.

Therefore, the overall running time for maintaining the CDS either due to

the failure of any node, or due to decrement of battery power below a predefined

threshold or due to increment of battery power above a predefined threshold is O(C)

in the worst case, where C is the size of the largest component at the particular

moment the CDS maintenance algorithm DMCDS is applied.

Theorem 5.3 DMCDS has message complexity of O(n), where n is the total num-

ber of nodes present in the network.

Proof. According to the discussion in the Theorem 5.1, the CDS maintenance

is needed due to any one of the above-mentioned cases arises. In this theorem, the

message complexity is analysed based on each of these cases.

Let us consider the case in which a CDS node’s battery power decreased be-

low the upper threshold of θ1. In that case, the dominator would send one RYS

message to its dominatees. After receiving the RYS message, if the dominatee is

attached to any other dominator, then it updates its dominator information and

no further messages are sent. However, if the dominatee is not adjacent to any

other dominator, but it has 2-hop CDS neighbours, then it sends a CRTD message

to its mutual neighbour. The mutual neighbour sends the DOMINATOR message.

133

5.5 Algorithm Analysis

If the CDS node is adjacent to only one CDS node it would send a DOMI-

NATEE message to all its neighbours. Its neighbours would send ∆ number of

messages to notify their neighbours about the update in its 1-hop neighbourhood,

where ∆ is the maximum degree of each node. However, if the CDS node is ad-

jacent to multiple CDS nodes, then it sends one CCID message. The CDS nodes

on receiving the CCID message would send UCI message to the other member of

the same component and they forward this to their neighbours. So, in total O(n)

number of UCI messages would be sent. The dominator then becomes a dominatee

by sending a DOMINATEE message. When a dominatee finds that it is adjacent

to multiple components with different component-ID, it sends a DPROM-REQ

message. In the worst case, O(n− |D|) number of DPROM-REQ messages would

be sent, where D is the number of dominators. These DPROM-REQ messages

would be forwarded among the CDS nodes for the final selection of dominatee to

become a dominator. So O(n) number of DPROM-REQ messages would be sent.

To the selected dominatees O(∆) number of CRTD messages would be sent. These

dominatees become dominators by sending O(∆) DOMINATOR messages.

If a dominatee finds that the component-ID of its 1-hop CDS neighbour and

2-hop CDS neighbour are different it sends GETPOW message and receives POW

message in its reply. The total number of these two messages would be O(n−|D|),

where D is the number of dominators. After this, the steps are very much similar

to the case in which a dominatee has 1-hop adjacent dominators with different

component-ID. So, the message complexity of this case is the same as the case in

which a dominatee has 1-hop adjacent dominators with different component-ID.

Hence, the total message complexity of the case when a CDS node’s battery power

decreased below the upper threshold of θ1 is O(n).

If a CDS node fails without informing any of its neighbours, then the adjacent

dominatees and adjacent dominators would follow the same procedure as in the

case of a CDS node’s battery power decreased below the upper threshold of θ1. So

no extra messages need to be sent in that case. Therefore, the message complexity

of CDS maintenance either in case of failure of CDS node or decrement of battery

power of the CDS node below the predefined threshold value θ1 is O(n) where n is

the total nodes present in the network.

Now, let us calculate the message complexity of the case in which a domina-

134

5.6 Simulation Results

tee’s battery power is decreased below the lower threshold of θ2. In this case, the

dominatee would send a TOSLEEP message. A dominator on receiving this mes-

sage, if it finds the dominatee is its only dominatee then it becomes a dominatee

by sending a DOMINATEE message. Its neighbours would send their 1-hop in-

formation through O(∆) messages. If a dominatee fails without information, and

if its dominator finds the dominatee was its only dominatee, then it becomes a

dominatee by sending a DOMINATEE message. Its neighbours after receiving the

DOMINATEE message, would send their 1-hop information through O(∆) mes-

sages. Therefore, the message complexity of CDS maintenance either in case of

failure of a dominatee or decrement of battery power of the dominatee node below

the predefined threshold value θ2 is O(∆).

When a non-CDS nodes battery power reaches above the predefined lower thresh-

old value θ2 it becomes a dominatee by sending the DOMINATEE message first.

If the new dominatee finds that it is not adjacent to any dominator, but it has

a 2-hop neighbour which is a dominator, then it sends a CRTD message to the

mutual neighbour. The mutual neighbour sends the DOMINATOR message and

its neighbours would send their 1-hop information through O(∆) messages. Hence,

the message complexity, in this case, is O(∆) as well.

Therefore, the total message complexity of the proposed distributed CDS main-

tenance algorithm, DMCDS is O(n) considering all the cases as mentioned in the

theorem 5.1.

5.6 Simulation Results

In this section, we verify our algorithm through simulation. The results of simula-

tions conducted for various situations of CDS maintenance. The wireless network

is modelled in a fixed area of dimension 150× 150 square units. Nodes are ran-

domly placed by choosing the x-coordinate and y-coordinate of each node using

a uniform random number generator. The size of the simulation network is 50 to

250 numbers in an increment of 25 nodes. In the network, two nodes are connected

if their distance is less than or equal to the transmission range. The transmission

range of each node is taken as 25 units. Initially, the CDS is constructed by using

the CDS construction algorithms proposed in the previous chapter. On top of

135

5.6 Simulation Results

the constructed CDS, the proposed CDS maintenance algorithm is run for various

situations of CDS maintenance. The proposed scheme is run for a number of times

for various network sizes between 50 and 250. The average results are reported in

the figure. The entire simulation is carried out in NS-2, a network simulator for

the wireless network. The simulations conducted for analysing the proposed CDS

maintenance scheme are (i) Performance comparison of the number of CDS nodes

before and after CDS maintenance (ii) Performance comparison of the number

of messages generated during the maintenance. During the analysis, we consider

the various maintenance schemes like a failure of dominator/dominatee, reduction

of battery power of dominator/dominatee below threshold and upgradation of a

non-CDS node to dominatee after recharging.

