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Abstract

Software-Defined Networking (SDN) architecture involves separate data and control
planes. The SDN data plane consists of switches that store forwarding rules in flow-
tables. On the other hand, the SDN control plane consists of controllers that formulate
the flow-rules and install or update them at the switches. SDN adds flexibility and
programmability to network operations. Due to the additional benefits of softwarization,
traditional networks are being migrated to SDN. The intermediate step of transforming
a conventional backbone network into pure SDN is termed as hybrid SDN.

The limited storage capacity of switches is a key challenge in SDN, as the switches
use Ternary Content Addressable Memories (TCAMs) having very low capacity. Low
rule storage capacity eventually leads to a high number of Packet-In messages and con-
trol plane overloading. On the other hand, the number and locations of SDN controllers
determine the Quality of Service (QoS) parameters, such as network throughput and
flow-processing delays. In particular, the placement of controllers is more challenging
in hybrid SDN because of additional aspects such as SDN switch placement and incre-
mental upgrades. These challenges increase processing latency and decrease the overall
scalability of SDN. Additionally, scalable network operations should ensure optimal en-
ergy consumption. However, the lack of centralized control over the power states of
legacy switches impedes energy-aware traffic engineering in hybrid SDN. On the other
hand, there exists a trade-off between energy-aware routing and programmable traffic
as traffic rerouting may transform programmable traffic to a non-programmable one, if
not rerouted carefully.

Motivated by these challenges, in this thesis, we propose multiple schemes to enhance
the scalability of SDN data and control planes. We propose an approach for consistent
update with redundancy reduction that reduces TCAM usage during update. Addition-
ally, we propose a load reduction strategy that prioritizes traffic flows based on QoS
demands and aims to avoid link congestion and rule-space overflow during flow migra-
tion. Moreover, we apply the concept of tensor decomposition to aggregate flow-rules and
increase the available rule-space. On the other hand, we implement a master controller
assignment scheme based on IoT devices’ mobility and traffic characteristics to prevent
controller overload and distribute traffic optimally across the controllers. In addition,

we propose a priority-based SDN switch placement approach and a game theory-based
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controller placement approach for hybrid SDN. In the final scheme, we focus on reduc-
ing energy consumption while maximizing the programmable traffic as it is the primary

purpose of transforming a legacy network to an SDN.

Keywords: SDN, Network Update, Flow Migration, Coalition Game, Rule-Space Man-
agement, Caching, Markov Predictor, IoT, Hybrid SDN, Controller Placement, Pro-

grammable Traffic, Energy Management
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Chapter 1

Introduction

With the recent advancements of the Internet of Things (IoT) technology, a wide variety
of smart devices have become an integral part of our daily life. These devices perform
several data-intensive operations such as online gaming, video streaming, smart traffic
control, extended reality-based services, smart healthcare, and industrial automation. It
is predicted that the number of IoT devices will be more than 50 billion by the end of
2025 [1]. Moreover, the next decade is expected to witness a substantial development
of next-generation networking platforms such as 5G, beyond 5G, and 6G. These future
networks demand ultra-low latency and high bandwidth [2]. Therefore, flexibility and

scalability are the need of the hour to address the QoS demands of the evolving networks.

SDN is a recent networking paradigm [3] that separates the control plane from the
data plane. As shown in Figure SDN controllers placed in the control plane manage
SDN switches in the data plane [4]. Several useful features of SDN [5] (e.g., global view
of the network, separation of the data and control planes, and ability to program the
network functions) adds flexibility to the network management [6] and makes SDN an

attractive choice for network service provisioning.



1. Introduction

Control Plane

!
&
@
Data Plane
@ ) Data Link
SDN Switch — . —.— Control Link
SDN Controller — — — — Inter-Controller Link

Figure 1.1: SDN: Data and Control Planes

1.1 Scalability Challenges in SDN

Despite offering flexibility in network management, SDN faces scalability issues in data
and control planes. The capacity of the switches limits the scalability of the data plane.
This limited storage capacity is a problem for network updates that involve changing
configuration of each switch separately. Existing update policies require the storage
of old configuration rules until the whole update process is complete. Hence, in the
worst-case, half of the rule-space needs to be free before the initiation of a network
update. Consequently, the cost of storing redundant rules reduces the network scalability.
Additionally, traffic flow migration is an essential aspect of network updates in SDN.
New traffic flows are generated frequently, and the existing flows are required to migrate
paths to accommodate these new flows. However, more than 80% of the total flows
in IoT networks are latency-sensitive. Therefore, completing traffic flow migration in
minimal time is essential, and the migration process should be consistent.

On the other hand, the control plane’s scalability depends mostly on the placement
of the controllers. The Controller Placement Problem (CPP) addresses two aspects

— (1) the number of controllers required and (2) the position of controllers. Hybrid



1.2. Scope of the Work

SDN is an intermediate step of transforming a traditional backbone network into pure
SDN. Therefore, incremental controller placement is an additional aspect of CPP for
hybrid SDN. Moreover, the dynamic distribution of the controllers’ workload is required
to enhance the network performance for large-scale data handling data. Finally, hybrid
SDN needs energy-aware traffic engineering to minimize the carbon footprint and ensure

a satisfactory amount of programmable traffic.

1.2 Scope of the Work

Rule-space capacity in SDN switches is limited. However, existing SDN update policies
ensure consistent packet processing by storing old configuration rules until the whole
update process completes. These approaches require maintaining additional rule-space.
So, minimizing the trade-off between rule-space usage and packet consistency is an issue
which is needed to be addressed. Traffic flow migration is an important aspect of the
SDN update. Existing solution approaches for traffic flow migration do not consider
the diverse traffic characteristics of traffic flows. An unplanned schedule disrupts the
operations of latency-sensitive applications and increases data plane load by link con-
gestion and rule-space overload. Therefore, there is a need for a delay-aware traffic flow
migration schedule that aims to reduce the data plane load. On the other hand, in the
existing literature, researchers have proposed several works for handling the rule-space
capacity constraint. However, the majority of these works do not consider dynamic traf-
fic. Therefore, there is a need for dynamic rule-space aggregation to improve network
operations.

On the other hand, legacy Internet Protocol (IP) networks are converted to SDN to
utilize flexibility and programmability offered by SDN. However, SDN-based futuristic
networks require a distributed control plane instead of a centralized one to address
the massive volume of data traffic with low latency. CPP is an essential aspect of

realizing a distributed control plane. The majority of the existing studies on CPP
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consider pure SDN, which does not require a switch upgrade. However, CPP in hybrid
SDN, an intermediate stage of migration from a legacy network to SDN, is incremental
and involves newly added SDN switches in each round. Managing these upgraded SDN
switches is essential to maintain the QoS requirement of the network. On the other
hand, there exists a lacuna in the research literature addressing the problem of control
plane load management for large-scale SDN, including SDIoT, where both mobile and
static devices are present. However, existing solution approaches do not consider device
mobility and heterogeneity while dealing with the dynamic workload. Therefore, there
is a need for a controller assignment scheme that considers heterogeneous mobile and
static IoT devices to reduce the control plane load.

Traffic engineering is another aspect of network scalability that ensures low-latency
processing of traffic flows and limits energy consumption. In the existing literature,
researchers proposed different approaches and architecture for green SDNs, viz., [7H9],
which achieves energy efficiency by activating the minimum number of links. However,
energy management in hybrid SDN should not be at the cost of programmable traf-
fic. Hence, there is a need for a dynamic energy management strategy that optimizes

programmable traffic and reduces the overall energy consumption of the hybrid network.

1.3 Problem Statement and Objectives

The objective of this thesis is to study SDN scalability in the context of — data plane
and control plane. The problem statement of this thesis is:

Rule-space capacity constraint and centralized control plane limit the processing ca-
pability of SDN. These scalability constraints of SDN data and control planes restrict the
adoption of SDN despite offering flexible and programmable network operations.

The objectives of the thesis are as follows:

1. Design of an optimized scheduling scheme for consistent SDN update without
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storage of redundant rules.

2. Design of a traffic-aware data plane load reduction scheme for traffic flow migration

in SDN.

3. Design of a rule-space management scheme for reducing flow-table miss in SDN.

4. Design of a controller-switch assignment scheme for control plane load reduction

in SDIoT.

5. Design of a cost-efficient QoS-aware switch and controller placement strategy for

hybrid SDN.

6. Design of an energy-efficient traffic engineering approach for hybrid SDN.

The objectives of this thesis are depicted in Figure [8.2].

e A\
Objective 1 Objective 4
Consistent Update with ControllPlane Load
Reduced Rule-Redundancy Reduction for loT Flows
Objective 2 Objective 5
> SDN
- Scalability
Traffic-Aware Data Plane Load Controller Placement
Reduction during Flow Migration in Hybrid SDN
Objective 3 Objective 6
Energy-Aware Traffic
U EEER RO Engineering in Hybrid SDN

Figure 1.2: Thesis Objectives
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1.4 Contributions

The primary contributions of this work are as follows:

e We design a priority-based algorithm for scheduling updates to SDN switches. We
propose a packet queueing mechanism for maintaining the consistency of incoming
packets during an update. Further, we design a packet processing algorithm that
processes the queued packets consistently. We compare our approach with the

existing solutions to highlight the benefits of the proposed scheme.

o We formulate an Integer Linear Program (ILP) to minimize the data link band-
width usage during flow migration. We formulate a coalition graph game to de-
termine the set of flows that must be migrated together. Based on the initial
migration schedule, we propose an algorithm to transform the initial migration
schedule to a feasible schedule, which reduces the data plane load. Additionally,
we analyze the rule-space usage in the switches and propose an algorithm that

ensures the rule-space required for the migration process.

e We propose a scheme that is capable of aggregating heterogeneous flow-rules. We
envision a tensor-based algorithm to compress rules in each switch. We perform an
extensive simulation to analyze the performance of the proposed scheme in terms

of rule-space usage.

e We propose a proactive master controller assignment scheme for control plane load
reduction in Software-Defined Internet of Things (SDIoT). The proposed scheme
uses the Markov Predictor to predict device-switch associations. Based on the pre-
diction results, we propose a device-aware rule-caching approach to reduce the load
of the controllers considering device-specific parameters such as QoS demand and
flow generation rate. Additionally, we design a master controller assignment algo-

rithm that identifies optimal controller-switch assignments in advance to minimize
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the control plane load.

e We present a rank-based approach for the placement of SDN switches in hybrid
SDN. In this approach, we consider switch-specific parameters such as the number
of links, traffic volume, OSPF weights of the links, and the residual lifetime of
legacy switches. We formulate a coalition game to determine the locations of SDN

controllers to maximize the network throughput.

e We define a metric named route utility to estimate the cost of the routing paths
of the traffic flows. The parameters considered for the cost estimation are power
usage of the links, and programmability of the flows. We formulate an ILP for
the problem of energy-aware traffic engineering in hybrid SDN. We propose two
heuristic algorithms to dynamically generate an optimal network state to achieve

the desired objective formulated in the ILP.

1.5 Organization of the Thesis
The rest of the thesis is organized as follows:

e Chapter 1 — Introduction: This chapter contains the background, motivation,

and objectives of the work.

o Chapter 2 — Literature Survey: The related works on scalability in SDN data
and control planes are surveyed in this chapter. We identify research gaps in the
existing works. Additionally, we study state-of-the-art works related to energy-

aware traffic engineering.

e Chapter 3 — Consistent Update with Redundancy Reduction: This chap-
ter considers the effects of rule-space capacity constraint during SDN update. We
evaluate the performance of the proposed solution considering relevant performance

metrics.
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Chapter 4 — Data Plane Load Reduction for Flow Migration: In this
chapter, we study the scenario of flow migration involving latency-sensitive traffic
flows and its effects on the data plane load. We compare the proposed solution

with suitable benchmarks to evaluate its performance.

Chapter 5 — Rule-Space Management: This chapter presents an approach to
enhance rule-space scalability. We present relevant results to prove the effectiveness

of the proposed scheme.

Chapter 6 — Control Plane Load Reduction: In this chapter, we explore
load balancing among the controllers in the presence of IoT traffic. Subsequently,

relevant results of performance evaluation are presented.

Chapter 7 — QoS-Aware Switch and Controller Placement: In this chapter,
we present an approach for the placement of SDN switches and controllers in
hybrid SDN to satisfy QoS demands. We analyze the performance of the proposed

approach considering appropriate performance metrics.

Chapter 8 — Energy-Aware Traffic Engineering: In this chapter, we study the
trade-off between energy-aware traffic routing and the amount of programmable
traffic in the context of hybrid SDN where both legacy and SDN switches are
present. We present relevant results to show the effectiveness of the proposed

solution in the presence of high traffic volume.

Chapter 9 — Conclusion: This chapter summarizes the contributions of this
thesis. Additionally, we mention some limitations of this work. Finally, we cite a

few research directions for the future extension of this work.



Chapter 2

Related Work

In this chapter, we survey the related literature on data plane scalability, control plane
scalability, and energy-aware traffic engineering in SDN. In the existing literature, several
works focus on addressing the rule-space capacity constraint in SDN. Moreover, some
recent studies are devoted to control plane optimization for enhancing network scala-
bility. Additionally, many prior works investigate the problem of energy management,

which is necessary for handling large-scale data traffic.

The rest of the chapter is organized as follows. Section presents works related to
data plane scalability. In Section we review the related literature on control plane
scalability. Section discusses the existing works on energy-aware traffic engineering

in SDN. Finally, Section concludes the chapter.

2.1 Data Plane Scalability

We divide the exiting literature on data plane scalability into two sections — capacity-
aware consistent update and rule-space capacity management. Table shows a sum-

mary of different works on data plane scalability.
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Table 2.1: Summary of different works on data plane scalability

Studies Solution Approaches Shortcomings

Modifies network protocols

Francois et al. [10] Ordered update and switchos

Overhead due to the addi-
tion of version tags to incom-
ing packets and storage of old
rules

Reitblatt et al. [11] Two-phase update

Synchronizing updates to all
the switches encounters com-
Mizrahi et al. [12] Timed update putational complexity and de-
pends on specific switch prop-
erties

Overloads the control plane;
additional overhead is in-
curred due to the installation
of the intermediate flow-rules

McGeer et al. [13] Buffered update

High computation time for

Meiners et al. [14] Flow-table aggregation the larger partition size

Increases the total number of
rules, because two separate
rules are generated for each do
not care (*) pivot bits

Kanizo et al. [15] Flow-rule partitioning

Considers  latency-sensitive

Kosugiyama et al. |[16] |Traffic flow aggregation flows only

2.1.1 Capacity-Aware Consistent Update

Existing works related to capacity-aware consistent update are categorized in four parts

including ordered, incremental, timed, and buffered updates.

In case of ordered update, the controller partitions the total update procedure into
multiple stages [10], [17], [18]. It waits for the completion of each stage before starting the

next stage. The last stage is garbage collection, where older rules are deleted. Francois

10
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et al. [10] proposed an ordered update scheme that ensures packet-level consistency by
preventing the formation of loops. However, this approach requires a modification of
network protocols as well as of the forwarding devices. Bera et al. [17] proposed a
prediction-based mobility-aware update mechanism for SDIoT, which inserts new rule
at the next Access Device (AD), and performs garbage collection at the current AD.
Clad et al. |18] generated an optimized sequence for updating the weights of links. The
ordered update policy encounters service latency as the completion of the previous phase

restricts each phase.

In the incremental update approach, the network is updated in multiple phases,
where each phase updates a portion of flow-rules or a subset of switches. Reitblatt et
al. [11] proposed a two-phase update approach where the internal and ingress switches
are updated in phase 1 and phase 2, respectively. Updated ingress switches attach new
version tags to the incoming packets. The incoming packets are processed by either
old or new rules (not both) based on the version tag. Older rules are deleted after
all packets with old version tags are processed. This method increases the load on
the ingress switches, as they have to modify the incoming packets. Moreover, memory
overhead is incurred for storing old rules. In another work, Canini et al. [19] discussed
an incremental update approach, which is similar to database transactions, where either
all switches are updated, or none are. Therefore, the ordered and incremental update
approaches require extra flow-table space for accommodating duplicate rules. Moreover,

the controller is involved until all switches complete update.

To reduce this overhead, Mizrahi et al. [12] proposed an extension of OpenFlow
protocol by scheduling the update phases at particular time instants for both ordered
and incremental updates. This approach preserves packet-level consistency by avoid-
ing conflicts in updates. This technique reduces the duration required to store older
rules in SDN switches. However, synchronizing updates to all the switches encounters

computational complexity and depends on particular forwarding devices’ characteristics.

11
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Buffered update approach [13] identifies the incoming packets, whose routes are going
to be affected by the upcoming update, and redirects the packets to the controller by
installing intermediate flow-rules at all switches. These packets are buffered in the control
plane until the switches are updated. After the completion of the update, the packets
are processed according to the new rules. The major limitation of this approach is that
it overloads the controller and increases service latency. Further, additional overhead is

incurred due to the installation of the intermediate flow-rules.

2.1.2 Rule-Space Capacity Management

Prior works related to rule-space capacity management are categorized in three parts
— flow-table aggregation, flow-rule partitioning, and traffic flow aggregation.

Earlier, table aggregation approaches considered only prefix entries, where do not
care (x)s do not appear at the beginning of the ternary strings. Applegate et al. [20]
proposed a prefix-based minimization technique for Access Control Lists (ACLs), which
have entries similar to TCAMs. Meiners et al. [14] proposed bit weaving, which partitions
the total rule-set and permutes the bit positions for each of the partitions to transform all
non-prefix entries into prefix entries. Finally, these transformed partitions are merged,
after which each entry is re-permuted to their original bit order. However, one of the
significant limitations of bit weaving is high computation time for the larger partition
size. This is even worse in networks where data frequently changes because bit weaving
recomputes the whole rule-set for each rule update.

Other related works concern the approach of partitioning the flow-rules. Kanizo et
al. [15] presented a decomposition technique, which partitions a flow-table into sub-tables
and distributes the sub-tables across the network. They proposed two methods — Pivot
Bit Decomposition (PBD) and Cut-Based Decomposition (CBD). PBD decomposes the
table into sub-tables by selecting a pivot bit/column. However, PBD increases the total

number of rules, because two separate rules are generated for each do not care (*) pivot

12
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bits. On the other hand, CBD represents the set of rules by a dependency graph. Moshref
et al. |21] proposed a virtual Cloud Rule Information Base (vCRIB), which partitions the

overlapping rules by splitting them. Consequently, the overall number of rules increases.

Traffic flow aggregation approaches minimize the total number of flows to reduce
the number of flow-rules. Kosugiyama et al. [16] proposed an approach that considers

end-to-end delay as a parameter of flow aggregation. However, the authors considered

latency-sensitive flows only.

2.2 Control Plane Scalability

We divide the prior works on control plane scalability into two categories — control plane

load management and controller placement. Table shows a summary of different

works on control plane scalability.

Table 2.2: Summary of different works on control plane scalability

Studies

Solution Approaches

Shortcomings

Bari et al. [22]

Dynamic controller pro-
visioning

Does not consider queueing delay at
the controller

Sahoo et al. [23]

Switch migration-based
load balancing

Does not consider the effects of un-
even traffic distribution.

Miiller et al. [25]

placement

Lat - -
Heller et al. [24] arency-aware | Brute-force approach
troller placement
Load-aware controller|Ignores the switch-to-controller la-

tency

Huque et al. |26]

Load and latency-aware
controller placement

Frequent activation and deactiva-
tion of controllers increases control
plane overhead in terms of messages

13




2. Related Work

2.2.1 Control Plane Load Management

Existing approaches in this field are categorized into two parts — controller placement-

based and switch migration-based.

Controller placement-based schemes select the number and locations of the controllers
to manage the load. Hock et al. [27] considered the maximum control link latency and
the number of switches attached to a controller in order to place the controllers and
stabilize the load. However, the authors assume static traffic between switches and
controllers. Therefore, this approach is not preferable for large-scale networks, including
IoT networks. Ksentini et al. [28] proposed a controller placement technique based on
Nash bargaining game. The authors considered control link latency and equal load
distribution to the controllers as the major objectives. However, this approach does not
consider the master and slave roles of an SDN controller. Huque et al. [26] proposed
LiDy+, which places the controller modules based on data plane traffic prediction. The
load is distributed evenly among the controllers in each module. However, frequent

activation and deactivation increases control plane overhead in terms of messages.

