
Verification of Scheduling in High-level Synthesis

C Karfa C Mandal D Sarkar S R Pentakota
Department of Computer Sc & Engg

Indian Institute of Technology, Kharagpur
WB 721302, INDIA

{ckarfa, chitta, ds}@iitkgp.ac.in, satya@ti.com

Chris Reade
Kingston Business School

Kingston University
England KT2 7LB, UK

Chris.Reade@king.ac.uk

Abstract

This paper describes a formal method for checking the
equivalence between two descriptions of the target system,
one before and the other after scheduling. The descriptions
are represented as finite state machines with data paths
(FSMD). The basic principle is to show that any computa-
tion of one FSMD is covered by a computation on the other,
a computation being characterized by a concatenation of
paths in the FSMD. These notions are formalized in the pa-
per. The method is strong enough to accommodate merg-
ing of the segments in the original behaviour by the typi-
cal scheduler such as DLS, a feature common in schedul-
ing. The method also works for limited arithmetic transfor-
mations. Although the proposed method is found to have
a non-polynomial worst case complexity, many non-trivial
examples encounter a low polynomial order of complexity.
The technique is illustrated with an example.

1 Introduction

High-level synthesis is the process of generating the reg-
ister transfer level (RTL) design from the behavioural de-
scription. The synthesis process consists of several inter-
dependent sub-tasks such as, specification, compilation,
scheduling, allocation and binding. The operations in the
behavioural description are assigned time steps through the
scheduling process. Input to the scheduling phase is a con-
trol data flow graph (CDFG)[3]. While a CDFG is better
suited to scheduling algorithms, an FSMD is a more appro-
priate model for verification. We therefore construct FS-
MDs from the CDFGs before and after scheduling. In the
process of scheduling, operations are often moved across
basic block boundaries for various optimizations. In general
several transformations may be made to improve the per-
formance of a design. For example, path based scheduling
techniques [7] perform several such non-trivial path based
transformations. Hence, it is important to ensure that the

scheduling process preserves the behaviour of the original
specification, irrespective of the scheduling technique that
is used. The objective of this work is to check that the de-
sign descriptions before and after scheduling, as represented
by FSMDs, are computationally equivalent.

The equivalence problem of FSMDs (EPFSMD) is the
same as the equivalence problem of flowchart schemas[4, 6]
which is undecidable and not even partially decidable[6].
However, since the final targeted hardware has only a fi-
nite datapath, the restricted problem can be reduced to the
equivalence problem of FSM models (EPFSM) which is de-
cidable. Unfortunately, an FSMD with an n-bit datapath
results in a number of states of the order of 2kn, where k
is the number of storage elements of n bits. The value of
kn easily exceeds several hundreds. Thus, deciding EPF-
SMD with a finite datapath by reducing them to EPFSM is
of little use in practice. On the other hand specialized an-
alytical treatments, such as the work described here, may
aid in revealing problems in the working of the algorithm
which may never use the finiteness in producing the output
which is to be checked. In this case the equivalence check-
ing algorithm would identify paths that are not matched up,
which could be particularly helpful in fixing the scheduling
algorithm. This benefit would normally be lost by trying to
reduce a finite EPFSMD to EPFSM.

Most of the algorithms proposed in the literature can suc-
cessfully verify the basic block based scheduling but appar-
ently fail to verify when structure of the scheduled FSMD
differs from the input FSMD due to path based transfor-
mation. In this paper, we propose a scheduling verification
method which is strong enough to work even when the ba-
sic path structure is changed by the scheduler. This method
formally establishes equivalence between the FSMDs be-
fore and after scheduling.

This paper is organized as follows. In section 2, FSMDs
and the notions of computations on FSMDs and the equiva-
lence of FSMDs are defined. The verification method is de-
scribed in section 3. the complexity of the proposed method
is treated in section 4. An example has been treated in sec-

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

tion 5 to illustrate the working of the algorithm. Some ex-
perimental results have been given in section 6. The paper
is concluded in section 7.