50 100 150 200 250

10

20

30

Number of nodes in the network

N
u
m

b
er

of
C

D
S

n
o
d
es

Before maintenance
After running DMCDS

Figure 5.13: Performance comparison of CDS size due to failure of dominators

In the first experiment, we constructed the CDS and calculated the mean num-

ber of CDS nodes. Later, we experimented on current CDS nodes. We observed

the effect of CDS after the failure of CDS nodes. The experiment also considered

the effect of CDS due to the depletion of the battery power of the current CDS

nodes. For both cases, the CDS is repaired using the proposed DMCDS algo-

rithm and the total number of CDS node is calculated. The results are shown in

Fig. 5.13. We found that the average number of CDS nodes does not vary too

much, it remains almost the same as the number of CDS nodes before the main-

136

5.6 Simulation Results

tenance. This is because if a dominator fails the maintenance algorithm needs to

take care of two things, it has to rescue the dominatees of the failed dominator and

also ensure that the remaining CDS nodes are connected. The proposed algorithm

first tries to connect the dominatees of the failed dominator with some existing

dominators. If it does not find suitable dominator, then it promotes some of the

dominatees into dominators and attaches the dominatees to them. However, these

promotions are very rare. Similarly, because of the failure of a dominator the CDS

nodes may be disconnected forming different components. The proposed scheme

connects these components by promoting some of the dominatees into dominators.

According to the result shown in the figure, it is observed that although during

maintenance due to the failure of a single CDS node, more than one dominatees

need to be promoted. However, this case is rare. From the experiment, it is found

that in some cases failure of a single dominator does not increase the CDS size

at all. This happens in the case where the dominatees of the failed dominator

can be attached to some existing dominators and the failed dominator does not

disconnect the CDS nodes.

50 100 150 200 250
5

10

15

20

25

30

Number of nodes in the network

N
u
m

b
er

of
C

D
S

n
o
d
es

Before maintenance
After running DMCDS

Figure 5.14: Performance comparison of CDS size due to failure of dominatees

In the next experiment, we found the effect of CDS after the failure of domina-

tees. The experiment also considered the effect of dominatees due to the decrement

of their battery power. For these two cases, the CDS is repaired using the pro-

137

5.6 Simulation Results

posed DMCDS algorithm and the total number of CDS nodes is counted. The

results are shown in Fig. 5.14. We found that the average number of CDS nodes

after the CDS maintenance due to the dominatees is always less than or equal

to the number of nodes present in the network. This is because in case failure

of a dominatee or its battery power decremented below a level, the dominator

has to just update this information in its 1HopNebTable. If the dominatee was

its only dominatee and the dominator has only one adjacent dominator then the

dominator has to downgrades itself from dominator to dominatee. Therefore, if

the failed dominatee was the only dominatee of its dominator and the dominator

has only one adjacent dominator then the size of the CDS would decrease, other-

wise, it would remain the same. Therefore, the CDS size after maintenance either

remains the same or decreases by one, which is very rare. The figure shows the

same result as expected.

50 100 150 200 250

10

15

20

25

30

Number of nodes in the network

N
u
m

b
er

of
C

D
S

n
o
d
es

Before maintenance
After running DMCDS

Figure 5.15: Performance comparison CDS size due to upgradation of normal
nodes to dominatees

In the third experiment, we tried to find the effect of CDS when a non-CDS

node after recharging would be interested to become a dominatee. In that case

after the node becoming a dominatee it would look for at least one dominator

within its communication range to which it would be attached. If it finds a domi-

nator within its range, then it would become its dominatee and there is no change

in the CDS. However, if it does not find a 1-hop dominator then it would look for

138

5.6 Simulation Results

2-hop dominator if any. If it finds a 2-hop dominator, then the mutual neighbour

becomes a dominator and it would be attached to it. So, in this case, there is an

increase of CDS size by one. The simulation result is shown in Fig. 5.15 exactly

shows the same thing. We find that the average number of CDS nodes after the

CDS maintenance due to the non-CDS nodes become dominatees varies a little

with the number nodes present in the original CDS before the maintenance.

20 40 60 80 100 120 140 160 180 200 220 240 260

0

100

200

300

400

500

600

Network Size

M
ea

n
n
u
m

b
er

of
m

es
sa

ge
s

Maintenance related to dominators
Maintenance related to dominatees

Maintenance related to promotion of dominatees

Figure 5.16: Performance analysis of DMCDS by comparing the number of mes-
sages generated

Next experiment compares the number messages generated by the proposed

distributed CDS maintenance algorithm in each of the following cases: (1) Number

of messages generated due to either the failure of dominators or the dominator

battery power falls below the predefined level (2) Number of messages generated

due to either the failure of dominatees or the dominatees battery power falls

below the predefined level (3) Non-CDS node is interested to promote itself into

dominatee. According to the discussion in Theorem 5.3 of Section 5.5, the message

complexity of the first case is O(n) and the second and third case is O(∆). The

139

5.7 Summary

simulation result shown in Fig. 5.16 exactly shows that. The number of messages

generated in the first case is more whereas the number of messages generated in

the second and third case is very less and almost the same.