Switch migration-based schemes migrate switches from a highly-loaded controller’s
domain to the domain of a lightly-loaded controller. Dixit et al. [29] proposed a switch-
migration scheme that migrates switches from an overloaded controller to a controller
with less load. The proposed approach includes the addition and removal of controllers,
as required, in the presence of dynamic traffic. However, this approach ignores switch-
to-controller latency. Bari et al. |22] proposed Dynamic Controller Provisioning with
Simulated Annealing (DCP-SA), which dynamically activates and deactivates controllers
to reduce the flow setup cost and the overhead for communication. In this work, the
authors used two heuristics based on greedy knapsack and Simulated Annealing (SA).
The proposed heuristics periodically reassign switches to controllers for addressing load
imbalance at the control plane. The proposed approach does not consider queueing delay

at the controller. Sahoo et al. [23] proposed an Efficient Switch Migration technique for

14
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Load Balancing (ESMLB) scheme to balance the control plane load in SDIoT. The
proposed approach identifies the overloaded controllers and the switches which send
the maximum Packet-In requests to each overloaded controller. Each selected switch is
migrated to a lightly-loaded target controller, which is selected based on multiple criteria
such as hop count, memory usage, and bandwidth. However, the proposed approach does

not consider the effects of uneven traffic distribution.

2.2.2 Controller Placement

The prior research works related to controller placement can be categorized broadly into
three groups depending, on the parameters considered for placing the controllers.

The first category of work considers only the latency between switches and controllers.
Heller et al. [24] formed an optimization problem to determine the number and location
of controllers for given network topology. This work considered average-case (worst-
case) latency bound as metrics for the optimization problem formulated as a k-median
(k-center) problem. This approach is a brute-force, in which all possible solutions were
evaluated to reach the optimal solution. Lange et al. [4] proposed a heuristic algorithm
to address the CPP. The principal metrics considered in this solution are controller-
switch latency, inter-controller latency, and network resiliency. However, this approach
does not consider network traffic or controller capacity as a parameter for the solution.

The second category of works considers only the traffic load on the controllers. Miiller
et al. [25] proposed a controller placement scheme based on three major parameters — (1)
path diversity between controllers and switches, (2) controller capacity, and (3) ordering
of backup controllers. The authors suggested a heuristic method for listing the backup
controllers based on proximity or residual capacity. However, the authors ignored the
latency between switches and controllers.

Another category of work considers both the control plane load and the latency be-

tween the network elements. Ksentini et al. |28] suggested a game-theoretic approach

15
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considering controller load, switch-controller latency, and inter-controller latency. How-
ever, this work assumes static network traffic. Tanha et al. [30] proposed a resilient so-
lution considering deployment cost and propagation latency. The authors recommended
backup controllers at multiple resiliency levels to address controller failure. Sallahi et
al. [31] developed a mathematical model to estimate the number and location of the
SDN controller(s). The authors considered different types of controllers and links for
the solution. However, this solution does not apply to large-scale networks. Huque et
al. [26] proposed a controller placement technique for large-scale networks. The authors
also made a provision for open search that removes the restriction of selecting controller
locations from a set of fixed choices only. However, this work did not consider any QoS

parameters.

2.3 Energy-Aware Traffic Engineering in SDN

Several existing works investigates the problem of energy management in SDN /hybrid
SDN [7,19,32]. Giroire et al. |7] considers the rule-space constraint of SDN switches
and minimizes energy consumption by deactivating data links. The authors formulated
an ILP and proposed a heuristic algorithm. Ferndndez-Fernandez et al. [9] considers
in-band control traffic as the basic criteria for deactivating links and proposed an heuris-
tic algorithm. Huin et al. [33] proposed a traffic-aware energy management scheme,
named SENAtoR, for hybrid SDN. This work includes traffic rerouting, link deactiva-
tion, and traffic monitoring to avoid packet loss. SENAtoR reactivates the deactivated
SDN switches in case of a sudden increase in traffic load or link failure. Assefa and
Ozkasap [32] proposed a new metric named Ratio for Energy Saving in SDN (RESDN),
which quantifies the amount of link usage. The authors proposed a heuristic algorithm

to assign route, having the maximum RESDN;, to each flow.
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2.4 Concluding Remarks

In this chapter, we present the state-of-the-art related to SDN scalability. Existing
SDN update approaches store old rules and new rules until all switches are updated to
maintain packet consistency. Hence, for the worst-case scenario, 50% of the storage space
needs to be empty before starting the network update. Therefore, the cost of storing
redundant rules decreases the scalability of the overall network. This problem motivates
us to design a scheme for SDN update without storing old rules, once the new rules
are installed. Moreover, existing solution approaches do not consider the diverse traffic
characteristics of traffic flows during an update. This is problematic for the migration of
latency-sensitive flows, which is a frequent event during the SDN update. Motivated by
this lacuna, we design a traffic-aware flow migration scheme. Additionally, we infer that
there exist a few works for handling the capacity constraint of flow-tables. However,
most of these works do not consider dynamic network traffic, which is usual for IoT
applications. This lacuna motivates us to design a flow-rule aggregation scheme that
considers heterogeneous traffic and reduces control messages.

From the detailed study of the existing literature, we infer that there exists a lacuna
in the research literature addressing the problem of control plane load management for
large-scale SDN, including SDIoT, where the heterogeneous attributes of IoT devices
have a major impact on the control plane load. However, existing solution approaches
do not consider device heterogeneity while dealing with the dynamic workload. More-
over, existing solution approaches ignore the bursty nature of IoT traffic due to different
activation models of IoT devices. Motivated by this problem, we propose a master con-
troller assignment scheme for control plane load reduction in SDIoT while considering
heterogeneous attributes of IoT devices such as mobility, activation model, and QoS
demand. On the other hand, most of the existing literature on CPP seeks to find the
optimum placement of controllers depending on the traffic load and latency between

switches and controllers. In addition, most of the existing studies consider pure SDN,
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which does not require a switch upgrade. However, CPP in hybrid SDN is incremental
and involves newly added SDN switches in each round. Managing these upgraded SDN
switches is essential to maintain the QoS requirement of the network. This lacuna moti-
vates us to design a controller placement scheme in hybrid SDN so that each controller
is able to deliver guaranteed service in terms of throughput and delay.

From the exhaustive study of existing literature, it is evident that there exists a need
for an energy management scheme in hybrid SDN, which optimizes the programmable
traffic. Existing solution approaches do not address the trade-off between programmable
traffic and energy-aware routing. Motivated by this research gap, we design an energy-

aware traffic engineering in hybrid SDN considering programmable traffic as a metric.
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Chapter 3

Consistent Update with

Redundancy Reduction

In this chapter, we present a scheme for Consistent Update with Redundancy Reduction
(CURE) in SDN. Existing SDN update approaches store old rules along with new rules
until all switches are updated. Therefore, for the worst-case scenario, 50% of the storage
space needs to be empty before starting the network update. CURE ensures consistent
flow-rule update without storing old flow-rules. Consequently, the maximum number of
flow-rules present in the network during the update is reduced.

This chapter consists of four sections. The system model of CURE is presented
in Section Section describes the proposed scheme. Section depicts the
experimental results. Finally, Section concludes the proposed work and discusses

directions for future work.

3.1 System Model

We model the network as a graph § = (N, E'), where N is the set of nodes, and FE is the

set of links between the nodes. The set N is expressed mathematically as:
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SDN Controller
Data Link .

————— Control Link /, | "\\

./'/' TN

@ SDN Switch

Figure 3.1: CURE: SDN Architecture

N=CUS, (3.1)

where C' is the set of controllers, and S is the set of OpenFlow switches. Figure [3.1
shows the network model. The upper bound of the number of flow-rules which can be
stored in an OpenFlow switch s; is denoted as U;. Each switch s; has an associated

device queue denoted as Q7. The set of links F is defined as:

E=FE.UE.;UEFE,, (3.2)

where FE,. is the set of links between the controllers, E s is the set of control links
between the controllers and the OpenFlow switches, and FEys is the set of data links
between the OpenFlow switches for packet forwarding.
For simplicity, we assume a centralized control plane containing a single controller c.
Hence, S = {s1, 52, .-, 8|N|=1}, Eec = ¢ and the number of links in F, is [S| = [N| — 1.
Each switch stores the flow-rules in one or multiple flow-tables [34]. A flow-rule R{
J

in s; is a ternary string denoted by a tuple < Pri‘, sz ,Ag >, where P?“g denotes rule

priority, MZJ denotes the set of match fields, and Ag denotes the set of action values.
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Each flow-rule also contains a set of counters for storing the rule statistics, timeout value,
cookie, and flags |34]. If an incoming packet matches multiple rules, then the rule with

the highest priority value is selected, and the corresponding action is taken.

Definition 1 (State of a Switch). The state of s; at time t is defined by:

Aj(t) = (R (t), BL(t), EL, (1), 77 (1)}, (3-3)

where RI(t) is the set of flow-rules of s; at time t, EJ (t) € E.s is the set of control
links involving s; at time t, EI(t) € Eqs is the set of data links involving s; at time t,

and 77 is the last update time of sj at time t.

Definition 2 (Network Configuration). Network configuration at time t is defined by:

||
i) = U A0 (3.4)
j=1
Definition 3 (Network Update). Network update in SDN is migration from one network

configuration I' to another configuration I such that,

T(t;) # ' (t;), where t; # t, (3.5)

Major objective for this work is to minimize the maximum TCAM usage during
update without congesting the links and to maintain packet-level consistency. For a
network update from T'(¢;) to " (¢;), the optimization problem is formulated as follows:

G ISl
min max Z Z | R’ (t)| (3.6)
t=t; j=1

Equation (3.6 minimizes the maximum number of rules in the whole network, subject

to the following constraints:
|R/(t)| < Uj,Vsj € S (3.7)
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Equation (3.7)) expresses the switch capacity constraint for storing flow-rules.

M} = MJ and Al = Al VA;(t;) = {R(t;), Bl (t:), EL,(t:),
T (t:) }, VA (tr) = { R (tr), B (tr), BI,(tk), 7 (tr) }, i < t, (3.8)
R} € RI(t;), RI € RI(t;), Duration(R{) < Duration(R}),

where Duration(Rg ) is a counter [34], which denotes the elapsed time after installation
of the flow-rule Rg . Equation (i prohibits the storage of older and newer versions of

a rule in a switch simultaneously.

3.2 CURE: The Proposed Scheme

In this section, we describe the proposed scheme, CURE, for the SDN update. Based on
workload, we first classify the to-be-updated switches into three priority regions, namely
high, medium, and low. Thereafter, we design an algorithm for scheduling updates
among the switches of different priority regions. Next, we propose a packet queueing
mechanism to maintain packet-level consistency during the update. Finally, we propose

an algorithm for processing the queued packets.

3.2.1 Switch Classification

Each OpenFlow switch flow-table maintains a counter field, which records the details
of the matching packets. Based on the counter value, we build a training data set.
Therefore, we employ the existing One-Vs-All (OvA) multiclass classification algorithm
[35] to classify the to-be-updated switches into three priority zones — low, medium,
and high. This classification depends on the network topology, packet arrival rate,
and existing flows in the network. If the traffic load in all switches are approximately
equal, CURE uses the number of active entries in each flow-table as a metric for the
classification. The number of active entries in each flow-table is also stored as a counter

field [34].
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3.2.2 Rule Update

Algorithm schedules the update based on the priority zones. Before starting the
update, ¢ sends UPDATE signal at time Ty to mark the set of switches that are to be
updated. Therefore, the network configuration before update is I'(Tp). ¢ waits for ¢ time
interval before sending the first update packet. Heavily loaded switches are updated first
at time Th;qn, > To. Next, medium priority switches are updated at time Tipcgium > Thigh-
Finally, low priority switches are updated at time T}, > Thedium- During the update
procedure at a switch, the set of new rules is installed first, and the older rules are
deleted thereafter. In other words, garbage collection at each switch is performed right
after the completion of the update at the switch. Therefore, this algorithm complies
with the constraints stated in Equations and . When every switch is updated,

the network reaches a configuration I'(Teompiete) at time Teompiete > Tiow-

Algorithm 3.1: CURE: Rule Update Algorithm
Slow Smedium Shigh

Inputs :
Output: S”: Set of updated switches
1 uppATESWITCHES (S%e9)

forall s; € SEed do
Process P4
Insert Rj/
Remove R’
S" 8" U {s;}
end
S 0
forall s; € Slow |y gmedium j Ghigh do
10 SIGNAL(s;,UPDATE)
11 WAIT(5 ms)
12 end
13 UPDATESWITCHES(S"9")
14 UPDATESWITCHES(S™edivm)
15 UPDATESWITCHES(S!v)
16 return S

W N

© 00 N o o

Definition 4 (Old Packet). After Ty, a packet is marked old, if it is processed by a
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switch, which is yet to be updated.

Definition 5 (New Packet). After Ty, a packet is marked new, if it is processed by a

updated switch.

Let Py,q and Ppey denote the sets of old and new packets, respectively. When ¢
selects a priority region for the update, all p € P 4 in that region are processed before
starting the installation of new rules. This ensures that a packet, which is already
processed by an old rule, is only processed by old rules. If an old packet reaches an
updated switch, the packet is sent to ¢ for further decision. Similarly, if a new packet
reaches a to-be-updated switch, which is not in the current update region, the packet is

sent to ¢ for further decision.

Definition 6 (Update Duration). Update duration is the time interval between the dis-
patch of the first update message by ¢ and the update completion of the last switch,

including garbage collection.

Definition 7 (Inconsistent Packet). A packet p € Pyq is termed inconsistent, if it
reaches an updated switch. A packet p € Ppew s termed inconsistent if it reaches a

switch, which is not updated and is not in the current update region.

3.2.3 Packet Queueing

Algorithm depicts a queueing mechanism for the consistent processing of incoming
packets during an ongoing update procedure. The packet queueing algorithm (PQA)
is triggered for each to-be-updated switch s; € S in the present update region after c
starts update in that region. If s; has received an UPDATE signal recently, PQA checks
statistics at ¢ to verify whether the switch is already updated. PQA stores the packet if
the update process is incomplete in the corresponding switch.

Packets are stored in Q7 until it is full. Thereafter, the packets are redirected to the

least priority switch speighbor, which belongs to a lower priority region and has free buffer
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Algorithm 3.2: CURE: Packet Queueing Algorithm
Inputs : S”,sj, pi
Output: P.,un:: Number of packets buffered outside of QJ

1 sToRePACKET (p, s;, j)
2 if Q7 is not full then

3 ‘ Store p in Q7
4 else
5 if speighbor 7 NULL then
6 Store p in Qneightor
7 Pcount — Pcount + 1
8 else
9 Buffer p at ¢
10 Pcount < Pcount +1
11 end
12 end

13 forall p € P/ do
14 if s; € S” then

15 ‘ Process p

16 else

17 | sTOREPACKET(p, s;, j)
18 end

19 end

20 return P, unt

space within one-hop neighbors of s;. In this scenario, a switch-identifier flag is added
to the packet header specifying the switch id where the packet arrived initially. The
packets are buffered at ¢ when no such neighbor exists. For each switch, we maintain a

counter P, that counts the number of packets stored outside of the switch’s buffer.

3.2.4 Packet Processing

After the completion of the update, each switch s, triggers ¢ by informing that it is
ready for processing packets. Algorithm describes the procedure of processing the
waiting-packets. If Q" is full and the buffer size is K, the packet processing algorithm
processes the first K packets waiting at Q“. Then a portion of Q% is reserved for storing

the waiting packets with matching switch-identifier flag in the one-hop neighbor. We

25



3. Consistent Update with Redundancy Reduction

name this buffer space as secondary buffer. The size of secondary buffer is determined
from the available counter value. Packets waiting in Q"¢%9"%°" and /or ¢ are shifted to the
secondary buffer. After processing these packets, the secondary buffer space is merged

with the switch’s original buffer before processing the new ones.

Algorithm 3.3: CURE: Packet Processing Algorithm
Input : s,: Switch that triggered packet processing
Output: P": Set of packets in secondary buffer

1 if |Q%| == K then

2 P’ 0

3 Process first K packets in Q*

4 forall p € P7 stored at Sneighbor dO
5 Copy p to secondary buffer of Q"
6 P" « P"U{p}

7 end

8 forall p € P/ buffered at the c do

9 Copy p to secondary buffer of Q"
10 P" « P"U{p}
11 end

12 Process packets in secondary buffer
13 Merge secondary buffer with Q%
14 end
15 Process packets in Q%

1
return P

=
=}

3.2.5 Queueing Model

The queue of each switch s; is modeled as a M /M /1/K/a queueing system [36},37] where
the incoming packets follow Poisson’s distribution and those packets are processed by s;
with an exponentially distributed service time. Let, i and /\% denote the mean service
time and mean inter-arrival time at s;, respectively. We also consider that each switch
has a finite queue length of K. Figure depicts the queueing model for SDN.

Figure shows the state-transition-rate diagram of our proposed queueing model

for a single switch. The average packet arrival rate and average service rate for the

switch be A and u, respectively. Therefore, the traffic intensity is p = % The switch is
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Ingress Queue
SDN Switch

Queue  SDN Switch

Ingress
Queue

SDN Switch

Figure 3.2: SDN Queueing Model

in region r € {highUmediumUlow}. Initially, c sends an update signal to the switch. As
depicted in Figure [3.3] we consider that the update procedure of an OpenFlow switch
consists of three stages. In the first stage, the switch receives an update signal, and
region r has not started the update. The second stage begins when r starts the update.
The final stage begins when the switch completes the update. The switch continues
processing until the second stage begins. During the second stage, the switch queues
the received packets, unless it completes an update. Therefore, the service rate for this
stage is = 0. If the switch queue is full, the packets are buffered at the neighbor queue
or the controller buffer, according to Algorithm 2. Hence, the increased traffic intensity

of a neighbor switch s, for buffering packets of the current switch is given by:

A+ A
pgver _ () 3.9
- (39)

During the final stage, the switch processes the packets from the neighbor buffer
and its buffer, as mentioned in Algorithm Therefore, the new packet arrival rate is
AW — )\ 4 \neighbor where \n€ighbor g the rate at which the packets arrive at the current

switch from the buffer of the neighbor switch. The traffic intensity in this scenario is
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update_sig = yes, region update start = no
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Figure 3.3: State-Transition-Rate Diagram of CURE for a Switch

P = # After the switch processes all the packets stored in the neighbor queue, we

set \"eighbor — (g and \"ew = ),

The probabilities that the switch has a packets in the three stages are denoted by
Pl P2 and P2, respectively. However, as per our assumption, the processing of packets
at a switch is a Poisson process. Therefore, according to queueing theory, the steady

state probability that the switch has ¢ packets in the first stage is given by:

Pl = 'R} (3.10)

We consider the scenario that region r starts update when the switch has ¢ packets
queued and completes update when it has j packets queued. We know, P2 = P!. During
the second stage, packets are added to the queue at the rate of A and no processing is

performed. Hence, we get:

K3 K3
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Similarly, from Equation (3.11]), we get:

P} =p? =P} (3.12)

The probability P;’ is also expressed as:

P} = (pme)i P (3.13)

From Equations (3.10)), (3.12)), and (3.13]) we have:

P3 _ pl 1

0 — (pnew)j 0 (3.14)

According to queueing theory for finite queue length, at steady state:

1— pnew
= 1— (pnew)K+1

1—0p
1 3

Hence, from Equations (3.14]) and (3.15)), the probability P01 is defined as:

(3.16)

Let L and L™" be the expected number of packets in the switch before starting

update and after the completion of update, respectively. Mathematically,
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3. Consistent Update with Redundancy Reduction

I p(1+ Kpl+t — (K +1)pK)
- (1= p)a-piH

(3.17)

B pnew(l + K(anw)KJrl _ (K + 1)(pnew)K)
= (1 _ pnew)(l _ (pnew)K+1) (318)

LTLB'LU

Let W and W™ be the mean waiting time at the switch before starting update and
after the completion of update, respectively. Therefore, the increase in mean waiting

time at the OpenFlow switch due to update is given by:

new __ _ (L LY 1 14+KpKT —(K41)p®
W W - ()\new /\> T ( (1—p)(1—ﬂK+1) (319)

LR (KT
(1,p7zew)(1,(pne’w)l{+1)

The value W™ —W provides an estimate of the latency incurred due to rule update.
After the switch completes processing the packets stored in the neighbor queue, W% —

W becomes zero, eventually.