2 FSMDs and their Equivalence

2.1 FSMDs

An FSMD (finite state machine with data-path) is a uni-
versal specification model, proposed by Gajski in [2], that
can represent all hardware designs. The model is used in
the present work with the addition of a reset state, for en-
coding the designs to be verified. The FSMD is defined as
an ordered tuple 〈Q,q0, I,V,O, f ,h〉, where

1. Q = {q0,q1,q2, . . . qn} is the finite set of control states,

2. q0 ∈ Q is the reset state,

3. I is the set of primary input signals and ΣI is the input
alphabet,

4. V is the set of storage variables and Σ is the set of all
data storage states or simply, data states,

5. O is the set of primary output signals and ΣO is the
output alphabet,

6. f : Q×S → Q, is the state transition function and

7. h : Q×S →U , is the update function of the output and
the storage variables, where U and S are as defined
below.

(a) U = {x ⇐ e|x ∈ O ∪V and e ∈ E} represents
a set of storage or output assignments, from
variables (storage or output) or expressions con-
structed over (input or storage) variables. Thus,
E = {g(x,y,z, . . .) |x,y,z, . . .∈ I∪V} represents a
set of arithmetic expressions over the set I ∪V.

(b) S = {R(a,b)|a,b∈E and R is any arithmetic rela-
tion} represents a set of status signals as a result
of comparisons (=, �=,>,≥,<,≤) between two
expressions from the set E.

It may be noted that we have not introduced final states
in the FSMD model as we assume that the systems work in
an infinite outer loop.

2.2 Walks and Transformations along a
Walk

A (finite) walk α from qi to q j, where qi,q j ∈Q, is a finite
transition sequence of states of the form 〈qi = q1 −→c1

q2 −→c2
,

. . . , −→cn−1
qn = q j〉 such that ∀l,1 ≤ l ≤ n− 1,∃cl ∈ S such

that f (ql ,cl) = ql+1, and qk, 1 ≤ k ≤ n−1, are all distinct.

The state qn may be identical to q1. The condition of exe-
cution of the walk α = 〈ql0 −→c0

ql1 −→c1
ql2 . . . −→ck−1

qlk〉, Rα,
is a logical expression over the variables in V such that Rα
is satisfied by the (initial) data state at ql0 iff the walk α is
traversed.

We assume that inputs and outputs occur through named
ports. The ith input from port P is a value represented as
Pi. Thus if some variable v stores input from port P (for
the ith time along a walk), it is equivalent to the assignment
v ⇐ Pi.

The simple data transformation of a walk α over V (sα):
It is an ordered tuple 〈ei〉 of algebraic expressions over the
variables in V and the inputs in I such that the expression ei

represents the value of the variable vi after the execution of
the walk in terms of the initial data state (i.e., the values of
the variables at the initial control state) of the walk.

Taking into account outputs that may occur in a walk,
the data transformation rα of a walk α over V is the tu-
ple 〈sα,Oα〉, where the output list Oα = [OUT(Pi1 ,e1),
OUT(Pi2 ,e2), . . .]. For every expression e output to port P
along the walk α, there is an OUT(P,e) in the list, in the
order in which the outputs occurred.

−/−

q00

q01

q02

q03

q0e

q05

q04

!(y1 == y2)/−

yout = res

even(y2)/
res = res∗2

!even(y2)/
y1 = y1/2

even(y1)/−

!even(y1)/−

!even(y2)/−

y1 > y2/y1 = y1− y2

!y1 > y2/
y2 = y2− y1

even(y2)/
y2 = y2/2

y1 == y2/res = res∗ y1

−/y1 = P0, y2 = P1, res = 1

Figure 1. M0, the FSMD of GCD before scheduling

Computation of the condition of execution Rα can be by
backward substitution or by forward substitution. The for-
mer is more readily described and is based on the following
rule: If a predicate c(y) is true after execution of y ← g(y),
then the predicate c(g(y)) must have been true before the
execution of the statement [6]. The transformation sα is
found indirectly using the same principle. The forward sub-
stitution method of finding Rα is based on symbolic execu-
tion.