Our last experiment is on comparison of CDS maintenance with fresh CDS

construction. We compared the number of messages generated in the construction

of CDS with the maintenance of CDS through the proposed algorithm. The result

is shown in Fig. 5.17. From the figure, it is very much clear that in case of failure

of a CDS node CDS maintenance is better than the construction of fresh CDS due

to the number of messages generated in the case of fresh construction of CDS is

much more.

50 100 150 200 250
0

200

400

600

Network Size

N
u
m

b
er

of
m

es
sa

ge
s

ge
n
er

at
ed During fresh CDS construction

During application of DMCDS

Figure 5.17: Performance comparison of CDS construction with CDS maintenance

5.7 Summary

In this chapter, it is observed that CDS maintenance is very much necessary

like CDS construction. Later, a novel distributed CDS maintenance algorithm

known as DMCDS is presented. The distributed CDS maintenance algorithm

maintains the CDS successfully in the following situations: (1) A CDS/non-CDS

node discharged below a predefined level, but not completely discharged. (2) A

CDS/non-CDS node has completely failed and there is no chance that it would

again be active. (3) A normal non-CDS node becomes ready to work as a dom-

140

5.7 Summary

inatee again. The time and message complexities of the proposed algorithm are

O(C) and O(n) respectively, where C is the size of the largest component of the

network during the application of CDS maintenance algorithm and n is the size

of the network. The distributed CDS maintenance scheme changes the current

CDS by a factor of ∆, where ∆ is the maximum degree of a node in the entire

network. The simulation results show that the size of the CDS does not change

too much in case of failure of CDS and non-CDS nodes. The proposed algorithm

encourages both CDS and non-CDS nodes to downgrade themselves in case of

lack of battery power. The non-CDS nodes can again work as dominatees after

recharging whereas the dominatees can again work as dominators in case there is

a need. Through simulation, it is also concluded that the maintenance of CDS is

better than fresh construction of CDS. The proposed algorithm can be modified to

maintain the CDS construction in the network of nodes with different transmission

ranges.

141

C H A P T E R 6

Conclusion

Connected Dominating Set is one of the effective constructs which solves a variety

of problems related to wireless networks. Some of the major applications of the

connected dominating set include the creation of a virtual network backbone for

unicast and multicast routing, energy efficiency, media access coordination, etc.

The CDS related problems found in the literature include:

• Construction of Minimum Connected Dominating Set: The workload of a

CDS node is much more than other ordinary nodes in a network. Therefore,

minimizing the CDS size can greatly reduce the generation and transmission

of control messages. However, the construction of a minimum connected

dominating set is an NP-Complete problem. Due to this reason, most of

the researchers working in this area are focussed on reducing the CDS size

further since the last two decade. Mainly these algorithms try to reduce the

performance ratio since lower the performance ratio of the algorithm, the

better is the CDS.

• Construction of Minimum sized Connected Dominating Set with additional

parameters: Some of the CDS construction algorithms not only focussed

on reducing CDS size but also tried to reduce the CDS diameter, average

backbone path length, etc. Construction of Connected Dominating Set with

142

6.1 Contributions

fault tolerance and robustness: In wireless network node failure due to de-

pletion of battery power or hardware is not rare. Some of the works have

provided enough tolerance and robustness to the CDS nodes by constructing

k-m-CDSs.

• Construction of Connected domatic partition: There are few works found

in the literature which construct disjoint CDSs by dividing the entire net-

work into a number of node-disjoint CDSs. These CDSs work in rotation to

prolong the network lifetime.

The first two works presented in this dissertation comprise of centralized and

distributed construction of size optimal connected dominating sets. The third

work is on the maintenance of CDS due to failure of either CDS or non-CDS

nodes. As all these problems are NP-Complete, we have proposed approximation

algorithms. The results and findings from each of the work are summarized in the

next section.

6.1 Contributions

The contributions of the thesis are described as follows:

• Centralized construction of Minimum Connected Dominating Set

The first work of our thesis is a centralized algorithm for construction of

minimum sized Connected Dominating Set. As construction of Minimum

Connected Dominating Set is an NP-Complete problem, we have proposed a

new centralized degree-based greedy approximation algorithm to construct

smaller CDSs with the current best approximation ratio of (4.8+ln 5)|opt|+
1.2, where |opt| is the size of an optimal CDS of the network. The algorithm

has the best time complexity of O(D), where D is the network diameter. To

the best of our knowledge, this is the most time efficient and size-optimal

CDS construction algorithm.

• Distributed construction of Minimum Connected Dominating Set

Our second work is on the construction of minimum sized Connected Domi-

nating set in a distributed manner. We have developed a distributed degree

143

6.1 Contributions

based algorithm (named as DCMCDS) for the minimum connected dom-

inating set problem with the current best approximation factor of (4.8 +

ln5)opt + 1.2, where |opt| is the size of an optimal CDS of the network.