3.3 Performance Evaluation

In this section, we evaluate the performance of CURE in terms of the following metrics:
(a) update duration, (b) average rule-space utilization, (c) average packet waiting time,
and (d) inconsistent packet count. To evaluate the performance, we performed two
experiments. In the first experiment, we measured the update duration and the average
rule-space utilization, while varying the number of switches in a leaf-spine topology with
% leaf (ingress) switches and % spine switches (e.g., [12]). In the second experiment, we
simulated three network topologies available at the Internet Topology Zoo [38], namely

Sprint, NetRail, and Compuserve. As shown in Figure we run five test flows in each
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of these topologies to compute the performance concerning the average packet waiting

time and inconsistent packet count. Table depicts the simulation parameters.

------ -+ Flow s1

—— Flow s2

— = Flows3| | | [o ~ Flown1

— -~ Flow s4 —— Flown2
-+ Flown3
— = Flown4

Flow n5

_______ ~ Flow c1
~— Flowc2
~~ Flowc3
.................... e
------------ -~ Flowch

(c) Compuserve Topology

Figure 3.4: Test Flows in Sprint, NetRail, and Compuserve Topology

Table 3.1: CURE: Simulation Parameters

Parameter Value
Number of switches in the leaf-spine topology 6 — 48
Rule-space size in a switch 8000 flow entries [39]
Upper bound on controller-to-switch delay 4.865 ms [12]
Upper bound on end-to-end network delay 0.262 ms [12]

Upper bound on time interval between dispatch of two

. 5.240 ms [12]
consecutive update messages
Average packet arrival rate per switch 0.005 — 0.025 mpps
Average packet service rate per switch 0.030 mpps [40]
Average queue size per switch 0.073 million packets
Flow-table lookup time 33.333 usec [40]
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3. Consistent Update with Redundancy Reduction

3.3.1 Result and Discussion
3.3.1.1 Update Duration

The update duration is the time interval between the dispatch of the first update message
by the controller and the update completion of the last switch. Garbage collection, i.e.,
the removal of old rules is included in the update duration, as defined in Definition [6]
Figure depicts the update duration for two-phase update [11], timed two-phase
update [12], Buffered Update [13], and CURE in a leaf-spine topology. The two-phase
update approach (both untimed and timed) updates the spine switches in phase 1, the
leaf switches in phase 2, and performs garbage collection after completion of phase 2.
From Figure [3.5] we can see that the update duration for the timed two-phase update
is 27.919% less than that of the two-phase update. The update duration for CURE is
37.563% less than that of the two-phase update. The update duration is almost similar
for timed two-phase update and CURE. Duration for the buffered update is high due to
the overhead for the installation of intermediate rules. From Figure [3.5] we yield that
the update duration for CURE is short as it does not have a separate garbage collection

phase.

3.3.1.2 Average Rule-Space Utilization

We calculate the average rule-space utilization as the percentage of rule-space used
during different stages of the update by N switches in the leaf-spine topology.

Figure shows the rule-space utilization percentage for two-phase update [11],
timed two-phase update [12], Buffered Update [13], and CURE. CURE and the buffered
update utilize a similar amount of rule-space, as they both do not store redundant
rules. Whereas, rule-space utilization is almost similar for the two-phase update and
the timed two-phase update, as they both require to store both old and new rules until
the start of the garbage collection phase. The average rule-space requirement for CURE

is 29.954% and 30.348% less than that of the two-phase update and timed two-phase
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Figure 3.7: CURE: Update Duration and Average Rule-Space Utiliza-
tion

update, respectively. As shown in Figure [3.6] we synthesize that the average rule-space
utilization is short in CURE, as the storage of both versions of rules, simultaneously, is

not required.

Figure [3.7] portrays the relationship between the number of switches, average rule-
space utilization, and update duration for the two-phase update, buffered update, and
CURE. We see that CURE outperforms the others, considering both performance metrics

— average rule-space utilization and update duration.
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Figure 3.8: CURE: Average Packet Waiting Time

3.3.1.3 Average Packet Waiting Time

For each of the three topologies — Sprint, NetRail, and Compuserve, we simulate five
test flows, and calculate the average waiting time for the incoming packets that are either
waiting in the switch queues or are in process. Figure depicts the topologies, and
the test flows. We estimate the delay of each link based on the distance between the

corresponding nodes. Similar to Ref. |[12], we assume 5 microsecond delay per kilometer.
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Figure 3.9: CURE: Average Packet Inconsistency

3.3.1.4 Incomnsistent Packet Count

Figure [3.8] depicts the average packet waiting time for different packet arrival rate for

each of the test flows in each of the topologies. The average packet queue size is 0.073

million packets. The average packet waiting time increases with increasing packet arrival

rate.

We measure inconsistency as a percentage of inconsistent packets in the system.

Inconsistent packets are identified based on Definition [7]

Figure 3.9 compares inconsistency count in CURE with two-phase update and timed

two-phase update [12] for different average packet arrival rates. We simulate test flows

35



3. Consistent Update with Redundancy Reduction
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Figure 3.10: CURE: Controller Overhead in Sprint Topology

s1, nl, and ¢l in topologies Sprint, NetRail, and Compuserve, respectively. The average
queue size per switch is 0.073 million packets. In the two-phase update approaches (both
untimed and timed), inconsistency count decreases with increasing packet arrival rate. In
two-phase update, the average inconsistency counts for Sprint, NetRail, and Compuserve
are 2.976%, 1.118%, and 1.327%, respectively. In the timed two-phase update, the
average inconsistency counts for Sprint, NetRail, and Compuserve are 2.629%, 1.237%,
and 1.389%, respectively. However, the average inconsistency count for CURE is similar
for different packet arrival rates. The average inconsistency count for Sprint, NetRail,
and Compuserve is 0.322%, 0.205%, and 0.240%, respectively. Therefore, we yield that in
CURE, an initial percentage of incoming packets become inconsistent due to the ongoing
network update, and inconsistency count reduces as time elapses after completion of the

update.

3.3.1.5 Controller Overhead

Controller overhead is calculated as the percentage of packets sent to the controller
during an ongoing update. In Sprint topology, CURE incurs 0.31% controller overhead
for packet arrival rate 0.005 mpps. Figure depicts that the controller overhead in the

buffered update is 82.209% higher than that in CURE. This is because CURE redirects
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packets to the controller only in the absence of a neighbor switch having lower priority
and free buffer space. Whereas, buffered update keeps redirecting all the affected packets

to the controller until the update completes.

3.4 Concluding Remarks

In this chapter, we present a scheme, named CURE, that emphasizes reduction of TCAM
usage during SDN update to increase scalability required for handling large-scale data.
CURE modifies the update scheme of OpenFlow-enabled SDN and proposes a multilevel
queue-based policy for ensuring packet-level consistency. Simulation results show that
CURE significantly reduces the update duration and the average rule-space requirement

by approximately 38% and 30%, respectively, during the SDN update.
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Chapter 4

Data Plane Load Reduction for

Flow Migration

In this chapter, we present a scheme for Data Plane Load Reduction for Traffic Flow
Migration (DART) in SDN. SDN update involves rerouting of multiple traffic flows to
accommodate new flows. An unplanned flow migration schedule overloads the data
plane by burdening the data links and flooding the rule-space of capacity-constrained
SDN switches. The overload of data links and switches blocks the update process, and
the network fails to address the QoS demands of the traffic flows especially latency-
sensitive flows. Prior approaches migrate flows without considering load reduction of
the data plane and QoS demands of the flows. DART prioritizes traffic flows based on
QoS demands and aims to avoid link congestion and rule-space overflow during flow

migration.

This chapter consists of four sections. The system model of DART is presented
in Section Section describes the proposed scheme. Section depicts the
experimental results. Finally, Section concludes the proposed work and discusses

directions for future work.
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4.1 System Model

In this section, we discuss the system model and the problem statement for data plane
load reduction during flow migration in SDN. The system consists of a set of network

elements and a set of traffic flows.

Data Link
Control Link
--------- Inter-Controller Link

SDN Controller
(3 SsDN switch

Figure 4.1: DART: SDN Architecture

As shown in Figure SDN involves heterogeneous devices that transmit flows to
SDN switches via gateways. The rule-space of each switch is managed by a controller.
Let C' and S denote the set of controllers and the set of switches, respectively. The rule-
space usage for switch s, € S is represented as R,. Let R be the rule-space capacity
of a switch. At time ¢, the bandwidth usage and capacity of the data link between s,

and s is denoted by b,/ (t) and w,,/, respectively.

4.1.1 Traffic Flow Model

F denotes the set of existing traffic flows in the network. A traffic flow f; € F'is denoted
by a tuple <srec(f;),dest(f;),bw(f;), P(f;),(f;)>, where src(f;) denotes the source,
dest(f;) is the destination, bw(f;) is the bandwidth of f;, P(f;) represents the ordered
set of switches along the path of f;, and 0 < «(f;) < 1 signifies the latency-sensitivity

index (LSI) for f;. A high a(f;) indicates that f; is highly latency sensitive.
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Let ' C F denote the set of to-be-migrated traffic flows. A traffic flow fjis a
member of F if P(f;) # Pl(fj), where P,(fj) is the new path of f; after migration. In
this work, we assume that the source and destination of a traffic flow f; € F " do not
change after migration.

Let us consider that the network update procedure for traffic low migration starts
at time tg. After g, a packet is termed old if it is handled by a to-be-updated switch.
Otherwise, the packet is termed new. Therefore, the migration of a traffic flow f; € F'is
consistent when each old packet follows the old path only, and each new packet follows

the new path only. We express consistent traffic flow migration as:

1 if the migration of f; is consistent,
U(f;) = (4.1)
0 otherwise.

Initially, each switch in the new path receives an UPDATE signal from its master

controller. Therefore, the set of to-be-updated switches are represented as:

1 if s4 € S received UPDATE signal,
V(sa) = (4.2)
0 otherwise.

Therefore, the set of to-be-updated switches for a flow f; € F " is expressed as:

IS
S/(fj) = U Sa, Where s, € P/(fj) and y(sq) =1 (4.3)

a=1
The migration of a flow f; involves the update of each switch s, € Sl( fj). For the
migration of a flow f; € F', the controller sends update packets to all switches in the

set S'( fj). Therefore, the total rule update time required f; is given by:

1S" ()

Ty = > A(se) = 1| A+, (4.4)
k=1
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where A is the maximum time interval between dispatch of two successive update
messages from the controller and ds. is the maximum controller-to-switch delay [12].

Let the flow migration process be divided into multiple update stages, and in each
stage, single or multiple flows are migrated, based on the flow migration schedule. Let
M be the total number of update stages. To express the flow migration schedule, we

define a binary variable as:

1 if f; € F’' is migrated in stage m,
X(fj?m) = (45)
0 otherwise.

Definition 8 (Correlated Flow). Two flows f; and f; are correlated if at least one

common link exists between the old (new) path of f; and the new (old) path of f;.

Definition 9 (Stage Completion Time). The completion time of a stage m is defined

as:

D = Z X(fj?m)Tfj (46)
fieF’

Definition 10 (Flow Migration Duration). The migration duration of each flow which

is maigrated in stage m is defined as:
Dy = (m® = t0) + Din, (4.7)

where m® is the time when stage m starts.

4.1.2 Problem Formulation

The objective of this work is to minimize the maximum data link bandwidth usage
during flow migration. Therefore, we formulate the load-aware flow migration problem

(LFMP) as:
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Minixmize e b,y ().t € m%m°+D,],m <M (4.8)
subject to ’

U(f)) =1,Vf; € F, (4.9)

R, < R™<*. Vs, € S'(f;),Vfj € F' (4.10)

DE < TMe® x(fj,m) =1,m < MVf; € F, (4.11)

5 xym) = 19f € F (4.12)

b, <w,, ,Vsq,5, €S,a# a (4.13)

Equation (4.9)) expresses the consistency constraint for all traffic flows in the network
during update. Equation (4.10]) represents the rule-space capacity constraint of switches.
Equation (4.11) ensures that the flow migration duration for each traffic flow f; does
not exceed the maximum allowable delay 77"“* of the flow. Equation (4.12) ensures that

each flow is migrated only once. Equation (4.13)) denotes the link capacity constraint.
Theorem 1. The load-aware flow migration problem (LFMP) is NP-hard.

Proof. To prove the NP-hardness of LFMP, we reduce the well-known 0 — 1 knapsack
problem [41] to LFMP. The 0 — 1 knapsack problem, which is an NP-hard problem,
involves a set of items so that each item has a weight and a value. Given a knapsack
with a fixed capacity, the goal is to maximize the total value of items included in the
knapsack. Moreover, the decision for including an item in a knapsack is binary, i.e., an
item can be added to the knapsack as a whole or not added at all.

We construct an instance I of the LEFMP for an update stage m. We reduce an
instance I’ of the 0 — 1 knapsack problem to I. In this case, each item in I’ refers to the
flows f; € I ". The weight and value of each item correspond to bandwidth buw( fj) and

LSI «(fj), respectively. The capacity of the knapsack is mapped to the link capacity

43



4. Data Plane Load Reduction for Flow Migration

bap, V54,5, € S. In I, the value of the decision variable x(f;,m) is restricted to 0 or 1,
depending on whether f; is migrated in stage m or not. The goal of LEMP is to find
a feasible solution that includes the maximum number of flows with high LSI in each
update stage without violating the link capacity constraint for any flow. Therefore, the
optimal solution to the instance of the 0 — 1 knapsack problem I’ is also the optimal

solution of the instance of LFMP I. Hence, the LFMP is also NP-hard. ]

As the optimization problem in Equation (4.8)) is NP-hard, we propose a heuristic

approach for solving the problem.

4.2 DART: The proposed scheme

In this section, we discuss the proposed scheme, DART, which has three modules — 1)
generation of QoS-aware migration schedule, 2) generation of feasible migration schedule,
and 3) rule-space management. The QoS-aware migration scheduling module analyzes
the QoS demand of each migrating flow and generates an initial flow migration schedule
as defined in Equation The feasible migration scheduling module evaluates whether
the initial flow migration schedule is feasible or not and updates the schedule to avoid
link congestion. The rule-space management module checks the available rule-space in

each to-be-updated switch and frees up rule-space as per the requirement.

4.2.1 Generation of QoS-Aware Migration Schedule

We formulate a coalition graph game to form groups of flows so that each group is
migrated in each update stage. In this game, F " is the set of players. Each coalition A €
F' denotes the set of traffic flows {f1, f2,---, fia,|} which are migrated simultaneously.
Within a coalition, the traffic flow having the highest LSI is termed as the coalition-
head. Therefore, a coalition-head has |Ax| — 1 children nodes, which are termed as

coalition members. To form the coalitions, the proposed game constructs a coalition
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graph G = (F ',E), where E is the set of edges representing the correlation between
flows as defined in Definition |8 Therefore, there exists an edge between f; € F' and

fjer "if f; and fj are correlated flows.

4.2.1.1 Suitability of the Coalition Graph Game for QoS-Aware Migration
Scheduling

In SDN, multiple flows, which share the data links, are migrated together. Therefore, for
migration, each flow behaves cooperatively and decides its optimum strategy to satisfy
QoS demand and achieve Pareto optimal distribution of link capacity. Moreover, the
correlation between flows serves as a critical aspect for forming the groups as the update
of one flow may cause link congestion in the flow-path of a correlated flow. Hence, a
coalition graph game approach is the most appropriate approach for the formation of
a QoS-aware migration schedule, where migrating flows form cooperative groups, which

are migrated simultaneously for optimal utilization of the available link capacity.

Definition 11 (Coalition Structure). A coalition structure is a set of coalitions defined

as:

Q
Va={A1, As,..., Ag}, where | J Ay = F', Ayn Ay = ¢,k # 1 (4.14)
k=1

4.2.1.2 Utility Function of a Coalition

The controllers try to maximize the cumulative payoff obtained from the utility functions
of the coalitions. Let U(Ag, Va) denote the utility value of a coalition Ay € V4 and u;(.)
denote the utility value of a player f; € A;. The marginal utility of each traffic flow f;

increases with decrease in the rule update time of the flow. Mathematically,

du;(.)
oy,

<0 (4.15)
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The utility function w;(.) varies linearly with the LSI, and the number of corre-
lated flows in the coalition (/N;) so that a high number of flows are migrated at a time

depending on their traffic characteristics. Therefore, we get:

du;(.)

ou;(.)
9a(f)) >0, and —2% >0 (4.16)

dN;,

Therefore, we define the utility function of a flow f; as:

u;(.) = Nj (Oé(fj) — Tj,:{;x> (4.17)
j

Hence, the utility function U(Ag, Vy) is formulated as:

2 uy(l) if [Ag| > 1,
U(Ay,Va) = § F1&4 (4.18)

0 otherwise.

The total utility of all the coalitions in a coalition structure V4 is given by:

M
U(Va) = > U(Ag, Va) (4.19)
k=1

4.2.1.3 Coalition Graph Formation

The to-be-updated traffic flows, which are the players of the coalition graph game, form
the coalition graph based on the utility function defined in Equation (4.19). We consider
that the proposed coalition graph game is hedonic, which implies that a player has a

preference for the choice of the coalition. The preference relation is defined as:

Definition 12 (Preference Relation). The relation V = Vp denotes that the way
V4 partitions F" s preferred to the way Vg partitions FN, where F' C F' is a set of

players.

In this work, we consider Pareto order [42] as the basis for the preference relation >.

46



4.2. DART: The proposed scheme

According to Pareto order, a coalition structure V4 is preferred over another coalition
structure Vp if the change of coalition structure from Vp to V4 improves utility for at
least one player without decreasing the utility of any other player. Let u;(A) denote the

utility of player f; in a coalition Aj;, € V4. Mathematically,

[VaUVE|
Va = Ve & {uj(A) > w(B)}Vf e FF = | Ap VAR € VAUV, (4.20)
k=1

with at least one player f, having the strict inequality u;(A) > uy(B).

The coalitions are updated periodically based on merge and split rules as follows:
k
Definition 13 (Merge Rule). Merge any set of coalitions { A1, Aa, ..., A} where { U A}
=1

9 k k
{Al,AQ,...,Ak}, F = U Al Therefore, {Al,Az,...,Ak}—) U Al.
=1 =1

k
Definition 14 (Split Rule). Split any set of coalitions \|J A; where {Ay, Ag, ..., A} =g
i=1

k Lk k
{U 4}, F = U A;. Therefore, | Ay — {A1, As,..., AL}
=1 =1 =1

Therefore, multiple coalitions merge into a large coalition if merging is preferable to
the set of players according to Equation . Similarly, one large coalition splits into
multiple coalitions if splitting is beneficial to the set of players. To restrict the search
space for the merge operation, we consider a greedy approach to decide the potential
candidates for the attempt of merging. In this approach, a coalition A; attempts to
merge with coalition Ay only if there exists at least one edge e;; € E between f; € 4,

and f; € Aj. This constraint ensures that the merged utility is always positive.
Definition 15 (Stable Coalition). A coalition A € V4 is stable if

1. no player f; can improve its utility by leaving its coalition Ay, and acting individ-

ually.

2. no other coalition A; € Vo can improve its utility by joining Ay.
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Definition 16 (Stable Coalition Structure). A coalition structure V4 is stable if Ay €

Va,Vk € [1,Q)] is stable.