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

2.3 Characterization of Walks and their
Concatenations

The characteristic formula τα of a walk α with initial
storage and input variables as v, final variables as v f and
outputs along the walk as O is τα(v,v f ,O) = Rα(v)∧ (v f =
sα(v))∧ (O = Oα(v)), where sα is the data transformation
and Oα output list in the walk α.

Let τα(v,v f ,O) : Rα(v) ∧ (v f = sα(v)) ∧ (O = Oα(v))
be the characteristic formula of the walk α and
τβ(v,v f ,O) : Rβ(v) ∧ (v f = sβ(v)) ∧ (O = Oβ(v))
be the characteristic formula of the walk β. The
characteristic formula for the concatenated walk
αβ is ταβ(v,v f ,O) = ∃vα∃O1∃O2(τα(v,vα,O1) ∧
τβ(vα,v f ,O2)) = Rα(v) ∧ Rβ(sα(v)) ∧ (v f = sβ(sα(v)))∧
(O = Oα(v)Oβ(sα(v))). O is the concatenated output list of
Oα(v) and Oβ(sα(v)). The detail of incrementing the input
indices on each port in the formulas for β to start after the
last index of the corresponding port in α has been omitted
for notational clarity.

2.4 Computations on FSMDs and their
Path Covers

A computation of an FSMD is a finite walk from the re-
set state q0 back to itself without having any intermediary
occurrence of q0 (as a new computation starts from the reset
state). A computation c of an FSMD M may be character-
ized as τc(vi,v f ,O) : Rc(vi)∧ (v f = sc(vi))∧ (O = Oc(vi)),
where vi is the vector of initial input and data state with
which the computation is started, Rc is a satisfiable condi-
tion over the domain of I and V , sc is a function over this
domain to the co-domain of values over V and Oc is the
concatenation of the output lists resulting from output oper-
ations along c.

Two computations c1 and c2 having the characteristic
formulae τc1 and τc2 , respectively, are said to be equiva-
lent if Rc1 = Rc2 , rc1 = rc2 . The computational equivalence
of two walks p1 and p2 is denoted as p1 � p2. Equiva-
lence checking of walks, therefore, consists in establishing
the computational equivalence of the respective conditions
of execution and the respective data transformations.

A finite set of paths1 P = {p0, p1, p2, . . . , pk} is said to
cover an FSMD M if any computation c of M can be looked
upon as a concatenation of paths from P. P is said to be a
finite path cover of the FSMD M.

1 A path is a walk in which all the states (nodes) are distinct. A cycle
is like a path where the first and last nodes are identical but all other nodes
are distinct. Here we allow our paths to be cycles also.

2.5 Arithmetic Expressions and their
Normalization

Since the condition of execution and the data trans-
formation of a walk involve the whole of integer arith-
metic, checking equivalence of walks reduces to the valid-
ity problem of first order logic; the latter is undecidable
because a canonical form does not exist for integer arith-
metic. Instead, in this work we use the following normal
form adapted from [5, 8].

