
Session 9: System Design Issues and Examples

Use of Multi-Port Memories in Programmable
Structures for Architectural Synthesis

C. Mandal R. M. Zimmer
Department of Computer Science

Brunel University, Uxbridge UB8 3PH, U.K.

Abstract
In this paper we make a study of the capabzlities required of memories to su
the synthesis of designs using structured archztectures. We explore the advantag
using multi-port memories with two write ports as an architectural component over
conventional memories with a single write port in such a synthesis environment. A
study the of the memory resources auazlable an some of the current Faeld Programmable
Gate Arrays (FPGA) is made. We then propose a multz-port memory structure that
could be suetable for use zn programmable structures such as FPGAs, to faczlitate
implementations of designs through HLS. The princapal advantages of the proposed
memory structure are its flexibilzty, simplzcity and its ability to support more eficient
execution of operations than existing memory structures.

Keywords: Semiconductor Memory, High-Level Syntheszs (HLS), Fzeld Programmable
Gate Array (FPGA), VLSI.

1 Introduction
Electronic design automation is supporting design at increasingly higher levels
tion. For designs involving algorithmic computations and complex data flows
techniques to synthesize the architecture of the target system is usually referred
level synthesis (HLS). HLS starts with the behavioural specification (BS) of the target
design and goes on to find a schedule of operations in the BS and construct the archi-
tectural data paths and the controller to implement the BS. The data path is composed
of register transfer level components, such as adders, subtracters, registers, buses and
switches. The construction of the data paths is usually referred to as data path
(DPS). The prime tasks are scheduling, and component allocation and binding. FPGAs
and other programmable structures are an attractive platform for implementing designs
synthesized using HLS techniques as they permit quick prototyping of target designs.

In this paper we explore the role of multi-port memories in aiding HLS targeted to-
wards programmable structures, such as FPGAs. We show that multi-port memories with
two write ports are required to have efficient structured implementations of designs. We
then propose simple structures to implement such multi-port memories on programmable
devices.

0-7803-3639-9/96 $4.00 0 1996 IEEE 34 1

342 1996 Innovative Systems in Silicon Conference

In section 2 we briefly examine some HLS techniques. The use of multi-port memories in
structured architectures is considered in section 3. Here we bring out the importance of the
multi-port memories with two write ports as a building block in programmable structures.
Memory resources of a few FPGAs are examined in section 4. We propose the design of
our memory section 5 and close the paper with our conclusions.

2 Current HLS techniques
Much work has been done on scheduling, allocation, and also on integrated scheduling
and allocation. Maha [l] performs scheduling of operations, and allocation and binding
of hardware operators. Force’directed scheduling [2] attempts to minimize the cost of
hardware operators’ while trying to schedule within a specified number of time steps. In
Cloutier et al. [3] scheduling is combined with allocation and mapping. A method for
integrated scheduling and binding has been presented in Balakrishnan et al. [4]. A problem
space genetic algorithm has been proposed in Dhodhi [5] which does concurrent scheduling
and allocation. The Aove techniques address optimizations for the data path with respect
to its performance or its cost. Most of these techniques use individual registers as storage
elements and employ a random interconnect structure. While such data paths may be easily
fabricated using semi-custom fabrication techniques, they may place excessive demands on
interconnect resources if they are implemented using programmable structures.

There have been efforts to develop HLS techniques to produce data paths which will
have more economic physical implementation. Balakrishnan et. al. [6] have developed
techniques to cluster storage through the use of multi-port memories. Duncan et al. [7]
have developed a simulated annealing algorithm for synthesizing a data path where all
interconnections take place over a few global buses. This is a useful feature for FPGA
based implementation. Mandal et al. [8] have developed a genetic scheduling algorithm
to synthesize structured data paths which have a predictable layout. Data paths obtained
using these techniques often rely on the use of multi-port memories with two write ports.
In the next section we study the role of memories for implementing designs on structured
architectures, with the help of an example.

3 Memories in Structured Architectures for HLS
Let us consider the architectural schematic in figure 1. The main components are the
architectural block (A-block) with local functional unit and memory, the interconnecting
buses, the global memory (if any) and the controller. Each functional unit implements
a set of operations derived from the behavioural specification. The key feature here is
that data transfers between the A-blocks can only to take place over the global bus. This
particular feature endows the design with a predictable layout structure. It is desirable
that the internal storage and interconnection structure of A-blocks should also be compact.