Algorithm describes the generation of the initial migration schedule. Initially,
each traffic flow forms an individual coalition. The Initial Migration Scheduling Algo-
rithm (IMSA) sorts the coalitions in descending order based on the LSI of the coalition-
heads. In each iteration, each coalition A; forms a potential candidate list Lj. The list
Ly, is sorted based on the LSI of the coalition-heads. Aj attempts to merge with the first
coalition in Lg. If the merge attempt is successful, both coalitions are merged. Other-
wise, Aj attempts to merge with the next coalition in the list. This merge process can
be performed distributively, where each coalition makes a greedy attempt to merge with
the coalitions in its potential candidate list. After completing greedy merge attempts
for all coalitions, the split operation is performed, if any split is possible. The merge and
split process is repeated until Vy is stable. The initial migration schedule y is formed
by scheduling the flows of each coalition from v, in each update stage.

The time complexity of IMSA depends on the number of merge and split attempts.
For |F'| flows, the maximum number of possible coalitions is [F'|. In the worst case,
each coalition attempts to merge with all the others. In this case, the fist coalition makes
\F/] — 1 merge attempts, the second coalition requires ]F/| — 2 merge attempts, and so

/ /
F'|(|F'|-1 .
%. However, in a

on. Therefore, the maximum number of merge attempts is
practical scenario, the number of merge attempts is significantly less as each coalition
attempts to merge only with coalitions in the potential candidate list. In the worst case,
the split operation of a coalition involves finding all partitions of the coalition. The
total number of partitions is given by the Bell number [43], which grows exponentially
with the number of players in the coalition. However, in a practical scenario, once a

coalition splits based on the Pareto order as stated in Equation (4.20]), no further split is

attempted. Therefore, the total number of split attempts is significantly less in practice.

Theorem 2. IMSA converges to a stable coalition structure.
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4.2. DART: The proposed scheme

Algorithm 4.1: DART: Initial Migration Scheduling Algorithm
Input : F': Set of migrating flows
Output: x': Initial migration schedule
1 Set E <+ EU{e;;} if f; € F' and f; € F are correlated flows
2 A+ A U{fi}, Va < VaU{A}Vfp € F
3 while V4 is not stable do

4 Sort V4 in descending order of the LSI of the coalition-heads

5 forall A, € V4 do

6 Form potential candidate list L; for merge attempt using £
7 Sort the coalitions in Ly in descending order of the LSI of the

coalition-heads

8 if merge attempt successful for A; € Ly then

9 Merge A; and A; using Definition

10 Update V4
11 end
12 Attempt merge with A;11 € Ly
13 end
14 Split coalitions in V4 using Definition
15 Update V4

16 end
17 Set X (f,k) = 1,Vfj € Ap, VA, € Va
18 return X/

Proof. Initially, each player forms an individual coalition having zero utility. Therefore,
a player has the lowest utility value when it acts individually. In subsequent iterations,
each player tries to increase its utility via the merge and split operations. This process
continues if at least one player is capable of improving its utility by joining another
coalition. Hence, the termination of the merge and split process implies that no coalition
can improve its utility by joining another coalition. Therefore, IMSA generates a stable

coalition structure, Vjy. O

4.2.2 Generation of Feasible Migration Schedule

The coalitions from the stable coalition structure V4 are selected one-by-one for consis-
tent flow migration, and only one coalition is migrated in each update stage. However,

the migration of a flow may trigger congestion in one or multiple links. This is because
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4. Data Plane Load Reduction for Flow Migration

those links have to-be-migrated flows which are scheduled to be migrated in a later
stage. Therefore, prospective link congestion makes a flow migration schedule infeasible.
Therefore, we propose a greedy heuristic algorithm to analyze the feasibility of the ini-
tial migration schedule and prepare the final migration schedule that reduces the data
link load. Algorithm shows the steps for the generation of a feasible flow migration

schedule.

Algorithm 4.2: DART: Feasible Migration Scheduling Algorithm

Inputs : X, Va
Output: x
1 while m # |V4| do

2 forall f; € F' do

3 if X/(fj,m) = 1 and migration of f; violates link capacity constraint
then

a ‘ Set x(fj,m+1) =1 and update V4

5 end

6

7 Set x(fj,m) =1

8 end

9 end

10 return y

Each iteration of the Feasible Migration Scheduling Algorithm (FMSA) checks the
initial migration schedule and determines whether the migration of the flows in a stage
is feasible in terms of the link capacity constraint. If any flow violates the link capacity
constraint, FMSA moves the infeasible flow to the next update stage. As we migrate
the flows is each update stage together, the possibility of link congestion reduces for
some links, and some infeasible flows become feasible. Therefore, FMSA takes a greedy
approach to allocate the infeasible flows to the nearest update stage. FMSA runs in
O(|F'|) time as each flow in an update stage checks for link capacity violation based on

the bandwidth usage data of the links, which is available to the controller.
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4.2.3 Rule-Space Management

FMSA generates the final migration schedule, which reduces link congestion during flow
migration. However, another part of the data plane load is rule-space usage. SDN
switches have limited rule-space, and the overflow of rule-space makes the migration
process inconsistent and incomplete. However, in each stage, we update the switches
based on the approach proposed in our earlier work, CURE [44]. This approach deletes
old rules immediately after installing new flow-rules. Therefore, the switches, which are
part of both old and new paths of a flow, require no additional rule-space. However,
the switches, which only belong to the new path, require the installation of additional
flow-rules to define the new path. So, we propose a heuristic algorithm to ensure that
these switches have enough capacity to address the additional rule-space requirement.

The proposed rule-space management process requires the deletion of unimportant
flow-rules from the switches, which have low free rule-space. To select the rules that
are no longer required, we estimate the popularity of the flow-rules store in the rule-
space of a switch. We sort the flow-rules of the corresponding switch in descending
order of the received packet count. For a switch s,, the rule popularity is denoted by
© = {01,02,0s,...,0R,}, where 0y, is the probability that a flow matches with the k"
rule. We estimate the rule popularity based on Zipf distribution [36], which is expressed
as:

0, = =k (4.21)

a

=

]

1
=~

~.

where € is the skewness of the rule popularity. The value ¢ = 0 denotes uniform
popularity distribution and a larger e signifies more uneven rule popularity.

Algorithm shows the steps of the rule-space management process based on the
feasible flow migration schedule.

The Rule-space Management Algorithm (RSMA) identifies the set of switches S,
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Algorithm 4.3: DART: Rule-Space Management Algorithm
Inputs : x, A
Output: S’

1 while m # |V4| do

2 forall f; € F' do

3 if x(fj,m) =1 then

4 "« S"U (P (F)\P(f))

5 addRules(s,) + addRules(sq) + 1,50 € (P'(£;) \ P(f;))
6 end

7 end

8 end

9 forall s, € S” do
10 if R, > A then

11 Delete R, — addRules(s,) least popular rules using Equation m
12 end
13 end

1!
14 return S

which require the installation of additional flow-rules. Additionally, RSMA estimates
the rule-space requirement for each switch in S”. To identify the overloaded switches,
RSMA checks if the rule-space usage for any switch in S” exceeds a predefined rule-space
threshold A. Finally, RSMA frees the required rule-space in the overloaded switches
by deleting the required number of rules starting with the least popular rule. The
time complexity of RSMA is composed of two parts — the time complexity for the
formation of S” and the time complexity for the reduction of rule-space usage in the
overloaded switches. Each flow is visited to identify the set of switches for inclusion in
S”. This operation is completed in O(|F'|) time. The rule-space reduction process takes
O(]S|) time because, in the worst case, the reduction must be performed for all switches.

Therefore, RSMA run in O(|F'| +|S|) time.

4.2.4 Consistent Flow Migration

The set of to-be-updated switches for update stage m, is expressed as:
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|F'|
Sm = S'(f;), where x(fj,m) =1 (4.22)

j=1
For consistent flow migration, in each update stage m, DART processes the old
packets and starts queuing the new packets for the switches in .S,,. This step ensures
packet-level consistency. After processing all the old packets, new rules are installed,
and old rules are deleted. This step addresses the rule-space constraint of the switches
as only a single version of a flow-rule is stored at a time. After the modification of all

the required rules, DART processes the queued packets [44].
Theorem 3. Flow migration in DART is blackhole free.

Proof. Let f; € F' be a flow that is scheduled to be migrated in stage m. In stage m, new
flow-rules are installed in all switches in S/( fj). However, the old packets are processed
by the old flow-rules before updating the first switch in stage m. As the update of the
first switch in stage m starts, the new packets are queued until all switches in stage m
complete update. Once stage m completes update, the queued packets are processed by
the new flow-rules. Therefore, all packets that enter a switch belonging to the old path
P(f;) or to the new path P'(f;) is equal to the packets that leave the switch. Since, no
packet of a flow f; is dropped, the flow migration process in DART is blackhole free.

O

Theorem 4. Flow migration in DART is loop free.

Proof. All the old packets of a flow f; € F " are processed by old flow-rules entirely.
New flow-rules are installed to all switches in S,( fj) before processing the new packets.
Therefore, each packet in f; either follows the old path P(f;) or the new path P/( fi)-
Since, no packet is processed by incorrect flow-rules, the flow migration in DART is loop

free.
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4.3 Performance Evaluation

4.3.1 Simulation Settings

We evaluate DART’s performance by performing simulations on the Abilene topology,
which has 12 switches and 30 directed links [38]. We use the Abilene topology because
it is a small-scale topology, where the number of correlated flows for each flow is high.
For simulation, we use the Abilene dataset [45], which provides the OSPF weights and
the maximum capacity of each link. Based on the parameters available in the Abilene
dataset, we randomly generate traffic flows to perform the simulations for different traffic
volumes. Table[d.I|represents the simulation parameters. For the simulation, we consider

that 80% flows are latency-sensitive with LSI between 0.9 to 1.

Table 4.1: DART: Simulation Parameters

Parameter Value
Topology Abilene [3§]
Number of traffic flows 100 — 400
Bandwidth of a traffic flow 0.0001 — 0.39 Gbps [45] |
Maximum link capacity 9.92 Gbps [45] |
Number of switches 12 [45]
Number of links 30 [45]
Maximum controller-to-switch delay (dsc) 4.87 ms [44]
Maximum time interval between dispatch of two suc- 5.24 ms [i4]
cessive update messages from the controller (A) ’
Maximum allowable delay 1 — 1000 ms [46]
Rule popularity skewness (e) 0.56
Rule-space capacity (R™*) 500 flow-rules
Rule-space threshold () 250 flow-rules

4.3.2 Benchmark schemes

We compare the performance of DART with three benchmark schemes — two-phase up-
date |11], flow migration scheme proposed by Basta et al. [47], and the Greedy approach.

The two-phase update is not incremental and schedules all traffic flows together for mi-
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gration. The two-phase update scheme updates the ingress switches after updating the
internal switches. Basta et al. [47] update switches according to the shortest common
supersequence formed from the ordered sets of switches denoting the new paths of the
migrating flows. In the Greedy approach, flows are migrated in descending order of the
LSI value, and the correlated flows are migrated together. On the other hand, DART
considers flow-specific QoS requirements while preparing the migration schedule and mi-
grates the flows consistently. We select the two-phase update as one of the benchmark
schemes to show the effectiveness of incremental flow migration. We select the flow
migration scheme proposed by Basta et al. [47] to show the importance of considering
individual flow paths as compared to an integrated flow path in order to reduce data
link congestion. In addition, we select the Greedy approach as a benchmark scheme to
show that the formation of groups for flow migration should not depend only on the LSI

value.

4.3.3 Performance Metrics

We consider the following metrics to analyze the performance of DART:

e Flow migration duration: The migration duration of a traffic flow is defined in
Definition . This metric quantifies the time required for a flow to change its

path from old to new.

e Peak Load of the data links : This metric shows the highest load of the data
links during flow migration. A high data link load signifies that the possibility of

link congestion is high.

e Rule-space usage for flow migration: This metric measures the rule-space
required for the flow migration process. This metric is important because of the

rule-space capacity limitation of SDN switches.

e QoS violated flows: QoS violated flows are traffic flows that have a migration
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duration greater than the maximum allowable duration. This metric shows the

QoS-awareness of DART.

4.3.4 Result and Discussion
4.3.4.1 Flow Migration Duration

We estimate the average migration duration by varying the number of flows. From
Figure we observe that the average flow migration duration for DART is 28.82%
less than that of the two-phase update. This is because DART migrates the flows
incrementally, resulting in reduced waiting time for each traffic low. However, the
average flow migration duration for DART is higher than the approach proposed by
Basta et al. [47] and the Greedy approach because DART migrates flows in multiple
stages, where controller-switch communications are initiated for each switch in each
update stage. Figure depicts the effects of LSI on the average flow migration
duration for 400 flows. For this experiment, we form 5 groups, each having 80 flows.
The LST of the flows in the group 1, group 2, group 3, group 4, and group 5 are [0.1,0.2],
[0.3,0.4], [0.5,0.6], [0.7,0.8], and [0.9, 1], respectively. We observe that the average flow
migration duration for both DART and Greedy decreases as LSI of migrating traffic
flows increases. In particular, for DART, the average migration duration of the flows in
the group 5 is 28.22% less than the flows in the group 1. However, the change of LSI
does not affect the migration duration of benchmark schemes. Therefore, it is evident
that DART prioritizes latency-sensitive flows and schedules their migration earlier to

satisfy the QoS demands.

4.3.4.2 Peak Load of the Data Links

We analyze the peak load of data links as it is the primary contributor to the data plane
load. Figure [4.3] sketches the peak data link load with varying number of flows. From

the simulation result, we observe that the peak data link load is 13.75%, 13.78%, and
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Figure 4.2: DART: Flow Migration Duration

9.19% less than the two-phase update, the approach proposed by Basta et al. [47], and
Greedy approach, respectively. Moreover, we observe that the performance of DART
improves as the traffic load increases. This is due to the fact that high traffic load
increases the possibility of link congestion, and using FMSA DART reduces the data
link load. Therefore, for high traffic load, DART proves to be a reliable scheme that

reduces data loss caused by link congestion.

4.3.4.3 Rule-Space Usage for Flow Migration

For DART and the benchmark schemes, we estimate the additional rule-space require-
ment because of the flow migration process. Figure [1.4] shows the average rule-space
usage with varying traffic load. From the simulation result, we observe that DART
uses 67.93%, 57.74%, and 63.07% less rule-space as compared to the two-phase update,
the approach proposed by Basta et al. [47], and Greedy approach, respectively. This is
because RSMA deletes less popular rules to accommodate new flow-rules, and DART

performs consistent flow migration where old flow-rules are not stored redundantly.
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4.3.4.4 QoS Violated Flows

We analyze the amount of QoS violation considering heterogeneous traffic where each
flow f; has different QoS requirement in terms of the maximum allowable delay 77"
From Figure 4.5 we observe that the number of QoS violated flows in DART is 56.36%
less than the same using the two-phase update, 26.65% less than the approach proposed
by Basta et al. [47], and 1.92% less than the same using Greedy approach. This is due
to the fact that DART migrates the traffic flows in order of the LSI values so that each
flow fulfils the specific QoS demand. Additionally, DART considers the link capacity

constraint and schedules feasible flows together.

From the above analysis, it is evident that the proposed scheme, DART, significantly
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Figure 4.6: DART: Comparison between ILP Solution and DART

reduces the peak load of the data links and additional rule-space usage for flow migration
with acceptable flow migration duration. Additionally, it is noteworthy to observe that
DART achieves remarkable performance in terms of addressing QoS demands of het-
erogeneous flows considering heterogeneous traffic as an essential parameter of realistic
networks.

We solve the ILP formulated in Equation using Gurobi Optimizer [48]. Figure
[4.6]shows the comparison between the ILP solution and the proposed heuristic approach,
DART. We observe that DART achieves performance similar to the ILP solution while

having low computation time.

4.4 Concluding Remarks

In this chapter, we present a scheme, named DART, that migrates traffic flows in different
update stages. Each update stage is formed based on the QoS demand of the flows, and
bandwidth usage of the links. DART also addresses the rule-space capacity constraint
so that no switch reaches its rule-space capacity limit due to flow migration. Simulation
results show that DART reduces the additional rule-space usage by 67.93%, and the

number of QoS violated flows by 56.36% compared to the two-phase update.

59






Chapter 5

Rule-Space Management

In this chapter, we present a scheme for Tensor-Based Rule-Space Management (TERM)
in SDN. The limited storage capacity of switches is a crucial challenge in SDN as the
switches use TCAMs having deficient capacity. Low rule storage capacity eventually
leads to a high number of Packet-In messages and control plane overloading. TERM
addresses rule-space capacity constraint by aggregating flow-rules using tensor decom-
position.

This chapter consists of four sections. The system model of TERM is presented
in Section Section [5.2| describes the proposed scheme. Section depicts the
experimental results. Finally, Section concludes the proposed work and discusses

directions for future work.

5.1 System Model

Figure depicts the network architecture considered for TERM. The set of switches
in the data plane is denoted as S = {s1,s2,...,sp}. In the control plane, there exist
multiple sub-controllers connected with a controller ¢. The set of sub-controllers is
denoted as C5% = {c§¥0 50, ... ¢34}, The sub-controllers are placed using existing

controller placement algorithms [26]. All the sub-controllers are connected to c¢. Each
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switch s; is connected to a sub-controller. Therefore, the assignment between switches

and sub-controllers is defined as a D x M binary matrix L. Each element of L is expressed

as:
-<«——Data Plane >|‘ Control Plane————»
1 SWITCH
s sus- |,
> | CONTROLLER
4
‘ SWITCH
1 SWITCH < 1
S | SUB-
5’ | CONTROLLER
| SWITCH N | | CONTROLLER
T SWITCH - }
c
8 SWITCH <—:|-—- SuB- |,
5’ | CONTROLLER|[™
l SWITCH - T

Figure 5.1: TERM: Network Architecture

1, if s; is connected to 5%

lij = T (5.1)
0, otherwise.

Definition 17 (Region). A region r; is defined as:

Tj = UsiaVZij =1 (5.2)

The set of rules in switch s; at time ¢ is denoted as:

R(t) = R(t) U Ry (t) U R, (1), (5:3)

where R(t) is the set of cached rules, R:(t) is the set of aggregated rules, and R (t)
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denotes the set of uncompressed rules in switch s; at time t.

A switch s; generates p;(t) number of Packet-In messages at time ¢. Packet-In mes-
sages are generated whenever incoming packets fail to match with any of the flow-rules
in Ri(t).

The objective of this work is to minimize the number of Packet-In messages by
maximizing the total number of rules stored in each switch. Mathematically,

|S|

min Zpi(t) (5.4)
i=1

subject to

|RL(t)| < Ny, Vs; € S (5.5)

|R;,(t)] < Ni,Vs; € S, (5.6)

where N; denotes that the TCAM in a SDN switch s; is capable of storing N; entries.
Equations (5.5) and (5.6) express that the number of cached rules and the number of

uncompressed rules are less than the storage capacity of the TCAM.

5.2 TERM: The Proposed Scheme

In this section, we describe the proposed scheme, TERM, which includes three modules
— rule aggregation, rule reconstruction, and rule caching. Rule aggregation and rule
reconstruction procedures of a region r; are performed by cj“b. The rule aggregation
module compresses the flow-rules in each switch with a tensor-based approach to increase
the available capacity of the flow-tables. The rule reconstruction module reconstructs

the compressed rules in a switch, whenever an incoming packet fails to match the un-

compressed rules. Additionally, each switch has a rule caching module which caches the
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most frequently used rules. This avoids the reconstruction of rules every time a packet
reaches a switch.

Therefore, for an incoming packet, a switch first checks for a rule match in the cached
rules, and then the uncompressed flow-rules in the flow-tables. If no match is found, it
informs the sub-controller that the reconstruction of compressed rules is required. The
sub-controller reconstructs the compressed rules and checks for a possible rule match.
If a match is found in multiple rules, the higher priority rule is selected. If no match
is found even after checking the compressed rules, the packet is redirected to ¢, which

generates the new rule as per the existing OpenFlow policy [34].

5.2.1 Rule Aggregation

The rule aggregation module includes three sub-modules — rule restructuring, tensoriza-
tion, and reduction.