Simulation results show that DCMCDS is better than existing CDS con-

struction algorithms in terms of CDS size and construction costs, using a

slightly higher expense of a number of messages exchanged as compared to

previous degree-based CDS construction techniques. Its time complexity

is O(D), where D is the diameter of the network. It has a linear message

complexity of O(nR), where n is the network size and R is the maximum of

the number of rounds needed to construct the PDS and number of rounds

needed to interconnect the PDS nodes. The distributed greedy algorithm

DCMCDS does not depend on any specific initiating node. It identifies non-

trivial CDSs of smaller size for both uniform and random distribution of

nodes in a distributed manner. The algorithm constructs the CDS in lesser

number of rounds in comparison to other degree-based algorithms.

• Distributed maintenance of Minimum Connected Dominating Set

The third work is on CDS maintenance. In a wireless network, there is a

chance of failure of nodes due to many reasons. The CDS nodes have a

greater chance of failure due to depletion of battery because of more work-

load. Failure of a single CDS node may disconnect the CDS. Similarly,

sometime the failure of a non-CDS node may need some maintenance in

the CDS to make it more effective. We have developed a new distributed

CDS maintenance approach to handle the following situations: (1) a CDS

or non-CDS node is about to fail due to the depletion of its battery power

(2) a CDS or non-CDS node has already failed due to some reason (3) a

non-CDS node becomes ready to sense the required data after recharging.

The proposed distributed CDS maintenance scheme only changes the cur-

rent CDS by a factor of ∆, where ∆ is the maximum degree of a node in

the entire network. Its time complexity is O(C), where C is the size of the

largest component of the network during the application of the proposed

CDS maintenance algorithm. It has a linear message complexity of O(n),

where n is the number of nodes present in the network. It also promotes

144

6.2 Scope for Future Work

some nodes to improve the lifetime of CDS.

6.2 Scope for Future Work

In addition to the CDS related problems found in the literature, we should consider

the following open problems in the future:

• Construction of CDS using local information only: Although dis-

tributed CDS construction algorithms are useful in a wireless network, we

need to look for algorithms which can construct CDSs using local information

only. Researchers should try to design approximated local CDS construction

algorithms with better performance.

• CDS construction in non-UDG graphs: Most of the CDS construction

algorithms proposed by various researchers are for UDG. However, the actual

wireless networks may contain the nodes which are deployed in a three-

dimensional space which is very practical. Also, the communication range

of the nodes present in the network may be different. In this scenario, the

network may be considered as a directed ball graph in which the nodes are

deployed in a three-dimensional space and their radio ranges may not be

unique.

• Construction of CDSs with interference: Most of the CDS construc-

tion algorithms assume that there is no interference in the network. How-

ever, in practice, there exists interference in the network. In the presence

of interference, the data sent by a source node is either delayed to reach

the destination node or may not reach the destination at all. This would

affect the CDS construction process. Therefore, we should look for CDS

construction algorithms which would work in the presence of interference.

• CDS construction in mobile network: In our proposed algorithms we

have assumed that the network is static, that means once the nodes are

deployed they do not change their position till the end of their life. However,

the wireless network can be formed using the mobile nodes also. Suppose

we have a CDS currently working in a wireless network. If some of the CDS

145

6.2 Scope for Future Work

nodes change their position, then we need a maintenance process to repair

the CDS. Sometimes also after a certain duration, we need to reconstruct the

CDS. Therefore, we should look for distributed CDS construction algorithms

in the mobility model with a facility of maintenance in case of a change in

the position of CDS nodes.

• Maintenance of CDS in case of failure of multiple nodes at a time:

Our CDS maintenance algorithm would work properly when multiple nodes

would not fail at a time. The proposed algorithm does not consider the

situation where multiple nodes fail together. Although this situation is very

rare, in some applications like military surveillance it happens. So, finding

CDS maintenance algorithms which can work in case of failure of multiple

nodes is essential.

146

References

[1] D. C. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole, “Research challenges
in environmental observation and forecasting systems,” in Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking. ACM, 2000, pp. 292–299.

[2] A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert, “Power efficient topologies for
wireless sensor networks,” in International Conference on Parallel Processing, 2001. IEEE,
2001, pp. 156–163.

[3] J. M. Kahn, R. H. Katz, and K. S. Pister, “Next century challenges: mobile networking
for smart dust,” in Proceedings of the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking. ACM, 1999, pp. 271–278.

[4] B. Warneke, M. Last, B. Liebowitz, and K. S. Pister, “Smart dust: Communicating with a
cubic-millimeter computer,” Computer, vol. 34, no. 1, pp. 44–51, 2001.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor net-
works,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002.

[6] S. S. Pradhan and K. Ramchandran, “Distributed source coding: Symmetric rates and
applications to sensor networks,” in Proceedings DCC 2000. Data Compression Conference.
IEEE, 2000, pp. 363–372.

[7] S. S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compression in a dense
microsensor network,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 51–60, 2002.

[8] S. Soro and W. B. Heinzelman, “Cluster head election techniques for coverage preservation
in wireless sensor networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 955–972, 2009.

[9] S. Butenko, S. Kahruman-Anderoglu, and O. Ursulenko, “On connected domination in unit
ball graphs,” Optimization Letters, vol. 5, no. 2, pp. 195–205, 2011.

[10] S. Andrew, “Tanenbaum computer networks,” Computer Networks, Englewood Cliffs, pp.
141–148, 1996.