The FU and memory in each block are used to execute operations of the form z = y op z.
This usually requires two read accesses and one write access of the local storage. In
addition, it cannot be guaranteed that the required data will always be present locally.
Thus, at times, it will be necessary to fetch data from other blocks or the global memory.
These transfers have to take place over the global buses. The memory available in each
block should support the required local storage accesses. In example 1 we examine the

Session 9: System Design Issues and Examples 343

Global Buses

data transfer requirements that could arise in the implementation of differential equation
solver proposed by Paulin et. al. [9].

Example 1 The code sequence for the Diffeq. example in Paulin et al. [9] is given below.

loop
v0 = dx * U v l = 3 * x x = d x + x
v2 = vo * VI v 3 = 3 * y x < a
v 4 = U - v2 v5 = dx * v3 v6 = U * dx
U = v 4 - v5 y = y + v 6

l oop end

The partial order arising from this code sequence is shown in figure 2. For example,
v2 = v0 * v l can be performed only after WO = ds * U has completed execution.
Let us assume that we would like to implement the above computation on
architecture involving three blocks and suppose that we permit up to one transfer between
the block and the buses. Let us also assume that each multiplication takes two clock cycles
and that we would like to obtain a schedule in seven time steps.

We present in table 1 a schedule of operations and transfers which could be implemented
on such a structured architecture. We note that a loop computation is involved. Variables
used in an iteration but not defined by a preceding operation should be present at a
predefined location. The first row of the table indicates the blocks where the loop variables
are located. The second part of the table, below, indicates the schedule of operations and
the blocks where they are located. The last part of the table indicates the schedule of
inter-block data transfer. The annotations “in” and “out” indicate that the variable is
either entering or leaving the block. This particular schedule minimizes the cost of the
FUs, while at the same time performing all the required transfers within the given number
of time steps, seven in this case. The value dx is constant and is replicated in all the thiee
blocks.

344 1996 Innovative Systems in Silicon Conference

1
2
3
4
5
6
7

(U: in)
(vl: in) (vl: out)

(x: out)
(v2: out)

(v5: out)
(x: in)

(v6: out) (v6: in)

(U, - dx)

x = d x + x
x < a

v4 = U - v2
U = v4 - v5
(U: out)

(x: in)
(v2: in)

(v5: in)
(x: out)

Table 1: Operation and transfer schedules for Diffeq.

Figure 2: Partial order for Diffeq.

Session 9: System Design Issues and Examples 345

Storage cell

Figure 3: Basic Write Control Signals for a Storage Cell.

In example 1 we note that there is one inter-block data transfer in each time step.
Specifically in time steps 2 and 6 we note the following. In time step 2, in the first block
the values v0, generated by the multiplier, and v l , coming from another block, both need
to be stored. This means that the memory configuration of a block should permit two
simultaneous write operations. A similar situation is also observed in time step 6, where
v 5 and v4 both have to be stored in the third block. Here two read accesses to U and v2
also need to be supported. In time step three we notice that there are three reads from the
memory, for 2, y and the constant 3. The total number of memory accesses in any block
does not exceed four.

Thus, to implement the schedule shown in table 1, the memory architecture of a block
should support two read, one write and one read/write accesses independently. It may be
desirable to support greater number of accesses, but that would be more expensive. We
now examine a few memory configurations using conventional storage structures. First
in section 3.1 we consider the use of directly controlled registers. In sections 3.2 and
3.3 we consider the use of dual port and multi-port memories with more than two ports,
respectively.

3.1
This is the fundamental structure for storage. Figure 3 shows the data and control lines for
an individual register. Suppose that there are n individual registers and m sources for data
to these n registers. Then for each register [lg ml lines will be needed to identify the source
of the data and one line to control writing to the register will be needed. Thus n[lg2ml
signals need to be generated for controlling write operations to these cells. If these cells
are organized as in a memory then up to m [lg 2721 signals will suffice. This is considerable
reduction in the number of output functions of the controller as m << n usually. A local
decoder is required to decode each encoded cell address. We believe that this is usually
a reasonable trade-off for most designs and we shall now consider only the memory type
organization for storage cells.