5.2.1.1 Rule Restructuring

Rule restructuring converts the ternary string of each rule into an integer value. We
consider a 4-bit ternary value for each match field and 4-bit binary value for the action
field. Each ternary string of length 2 is transformed into an integer digit based on the

transformation rules presented in Table [5.1]

Table 5.1: Integer representation of ternary strings

Ternary String Integer Representation
kk 1
*0
*1
0*
1*
00
01
10
11

OO0 || U =W
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Example 1. Consider a ternary string of two match fields and one action value {*11%, 10x
0,1101}. Therefore, after transformation, the resulting integer string will be {35,82,97}.
5.2.1.2 Tensorization

In this work, we use tensor to formalize the flow-tables in SDN switches. We transform

each modified rule-set into a three-order tensor, as shown below:

T € RPNy Nt (5.7)

where Ny denotes the number of fields in a TCAM entry, which includes the priority
value, match fields, and action value. Ny depends on the OpenFlow protocol version.

N; denotes the total number of uncompressed rules in the switch.

5.2.1.3 Reduction

Algorithm transforms T to a compressed tensor C € RN *Nr where N, < N;. N,

is termed as the reduction factor (RF'). The value of RF at time ¢ is selected as:

(Qmam - chrrent)
Qmax

RF(t) = N, = Ny + | x 100/, (5.8)

where Qnaz and Qeyrrent denote the queue length and the number of packets queued
at the switch, respectively. If a switch has a high number of queued packets, a low N,
enables the switch to store more number of uncompressed rules.

Therefore, the reduction coefficient is expressed as:

N; — N,

= " % 100 5.9
q N~ % (5.9)

Algorithm reduces the dimensions of the initial rule tensor 7" and transforms it
to the reduced tensor C. In Theorem [5] we discuss that this reduction permits a switch

to store more rules, than in the case of a traditional SDN architecture. As we aim to
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Algorithm 5.1: TERM: Rule Aggregation Algorithm

Input : 7 € RVNs*Ne: Initial rule tensor
Output: key = {C € R>Nr*Nr 1. Core data set
Compute T(3) from tensor T

3 Truncate U, € RN*Nr from U

4 C+Tx3UF

key < {C, Uy}

6 return key

N =

ot

reduce the rule count, we consider the mode-3 unfolded matrix to perform the tensor

decomposition method. Mode-3 matrix of tensor T is computed in Line 1 using the

procedure of Tensor Unfolding or Matricization [49]. Figure shows three unfolded

matrices of an initial rule tensor 7' € R™4*8 which represents eight flow-rules each with

one priority value and two match fields and action value. The corresponding unfolded

matrices are T() € R1X32,T(2) € R*™8 and T3 € R3*4,

o)
S
===l

/8 24 99 99
Te R4

87654321
24 96 59 11 84 31 11 82
99 757393 79 92 34 11
99 87 66 66 99 87 98 86

T

|€24999979675876597366511 936648479993319287211349818211 BEI

Figure 5.2: Matricization of initial rule tensor

A tensor element T'(ay, as, ...,ay) for a tensor T € RI1>*12X-XIN corresponds to the

matrix element 7(;)(ay, b), where
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In Line 2, the unfolded matrix T{3) is decomposed using the singular value decom-

position (SVD) technique. SVD factorizes matrix T(3) into the form:

Tz =USVT, (5.11)

where U and V are the left and right unitary orthogonal matrices, respectively; S is
a diagonal matrix, whose elements are singular values of T{3) [50]. Singular values of
matrix T(3) are the square roots of the common eigen values of T(3)T| (:g) and T, (:g)T(g).
The matrices U and V' consist of column vectors, which are transposed eigen vectors of
matrices T(3)T(:g) and T(g)T(g), respectively.

The left singular matrix U is truncated in Line 3, which is given by:

Uy, € RNt N (5.12)

The matrix Uy is needed to be stored for rule reconstruction. We store this matrix
Uy in parts in the sub-controllers based on their available memory.
Line 4 generates the compressed tensor C by computing the mode-3 product of tensor

T with transpose of matrix Uy, which can be expressed with unfolded matrices as:

(C:(T X3 Ug)@0(3):UZXT(3) (5.13)

Space complexity of Algorithm[5.1)is O(N?)+O(Ny (N, + Ny)), which decomposes to
O(N?) as Ny is greater than both Ny and N,.. The time complexity of performing SVD
on the unfolded matrix T{3y in Line 2 is O(min{ N7 Ny, NtN]%}) [51]. The time complex-
ity of computing mode-3 product in Line 3 is O(N; N, Ny). Therefore, time complexity
of Algorithm [5.1|is O(min{NZNy, NtNJ%}) + O(N¢N,Ny¢). Figure|5.3|describes the com-

RM4>8 multiplied by transpose

putation of mode-3 product for an order-3 tensor T' €
of truncated orthogonal matrix Uj, € R3*%.

The sub-controller triggers the rule aggregation procedure if free memory of a switch
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Figure 5.3: Mode-3 product of the initial rule tensor

s; drops below a specific threshold value th. This limit ¢h is predefined based on the
nature of the applications. During an aggregation procedure at time ¢, all the rules in

R!(t) are aggregated to form a new set of aggregated rules.

Theorem 5. The maximum number of rules stored in the TERM SDN architecture
is greater than the mazimum number of rules stored in a traditional SDN architecture
with D OpenFlow switches, where D > 1,N > Ny; N is the storage capacity of each
OpenFlow switch in the traditional SDN architecture in terms of the number of entries,

and Ny is the number of fields in a TCAM entry.

Proof. The maximum number of entries stored in a traditional SDN architecture with

D switches, each having a TCAM capable of storing N entries, is given by:

Maz; =D x N (5.14)

We denote the maximum number of entries stored in the TERM SDN architecture

as:

Maz,, = D X a, (5.15)
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where « is the storage capacity of each switch in terms of the number of entries of the

modified architecture. Therefore, we need to prove that,

Max,, > Maxt, where D > 1. (5.16)

Let T € RVNr*Nt he the tensor representing rules of a switch with N; uncompressed
entries, where each entry has N; fields, and 0 < Ny < N. The corresponding switch
contains total (N — N;) entries comprising of cached entries and the aggregated entries

generated from the previous aggregation phase.

The p-mode product of a tensor is the basic flow-rule reduction operation for reducing
tensor dimensions. To reduce the dimension of the n'* order of a tensor 7" from I,, to I,
(In, > Ip), we need to compute n-mode product of tensor 7" by a truncated left singular

vector matrix U € RIp*In,

The aim of our rule aggregation approach is to reduce the 3™ order of tensor
T € R>Ne*Ne from N, to N,, where N, < N, to allow storage of larger flow-tables.

Therefore, the compressed tensor C € R Nr>*Nr is expressed as:

C=Tx3U7, (5.17)

where Us is obtained by retaining the left NV, unitary orthogonal vectors from the left
singular vector matrix generated from singular value decomposition of the mode-3 matrix
of tensor T'. Figure [5.3]illustrates the operation of computing compressed tensor C from
an initial tensor 7. From experimental results, we observe that the minimum value for
N, is Ny for the exact reconstruction of flow-rules. Therefore, the maximum percentage

of rule reduction for a switch is % NNf x 100 %. N, can be chosen dynamically, depending

on the application type. If the application is latency-sensitive, then the optimal value
of N, should be chosen, considering the processing time of both rule reduction and

reconstruction for approximate rule-set size.
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After rule aggregation in each switch, an extra space is available for storing maximum
(N¢ — Ny) entries. So, L switches can support upto ((N; — Ny) x D) extra entries. So,

Maz,, can be expressed as:

Maz,, = D x (N + (N; — Ny)), (5.18)

where the storage capacity of each switch in TERM is o = (N + (N; — Ny)). The term
(N 4+ (N;—Ny¢)) >0,as 0 < Np <45,L > 0, Ny > 0, and N > Ny [34]. Hence, the
statement of Equation (5.16|) is true.

5.2.2 Rule Reconstruction

The corresponding sub-controller reconstructs the aggregated rules of the switch to verify
whether there is a match. Rules in the switch do not change during this process. The
reconstructed rules are stored in the sub-controller. After the sub-controller completes
the verification process for a possible rule match, it releases the memory used for rule
reconstruction.

Change in network policies or topology triggers rule update or the addition of new
rules. To handle these changes, the aggregated rules of selected switches are recon-

structed and then aggregated again after incorporating the changes.

5.2.2.1 Approximate Rule Tensor Generation

For rule reconstruction, initially, we generate an approximate rule tensor Ty € RM>*Ns>Ne|
by computing the mode-3 product of compressed tensor C € R>Nr*Nr with truncated

unitary orthogonal matrix Uy computed using (Equation (5.12))) and stored. This pro-
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cess is expressed as:

TA:CX3 Uk. (5.19)

Equation (5.19)) can also be expressed as:

TA<3> = Uk X (C(3), (5.20)

where T, and C3) are the mode-3 unfolded matrices of approximate rule and com-
pressed rule tensors, respectively [49]. The space complexity of the rule reconstruction
procedure is O(N¢(NN, + Ny)). The time complexity of the rule reconstruction procedure
is O(N¢N,N¢).

The absolute error of approximation between initial rule tensor 7' and approximated

rule tensor T4 is measured as:

1 Ny N

€= HT - TAH = Z Z Z (ti1i2i3 - tAi1i2i3)27 (5'21)

i1=142=1143=1

where || X|| denotes the norm of a tensor X [49]. This error is introduced due to
approximation of the floating-point values in the truncated unitary orthogonal matrix
Uk. From experimental results, it is observed that € = 0 for N, = [Ny, Ny|.

The size of the matrix Uy depends on RF which we calculate using Equation .
Hence, the rule reconstruction time is high for a high value of RF' due to the computation

of mode-3 product in Equation (5.19).

5.2.2.2 Rule Recovery

After approximate rule tensor is generated, exact rule entries are recovered. Each mode-

2 fiber [49] of tensor T4 corresponds to one row of flow-table. At this stage, the action
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value and all the match fields of the flow-table entries are in an integer format. Using
transformation logic described in Table , we transform each entry of the flow-table

back to ternary string. Figure shows the process of rule recovery.

Priority F1 F2 Action

8 24 99 99

7 96 75 87

6 59 73 66

|:> 5 11 93 66

4 84 79 99

A 3 31 92 87
2 11 34 98

1 82 1" 86

Priority F1 F2 Action
8 *00* 1111 | 1M1
7 1100 011* | 1001
6 111 01*1 | 0000
5 ok 11*1 | 0000
4 100* 0111 | 1111
3 bl 11*0 | 1001
2 ek *0* | 1110
1 10*0 = | 1000

Figure 5.4: Rule recovery process

5.2.3 Rule Caching

Each switch s; caches the most frequently used rules. Incoming packets that match the
cached rules directly follow the actions mentioned in the matched rule. For “cache miss",
the packets first search for a match in Rf(¢). If no match is found, the corresponding
sub-controller reconstructs the aggregated rules and checks for a match.

We used the least recently used (LRU) cache algorithm. In the OpenFlow protocol
version (v1.5.1) [34], each flow-table entry contains a counters field, which is updated
when incoming packets are matched with the corresponding flow-rule. Investigation of
this field allows us to discard the least recently used rules and select the frequently used
ones as the potential caching candidates. The discarded rules are added to the R! () set.

If a rule in the aggregated rule-set R’ (t) qualifies as a potential caching candidate, then
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that rule is added to set R:(t) with a flag indicating that the rule is also available in the
aggregated rule-set R’ (t). Therefore, when the rule is no longer needed to be cached, it

can be simply deleted from set R:(t) without adding it to set R’ (t).

5.3 Performance Evaluation

In this Section, we evaluate the efficiency of TERM, while comparing with traditional
OpenFlow-based approach, flow-table partitioning approach — Pallet [15], and flow
aggregation approach (FAA) [16]. We consider Sprint topology [38] for performance
evaluation. We generate random flow-table entries, each with a priority value, a counter
value, 45 match fields, and an action value. The performance of TERM is evaluated
based on throughput, average packet waiting time, free rule-space, Packet-In message

count, and rule aggregation and reconstruction time. The simulation parameters are

depicted in Table[5.2]

Table 5.2: TERM: Simulation Parameters

Parameter Value

Network topology Sprint [3§]

Simulation area 3563.90 km x 1655.20 km [38r
Total number of flows [20000, 100000] ]
Number of switches 11

Switch capacity 8000 flow-rules [39]

Packet arrival rate per switch 0.02 mpps [44]

Packet processing rate per switch | 0.03 mpps [44]

Rule matching time 20 ps [52]

Transmission delay 5 ws per kilometer [12]

Average queue size per switch 0.07 million packets [44]
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5.3.1 Result and Discussion
5.3.1.1 Throughput

Throughput is measured as the percentage of packets processed per unit time. Figure[5.5
shows the average throughput when the total number of flows is varied between 20000
and 100000. The average packet arrival rate and packet processing rate per switch are
0.02 mpps and 0.03 mpps, respectively. From the simulation, we observe that the average

throughput for TERM is almost similar to Pallet, traditional SDN approach, and FAA.

TERM s
_ TERM s Traditional SDN
Traditional SDN . .
Pallet: CBD !
Pallet: CBD FAA &
FAA
@ 0.6
2 100 E Py 05
Y BE o4
3 60 o 03
= g
o 20 >8 01 H
= <=2 0
= 0

i \’@@ ’ Tot:qzurﬁr oqfcljov:s
Total Number of Flows
Figure 5.6: TERM: Average Packet Wait-

Figure 5.5: TERM: Average Throughput ing Time

5.3.1.2 Average Packet Waiting Time

Figure depicts the average packet waiting time for TERM, traditional SDN, Pallet,
and FAA. The average packet waiting time of TERM is 14.81%, 30.30%, and 43.90%
less than traditional SDN, Pallet, and FAA, respectively. Therefore, we yield that the
average packet waiting time is short in TERM, as the most frequently used rules are

cached in each switch.

5.3.1.3 Free Rule-Space

The amount of free rule-space is the percentage of total rule-space available for storing

new flow-rules. As shown in Figure the average free rule-space is significantly higher
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in TERM, as each rule aggregation procedure aggregates the existing rules and releases

rule-space.
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5.3.1.4 Packet-In Message Count

Figure [5.8 shows the average number of Packet-In messages generated from each switch
in the network. The cached rule-space size is fixed to 10% of the total rule-space.
The average number of Packet-In messages is 49.45%, 70.83%, and 57.78% less than
traditional SDN, Pallet, and FAA, respectively.

Figure depicts the average number of Packet-In messages generated from each
switch for different cache sizes. The total number of flows is 10000. As shown in Figure
the number of Packet-In messages for 20% cache size is 22.96% less than that for
no cache. Therefore, we yield that caching reduces the Packet-In message count. In
addition, we synthesize that after a specific size of Ri(t), the Packet-In message count

decreases as most of the packets are matched in R%(t).

5.3.1.5 Rule Aggregation and Reconstruction Time

The rule aggregation time is the time required to compress the flow-rules of a switch into
a lesser number of TCAM entries. Similarly, the rule reconstruction time is the time
needed to transform the aggregated TCAM entries into actual flow-rules. Figure [5.10
and Figure depict the average rule aggregation and reconstruction time of a switch,
respectively. From the simulation results, we observe that the rule reconstruction time

is significantly less than the rule aggregation time.

5.4 Concluding Remarks

In this chapter, we present a scheme, named TERM, that aims to reduce flow-table
miss by increasing the available capacity of switches in SDN. TERM uses the tensor de-
composition technique to compress heterogeneous flow-rules. Simulation results indicate
enhanced performance in terms of reduced packet waiting time, increased free rule-space,

and reduced number of Packet-In messages.
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Chapter 6

Control Plane Load Reduction

In this chapter, we propose a scheme for — Control Plane Load Reduction (CORE) in
SDIoT. The management of control plane load is an essential issue for IoT networks
because of the dynamic traffic characteristics. IoT traffic is highly dynamic due to the
heterogeneity of IoT devices in terms of mobility, activation model, QoS demand, and
flow generation rate. The challenge is to prevent controller overload and distribute traffic
optimally, considering heterogeneous IoT devices. CORE estimates the load on each
controller based on the mobility and traffic characteristics of IoT devices and performs
an optimal master controller assignment to reduce the control plane load.

This chapter consists of four sections. The system model of CORE is presented
in Section Section describes the proposed scheme. Section depicts the
experimental results. Finally, Section concludes the proposed work and discusses

directions for future work.

6.1 System Model

The SDIoT architecture considered in CORE is depicted in Figure The architecture
comprises three layers — application, network, and perception. The application layer

consists of IoT applications, which perform services requested by the users based on the
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Figure 6.1: CORE: SDIoT Architecture

data collected from the network layer. The network layer consists of data plane and
control plane. Let G = (9, F) represent the data plane topology, where S is the set of
SDN switches and F is the set of links. We assume that each switch stores up to Rae
flow-rules. Each flow-rule 7. has a timeout duration 7, seconds. Let C represent the set
of controllers. We consider that each switch s; is attached to single master controller
and one or multiple slave (read-only) controllers [34] during a time-slot. Let, € seconds

be the duration of each time-slot. The master controller for switch s; is expressed as:

1 if ¢ is the master controller of s;,
:Eij (t) = (6.1)
0 otherwise.
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The slave controller for switch s; is expressed as:

1 if ¢; is the slave controller of s;,
0 otherwise.

A controller cannot be both master and slave for the same switch at the same time-slot.

zij(t) +yij(t) < 1,Vs; € 5,Ve; € C (6.3)

Definition 18 (Controller Capacity). The capacity of a controller c; is the mazimum

number of Packet-In requests the controller handles in a time-slot and is denoted by €1;.

The perception layer contains static and mobile IoT devices that are heterogeneous
in terms of QoS requirements. The flows generated by the IoT devices are transmitted
over the wireless channel to switches via access points (APs) having different radio access
capabilities such as WiFi, WiMax, Bluetooth, 3G, 4G, Zigbee, mmWave, and TV White
Space. In this work, we assume that each IoT device is capable of communicating via
more than one radio access technique. For a time-slot ¢, we consider that the number
of IoT devices present in the network is n,(¢). The set of IoT devices is denoted by
the set D(t) = {d1,dz,...,d,, )} For simplicity, we assume that all the flow-rules are
exact-match flow-rules [34], where the mapping between flow-rule and flow type is one-
to-one. Further, we assume that each device generates only single type of flow. Let
Q1. be the number of flows generated by di per second. We assume that the controllers
record device specific parameters such as the flow generation rate, the mapped flow type,
and QoS requirement for each time-slot. At time-slot ¢, the association between an IoT

device and an SDN switch is expressed as:

1 if dj, is associated with s;,
zik(t) = (6.4)
0 otherwise.
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We consider that a device is associated with single switch only, as each AP sends
S|
data to a specific SDN switch. Therefore, > z;(t) = 1,Vd € D(t).
i=1

Each IoT device dj, activates/deactivates following either — (1) random activation
model or (2) periodic activation model [53]. A device dj, following random activation
model activates at time 7 € [0, 7] according to the beta distribution with shape param-

eters (1, and 3, which is expressed as:

=T — 7)P2—1
C TBi+B2—1 Jy A1l — 1)Be1dr’

Jr(7) (6.5)

where [0, 7] is the duration within which the devices are operational. On the other
hand, a device dj, following periodic activation model activates repeatedly after a fixed
duration 75 seconds. Therefore, the probability that a device di following periodic

activation model activates at time 7 € [0, T] given by:

1 if the interval between 7 and the last active time of d; is more than 7,
fi(r) =

0 otherwise.
(6.6)

The maximum number of Packet-In messages generated by dj in time-slot ¢ is

My(t) = ttOOJrE Jr(7)Qrdr, where tg is the start time of time-slot t.

6.1.1 Mobility Model

We consider a network which has a large number of static or mobile IoT devices. Exam-
ples of some mobile IoT devices are smart wearables, cameras, and AR/VR glasses [54].
During each time-slot, SDN controllers collect device locations using Simple Network
Management Protocol (SNMP) via south bound APIs [55]. We use this collected data

as a history data set to predict device-switch associations.
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6.1.2 Caching Model

Each flow-entry has a default timeout duration [34]. However, an IoT device usually
generates similar flow requests for a particular time duration. The interval of the arrival
of such similar flows may be greater than the timeout duration of the corresponding flow-
rule. In this case, a Packet-In message is re-generated, and an expired rule is re-installed.
Rule-caching is one of the measures to reduce the number of Packet-In requests. However,
as the cache size increases, the rule-space required for storing new rules decreases, and
the number of Packet-in requests increases. Therefore, CORE considers that each SDN
switch caches maximum R gcpe < Rinae flow-rules. To express whether a switch s; caches

a flow-rule for dj, during time-slot ¢ we define a binary variable as:

1 if s; caches flow-rule that maps to the flow type of di,
wig(t) = (6.7)
0 otherwise.