Every formula is converted into the conjunctive normal
form; every conjunct, therefore, is a disjunction of literals
where a literal is an atomic formula (atom) or its nega-
tion. An atom is a boolean variable or an arithmetic re-
lation of the form S r 0, where S is a normalized sum,
r ∈ {≤,≥,=, �=}. The relation > (<) can be reduced to ≥
(≤) over integers. A normalized sum is a sum of terms
with at least one constant term; each term is a product
of primaries with a non-zero constant primary; each pri-
mary is a storage variable, an input variable or an output
variable or of the form abs(s), mod(s1,s2), exp(s1.s2) or
div(s1,s2), where s,s1, and s2 are normalized sums. Any
normalized sum is arranged by lexicographic ordering of
its constituent subexpressions from the bottom-most level.
The common subexpressions in a sum are collected. Thus,
x2 + 3x + 4z + 7x is simplified to x2 + 10x + 4z + 0. A re-
lational literal is reduced by a common constant factor, if
any, and the literal is accordingly simplified. For example,
3x2 +9xy+6z+7 ≥ 0 is simplified to x2 +3xy+2z+2 ≥ 0,
where �7/3� = 2. A conjunct C = l1 ∨ l2 ∨ . . .∨ ln is first
expressed as ¬(¬l1 ∧¬l2 ∧ . . .∧¬ln) and then literals are
deleted by the rule “if (l ⇒ l′) then l ∧ l′ ≡ l.” C reduces to
true if ¬li ⇒ l j for 1≤ i, j ≤ n. Symmetry of {=, �=}, reflex-
ivity of {≤,≥,=} and irreflexivity of {�=} are accounted for
by the above transformations. The above normal form may
be shown to be canonical for multivariate polynomials.

2.6 Equivalence of FSMDs

Let M0 be the FSMD representation of the CDFG given
as the input to the scheduler and M1 be the FSMD of the
scheduled behaviour. Our main goal is to verify whether
M0 behaves exactly as M1. This means that for all possible
input sequences, M0 and M1 produce the same sequences
of output values and eventually, when the respective reset
states are re-visited, they are visited with the same storage
element values. In other words, for every computation from
the reset state back to itself of one FSMD, there exists an
equivalent computation from the reset state back to itself in
the other FSMD and vice-versa.

Thus two FSMDs M0 and M1 are said to be computation-
ally equivalent if for any computation c0 of M0, there exists
a computation c1 of M1 such that c0 and c1 are computa-
tionally equivalent and vice-versa.

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

The following theorem, stated without proof, is key to
our algorithm for checking the equivalence of two FSMDs.

Theorem 1 Two FSMDs M0 and M1 are computation-
ally equivalent if there exists a finite cover P0 =
{p00, p01, . . . , p0l} of M0 for which there exists a set P0

1 =
{p0

10, p0
11, . . . , p0

1l} of paths of M1 such that p0i � p0
1i,

0 ≤ i ≤ l and vice-versa.

The following (inductive) notion of corresponding states
will be used in the algorithm to be presented. Let M0 =
〈Q0, q00, I,V0,O, f0,h0〉 and M1 = 〈Q1,q10, I,V1,O, f1,h1〉
be the two FSMDs having identical input and output sets, I
and O, respectively, and q0i,q0k ∈ Q0 and q1 j,q1l ∈ Q1.

• The respective reset states q00,q10 are corresponding
states.

• If q0i ∈ Q0 and q1 j ∈ Q1 are corresponding states and
there exist q0k ∈ Q0 and q1l ∈ Q1 such that, for some
path α from q0i to q0k in M0, there exists a path β from
q1 j to q1l in M1 such that α � β, then q0k and q1l are
corresponding states.

3 Verification Method

The above theorem, therefore, suggests a verification
method which consists of the following steps:

1. Construct the set P0 of paths of M0 so that P0 covers
M0. Let P0 = {p00, p01, · · · , p0k}.

2. Show that ∀p0i ∈P0, there exists a path p1 j of M1 such
that p0i � p1 j.

3. Repeat steps 1 and 2 with M0 and M1 interchanged.

Owing to the presence of loops it is difficult to find a
path cover of the whole computation comprising only finite
paths. So any computation is split into paths by putting cut-
points at various places in the FSMD so that each loop is
cut in at least one cutpoint. The set of all paths from a cut-
point to another cutpoint without having any intermediary
cutpoint is a path cover of the FSMD. The method of de-
composing an FSMD by putting cutpoints is identical to the
Floyd-Hoare’s method of program verification [1, 5]. We
choose the cutpoints in any FSMD as follows.