[11] B. Han, “Zone-based virtual backbone formation in wireless ad hoc networks,” Ad Hoc
Networks, vol. 7, no. 1, pp. 183–200, 2009.

[12] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design concept for reliable mobile
radio networks with frequency hopping signaling,” Proceedings of the IEEE, vol. 75, no. 1,
pp. 56–73, 1987.

147

[13] D. Kim, Y. Wu, Y. Li, F. Zou, and D.-Z. Du, “Constructing minimum connected dominating
sets with bounded diameters in wireless networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 2, pp. 147–157, 2009.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman and Company, New York, 1979.

[15] B. Han and W. Jia, “Clustering wireless ad hoc networks with weakly connected dominating
set,” Journal of Parallel and Distributed Computing, vol. 67, no. 6, pp. 727–737, 2007.

[16] J. Akbari Torkestani and M. R. Meybodi, “An intelligent backbone formation algorithm
for wireless ad hoc networks based on distributed learning automata,” Computer Networks,
vol. 54, no. 5, pp. 826–843, 2010.

[17] J. A. Torkestani and M. R. Meybodi, “Weighted steiner connected dominating set and its
application to multicast routing in wireless manets,” Wireless Personal Communications,
vol. 60, no. 2, pp. 145–169, 2011.

[18] B. An and S. Papavassiliou, “A mobility-based clustering approach to support mobility man-
agement and multicast routing in mobile ad-hoc wireless networks,” International Journal
of Network Management, vol. 11, no. 6, pp. 387–395, 2001.

[19] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio network,” Wireless
Networks, vol. 1, no. 3, pp. 255–265, 1995.

[20] R. Sivakumar, P. Sinha, and V. Bharghavan, “Cedar: a core-extraction distributed ad hoc
routing algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp.
1454–1465, 1999.

[21] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing ad hoc routing with dynamic
virtual infrastructures,” in Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer and Commu-
nications Society (Cat. No. 01CH37213), vol. 3. IEEE, 2001, pp. 1763–1772.

[22] R. De Gaudenzi, T. Garde, F. Giannetti, and M. Luise, “Ds-cdma techniques for mobile
and personal satellite communications: An overview,” in IEEE Second Symposium on Com-
munications and Vehicular Technology in the Benelux. IEEE, 1994, pp. 113–127.

[23] S. R. Bevan Das and V. Bharghavan, “Routing in ad-hoc networks using a virtual back-
bone,” in Proceedings of the 6th International Conference on Computer Communications
and Networks (IC3N’97), 1997, pp. 1–20.

[24] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected domi-
nating sets,” in Proceedings of ICC’97-International Conference on Communications, vol. 1.
IEEE, 1997, pp. 376–380.

[25] J. Wu and H. Li, “On calculating connected dominating set for efficient routing in ad hoc
wireless networks,” in Proceedings of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications. Citeseer, 1999, pp. 7–14.

[26] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in ad hoc networks using a spine.” in
ICCCN, 1997, pp. 34–41.

[27] R. Sivakumar, B. Das, and V. Bharghavan, “An improved spine-based infrastructure for
routing in ad hoc networks,” in IEEE Symposium on Computers and Communications,
vol. 98, 1998.

148

[28] Y.-L. Chang and C.-C. Hsu, “Routing in wireless/mobile ad-hoc networks via dynamic
group construction,” Mobile Networks and Applications, vol. 5, no. 1, pp. 27–37, 2004.

[29] A. B. McDonald, “A mobility-based framework for adaptive dynamic cluster-based hybrid
routing in wireless ad-hoc networks,” in Wireless Ad Hoc Networks, Ph. D. Dissertation,
Univ. of Pittsburgh. Citeseer, 1999.

[30] S. Datta, I. Stojmenovic, and J. Wu, “Internal node and shortcut based routing with
guaranteed delivery in wireless networks,” Cluster Computing, vol. 5, no. 2, pp. 169–178,
2002.

[31] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a
mobile ad hoc network,” Wireless Networks, vol. 8, no. 2-3, pp. 153–167, 2002.

[32] X. Cheng, X. Huang, D. Li, and D.-z. Du, “On the construction of connected dominating
set in ad hoc wireless networks,” in Wireless Communications and Mobile Computing.
Citeseer, 2006.

[33] H. Lim and C. Kim, “Multicast tree construction and flooding in wireless ad hoc net-
works,” in Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems. ACM, 2000, pp. 61–68.

[34] J. Wu and F. Dai, “Broadcasting in ad hoc networks based on self-pruning,” International
Journal of Foundations of Computer Science, vol. 14, no. 02, pp. 201–221, 2003.

[35] J. Wu and B. Wu, “A transmission range reduction scheme for power-aware broadcasting in
ad hoc networks using connected dominating sets,” in 2003 IEEE 58th Vehicular Technology
Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), vol. 5. IEEE, 2003, pp. 2906–
2909.

[36] J. Wu, B. Wu, and I. Stojmenovic, “Power-aware broadcasting and activity scheduling in
ad hoc wireless networks using connected dominating sets,” Wireless Communications and
Mobile Computing, vol. 3, no. 4, pp. 425–438, 2003.

[37] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-efficient coordi-
nation algorithm for topology maintenance in ad hoc wireless networks,” Wireless Networks,
vol. 8, no. 5, pp. 481–494, 2002.