6.1.3 Delay Model

Delay of an IoT flow of type fi has three components — a) device to AP communication

delay 6 (t), b) AP to switch communication delay 67(¢), and c) flow setup delay 6¢*(¢)

at the switch. Mathematically, d;(t) = A(¢) + Zﬁ—g and 62(t) = A%(t) + g’“z(;%, where
Al(t) is the transmission delay from device to AP, A%(t) is the transmission delay from
from AP to switch, g (t) represents the number of bytes sent by dj, in time-slot ¢, G* is
the bandwidth of the wireless channel from device to AP, G? represents the bandwidth

of the wireless channel from AP to switch, n' and 7? represent the channel overheads of
the corresponding wireless channels. The flow setup delay 0% (¢) is:
Is| 1C]

OR(8) = DD k() (1) (20(8) + 57°(1)) (6.8)

i=1j=1
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where 9;;(t) is the transmission delay associated with the control link and 67““(t) is the
queueing delay at controller ¢;. A controller stores the Packet-In requests in its queue
and processes the requests in a First-Come-First-Serve (FCFS) order. We consider each
request as an individual and independent Poisson process. Therefore, we model controller
queue as a M /M /1 queue. The service rate of this queueing model is controller capacity

2;. The maximum request arrival rate A;(t) is given by:

S| [D(®)]

Ni(t) = D wig(t)zi(t) (1 — win(t)) Mi(t) (6.9)

i=1 k=1

Here, considers the associated devices which have no rules cached and estimates

the maximum number of Packet-In requests based on the active duration of the devices

1
i (8

for each controller ¢; in time-slot ¢. The queueing delay at c; is: 67"“(t) = gy

6.1.4 Cost Model

Control plane cost has two components — 1) controller-switch communication cost and
2) inter-controller communication cost due to device mobility. The controller-switch
communication cost at ¢; is the traffic intensity p;(t) = /\é—(:) Controllers collect global
network data by synchronizing with other controllers at regular intervals. We assume

that each controller completes this synchronization process at the beginning of a time-

slot. Additionally, there exist two cases when a controller synchronizes with another.

e Case 1: Change in Controller-Switch Association

At time-slot ¢, each controller ¢; records the switches to which ¢; served as a slave
controller for time-slot ¢ — 1 before changing its role to a master controller. In this
case, ¢; needs to synchronize with the former master controller(s) of the switches.
Figure shows an example where the master controller of switch s3 changes from
c1 to co at time-slot t. Therefore, for seamless handover, co collects unfinished

session data and flow information from ¢;. For each controller ¢;j, the number of
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S|

master-slave role changes during a time-slot is x%(t) = 3 |z4;(t) — zi;(t — 1)].
i=1
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Time-slot t-1

S

e

RN

(AN

oD

AN

, "—‘\..,..—"/",.
@’ %J N
S 2 &

1 N
3 S4
— - — - Control Link (Master) t
----------- Control Link (Slave) t-1
Data Link

Figure 6.2: Case 1: Change in
Controller-Switch Association

Figure 6.3: Case 2: Change in
Device-Switch Association

o Case 2: Change in Device-Switch Association

At time-slot ¢, each controller c; records the mobile IoT devices which are newly

associated with the switches assigned to c¢j. If the old switches have different

master controller(s), ¢; needs to synchronize with the master controller(s) of the

old switches. Figure shows an example in which a mobile device changes the

associated switch from s3 to s4 at time-slot ¢. As s3 and s, have different master

controllers ¢; and cg, controller synchronization is required for seamless handover.

For each controller ¢;j, the number of such changes where controller synchronization

is required is xJ(t) =

S| D@

1=1 k=1

0 otherwise.

> §£(t), where i (t) is expressed as:

Ui @iy () zin(t) = mp (b= Dz (t=1) = 1,0 #4, j #5,

(6.10)

Therefore, the total inter-controller communication cost for ¢; is T';(t) = x%(¢) + x2(2).
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6.1.5 Problem Formulation

The objective of CORE is to determine optimal controller-switch assignments to mini-
mize the control plane cost of the network. Therefore, we formulate the cache-enabled

minimum cost master controller assignment (CMCA) problem as:

IC] IC|
Minimize o Y pj(t) + (1 —a) > T';(¢) (6.11)
z(t),w(t) j=1 j=1
subject to
Aj(t) < Q,Vcj € C, (6.12)
IC]
E l‘ij(t) = 1,V8¢ c S, (6.13)
j=1
D)l
> wik(t) < Reaches Vsi € S, (614)
k=1

Tij t) = x,-j(t — 1) + yij(t — 1),

Vs; € S, VC]' eC (6.15)
5]
> wik(t) < 1,Vdy € D(t), (6.16)
i=1
5 < 819 Wy, € D(1) , (6.17)

where a € [0,1] is a weighting factor to control the relative importance of controller-
switch communication cost and inter-controller communication cost. The relation in
ensures that none of the controllers is overloaded. The truth that each switch
belongs to a single master controller is presented in . Additionally, ensures
that the number of cached flow-rules in each switch does not exceed the maximum
allowable limit R.qche. The relation in ensures that a controller can be assigned
with the master role for a switch in time-slot ¢ if and only if it is the master or slave
controller for that switch in the previous time-slot. Moreover, ensures that a
device can have cached rule only in single switch as each switch has limited rule storage
capacity. Finally, (6.17)) expresses the delay constraint for each device, where 6;"* is

the maximum allowable delay for dj.
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Theorem 6. CMCA problem is NP-hard.

Proof. Let us consider a particular instance of the CMCA problem by excluding the
rule caching at switches. In this case, we have |C| controllers and |S| switches. Each
controller-switch association increases traffic intensity at the corresponding controller.
In addition, each controller has a maximum capacity. For example, a switch s; can be
associated with a master controller ¢; only if A\;(t) < €;. A feasible solution ensures
completeness constraint in that each switch is assigned to exactly one master
controller. The goal of the problem is to find a feasible solution that minimizes the total
control traffic intensity. This is in the form of a generalized assignment problem [56],

which has been proved as NP-hard. Hence, the CMCA problem is also NP-hard. O

As the optimization problem in (6.11)) is NP-hard, it is difficult to obtain a solution
in reasonable time. Therefore, we propose a master controller assignment scheme based

on the branch and bound technique [57] to determine near-optimal solutions.

6.2 CORE: The Proposed Scheme

CORE contains three modules for the purpose of — (a) mobility prediction, (b) rule-
caching, and (c) master controller assignment. The mobility prediction module ana-
lyzes mobility history of IoT devices to predict device-switch association information.
Thereafter, the selected flow-rules are cached by the rule-caching module to reduce the
control plane load. Finally, the master controller assignment module determines optimal

controller-switch associations.

6.2.1 Mobility Prediction

We determine the control plane load based on the number of control messages it handles
during a time-slot. However, the number of control messages depends on the devices

associated with the switches at a time-slot. Consequently, we predict the device-switch
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associations, while considering the movement history of the devices. Subsequently, we
use this prediction data to cache device-specific flow-rules in switches and determine
optimal controller-switch associations. We use the existing Markov Predictor [58|, which
is one of the most popular location prediction algorithms to predict the future location
of a mobile device based on its mobility history. An O(m) Markov Predictor considers
m most recent locations of a mobile device and predicts the next location. Markov
Predictor consumes less space and performs better than other popular predictors for low
values of m [59]. Therefore, we use order-m (O(m)) Markov Predictor to determine each
device’s future location. For predicting the location of a device dj, the components of

an order-m (O(m)) Markov Predictor are:

o Input: The input set Hy(t) = {{Lek, Tk, Vik}, Pri} represents the mobility his-

tory of dj, at time-slot ¢, where Ly = {li1, k2, .., lin} is the set of locations
or meaningful places that the device visits, T = {71, Ttk2, - - - » Tekn } denotes the
set of arrival times at the locations in Ly, Vi i = {Vwk1, V2, - - -, Vtkn } is the set of

durations of stay at each location in L, and Py;; € P; represents the transition

probability from location l; to location ly;, @ # j.

e Output: The output lyy; € Ly, is the predicted location of dj, in time-slot ¢ + 1.

o Contert: The context is h=Ly (n—m~+1,n)={lyp(n—m+1)s ltk(n—m+2)s - - - » Ltk (n—1)> ltkn }

Markov Predictor extracts the context h from the input set Hy(t) and examines the

duration of stay V; at a location [ that follows hA. Mathematically,

Vl = {'Utki‘vtki = Ttk(iJrl) — Ttki, Where Lt,k(i —m + 1, 7 -+ 1) = hl} (618)

From each Vj, we compute the conditional probability Pj(7 < v < 7 + Ar|h,7) that
the device shifts to location [ within A7 time beyond the current elapsed time 7. We

consider AT as the remaining time of the current time-slot. Therefore, for a given h and

86



6.2. CORE: The Proposed Scheme

7, the probability of each device moving to each possible location [ within A7 time is:
P(l|h,7) = P()P(T <v < T+ AT|h,T), (6.19)

where P(l) is the transition probability of every possible next location  which is:

N(hl, Ly )

N Lig)’ (6.20)

Plikinsr) = ULt ) = Plliginyr) = ULey) =

where N (hl, Ly ) signifies the number of occurrences of hl in the set L;j. Therefore,

the output of the Markov Predictor which is the most likely next location of dy is:

lip(n+1) = arg max P(ly 1) = 1) (6.21)
I€L &

If N(h,Ly) = 0, the O(m) Markov Predictor fails to return a result. Therefore, we
use fallback Markov Predictor [58] which backtracks to an O(m — 1) Markov predictor
whenever an O(m) Markov Predictor fails to return a result. The O(0) Markov Predictor

yields the location that occurs most frequently in the location history set L .

Algorithm 6.1: CORE: Mobility Prediction Algorithm

Inputs : Hg(t — 1), h

Output: z(t)

Extract Ly_; j from Hy(t — 1)

Compute V; at possible locations [ using

Calculate P(l|h,T) using |

Predict the next location using @

Select the nearest AP which covers the predicted location and matches the radio
access capability of the dj

6 Set z;,(t) = 1 if s; is associated with the selected AP

U W N

Algorithm presents the steps required for mobility prediction of a device dj and
the formulation of device-switch association z;x(t). The Mobility Prediction Algorithm
(MPA) is executed for each device di. An O(m) Markov Predictor returns a location

where the device is predicted to be present in time-slot . We consider that d; associates
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with the nearest AP that covers the predicted location and matches its radio access
capability. Let s; be the switch associated with the selected AP. Therefore, MPA predicts

the device-switch association z(t) = 1.

6.2.2 Rule-Caching

To estimate rule popularity, rule-caching module sorts the flow-rules in each switch in
descending order of the received packet count. Let R; be the set of flow-rules in s;.
Therefore, the rule popularity is denoted by © = {01,602,03,...,0g,}, where 0; € [0, 1]
is the probability that an incoming flow matches with the j** flow-rule. In this work, we

assume that rule popularity satisfies the Zipf distribution [36]. Therefore, the popularity

1

of the j*" ordered flow-rule is 0; = ﬁ, where v € [0, 1] denotes the skewness of the
2 a7
a=1

rule popularity. The value v = 0 signifies uniform popularity distribution and a larger

~ implies more uneven rule popularity.

Algorithm 6.2: CORE: Rule-Caching Algorithm
Inputs : R;, v, 2(t)
Output: w(t)

1 Compute popularity of the rules in R;

2 Sort the flow-rules in descending order of popularity

3 foreach rule r. in the sorted list do

4 Select the device dj, whose flow type maps to r¢

5 if z;x(t) == 1 and r. not cached then

6 Delete the least popular rule from cache if cache is full
7 Set T, = m + (To — 67", wir(t) =1

8 end

9 end

Algorithm presents the steps of the proposed greedy solution for caching rules
in each switch s;. For each switch s;, the Rule-Caching Algorithm (RCA) sorts the
flow-rules present in the rule-space of the switch based on the rule popularity. For each
flow-rule r. which maps to the flow type of di, RCA checks whether z;;(t) == 1 from

the output of MPA. In addition, RCA checks whether the rule is already cached by s;.
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If the cache size reaches its maximum limit R.qcpe, RCA deletes the least popular rule
from the cache by setting its timeout as the default timeout Tj. For caching r., RCA
sets the timeout value as T, = m + (To — 0;**). This timeout value ensures that
latency-sensitive flows are prioritized over other flows as a larger timeout value signifies

lower chance of flow-table miss.

6.2.3 Master Controller Assignment

We derive the optimization problem for minimum cost master controller assignment
from the joint optimization problem of cache-enabled minimum cost master controller
assignment stated in (6.11)). Hence, for a given caching policy w(t), the optimization

problem Py for minimum cost master controller assignment (MCA) is given by:

Mir;i(lrt?ize a]§1 pi(t) + (1 — ) ng I';(t) (6.22)
subject to
Aj(t) < Q4,¥e; € C, (6.23)
51 zij(t) = 1,Vs; € S, (6.24)
=
ij(t) = 2ij(t = 1) +yi5(t = 1),
Vs; € S,Ve; € C (6.25)
gwik(t) < 1,Vdy € D(t), (6.26)
7519 < 0P Vdy, € D(t) (6.27)

The MCA problem is non-convex because of the presence of binary decision variables.
For solving the MCA problem, we use the branch and bound technique [57] which defines
a common structure to solve a wide range of non-convex optimization problems. There-
fore, the master controller assignment scheme for the MCA problem has two significant

components — 1) branching method and 2) lower-bounding method.
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6.2.3.1 Branching Method

Let Py denote the MCA problem stated in . The branching method starts with
Py as the root of the search tree. The total number of levels in the tree is |S| + 1
starting from level 0. Each level corresponds to the selection of a master controller for
each switch s;. For example, level 1 corresponds to the selection of a master controller
for switch s1. Therefore, each node at a level denotes a subproblem. At each level, we
partition the leaves or subproblems. Each child node of a node P, at level [ corresponds
to a feasible master controller for s;;1. Let C, be the set of feasible master controllers
for s;41. From constraint , we find that a controller ¢; € C' is a member of C, if

xy41,5(t = 1) + y141,(t — 1) = 1. Therefore, the number of children of P, is |C,|.

6.2.3.2 Lower-Bounding Method

Initially, we construct a lower bound for the original MCA problem. To find the initial
lower bound, we construct a relaxed problem MCA-R by removing the controller capacity
constraint in . Therefore, each switch freely selects the master controller so that
the control plane cost is minimum. For a given switch s;, the cost for the assignment
to a master controller ¢; is Ui; = ap;(t) + (1 — a)T'j(t), where 2;; = 1 and z,;; = 0
for all j # j'. Therefore, the cost of a minimum cost controller-switch association for

a given switch s; is expressed as Ui = Igin{Uij}. Hence, the LB for problem P is
¢

||
LBy = }_ U,;i. Subsequently, we find the LB for each subproblem P, where v # 0. Let
i=1

x¥(t) be the allocation matrix for the branch ending at a node P, at level [. Therefore, the

initial value of Lower Bound (LB) is LB) = Y Uija®(t). S' = si41, 5142, - , 8|9
Vejel,s,€8

denotes the set of unassigned switches for the current branch. For each switch s; € S, we

find the minimum cost controller-switch association that satisfies the constraints (6.23]),

6.24)), (6.25) and (6.27). Therefore, the LB of P, is LB, = LB) + Y~ min{U;;}.
siESl €
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Algorithm 6.3: CORE: Master Controller Assignment Algorithm
Inputs : Py, C, S, z(t), w(t)
Output: {z*(¢),u*}

1 P+ {P}, v =+inf, 2*(t) =0

2 while P # ¢ do

3 Select a node P, € P

4 P+ P—{P,}

5 Apply branching method to P, and generate subproblems P, , P,,, ... ,Pv| Col
6 foreach P,, do

7 Compute LB,,

8 if LB,, > u* then

9 Delete P,,

10 if P,, gives a complete solution {z'(t),u'} then
11 u =

12 z*(t) =z (1)

13 else

14 | P« PU{P,}

15 end

16 end

17 end
18 end

6.2.3.3 Master Controller Assignment Algorithm

Algorithm 3 shows the branch and bound procedure to solve the MCA problem. The
Master Controller Assignment Algorithm (MCAA) initializes the values of optimal so-
lution x*(¢) and the optimal objective value u*. In addition, MCAA adds the root node
Py to the set of live nodes P. For each live node P, € P, MCAA applies branching
method to generate child nodes or subproblems. A subproblem is deleted if it has a
LB greater than the optimal objective value u*. The values z*(¢) and u* are updated
when a subproblem generates a complete solution with each switch assigned to a master
controller. Otherwise, the subproblem is added to the set of live nodes P. The output of
MCAA signifies an optimal master controller assignment x*(t) for time-slot t. At time-

slot ¢t — 1, we compute x*(¢) and change the controller-switch assignments accordingly
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by using Role-Change messages [34]. Additionally, we deactivate the controllers which

have no assigned switches.

6.3 Performance Evaluation

6.3.1 Simulation Settings

For the simulation, we consider random controller placement. In addition, we consider
an equal number of randomly and periodically activated devices. We conduct two sets
of experiments for performance evaluation. In the first experiment, we consider that
80% devices generate high traffic. This experiment evaluates the performance of the
proposed scheme in the presence of high IoT traffic volume. In the second experiment,
we set the percentage of latency-sensitive devices as 80% to analyze the performance
for time-critical IoT applications. Table shows the specific parameters considered
for categorizing high traffic generating and latency-sensitive devices. The simulation

parameters are depicted in Table

6.3.2 Benchmark Schemes

We compare CORE with existing switch migration-based schemes — DCP-SA [22] and
ESMLB [23]. DCP-SA considers flow setup delay and inter-controller communication in
the presence of dynamic trafficc. ESMLB considers the control traffic generated by the
switches as primary criteria for switch migration-based load balancing in SDIoT control
plane. On the other hand, CORE considers flow setup delay, inter-controller commu-
nication, dynamic network traffic, device mobility, and heterogeneous QoS demands to

determine feasible controller-switch assignment.

6.3.3 Performance Metrics

The performance metrics considered for evaluating the proposed scheme are as follows:
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Table 6.1: CORE: Simulation Parameters

Parameter Value

Network topology

8—pod Fat-tree [60]

Simulation Area

500 m x 500 m

Mobility model

Gauss-Markov [61]

Number of IoT devices 200 — 2500
Speed of IoT devices 1—-2m/s [62]
Number of switches 20

Flow-rule default timeout Tj 10 s

Number of controllers 5

Controller capacity

7200 — 10800 K req/time-slot [63] |

Average packet size

94 — 234 bytes [64]

Mean data rate

462 — 11388 bytes/s [64]

Maximum allowable delay 0.001 — 1 s [46]
Time-slot duration € 1 hour
Skewness of rule popularity 0.56

Shape parameter (31 3 53]

Shape parameter (2 4 53]
Weighing factor « 0.8

Table 6.2: Device Category

Average packet Mean Maximum allow-
Category size (bytes) data rate able delay (s)
(bytes/s)
High traffic generating | 234 [64] 11388 [64] 0.001 — 1 [46]
Latency-sensitive 94 [64] 462 [64] 0.001 — 0.25 [46]

e Prediction accuracy: Prediction accuracy shows the correctness of mobility

prediction for the IoT devices.

¢ Control plane cost: Control plane cost is the cumulative cost of controller-

switch communication cost and inter-controller communication cost, as mentioned

in (6.11)). We evaluate this metric to estimate the load on the control plane as a

high controller load increases the cost.

e Peak traffic intensity: We calculate the peak traffic intensity across all con-

trollers to analyze the distribution of control traffic. Mathematically, the peak
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traffic intensity is given as maz (p;(t)),Ve; € C.

e QoS violated flows: QoS violated flows are the flows which do not satisfy end-
to-end delay requirement of the flow type. We evaluate this metric to show the

efficiency of CORE in terms of QoS.