1. The reset state is chosen.

2. Any state with more than one outward transitions is
also chosen.

Obviously, cutpoints chosen by the above rules cut each
loop of the FSMD in at least one cutpoint, because each

internal loop has an exit point (ensured by our notion of
computation in §2).

In the following we propose one method which combines
the first two steps listed above into one. More specifically,
the method constructs a path cover of M0 and also finds its
equivalent path set in M1 hand-in-hand. An initial set of
cutpoints is chosen for M0 as described above. The reset
state of M0 is always a cutpoint of M0 and the reset states
of M0 and M1 is the initial pair of corresponding states.
Starting from a corresponding state q0i of M0 the algorithm
traverses all the paths leading out of q0i to the next cut-
point in M0 and for each path it tries to find a corresponding
equivalent path in M1. On success the end points of the
two paths may be recorded as a new pair of corresponding
points. Otherwise, the path in M0 is extended in all possible
ways (without re-entering loops) and again matching paths
are sought in M1 for each extension. When all possibilities
are exhausted without finding a match the algorithm reports
a failure. The algorithm continues until all pairs of corre-
sponding points are processed. The following pseudocode
describes this process more precisely.

3.1 Verification Algorithm

Step 1: Insert cutpoints in M0 by the following rules.

• the start state is a cutpoint,

• any state with more than one outward transition is a
cutpoint.

Step 2:

/*Main data stores:
η: Set of corresponding nodes
P0: path cover of M0

P01: paths in M1 with matching paths in P0
Working data stores:

F: list of paths of M0 starting with nodes having
corresponding nodes but ending with nodes whose
corresponding nodes have not yet been found
P: Working list of corresponding nodes from which
paths will be examined */

F := [] ; P0 := [] ; P10 := [] ;
η := {〈q00,q10〉} ;
P := {〈q00,q10〉} ;
while (P is not empty ‖ F is not empty)
{ // main loop continues till termination

if (F is empty)
// new paths starting from entries in P to be examined
{ 〈q0i,q1 j〉 := deQ P ;

put in F all the paths from q0i to its successor
cutpoints (in M0) ;

} else // now work on the un-matched path frontier

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

{ β := deQ F ; // endPtNd (β) is un-matched!
if ((α = findEquivalentPath (β , q1 j)) != NULL)
{ if (! 〈 endPtNd(β), endPtNd(α)〉 ∈ η)

enQ (P, 〈 endPtNd(β), endPtNd(α) 〉);
// new paths will start from here

η := η∪{〈 endPtNd(β), endPtNd(α) 〉 ;
P0 := P0∪{β} ; P10 := P1∪{α} ;

} else // no match
{ // so continue along all paths through successors

if (the path is marked NOT EXTENDIBLE) fail ;
tF := all the paths obtained by concatenating to β
all the paths from endPtNd (β) to all the successor
cutpoints of endPtNd (β) ;
if (endPtNd of any member of tF is a node of the

same path other than its start node)
fail;

if (endPtNd of any member of tF is same
as its start node ‖ the reset state)
mark the path as NOT EXTENDIBLE ;

F := append (tF, F) ;
} // else-if

} // else-if
} // end while

Step 3: Identify the cutpoints in M1

Step 4: Repeat the same procedure as described in Step
2 with the roles of M0 and M1 interchanged.

Step 5: If it succeeds for both Step 2 and Step 4 then re-
port M0 and M1 are computationally equivalent. Otherwise
report a failure.

The functions used are specified as follows.

• findEquivalentPath(β,q1 j) : It tries to find a path α
in M1 so that Rα = Rβ and rα = rβ. If such an α exist
then this function returns α, otherwise a NULL path.

• endPtNd(β) : returns the state where the path β termi-
nates.