Block Using Individually Controlled Registers

3.2
We first note that at least two memories will be needed to provide the required accesses.
The memories may have one read and one write port. Alternatively, one or both of the
ports may have read/write capability.

Block Using Dual Port Memories

Case 1: Using two memories each with one read and one write port. At most
one value may be read out of a memory. Thus variables need to be allocated to the memories

346 1996 Innovative Systems in Silicon Conference

To global buses

From FU outuut

Memory Memory

To FU input To FU input I l l
Figure 4: Two 'Yriple Port Memories.

se being accessed at the same time are on different memories. Such an allocation
possible and some of the variables will have to reside simultaneously on both

t memories. This can be ensured only by storing new values in both the
LkiIig tlie write port of each memory. Thus, all the ports get used up for data

transfers within the block. An access from outside the block, in general, will have to wait.

Case 2: Using two memories each with two read/wr i te ports. In this case it may
be shown that all access for operations within the block may be satisficd using three of the
four ports available between the two memories. It does not matter in which of the two
memories the operands are stored. The main advantage over the previous case with single
read and write ports is that the computational task of finding a feasible variable assignment
to the memories is eliminated. This comes at the expense of duplicating many values in both
the memories. However, the fundamental problem of being able to accommodate storing a
value from another block along with a value generated internally remains unsolved.

Thus, with the use of these memory configurations in blocks micro-operations requiring
simultaneous storage of values in a block will have to be distributed over two time steps.
This makes the implementation slowcr. We now examine memories with three poits.

Block Using Memories With More Than Two Ports

We consider two triple port memories each using one read, one write and one read/write
hown in figure 4. This is essentially a 4-port memory made up using the triple

port memory. With this configuration it is easy to permit two reads, one write and one
read or write outside the block. This is an expensive solution to the problem because two
triple port memories need to be used in each block, with copies of most values having to
reside in both the memories.

We can also use a 4-port memory that will permit up to three reads and two writes, the
total number of accesses not exceeding four. The key factor to be noted is that to permit
a general access to data outside the block alongside normal accesses within the block, the

Session 9: System Design Issues and Examples 347

memory should support two write accesses. Where permissible, four port memory, using
two write ports, could be used in place of two triple port memories. We now examine at
the memory resources available in two common FPGAs.

4 Memories in FPGAs
Both XilinxTM produce FPGAs which include on-chip RAMS. The Xilinx
XC4000 series FPGAs [lo] employ two SRAMs, each of sixteen cells, in their configur-
able logic block (CLB). Internally each SRAM uses separate circuitry, with independent
addressing, for read and write. The two SRAMS can be configured as a dual port RAM
(16 bits) with two read ports and one write port. This is achieved by tying the data and
address lines of the write circuitry of the two SRAMs in a CLB. The SRAMs may be used
as lookup tables to implement logic functions or just to store and retrieve a bit of data.
The two SRAMs can also be used as two 16-cell SRAMs or a single 32-cell SRAM. In the
dual port mode the writes are edge triggered.

The Xilinx XC8100 family of FPGA [ll] has a very different architecture, employing
an array of programmable cells. Each cell may be configured as an AND or as a sum of
products (SOP), a tri-state buffer or a latch. On-chip memories are not directly provided.

The Actel 3200DX FPGA [12] uses independent on-chip SRAM units alosgside three
types of logic modules. These are the combinatorial (C-modules) , sequential (S-modules)
and some decode (D-modules). The D-modules implement decode circuits and are located
at the device periphery. The C-module is a multiplexer based logic module, shown in figure
5. The multiplexer is a well known universal logic module. The S-module is similar to
the C-module, with the addition of a D-type flip-flop, connected to the multiplexer output.
The Actel 3200DX also provides on-chip SRAMs having one read and one write port, both
independently addressable. The address and data input lines of two SRAMs can be tied
up work as a dual port RAM with two read and one write ports.