6.3.4 Observations and Results
6.3.4.1 Prediction Accuracy

For the simulation, we fix the order of the Markov predictor as k = 3. We use a Twitter
dataset [65] involving 200— 1000 devices to analyze the prediction accuracy of the Markov
predictor. Figure shows that the average prediction accuracy is 83.72%. From the
simulation, we infer that CORE is capable of correctly predicting the device locations
for a significant number of cases, although the mobility pattern and speed of the devices

are highly dynamic.

100

80 r
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40 ¢

20

Prediction Accuracy (%)

200 400 600 800 1000
Number of Devices

Figure 6.4: CORE: Prediction Accuracy

6.3.4.2 Control Plane Cost

Figure [6.5(a)| shows that CORE achieves 46.94% and 9.82% reduction in control plane
cost compared to DCP-SA and ESMLB, respectively, for high traffic load. Figure

shows that CORE achieves 65.63% and 20.14% reduction in control plane cost compared
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to DCP-SA and ESMLB, respectively, when the majority of the devices are latency-

sensitive.
CORE mmmm  ESMLB CORE mmmm  ESMLB
DCP-SA DCP-SA
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8 15 8 0.8
(O] (O]
& 8 06
o 1 [a )
E o5 ( E o2
e) O
0 - 0
1000 1500 2000 2500 1000 1500 2000 2500
Number of |oT Devices Number of |oT Devices
(a) Experiment 1 (b) Experiment 2

Figure 6.5: CORE: Control Plane Cost

6.3.4.3 Peak Traffic Intensity

Figure [6.6(a)| shows that for 2500 devices, the peak traffic intensity of CORE is 18.66%
and 25.27% less as compared to DCP-SA and ESMLB, respectively, for the first ex-
periment. Figure [6.6(b)| shows that CORE achieves 23.08% and 16.67% reduction in
peak traffic intensity compared to DCP-SA and ESMLB, respectively, for the second

experiment.

6.3.4.4 QoS Violated Flows

From Figure we observe that the percentage of QoS violated flows is less for
CORE even when the number of devices is high. Figure shows the amount of
QoS violated flows with high number of latency-sensitive devices. For this experiment,
CORE achieves 23.73% and 22.82% better performance as compared to DCP-SA and
ESMLB, respectively.
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Figure 6.7: CORE: QoS Violated Flows

6.3.5 Discussion

From the simulation result, we observe that CORE significantly outperforms the bench-

marks. The majority of the IoT flows are latency-sensitive, and CORE has low control

plane cost for a high number of latency-sensitive devices. This is because the rule-caching

module prioritizes latency-sensitive flows and reduces controller-switch communication.

It is noteworthy that with less number of IoT devices, the peak traffic intensity of CORE

is similar to the benchmark schemes. This is because, at a lower load, the control traffic

is well-distributed across the controllers. However, IoT networks expect the presence of
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a massive number of IoT devices, and CORE reduces the peak traffic intensity for a high
number of IoT devices. Therefore, we deduce that CORE is more suitable for reducing

control plane load in the IoT environment than the benchmark scheme.

6.4 Concluding Remarks

This chapter presents a prediction-based approach to reduce the control plane load in
SDIoT. In this scheme, we designed rule-caching and master controller assignment algo-
rithms considering heterogeneous attributes of IoT devices. Simulation results indicate
that the proposed scheme reduces the average control plane cost for varying traffic load
and varying QoS demand compared to the benchmarks. Specifically, for high traffic
load, the average control plane cost decreased approximately by 46.94% and 9.82% as
compared to DCP-SA and ESMLB, respectively.
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Chapter 7

QoS-Aware Switch and Controller

Placement

In this chapter, we propose a scheme for QoS-aware Switch and Controller Placement
(SCOPE) in hybrid SDN. Hybrid SDN is an intermediate step of transforming a tradi-
tional backbone network into pure SDN. For hybrid SDN, QoS is a primary concern for
ensuring service guarantee of a traditional network, while providing additional benefits
of softwarization. The positions of SDN controllers determine the QoS parameters, such
as network throughput and flow-processing delays. SCOPE addresses the joint switch
and controller placement problem in hybrid SDN by (a) selecting legacy switches for
upgrade, and (b) determining the locations and the number of controllers based on the

upgraded switches.

This chapter consists of four sections. The system model of SCOPE is discussed
in Section Section describes the proposed scheme. Section depicts the

experimental results. Finally, Section [7.4] concludes the proposed work.
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7.1 System Model

The system includes a collection of service requests, a set of devices, and network ele-

ments. Figure[7.I]shows the hybrid SDN architecture. We consider a service request as a

Data Link SDN Controller @ Legacy Switch

- - = Control Link
@ SDN Switch @ Gateway

=" o0 U6
@_@ ﬂg@

S |
5V Q bo

Figure 7.1: SCOPE: Hybrid SDN Architecture

flow denoted by f;. A flow f; € F'is denoted by a tuple < id( f;), src(fi), dest(f;), rate(f;) >,
where id( f;) represents the flow identification number, src(f;) denotes the source, dest( f;)
is the destination, and rate(f;) is the traffic rate. A flow f; is termed new, if no match-
ing flow-rule is present in the ingress switch. For a time-slot ¢, the set of devices is
denoted by D(t) = {di,da,...,dn}. Let Fi(t) denote the set of service requests gen-
erated by dx. We model a hybrid SDN as a connected graph G(N, E) having a set of
nodes N = CUSUR. The set C = {c1,c9,...¢q} is the set of available locations for
placing the controllers. The selection of a location for controller placement is expressed

as:

1 if at time-slot ¢, an active controller is present at location c;,
CP(j,t) = (7.1)

0 otherwise.

S ={s1,82,...8,} and R = {rq1,r2,...7,} denote the sets of SDN and legacy switches,
respectively. The legacy switches forward packets based on traditional routing protocols,

including OSPF. In this work, we consider heterogeneous legacy switches having different
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expected lifetime. At time-slot ¢, the controller-switch association is expressed as:

1 if CP(j,t) =1 and ¢; is the master controller of s;,
SC(i,j.1) = (7.2)

0 otherwise.

The weight of a data link e;; € E is denoted by LW (e;;), which specifies the priority
of the link for the shortest path routing protocols such as OSPF. A data link having at
least one SDN switch is termed as an SDN link. Otherwise, the data link is called a
non-SDN link. Therefore, a traffic or flow is termed as programmable if it passes through

at least one SDN link. Programmable traffic is expressed as:

1 if f; € F is programmable,
Y(i) = (7.3)

0 otherwise.

The number of Packet-In requests generated by s; € S at time-slot ¢ is given by:

U;(t) = Z Z (1 — Pmateh); (7.4)
dr€D(t) fLEFK(L)

where 0 < ppaten < 1 is the rule matching probability, and D¥(¢t) C D(t) is the set of
devices sending service requests to s; at time-slot £. The maximum number of Packet-
In requests of s; which are processed by the associated controller during time-slot ¢ is
puee(t) = &%(t), where 6;(t) is the average flow-setup delay for a flow originating from
s; at time-slot t. The flow-setup delay consists of — (1) switch-to-controller delay for
transmitting the Packet-In request to the controller and receiving the new flow-rule from
the controller (3{"(t)), (2) queueing delay at the controller (§7°(t)), and (3) processing
delay at the controller for deciding the forwarding path (6P"(¢)). Therefore, §;(t) =
25fr(t)+5?ue(t)+5p" (t). For simplicity, we assume that all controllers are homogeneous in

terms of capacity and the maximum number of Packet-In requests handled by a controller
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during a time-slot is 2. For time-slot ¢, the number of Packet-In requests received by
S|
an active controller placed at location ¢; is Q;(t) = > SC(4,j,t)¥;(t). Therefore, the
i=1
queueing delay at the corresponding controller is 5gue(t) = ﬁ(t) The time required
J

for calculating single source route depends on the network size [66]. Therefore, the

processing delay is 67" (t) = $O(|S]?).

Definition 19 (Effective SDN Throughput). The effective SDN throughput consists of
the programmable service requests for which new flow-rules are installed as well as the
service requests having matching flow-rules. Accordingly, we define the effective SDN

throughput at time-slot t as:

IS
TheIT(t) =Y Wi (t) + ( PERVGIES \I’i(t)) : (7.5)
i=1 dyeDi(t)

where Wi (t) < WEUC(t) js the actual number of processed service requests that have
no matching flow-rules and ( > | Fe(t)] — \Ill(t)> is the number of service requests

dreD? (t)
having matching flow-rules.

7.1.1 Budget Model

For hybrid SDN, the number of upgraded switches and placed controllers depend on
the available upgrade budget. Let B denote the total budget for upgrading a traditional
network to SDN and 7' denote the number of time-slots allocated for the upgrade process.
Therefore, the upgrade budget is B = B®* + B¢, where B® is the budget allocated for
replacing all legacy switches with SDN switches and B¢ is the budget allocated for the
installation of controllers. We consider that the switch upgrade budget at each time-slot
is different. Let B*(*) denote the switch upgrade budget and B(*) denote the controller
placement budget for time-slot t < T'. Additionally, we consider that replacing a legacy

switch with an SDN switch costs 0 ; unit at time-slot ¢ < 7" and placement of a controller
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costs 0.; unit at time-slot ¢ <7T'. The upgrade of a legacy switch r; is expressed as:

1 if r; € R upgrades at time-slot ¢,
th = (76)

0 otherwise.

|R|

Therefore, the consumed switch upgrade budget at time-slot ¢ is > v;40s;. The place-
i=1

ment of a controller at location c; is expressed as:

1 if CP(j,t)=1and CP(j,t —1) =0,
Jjt —
0 otherwise.

-,
Therefore, the consumed controller installation budget at time-slot ¢ is >° v;,0c,
i=1

7.1.2 Problem Formulation

Objective 1 The first objective of this work is finalizing the switch upgrade policy
which maximizes the programmable traffic. The switch upgrade policy specifies a set of
to-be-upgraded legacy switches for each time-slot. Therefore, we formulate the switch

placement problem (SPP) as:

|F|
Maximize > (i) (7.8)
i=1
subject to
Z’th < 1,V7‘j € R, (79)
teT
|R]
Sy < B vteT, (7.10)
j=1
SB® < B (7.11)

teT

Equation ([7.9)) ensures that a legacy switch is upgraded only once. Equation (7.10))
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ensures that the total expense for switch upgrade does not exceed the switch upgrade
budget for each time-slot. Equation (7.11)) ensures that the total upgrade expenditure

is within the switch upgrade budget. The inputs of the SPP are R, ¢, 6, ;, and Bs®).
Theorem 7. SPP is NP-hard.

Proof. To prove the NP-hardness of SPP, we reduce the 0 — 1 knapsack problem, which
has been proven as NP-hard, to SPP. The 0 —1 knapsack problem involves a set of items
so that each item has a weight and a value. The goal is to add items in a knapsack
of fixed capacity so that the total value is the maximum. However, the decision for
including an item in a knapsack is binary, i.e., an item can be added to the knapsack as
a whole or not added at all.
Let us consider a specific instance of the SPP by limiting the number of time-slots
T to unity. We reduce an instance of the 0 — 1 knapsack problem to this instance of
SPP. In this case, each item in the 0 — 1 knapsack problem refers to a legacy switch
rj € R. The weight and value of each item correspond to the upgrade cost 6,1 and the
traffic volume Vol(r;) that traverses the switch r;, respectively. The capacity of the
knapsack is mapped to the total switch upgrade budget Bs()). In SPP, the value of the
decision variable vj; is restricted to 1 or 0, depending on whether r; € R is selected for
upgrade or not. The goal of the SPP is to find a feasible solution that maximizes the
total programmable traffic without exceeding the switch upgrade budget. Therefore, the
optimal solution to the 0 — 1 knapsack problem is also the optimal solution of the SPP.
Hence, the SPP is also NP-hard.
O

As SPP is NP-hard, we propose a greedy algorithm that computes priorities of the

legacy switches and selects the switches accordingly.

Objective 2 The second objective of this work is finalizing the controller placement

policy which maximizes the effective SDN throughput. The controller placement pol-
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icy specifies controller locations, given the set of upgraded switches in each time-slot.

Therefore, we formulate the QoS-aware controller placement problem (QCPP) as:

T
Maximize > Thet (1) (7.12)
v t=1
subject to
CP(j,)Q;(t) < Q,Ve; € CVteT, (7.13)
€|
Svybey < B vteT, (7.14)
j=1
S < B (7.15)
teT
le|
> SC(i,j,t) = 1,Vs; € S,VteT, (7.16)
j=1
Si(t) < 6MT Vs;ie S,\VteT, (7.17)

where Equation states the controller capacity constraint. Equation
ensures that the total expense for controller placement does not exceed the controller
placement budget for each time-slot. Equation ensures that the total expenditure
for controller placement is within the controller installation budget. Equation
expresses that each SDN switch has single controller. Equation states the QoS
requirement of a service request in terms of flow-setup delay, where §""%* denotes the
maximum allowable delay. The inputs of the QCPP are €, ¢, and Sl(t) € S that denotes

the set of upgraded switches in time-slot t.
Theorem 8. QCPP is NP-hard.

Proof. To prove the NP-hardness of QCPP, we reduce the well-known facility location
problem to QCPP. The facility location problem, which has been proven as NP-hard,
involves a set of potential locations for opening a facility. In addition, there exists a set
of demand points. The goal of the problem is to find a set of locations to open facilities

which minimizes the distance of each demand point to the nearest facility and the total
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facility opening cost.

Let us consider a particular instance of QCPP by limiting the number of time-slots
T to unity. In this case, we consider each potential controller location c¢; € € as a facility
location. The installation of a controller at a potential location costs 0.1, given the
total controller placement budget B¢, The demand points are the SDN switches. For
the unmatched service requests, SDN switches send Packet-In messages to the connected
controllers. The flow-setup delay of a service request depends on the switch-to-controller
distance. The goal of QCPP is to find a set of controller locations for placing active
controllers which maximizes the overall utility for each device by minimizing the switch-
to-controller distance for each SDN switch without exceeding the controller placement
budget and controller capacity. Therefore, the optimal solution of the facility location

problem is also the optimal solution of QCPP. Hence, QCPP is also NP-hard. 0

As QCPP is NP-hard, we propose a coalition game-based algorithm which forms

coalitions of SDN switches to select the locations for the placement of controllers.

7.2 SCOPE: The Proposed Scheme

The process of transforming a traditional network into a pure SDN involves multiple
rounds or time-slots. In each time-slot, a new set of legacy switches are swapped with
SDN switches. Based on the current set of SDN switches, we formulate a coalition game

to determine the placement policy of new SDN controllers.

7.2.1 SDN Switch Placement

For SDN switch placement, we design a priority-based algorithm which assigns priority
values to the legacy switches and selects switches for upgrade considering the upgrade

budget. The priority value of a legacy switch 7; € R depends on the following parameters:
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1. Number of Non-SDN Links: Replacing a legacy switch having more number

of non-SDN links results into higher programmable traffic.

2. Traffic Volume: Priority of a switch is directly proportional to the traffic volume
that traverses the switch. This is because the upgrade of heavily used switches

produces higher programmable traffic.

3. Link Weightage: A switch is likely to be a part of the shortest route if it has the
lowest average weight for the adjacent links. Upgrading a legacy switch which is a
part of the shortest route increases programmable traffic. Therefore, the priority

of a switch is inversely proportional to the average link weightage.

4. Residual Lifetime of the Switch: The expected lifetime of a legacy switch is 3
to 5 years and these switches are very expensive |67]. Moreover, the initial upgrade
cost is directly proportional to the residual lifetime of a legacy switch because the
switch upgrade cost decreases over time-slots [67]. Therefore, replacing a legacy

switch which has a high residual lifetime is not cost-effective.

Definition 20 (Legacy Switch Utilization). The utilization of each legacy switch r;

before upgrade is defined as:

SU;j = =2 (7.18)

where T(r;j) is the total lifespan of rj and T¢(r;) < T(r;) denotes the consumed

lifespan of r;.
Definition 21 (Priority of a Legacy Switch). The priority of a legacy switch r; is:

PR(T‘j) = ZlNS(Tj) + z2 V?/lgj)

+ Z3W(1Tj) + Z4SUj, (719)

where NS(r;) denotes the number of non-SDN links for rj, Vol(r;) is the average

traffic that traverses rj, Vol is the total traffic volume of the network, W (r;) is the
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average weight of the links of rj, and z; € [0,1] terms denote user-defined weighting

constants.

Definition 22 (Switch Upgrade Budget). The switch upgrade budget for time-slott < T
18:

1004 ift<T,
B = ¢ (7.20)

T-1
100 — 3 B*®)  otherwise,
t=1

where £ > 1 is a constant that controls the budget allocation in each time-slot.

Algorithm 7.1: SCOPE: SDN Switch Placement Algorithm
Inputs : G(N, L), t, 6
Output: {S/(t),v}: Upgraded switches

1 Compute B*® using Equation and set By < 0

2 while B < B*(") do

3 Select the maximum priority switch r; € R

4 | Set S« SU{rj} vje« 1,8 ()« S () U{r;}, R+ R—{r;},
BY < B + 05t

5 end

6 foreach r; € S'(t) do

7 ‘ Set LW(BZ]) — sz(eij), Vr; € R

8 end

9 return {S'(t),v}

Algorithm describes the SDN switch placement process at time-slot ¢ < T'. The
SDN Switch Placement Algorithm (SSPA) selects the legacy switches in priority order
without exceeding the specified upgrade budget. After completion of each upgrade sched-
ule, SSPA decreases the weights of the new SDN links by half to redirect more traffic

through SDN links.

7.2.2 Coalition Game Formulation for Controller Placement

Coalition formation game is a form of distributed cooperation algorithm which is used for

a wide variety of network problems such as fair rate allocation in an interference channel,
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energy-aware cooperation in routing protocols, and resource allocation [42]. In SDN
architecture, a group of SDN switches is connected to each controller. So, the capacity
of a controller is shared by the connected switches. Therefore, each SDN switch behaves
cooperatively and decides its optimum strategy to achieve Pareto optimal distribution of
controller capacity. Hence, a coalition formation game approach is the most appropriate
approach for the placement of controllers in hybrid SDN, where the newly placed SDN
switches form cooperative groups to select suitable controller locations. We formulate a
coalition game with non-transferable utility (NTU) because each player’s utility depends
on the joint actions chosen by the other players in the coalition. In this game, SDN
switches act as rational players who decide the preferable coalition for them. Each
coalition represents a set of switches. The switches in a coalition are associated with a
controller location. The proposed game ensures that each player is part of precisely one

coalition at any time. The main components of the proposed game are as follows:
o The SDN switches in set S are the players of the game.

o The strategy of each switch s; € S corresponds to the flow processing rate that is

the maximum amount of processed service requests W"““(¢) in a time-slot t.
e The utility function wu; represents the benefit resulted from the choice of s;.

Definition 23 (Pseudo-Price Coefficient). At time-slot t, the pseudo-price coefficient

for cj is defined as:

(7.21)

where Q5 > 0 is the residual capacity of the controller placed at location c;.

The value Q;es is determined based on the demand of the associated SDN switches.

Mathematically, Q7¢ = Q — Q;(t).
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7.2.2.1 Utility Function of a Coalition

At time t, each switch s; € S uses its utility function u;(-) to determine its optimal
coalition which in turn determines the location for the master controller. In particular,
u;(+) is expresses the willingness of s; to be in a coalition. Let, Ay denote the kth coalition
which is associated with a controller location ¢;. The utility function w;(-) for coalition

A (t) must satisfy the following properties:

1. Each SDN switch s; tries to maximize the flow processing rate and we refer this
number U4c(t) as the demand of s;. So, the utility function of the SDN switches
is formulated as a non-decreasing function. Mathematically,

a\p?ucc(t)

v

0 (7.22)

2. The utility of a switch s; is inversely proportional to the switch-to-controller delay
6! (t). Therefore, we get:

ou;(+)

931" (1)

<0 (7.23)

3. The utility value decreases if the pseudo-price coefficient «;(t) for ¢; increases.

Mathematically,
dui(-)
daj(t)

<0 (7.24)

Therefore, we formulate the utility function of an SDN switch s; as a concave function,

which is represented as follows:

wl)= Y |E(0)]log (\Iff““(t) = aj(t)> , (7.25)
dreD(t)
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[Ax ()]
where WsUee(t) e lO,maw (%(t),Q— > \I/fcucc(t)>]. Therefore, the utility of a

coalition Ag(t) is given by:

Ak (2)]

U(A(t),c) = Y wl) (7.26)

=1

The utility function conforms to the objective stated in Equation (7.12)) as The//(t)

depends on W7"*“(t) and «a;(t) addresses the controller capacity and budget constraints.