4 Algorithm Complexity

The complexity of the algorithm is determined in step
2. Let there be up to n control states (nodes) in M0 or M1.
This is an upper bound on the number of cutpoints in M0 or
M1. The complexity of the function findEquivalent(β,q1 j)
is proportional to the number of paths from q1 j to be ex-
amined, for a given β. If there are up to k parallel edges
between any two states, then up to O(kn) paths of length
O(n) need to be examined. We avoid the kn possibilities of
branching here because the paths are examined with respect
to β; only the k possibilities at each node of the path need to

be examined for only a single viable choice. Thus the time
complexity of findEquivalent is O(kn2). This is not a tight
upper bound, so we also consider the lower bound which
is Ω(1). This represents the case when we obtain straight
matches without any exploration.

While finding the equivalent paths in M1 corresponding
to those in M0, in the best case we only need to consider a
path from one cutpoint to the next. However, path exten-
sions may be required. The maximum length of any path in
M0 after repeated path extensions is O(n). Starting from a
cutpoint, considering repeated path extensions and an edge
multiplicity of k, up to O(kn−1), if k �= 1 or O(n2), if k = 1,
paths of M0 may need to be examined. Note that if k �= 1,
then along a path of n nodes there are k path segments of
length one, k2 path segments of length two, etc. The total
number of such paths is k + k2 + k3 + . . .+ kn−1 = k kn−1−1

k−1 ,

which is O(kn−1). Since paths may start from any cutpoint,
O(nkn−1), if k �= 1 or O(n3), if k = 1, paths of M0 may
need to be examined. The total number of pairs of the form
〈β,q1 j〉 that need to be examined is O(n2kn−1), if k �= 1 or
O(n4), if k = 1. Thus, the overall worst case complexity of
step 2 is O(n4kn) if k �= 1 or O(n6), if k = 1 and Ω(n). In
practice this is often not hit.

5 An Example

−/−

q10

!(y1 == y2) & !even(y1)& !even(y2)
&!y1 > y2/y2 = y2− y1

!(y1 == y2) & !even(y1)& !even(y2)
&y1 > y2/y1 = y1− y2

!(y1 == y2) & even(y1)
&!even(y2)/y1 = y1/2

!(y1 == y2) & even(y1)
&even(y2) /
res = res∗2

!even(y1)
!(y1 == y2) &

y2 = y2/2
even(y2) /

q11

q1e

q12

−/yout = res

−/y1 = p0, y2 = P1, res = 1

y1 == y2/res = res∗ y1

Figure 2. M1, the FSMD of GCD after scheduling

The flow of step 2 of the proposed algorithm applied
to the GCD example (fig 1 and fig 2) is briefly discussed
here. The algorithm first considers the path 〈q00 → q01〉.
The findEquivalentPath function successfully finds an
equivalent path which is 〈q10 → q11〉. So, 〈q01, q11〉 are the
corresponding pair of states. The path 〈q01 → q0e → q00〉
has to be considered next. Its equivalent path is 〈q11 →

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

q12 → q1e → q10〉. For the path 〈q01 → q02〉, there is no
equivalent path in M1. So, this path needs to be concate-
nated with its successor paths. These concatenated paths
are β1 = 〈q01 → q02 → q03〉 and β2 = 〈q01 → q02 → q04〉}.
β1 is again concatenated with its successor paths as it has
no equivalent path in M1. The concatenated paths have
the same sequence of states (q01 → q02 → q03 → q01) with
different conditions of execution and data transformations.
Similarly, β2 is also concatenated with its successor paths.
These concatenated paths are β21 = 〈q01 → q02 → q04 →
q05〉} and β22 = 〈q01 → q02 → q04 → q01〉}. Path β21 will
be concatenated with two of its successor paths next. Now
each of these concatenated paths has an equivalent path in
M1. These will be explored one by one in the following
iterations. It may be noted that Step 2 takes only 18 itera-
tions which is much better than the worst case complexity
of 66 = 46656 (here k = 1,n = 6).