[38] M. Ding, X. Cheng, and G. Xue, “Aggregation tree construction in sensor networks,” in 2003
IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484),
vol. 4. IEEE, 2003, pp. 2168–2172.

[39] J. A. Shaikh, J. Solano, I. Stojmenovic, and J. Wu, “New metrics for dominating set based
energy efficient activity scheduling in ad hoc networks,” in 28th Annual IEEE International
Conference on Local Computer Networks, 2003. LCN’03. Proceedings. IEEE, 2003, pp.
726–735.

[40] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On calculating power-aware connected dom-
inating sets for efficient routing in ad hoc wireless networks,” Journal of Communications
and Networks, vol. 4, no. 1, pp. 59–70, 2002.

[41] J. Wu and B. Wu, “A transmission range reduction scheme for power-aware broadcasting in
ad hoc networks using connected dominating sets,” in 2003 IEEE 58th Vehicular Technology
Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), vol. 5. IEEE, 2003, pp. 2906–
2909.

149

[42] B. Deb, S. Bhatnagar, and B. Nath, “Multi-resolution state retrieval in sensor networks,”
in Proceedings of the First IEEE International Workshop on Sensor Network Protocols and
Applications, 2003. IEEE, 2003, pp. 19–29.

[43] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in ad hoc networks using a spine,” in
Computer Communications and Networks, 1997. Proceedings., Sixth International Confer-
ence on. IEEE, 1997, pp. 34–39.

[44] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,” Discrete Mathematics,
vol. 86, no. 1-3, pp. 165–177, 1990.

[45] R. Misra and C. Mandal, “Rotation of cds via connected domatic partition in ad hoc sensor
networks,” IEEE Transactions on Mobile Computing, vol. 8, no. 4, pp. 488–499, 2009.

[46] ——, “Efficient clusterhead rotation via domatic partition in self-organizing sensor net-
works,” Wireless Communications & Mobile Computing, vol. 9, no. 8, pp. 1040–1058, 2009.

[47] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proceedings of
the 3rd International Symposium on Information Processing in Sensor Networks. ACM,
2004, pp. 20–27.

[48] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “Battery lifetime prediction for energy-
aware computing,” in Proceedings of the 2002 International Symposium on Low Power
Electronics and Design. ACM, 2002, pp. 154–159.

[49] D. Rakhmatov and S. Vrudhula, “Energy management for battery-powered embedded sys-
tems,” ACM Transactions on Embedded Computing Systems (TECS), vol. 2, no. 3, pp.
277–324, 2003.

[50] C. Knight, J. Davidson, and S. Behrens, “Energy options for wireless sensor nodes,” Sensors,
vol. 8, no. 12, pp. 8037–8066, 2008.

[51] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation for ad hoc
routing,” in Proceedings of the 7th Annual International Conference on Mobile Computing
and Networking. ACM, 2001, pp. 70–84.

[52] D. M. Blough and P. Santi, “Investigating upper bounds on network lifetime extension for
cell-based energy conservation techniques in stationary ad hoc networks,” in Proceedings of
the 8th Annual International Conference on Mobile Computing and Networking. ACM,
2002, pp. 183–192.

[53] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan et al., “An application-specific
protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless
Communications, vol. 1, no. 4, pp. 660–670, 2002.

[54] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communica-
tion protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences. IEEE, 2000, pp. 10–pp.

[55] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime through power aware
organization,” Wireless Networks, vol. 11, no. 3, pp. 333–340, 2005.

[56] D. Zhou, M.-T. Sun, and T.-H. Lai, “A timer-based protocol for connected dominating set
construction in ieee 802.11 multihop mobile ad hoc networks,” in The 2005 Symposium on
Applications and the Internet. IEEE, 2005, pp. 2–8.

150

[57] F. Dai and J. Wu, “An extended localized algorithm for connected dominating set formation
in ad hoc wireless networks,” IEEE Transactions on Parallel & Distributed Systems, no. 10,
pp. 908–920, 2004.

[58] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,” Algo-
rithmica, vol. 20, no. 4, pp. 374–387, 1998.

[59] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy approximation for minimum
connected dominating sets,” Theoretical Computer Science, vol. 329, no. 1, pp. 325–330,
2004.

[60] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-optimal connected dominating sets
in mobile ad hoc networks,” in Proceedings of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking & Computing. ACM, 2002, pp. 157–164.

[61] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor elimination-based
broadcasting algorithms in wireless networks,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 13, no. 1, pp. 14–25, 2002.

[62] P.-J. Wan, K. M. Alzoubi, and O. Friede, “Distributed construction of connected dominating
set in wireless ad hoc networks,” in INFOCOM 2002. Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3. IEEE,
2002, pp. 1597–1604.

[63] C. Adjih, P. Jacquet, and L. Viennot, “Computing connected dominated sets with multi-
point relays,” Ph.D. dissertation, INRIA, 2002.

[64] K. Islam, S. G. Akl, and H. Meijer, “A constant factor localized algorithm for computing
connected dominating sets in wireless sensor networks,” in 2008 14th IEEE International
Conference on Parallel and Distributed Systems. IEEE, 2008, pp. 559–566.

[65] M. Cardei, M. X. Cheng, X. Cheng, and D.-Z. Du, “Connected domination in multihop ad
hoc wireless networks.” JCIS, pp. 251–255, 2002.