We thus note that the FPGAs mentioned do not directly permit the storage facilities that
have been shown to be desirable in section 3. It is interesting to note that some of these
FPGAs support on-chip multi-port memories, but these memories are restricted to having
only one write port. In the next section we propose the implementation of a multi-port
memory using primitives similar to those used in these FPGAs.

and ActelTM

5 Proposed Memory Structure
Figure 6 depicts the standard implementation of a dual port SRAM. Current FPGAs
implement the decoder, latches and the multiplexer at the output as an integrated unit. This
makes it impossible to programatically incorporate additional write ports to an SRAM.
Figure 7 shows the write circuitry for a dual port RAM with two write ports and eight
cells. Cells in up to two rows can be independently addressed through the address ports.
A cell is written if it is selected through one of the address ports. The source of the data
bit to be written to the cell is determined by the address port through which the cell is
selected. For correct operation of a dual port RAM with two write ports it is expectcd that

'Xilinx is the trademark of Xilinx Inc.
'Actel is the trademark of Actel Corp.

348 1996 Innovative Systems in Silicon Conference

Simplified Simplified S-module

Figure 5: Two Actel 3200DX FPGA logic modules.

decoder
out

m g i e s s datain write

I I I write address I l l

Figure 6: Dual Port Memory with One Write Port.

simultaneous writes through both the ports will not be attempted on cells in the same row.
The write control logic in figure 7 performs a cell selection and provides the correct data
for writing under this condition. In case the cell is selected by both the address ports then
the data to be written to the cell represents DO I D1. We now consider implementations
for the building blocks shown in figure 7. The salient feature of our implementation is that
the structures used are flexible enough to be used for general logic synthesis when they are
not required to implement the memory. The implementation using the proposed structures
is also compact. Duplication of memories to permit additional read ports, as indicated in
section 4 is inefficient and is not warranted with the proposed structure.

Such a multi-
plexer/demultiplexer could be used in some of the configurable logic cells (CLC) of a
multiplexer based CLC in an FPGA. The demultiplexer function permits direct implement-
ation of the decoders for the write circuitry shown in figure 7. In addition, by hierarchical
cascading, larger decoders can be easily built up. When used as a decoder, each output
of the demultiplexer needs to fan-out to only one cell. The structural compatibility of the
multiplexer/demultiplexer with the C-module of the Actel 3200DX FPGA may be noted.
The write control logic requires implementation of the two functions S0.DO + S1.Dl and
SO 1 DO. A flip-flop is required to store the bit. Figure 9 shows an integrated implementa-
tion of the write control circuit along with the flip-flop. This can be compactly implemented
as a cellular unit. A multiplexel based implementation is used for S0.DO + S1.Dl and
SO 1 DO is directly implemented using an OR gate. This makes the implementation coin-
patible with the structure of the S-module of the Actel 3200DX FPGA. The write control

easily implemented using the programmable cells of both the Xilinx FPGAs
studied here. However, the implementation of the decoder could be more involved. The

Figure 8 shows a re-programmable 4-to-1 multiplexer/demultiplexer.

Session 9: System Design Issues and Examples 349

decoder
D1i IDO

data out

select out

eIk-J
decoder

Figure 7: Write Circuitry for Dual Port Memory.

implementation of the read circuitry is simple, it only involves connecting additional mul-
tiplexers in tandem with the multiplexer shown in figure 6.

It is apparent that the CLCs indicated need to be programmed in many modes. These
cells may be implemented to be re-programmable, like the XC4000 type FPGAs from
Xilinx, permitting ease of use and reuse. Alternatively they may be made one time pro-
grammable, restricting their re-usability but considerably enhancing the device density and
the performance.

The delay of the proposed memory structure may be predicted as follows. The delay of
the decoder may be taken as that of the 3200DX C-module which is 2.5ns. The delay of
the write control logic along with the flip-flop may be taken as the delay of the S-module
which is 2.811s. The routing delay between the decoder and the cell may be taken as 1.3ns,
bringing the total write delay to 6.7ns. If the logic is to be implemented using standard
FPGA cells then the basic circuit of figure 3.1 would have a delay of 6.7ns. If the storage
organization indicated in this paper is used then the decoder implementation would have a
delay of 6.8ns, assuming two levels of CLCs with interconnect in between. Total delay for
write would now come to 14.8ns. If the storage organization indicated is not used then there
is a vast increase in the output functions and the total complexity of the controller. The
on-chip RAM of 3200DX has a delay of 5ns. It has the restrictions of memories discussed
in section 3.2. Additional delay for multiplexing and interconnection may be taken as
3.8ns bringing the total delay to 8.8ns. It thus appears that the proposed struct
a definite advantage for high-level synthesis based designs.