6 Experimental Results

The proposed algorithm has been implemented in ‘C’
and has been run for some standard high-level synthesis
benchmarks as shown in table 1. These have been run on
an Intel Pentium 4, 1.70 MHz, 256MB RAM machine. The
number of states, number of paths explored in each FSMD
M0 and M1, number of consecutive path segments merged
by the scheduler and the CPU time are tabulated for each
benchmark example. It is evident from table that execution
time is sensitive on number of paths explored. It also may
be noted from the table that run time of this algorithm is less
sensitive on the number of states in the FSMDs. For exam-
ple, in table 1, the run times of EWF and DCT are small
compared to GCD and MODN even though EWF and DCT
have greater number of states. These examples also sug-
gest that the upper bound is not necessarily hit for practical
scheduling verification cases.

7 Conclusions

Advances in VLSI technology have enabled its deploy-
ment into complex circuits. Synthesis flow of such circuits
comprises various phases where each phase performs the
task algorithmically providing for ingenious interventions
of experts. The gap between the original behaviour and the
finally synthesized circuits is too wide to be analyzed by any
reasoning mechanism. The validation tasks, therefore, must
be planned to go hand in hand with each phase of synthe-
sis. The present work concerns itself with the validation of
the scheduling phase. Both the behaviours prior to and after
scheduling have been modeled as FSMDs. The validation
task has been treated as an equivalence problem of FSMDs.

The method presented in this paper has been proved to
be sound, completeness being ruled out by the fact that the

Name #state in
FSMD

#path in
cover

#path
extn

CPU
time

M0 M1 M0 M1 in ms

DIFFEQ 4 12 3 3 0 2.442
EWF 4 35 1 1 0 1.820
GCD 7 4 11 7 3 3.976
DCT 3 29 1 1 0 1.754
TLC 7 8 13 14 2 4.196

MODN 6 7 8 12 2 4.324
PERFECT 9 6 7 5 2 4.028

Table 1. Results for different high-level synthesis
benchmarks

equivalence problem of FSMDs has been reported to be not
even partially decidable. The method is strong enough to
accommodate merging of the segments in the original be-
haviour by the typical scheduler such as, DLS [7]. It is
also able to handle arithmetic transformations and expected
to handle simple code motion. Similar methods reported
in the literature have been found to fail under such situa-
tions. Although the proposed method is found to have a
non-polynomial worst case complexity primarily because of
presence of parallel edges between the same pair of states,
the best case complexity is found to be linear. The initial
experiments show that the algorithm is usable for practical
equivalence checking cases of scheduling.

References

[1] R. W. Floyd. Assigning meaning to programs. In J. T.
Schwartz, editor, Proceedings the 19th Symposium on Applied
Mathematics, pages 19–32, Providence, R.I., 1967. American
Mathematical Society. Mathematical Aspects of Computer
Science.

[2] D. Gajski and L. Ramachandran. Introduction to high-level
synthesis. IEEE transactions on Design and Test of Comput-
ers, pages 44–54, 1994.

[3] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[4] W. E. Howden. Functional program testing and analysis.
McGraw-Hill, New York, 1987.

[5] J. C. King. Program correctness: On inductive assertion meth-
ods. IEEE Trans. on Software Engineering, SE-6(5):465–479,
1980.

[6] Z. Manna. Mathematical Theory of Computation. McGraw-
Hill Kogakusha, Tokyo, 1974.

[7] M. Rahmouni and A. A. Jerraya. Formulation and evalu-
ation of scheduling techniques for control flow graphs. In
Proceedings of EuroDAC’95, pages 386–391, Brighton, 18-
22 September 1995.

[8] D. Sarkar and S. C. De Sarkar. Some inference rules for inte-
ger arithmetic for verification of flowchart programs on inte-
gers. IEEE Trans. Softw. Eng., 15(1):1–9, 1989.

Proceedings of the 2006 Emerging VLSI Technologies and Architectures (ISVLSI’06)
0-7695-2533-4/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