[66] Y. L. S. Zhu and M. T. D.-Z. Du, “Localized construction of connected dominating set in
wireless networks,” in Proceedings of US National Science Foundation International Work-
shop Theoritical Aspects of Wireless Ad Hoc, Sensor and Peer-to-Peer Networks, 2004.

[67] X. Cheng, M. Ding, and D. Chen, “An approximation algorithm for connected dominating
set in ad hoc networks,” in Proc. of International Workshop on Theoretical Aspects of
Wireless Ad Hoc, Sensor, and Peer-to-Peer Networks (TAWN), vol. 2, no. 4, 2004.

[68] S. Funke, A. Kesselman, U. Meyer, and M. Segal, “A simple improved distributed algorithm
for minimum cds in unit disk graphs,” ACM Transactions on Sensor Networks (TOSN),
vol. 2, no. 3, pp. 444–453, 2006.

[69] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying for flooding broadcast mes-
sages in mobile wireless networks,” in Proceedings of the 35th Annual Hawaii International
Conference on System Sciences. IEEE, 2002, pp. 3866–3875.

[70] K. Sakai, F. Shen, K. M. Kim, M.-T. Sun, and H. Okada, “Multi-initiator connected domi-
nating set construction for mobile ad hoc networks,” in 2008 IEEE International Conference
on Communications. IEEE, 2008, pp. 2431–2436.

[71] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On greedy construction
of connected dominating sets in wireless networks,” Wireless Communications and Mobile
Computing, vol. 5, no. 8, pp. 927–932, 2005.

151

[72] R. Misra and C. Mandal, “Minimum connected dominating set using a collaborative cover
heuristic for ad hoc sensor networks,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 292–302, pp. 292 – 302, 2010.

[73] H. Du, W. Wu, Q. Ye, D. Li, W. Lee, and X. Xu, “Cds-based virtual backbone construction
with guaranteed routing cost in wireless sensor networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 24, no. 4, pp. 652–661, 2013.

[74] Z. Yuanyuan, X. Jia, and H. Yanxiang, “Energy efficient distributed connected dominating
sets construction in wireless sensor networks,” in Proceedings of the 2006 international
conference on Wireless communications and mobile computing. ACM, 2006, pp. 797–802.

[75] N. Meghanathan, “An algorithm to determine energy-aware connected dominating set and
data gathering tree for wireless sensor networks.” in ICWN, 2009, pp. 608–614.

[76] T. Nieberg and J. Hurink, “A ptas for the minimum dominating set problem in unit disk
graphs,” in International Workshop on Approximation and Online Algorithms. Springer,
2005, pp. 296–306.

[77] F. Zou, X. Li, D. Kim, and W. Wu, “Construction of minimum connected dominating set
in 3-dimensional wireless network,” in International Conference on Wireless Algorithms,
Systems, and Applications. Springer, 2008, pp. 134–140.

[78] A. D. Amis, R. Prakash, T. H. Vuong, and D. T. Huynh, “Max-min d-cluster formation
in wireless ad hoc networks,” in Proceedings IEEE INFOCOM 2000. Conference on Com-
puter Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No. 00CH37064), vol. 1. IEEE, 2000, pp. 32–41.

[79] F. Dai and J. Wu, “On constructing k-connected k-dominating set in wireless ad hoc and
sensor networks,” Journal of Parallel and Distributed Computing, vol. 66, no. 7, pp. 947–
958, 2006.

[80] Y. Wu and Y. Li, “Construction algorithms for k-connected m-dominating sets in wireless
sensor networks,” in Proceedings of the 9th ACM International Symposium on Mobile Ad
Hoc Networking and Computing. ACM, 2008, pp. 83–90.

[81] M. T. Thai, N. Zhang, R. Tiwari, and X. Xu, “On approximation algorithms of k-connected
m-dominating sets in disk graphs,” Theoretical Computer Science, vol. 385, no. 1-3, pp. 49–
59, 2007.

[82] Z. Zhang, J. Zhou, Y. Mo, and D.-Z. Du, “Performance-guaranteed approximation algo-
rithm for fault-tolerant connected dominating set in wireless networks,” in IEEE INFO-
COM 2016-The 35th Annual IEEE International Conference on Computer Communica-
tions. IEEE, 2016, pp. 1–8.

[83] W. Wang, B. Liu, D. Kim, and D. Li, “A new constant factor approximation to construct
highly fault-tolerant connected dominating set in unit disk graph,” IEEE/ACM Transac-
tions on Networking, no. 99, p. 1, 2016.

[84] D. Kim, W. Wang, X. Li, Z. Zhang, and W. Wu, “A new constant factor approximation
for computing 3-connected m-dominating sets in homogeneous wireless networks,” in 2010
Proceedings IEEE INFOCOM. IEEE, 2010, pp. 1–9.

[85] F. Wang, M. T. Thai, and D.-Z. Du, “On the construction of 2-connected virtual backbone
in wireless networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp.
1230–1237, 2009.

152

[86] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor networks,”
in ICC 2001. IEEE International Conference on Communications. Conference Record (Cat.
No. 01CH37240), vol. 2. IEEE, 2001, pp. 472–476.

[87] M. Cardei, D. MacCallum, M. X. Cheng, M. Min, X. Jia, D. Li, and D.-Z. Du, “Wireless
sensor networks with energy efficient organization,” Journal of Interconnection Networks,
vol. 3, no. 03n04, pp. 213–229, 2002.