Standard examples such as the differential equation solver [2], fifth order elliptic wave
filter [13] and discrete cosine transform [14] have been synthesized for implementation with

350 996 Innovative Systems in Silicon Conference

A 4-10-1 mux using CMOS pass transistors
with outvut dnver demultlplexer

The multlplexer re-programmed to work as a 4-10-1

CS/EN d

Figure 8: A re-programmable 4-to-1 Multiplexer/Demultiplexer.

r i

Figure 9: Implementation of a single RAM cell with its write control circuit.

structured architectures. All these examples are realizable using local storage structures
needing to support only two concurrent writes. This would lead us to conclude that the
proposed structures are useful for application to practical synthesis applications.

6 Condusk
Some of the existing high level synthesis techniques discussed in this paper rely on the use
of memories with two write ports. Also we have shown through an example that memories
with two write ports are required to satisfy data transfers that arise while synthesizing
structured architectures for target designs. The FPGAs examined in this paper neither
directly support memories with two write ports nor do they permit efficient implementation
of such memories. Current FPGAs provide on-chip single/dual port SRAMs with a single
write port. We have proposed two simple primitives for the implementation of random
access storage for use in programmable devices. One is a multiplexerldemultiplexer to
implement the decoder. When used as a multiplexer, it serves as a general purpose pro-
grammable logic structure. The other is a storage cell using multiplexer based write control
circuit and a flip-flop. This structure too can be used for general logic synthesis. Together

Session 9: System Design Issues and Examples 351

these provide a compact implementation for random access memory structures permitting
concurrent write to up to two cells. The proposed structures are also compatible with the
programmable logic blocks used in some of the current FPGAs.

References

A. C. Parker, J. T. Pizarro, and M. Mlinar, “Maha: A program for data path syn-
thesis,” Proceedzngs of the 23rd Design Automation Conference, 1986.

P. G. Paulin and J. P. Knight, “Force-directed scheduling for asics,” IEEE Transac-
tions on Computer Azded Deszgn, June 1989.

R. J . Cloutier and D. E. Thomas, “Thc combination of scheduling, allocation and
mapping in a single algorithm,” in Proceedzngs of the 27th ACM/IEEE DAC, pp. 71-
76, June 1990.

M. Balakrishnan and P. Marwedel, “Integrated scheduling and binding: A synthesis
approach for design space exploration,” in Proceedings of the 26th ACM/IEEE DAC,
pp. 68-74, 1989.

M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhaskar, “Datapath synthesis
using a problem-space genetic algorithm,” IEEE Transactzons on Computer Aided
Design, vol. 14, no. 8, pp. 934-944, 1995.

M. Balakrishnan, A. K. Majumdar, D. K. Banerjee, J. G. Linders, and J. C. Majithia,
“Allocation of multiport memories in data path synthesis,” IEEE Transactions on
Computer Azded Design, vol. 7 No 4, pp. 536-540, April 1988.

A. A. Duncan and D. C. Hendry, “Area efficient dsp synthesis,” in Proceedings of the
1995 European Deszgn Automatzon Conference, pp. 130-135, September 1995.

C. Mandal and R. M. Zimmer, “A genetic scheduling technique for the synthesis of
structured data paths,” technical report, Department of Computer Science, Brunel
University, Uxbridge UB8 3PH, U.K., August 1996.

P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic data path
synthesis,” Proceedings of the 24th Deszgn Automation Conference, 1987.

[lo] Xilinx Inc., XC4OOO Series Fezld Programmable Gate Array. 1996.

[ll] Xilinx Inc., XC8100 FPGA Famzly. 1995.

[12] Actel Corporation, 3200DX Fzeld Programmable Gate Arrays - The
Integrator Family. 1995.

[13] S. Y. Kung, H. J . Whitehouse, and T. Kailath, VLSI and Modern Signa
Prentice Hall, 1984.

[14] J. P. Neil and P. B. Denyer, “Simulated annealing based synthesis S-

Crete cosine transform blocks,” in Algorzthmzc and Iinowledge Based CA SI
(G. Taylor and G. Russel, eds.), ch. 4, pp. 75-93, Peter Peregrinus, 1992