[88] T. Shi, S. Cheng, Z. Cai, Y. Li, and J. Li, “Exploring connected dominating sets in energy
harvest networks,” IEEE/ACM Transactions on Networking, 2017.

[89] R. Misra and C. Mandal, “Ant-aggregation: ant colony algorithm for optimal data aggre-
gation in wireless sensor networks.” in International Conference on Wireless and Optical
Communications Networks, 2006 IFIP. IEEE, 2006, p. 5.

[90] D. Du, L. Wang, and B. Xu, “The euclidean bottleneck steiner tree and steiner tree with
minimum number of steiner points,” in International Computing and Combinatorics Con-
ference. Springer, 2001, pp. 509–518.

[91] B. Awerbuch, “Optimal distributed algorithms for minimum weight spanning tree, count-
ing, leader election, and related problems,” in Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing. ACM, 1987, pp. 230–240.

[92] W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum connected dominating sets
and maximal independent sets in unit disk graphs,” Theoretical Computer Science, vol. 352,
no. 1-3, pp. 1–7, 2006.

153

Publications from this Thesis

Journals

• Jasaswi Prasad Mohanty, Chittaranjan Mandal, and Chris Reade, ”Con-
struction of minimum connected dominating set in wireless sensor networks
using pseudo dominating set.” in Ad Hoc Networks (Elsevier) 42, (2016):
61-73.

• Jasaswi Prasad Mohanty, Chittaranjan Mandal, and Chris Reade, ””Dis-
tributed construction of minimum connected dominating set in wireless sen-
sor network using two-hop information.” in Computer Networks (Elsevier)
123, (2017): 137-152.

Conferences

• Jasaswi Prasad Mohanty, and Chittaranjan Mandal, ”A distributed greedy
algorithm for construction of minimum connected dominating set in wireless
sensor network.” in 2014 Applications and Innovations in Mobile Computing
(AIMoC). IEEE, 2014.

Book Chapters

• Jasaswi Prasad Mohanty, and Chittaranjan Mandal, ”Connected Domi-
nating Set in Wireless Sensor Network.” Handbook of Research on Advanced
Wireless Sensor Network Applications, Protocols, and Architectures. IGI
Global, 2017. 62-85.

Under Preparation

• Jasaswi Prasad Mohanty, and Chittaranjan Mandal, ”Distributed Main-
tenance of Connected Dominating set as Virtual Backbone in Wireless Sensor
Network.”

154

Author’s Biography

Jasaswi Prasad Mohanty is a Ph.D. candidate from Department of Computer

Science and Engineering, Indian Institute of Technology Kharagpur. He completed

his M. Tech. degree in Computer Science from Utkal University during 2004-

06. He is currently working as an Sr. Assistant Professor in the department of

Computer Science and Engineering, Silicon Institute of Technology, Bhubaneswar,

Odisha, India.

Contact Information

Department of Computer Science and Engineering,

Silicon Institute of Technology,

Bhubaneswar, PIN–751024, India.

Mobile: +91-9437564198

Email: jasaswiprasad@gmail.com

Research Interests

Wireless Network, Distributed Systems.

155

	Abstract
	Introduction
	Network Models
	Related Definitions
	Backbone Network
	Virtual Backbone in Wireless Network
	Connected Dominating Set
	Connected Dominating Set as Virtual Backbone
	Construction of Minimum Connected Dominating Set and its Maintenance
	Overview and Contribution
	Thesis Organization

	 Review of CDS Construction Algorithms
	Overview
	Network Models
	Classification of CDS Construction Algorithms
	According to the use of topology information:
	According to the network models:
	According to the efficiency of the algorithms:

	CDS Construction Algorithms
	CDS Construction Algorithms with the design goal of minimizing CDS size
	CDS Construction Algorithms to improve fault tolerance and robustness
	CDS Construction Algorithms to prolong the network lifetime

	Summary of CDS Construction Algorithms
	Scope of Work

	Centralized Construction of CDS
	Overview
	Motivations and Objectives
	Motivations
	Objectives

	Network Model for Centralized CDS Construction
	CDS Construction by CPDS2HI
	PDS Construction
	Improved Steiner Tree Construction
	Removal of redundant dominators
	Working Example

	Algorithm Analysis
	Simulation Results
	Summary

	Distributed Construction of CDS
	Overview
	Motivations and Objectives
	Motivations
	Objectives

	Network Model for Distributed CDS Construction
	Distributed DCMCDS scheme
	Node Initialization and neighbourhood table creation
	Distributed PDS construction
	Distributed Steiner Tree construction
	Distributed removal of redundant dominators
	Phase Transition

	Algorithm Analysis
	Simulation Results
	Summary

	Distributed Maintenance of CDS
	Overview
	Motivations and Objectives
	Motivations
	Objectives

	Network Model for Distributed CDS Maintenance
	Distributed CDS Maintenance by DMCDS
	A CDS node finds its battery power has reached below the upper threshold value
	A CDS node has completely failed
	A non-CDS node (dominatee) finds its battery power has reached below the lower threshold value
	A non-CDS node (dominatee) has completely failed
	After recharging, a node is interested to work as a dominatee
	After recharging a dominatee is looking for its dominator
	Working Example

	Algorithm Analysis
	Simulation Results
	Summary

	Conclusion
	Contributions
	Scope for Future Work
	References