Definition 24 (Coalition Structure). A coalition structure Vi, is defined as:
Vw(t) = {Al (t)a Az (t)u cee 7Am(t)}7 (727)

where LZJ Ap(t) = S, Ai(t) N Aj(t) = ¢, Vi # j, and m denotes the total number of
k=1

coalitions for Vi, (t).

The total number possible coalition structures for m coalitions is calculated using

the Bell number, which is expressed as:

m—1 m—1
=Y ( . )I‘q, (7.28)

q=0

where m > 1 and I'g = 1.
Definition 25 (Stable Coalition). A coalition Ay(t) € Vi (t) is stable if

1. no player s; can improve its utility by leaving its coalition A(t) and acting indi-

vidually.
2. no other coalition Ai(t) € Vi (t) can improve its utility by joining Ag(t).
Definition 26 (Stable Coalition Structure). A coalition structure V,(t) is stable if

A; € Viy(t),Vi € [1,m] is stable.
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We consider that the proposed coalition formation game is hedonic, which implies

that a player has a preference for the choice of coalition.

Definition 27 (Preference Relation). The relation V,(t) >s, Vi denotes that the way
Vp(t) partitions S, is preferred to the way V,(t) partitions S,, where Sq C S is a set of

players.
The coalitions are updated periodically based on merge and split rules.

Definition 28 (Merge Rule). Merge any set of coalitions {A1(t), Aa(t), ..., Ak(t)},
k k

where { U Ai(t)} =g, {A1(t), A2(t), ..., Ax(t)}, Sa = U Ai(t). Therefore, {Ai(t), Aa(t),
i=1 i=1

LAY = f)l Ai(t).

k
Definition 29 (Split Rule). Split any set of coalitions \J Ai(t), where {A1(t), A2(t),. ..,
i=1

Ae(t)} =s, {ig Ai(t)}, Sa = Z-Q Ay(t). Therefore, iQ Ai(t) = {A1(t), As(t), ..., Ax(t)}.

Let Ap(t) and A4(t) be two coalitions having associated controller locations c, and
cy, respectively. The associated controller location for a merged coalition A,(t) U A4(t)
is:

ce U (Ap(t) UAg(l),ce) > U (Ap(t) U Agl(t), cy),
Cpg = (7.29)

cy otherwise.
Let A;(t) be a coalition having an associated controller location c¢4. Let A;(t) is split
into two coalitions Ap(t) and A4(t) having associated controller locations c. and cy,

respectively. Mathematically,

cg U (Ap(t),cq) = U (Ag(?),cq),
Ce = (7.30)

¢, otherwise,
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and

cg U (Ap(t),cq) <U(Ag(),cq),
cf = (7.31)

c; otherwise,

where ¢; € C\ {cg4} is the nearest controller location and CP(x) = 0. If ¢, = ¢, or

cf = ¢z, we update CP(x) = 1.

Algorithm 7.2: SCOPE: Coalition Formation Algorithm
Inputs : G(N, L), t, S/(t) cs, e
Output: Vi (¢): Stable coalition structure
if t ==1 then
‘ Form coalition A;(t) for each controller location ¢; € €
end
foreach s; € S'(t) do
Select the nearest controller location ¢; with CP(j,t) =1
if Q7¢ > W,(t) then
A0« A1) U {s:)
else
Select the nearest ¢; with CP(j,t) =0
A5(t)  Aj(t) U {si}

end

© 0 N O C A W N e

jun
o

Juy
=

end
Add the non-empty coalitions to initial coalition structure V,,(t)
while V,,(t) is not stable do
‘ Form new coalition structure using Merge and Split rules
end
Vi (£) <= Vi (1)
Update C'P(j,t) for each ¢j € C
t)

return V) (

I S S~ S Gy St
© W0 N O vtk W N

7.2.2.2 Coalition Formation

SDN switches decide their strategies to form an optimal stable coalition structure or
equivalently the locations for placing active controllers. Algorithm describes the
process of forming a stable coalition structure. Each coalition is a non-empty subset of
S, having attached to single controller location. For the first time-slot, an empty coalition

is associated with each controller location. In each time-slot, each newly placed SDN
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switch selects the nearest controller location having an active controller and enough
residual capacity to handle the service requests. If no such active controller is available,
the corresponding switch selects the nearest controller location, which does not have an
active controller. Stable coalition structure is achieved using merge and split rules, as
mentioned in Definitions and (29), respectively. Finally, the controller locations

with active controllers are determined based on the stable coalition structure.

Algorithm 7.3: SCOPE: Controller Placement Algorithm
Inputs : C, ¢, 0., Be®), Vi(t)

Output: v’
1 BLG 0
2 while B < B! do
3 Select the coalition Ag(t) € Vi (¢) having maximum utility
4 Select the associated controller location c;
5 | Set CP(j,t) =1, v, =1, BS =B + 0y
6 end
7 return v’

7.2.2.3 Controller Placement

Algorithm describes the process of controller placement after Coalition Formation
Algorithm (CFA) computes a stable coalition partition. The Controller Placement Al-
gorithm (CPA) checks the availability of budget and selects the controller location as-
sociated with the coalition which has the maximum utility. Accordingly, a controller is

placed in the selected location and the controller placement budget is updated.

7.3 Performance Evaluation

7.3.1 Simulation Settings

We evaluate the performance of SCOPE by performing two experiments for each objec-

tive. In the first experiment, we perform the simulations on the Abilene dataset [67],
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with 30 directed links and 12 switches to evaluate the performance of the proposed switch
placement scheme. The Abilene dataset records the data transferred between each pair
of nodes in every 5 minutes for six months. For the simulation, we consider the traf-
fic matrix of 144 flows from the dataset of Day 1, 8:00 pm. We use Abilene dataset
because it is publicly available, and it provides an accurate description of the network
setup required for the first objective. Abilene is a small-scale topology with limited net-
work traffic. However, the performance evaluation of the proposed controller placement
scheme requires large-scale topology to assess the impact of high network traffic on the
control plane load. Therefore, in the second experiment, we perform simulations on a
large-scale topology, an 8-pod Fat-tree topology [60], having 80 switches. The simulation

parameters are depicted in Table

Table 7.1: SCOPE: Simulation Parameters

Parameter Value

Network topology Abilene [45], Fat-tree [60]

Number of switches 12 (Abilene) [67], 80 (Fat-tree)

Number of flows 144 (Abilene) [67], 0.1 — 0.5 million
(Fat-tree)

Number of time-slots 1-5

Duration of each time-slot 1 year [67]

Lifetime of a legacy switch [3, 4, 5] years |67]

Initial switch upgrade cost [$36K, $60K, $100K] [67]

Switch upgrade budget $200K-$1M [67]

Traffic rate increment 22% per year [67]

Switch upgrade cost decrement 40% per year [67]

¢ 2

Initial controller placement cost $1465 [26]

Controller placement cost decrement 10% per year

Controller placement budget $10K-$30K

Controller capacity 0.02 — 0.03 mfps [63]

Maximum allowable delay 0.001 — 1 s [46]

In the first experiment, we vary switch upgrade budget and the number of time-slots
to analyze the effect on the performance metrics. In the second experiment, we vary the

number of flows, controller placement budget, the number of time-slots, and controller
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capacity because these are the significant parameters that affect the performance metrics.
In each subset of the second experiment, we vary only one parameter while keeping the
other three parameters static. For each static parameter, we set the number of flows,
controller placement budget, the number of time-slots, and the controller capacity as 0.5

million, $30K, 5, and 0.03 mfps, respectively.

7.3.2 Benchmark Schemes

We compare the switch upgrade performance of SCOPE with DEG, VOL [68], and Local
Search [67]. DEG upgrades legacy switches in decreasing order of the number of adjacent
links. VOL upgrades switches in decreasing order of traffic volume that traverses the
switch. Local Search maximizes the volume of programmable traffic by selecting locally
feasible solutions. On the other hand, for SDN switch placement, SCOPE considers het-
erogeneous parameters such as the number of non-SDN links, traffic volume, link weigh-
tage, and the residual lifetime of a legacy switch. We select the aforementioned schemes
as the benchmarks to highlight the efficacy of SCOPE, where the parameter domain is
more holistic. To the best of our knowledge, there exists no incremental controller place-
ment scheme exclusively for hybrid SDN. Therefore, we select the benchmarks based
on the existing controller placement schemes in pure SDN, which is a subset of hybrid
SDN. We compare the controller placement performance of SCOPE with LiDy+ [26]
and Greedy. LiDy+ activates or deactivates controllers in each controller module based
on dynamic traffic load. The Greedy approach activates the minimum number of con-
trollers conforming to the available budget, and each switch selects the nearest active
controller as the master controller. However, in SCOPE, SDN switches cooperatively
decide the locations for placing active controllers so that the effective SDN throughput

is the maximum.
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7.3.3 Performance Metrics

o Programmable traffic: We evaluate the programmable traffic achieved by each

upgrade scheme. This metric quantifies the amount of network upgrade.

¢ Legacy switch utilization: This metric shows the effectiveness of SCOPE in

terms of the usage of expensive legacy switches.

o Effective SDN throughput: High effective SDN throughput signifies large num-
ber of processed programmable service requests. Therefore, high effective SDN

throughput is one of the preferable criteria of IoT networks which is loss-sensitive.

e QoS violated flows: QoS violated flows are the flows which do not satisfy the
maximum allowable delay requirement. This metric shows the efficiency of SCOPE

in terms of QoS.

In the first experiment, we measure programmable traffic and legacy switch utilization.

In the second experiment, we measure effective SDN throughput and QoS violation.

7.3.4 Result and Discussion
7.3.4.1 Programmable Traffic

Figure[7.2(a)|shows the programmable traffic achieved by each scheme for different switch
upgrade budgets. For this simulation, we set the number of time-slots as 1 and vary
the switch upgrade budget from $0K to $1M. From the simulation result, we observe
that SCOPE performs 10.08% and 5.59% better than DEG and VOL, respectively. For
SCOPE, the amount of programmable traffic is high because SCOPE reduces the OSPF
weights of the SDN links so that more flows are forwarded thorough the SDN links.
Figure [7.2(b)| shows the programmable traffic achieved by each scheme for different
numbers of time-slots. For this simulation, we set the switch upgrade budget as $200K

and vary the number of time-slots from 1 to 5. From the simulation result, we observe
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that SCOPE performs better than DEG and VOL because DEG and VOL upgrade a
limited number of switches as all upgrades are performed in the first time-slot. On the
other hand, SCOPE increases the programmable traffic by upgrading more switches in

each subsequent time-slot.

DEG —— DEG
VOL —e— VOL
Local Search Local Search
_ SCOPE — SCOPE
é 100 ;,/F_ S ‘g
® 80 — B
v v
) 40 8
S £
§ X &
g’ 0& ? . a . )
fon 01 2 3 456 7 8 910 fan 1 2 3 4 5
Switch Upgrade Budget (x $100000) Number of Time Slots
(a) Effect of Budget (b) Effect of Upgrade Duration

Figure 7.2: SCOPE: Programmable Traffic

7.3.4.2 Legacy Switch Utilization

To estimate legacy switch utilization, we set the weighting constant z; in Equation
to a value higher than other weighing constants. Figure [7.3(a)| shows the legacy
switch utilization for different switch upgrade budgets. For this simulation, we set the
number of time-slots as 3. From the simulation result, we observe that SCOPE performs
better for low budget conditions. A low budget allows the upgrade of less number of
legacy switches. In this case, SCOPE priorities switches, which have a less residual
lifetime. Moreover, in SCOPE, legacy switch utilization reduces with the increasing
budget because, with more budget, more switches are upgraded even if their consumed
lifetime is less. Figure [7.3(b)| shows the legacy switch utilization for different number of
time-slots. For this simulation, we set the switch upgrade budget as $100K. From the
simulation result, we observe that SCOPE performs better than the benchmark schemes,

and SCOPE’s performance improves with an increasing number of time-slots. In the case
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of larger time-slots, SCOPE upgrades legacy switches with a lesser residual lifetime in
the early stages of the upgrade process, and legacy switches with higher residual lifetimes
are upgraded at the final stages. Therefore, the consumed lifetime in SCOPE is higher

for a larger number of time-slots.
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Figure 7.3: SCOPE: Legacy Switch Utilization

7.3.4.3 Effective SDN Throughput

From Figure[7.4] we observe that SCOPE performs better than the benchmarks in terms
of effective SDN throughput. This is because SCOPE optimizes the maximum number
of processed service requests W§““(t) for each SDN switch s; € S. Figure [7.4|(a) shows
that the performance of the Greedy approach and LiDy+ degrades with an increasing
number of flows. For 0.5 million flows, SCOPE performs 14.76% and 3.72% better than
LiDy+ and Greedy, respectively. The Greedy approach is not scalable, as SDN switches
select master controllers based on switch-to-controller delay only, and some controllers
experience a high queueing delay when the network traffic is high. LiDy+ aims to
increase the switch count per active controller. Therefore, for high traffic load, queueing
delay of the controllers is high, and the effective SDN throughput is low. From Figure
7.4(b), we observe that effective SDN throughput increases with the increasing budget

for all schemes. However, in this case, SCOPE performs better than the benchmarks
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even for low budget.
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Figure 7.4: SCOPE: Effective SDN Throughput

7.3.4.4 QoS Violated Flows

From Figure (a), we observe that for a higher number of flows, the performance of
SCOPE improves more than the benchmark schemes. For low network traffic, Greedy
performs better than SCOPE because Greedy selects the nearest active controller, which
reduces delay. However, with the increase of network traffic, control plane delay increases
in Greedy, and a significant number of flows fail to meet the latency bound. Figure b)
depicts that the number of QoS violated flows is less in SCOPE than the benchmark
schemes for different controller placement budget. SCOPE performs better even for a low
budget. We observe that the QoS violation stabilizes as the controller placement budget
reaches $25K. This signifies that the number of active controllers installed within this
budget is sufficient to address the QoS requirements of the service requests. Therefore,
in this case, $25K is the QoS-optimal controller placement budget for SCOPE. From
Figure [7.5]c), we observe that QoS violation is less in SCOPE than the benchmarks
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irrespective of the number of time-slots. In each time-slot, SCOPE refines the stable
coalition structure to address the QoS requirements of more service requests or flows.
Therefore, SCOPE has a steady performance even for large upgrade duration. Figure
m(d) shows that the number of QoS violated flows for different controller capacity is ap-
proximately 51.28% and 24.43% less than LiDy+ and Greedy, respectively. Additionally,
we observe that the performance of SCOPE is uniform for different controller capacity.
This is because SCOPE forms the coalitions based on the pseudo-price coefficient of the

controller locations, which is formulated using the controller capacity.
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Figure 7.5: SCOPE: QoS Violated Flows

7.4 Concluding Remarks

This chapter presents a cost-efficient QoS-aware switch and controller placement ap-
proach for hybrid SDN. The proposed solution prioritizes the provision of QoS-guaranteed
service to the users in the presence of dynamic network traffic and restricted upgrade bud-
get. The proposed scheme increases the legacy switch utilization and the effective SDN

throughput compared to benchmarks. We compared the proposed scheme, SCOPE, with
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existing solutions. If the number of time slot is 5, SCOPE increases the legacy switch
utilization approximately by 37.40% as compared to Linear Search. In addition, for 0:5
million flows, SCOPE increases the effective SDN throughput approximately by 14.76%

and 3.72% as compared to LiDy+ and Greedy, respectively.
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Chapter 8

Energy-Aware Traffic Engineering

In this chapter, we present an energy-aware traffic engineering scheme in hybrid SDN
(ETHoS). The lack of centralized control over the power states of legacy switches impedes
energy-aware traffic engineering in hybrid SDN. On the other hand, there exists a trade-
off between energy-aware routing and programmable traffic as traffic rerouting may
transform programmable traffic to a non-programmable one, if not rerouted carefully.
In this paper, we propose a scheme for dynamic activation of SDN links and optimal
route selection of existing flows. Different from previous works, we focus on reducing
energy consumption while maximizing the programmable traffic as it is the primary
purpose of transforming a legacy network to an SDN.

This chapter consists of four sections. The system model of ETHoS is presented
in Section Section describes the proposed scheme. Section depicts the

experimental results. Finally, Section concludes the proposed work.

8.1 System Model

We consider a hybrid SDN environment consisting of multiple controllers and both legacy
IP switches and SDN switches. The link between a controller and an SDN switch is

termed as a control link. On the other hand, the data links are the links between SDN
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8. Energy-Aware Traffic Engineering

switches and IP switches. The data links are categorized as SDN links and non-SDN
links. A data link is an SDN link if it connects at least one SDN switch. Otherwise, the
link is termed as a non-SDN link. A flow is termed as programmable traffic if it passes
through at least one SDN link. Controllers have direct access to the SDN switches
and SDN links [44]. Therefore, only SDN switches and SDN links can be turned off to
reduce energy consumption. Traffic routing in legacy switches follows traditional routing
protocols such as Open Shortest Path First (OSPF) [69]. The schematic diagram of the

hybrid SDN architecture is shown in Figure 8.1

/N
, .
/ \
~ N /l——— %
- ~
ST g N o S

& --_= -~
©  SDN Switch SDN Link
&> Legacy Switch  — — — Non-SDN Link
@ SDN Controller . — . — Control Link

Figure 8.1: ETHoS: Hybrid SDN Architecture

We represent the hybrid SDN as a graph G = (N, E), where N denotes the set
of switches, and F denotes the set of links. We define a binary variable a; to denote

whether a switch n; is a legacy switch or an SDN switch. Therefore,

1 if n; € N is an SDN switch,

oy = (8.1)
0 otherwise.
In addition, we express the type of links as:
1 if e;; € F is an SDN link,
Bij = (8.2)

0 otherwise.
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8.1. System Model

The activation status of the switches is expressed as:

1 if n; € N is active,

0 otherwise.

The activation status of the links is expressed as:

1 if e;; € E is active,
0 otherwise.

Let b;; and w;; denote the bandwidth usage and capacity of e;; € E. The bandwidth
usage of the data links consists of data packets of the traffic flows. On the other hand,

the bandwidth usage of the control links consists of control messages.

8.1.1 Traffic Flow Model

Let F' denote the set of traffic flows. A flow f, € F is represented by a tuple <
srcg, desty, Eq, N, >, where src,, dest,, E,, and N, denote the source, destination,
the set of edges signifying the routing path, and the set of switches along the routing

path of f,. For each link e;; € I/, we express the traffic matrix as:

1 if €;j € E,,
gi; = (8.5)
0 otherwise.

A flow f, is programmable if and only if at least one switch in IV, is an SDN switch.

Definition 30 (Network State). The state of the network is defined as:

0= {x,y, {EaaNa|fa € F}} (8°6)
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8.1.2 Power Consumption Model

The power consumption of a hybrid SDN has two parts — (1) power consumption of
the links and (2) power consumption of the switches. The power consumption of a link
eij € E is expressed as:

Pj; = yijPij + bi; 045, (8.7)

where P;; is the baseline power usage when not transmitting, and ©;; is the power

coefficient [33].

Therefore, the power consumption of a switch n; € N is estimated as:

PN = [ PS4+ 57 PE | 4 (1 — )P, (88)
’I’LjEN

where P and P! are the power consumption by a switch in active and inactive

states, respectively.

Definition 31 (Link Utility). The route utility of a link e;; is defined as:

E PL
UE = (ai+a))(1- ——9 8.9
i = (01 + ) ( YiiPij + U)z’j@ij) (8.9)

Definition 32 (Route Utility). The route utility of a traffic flow f, is defined as:

U= Y UE (8.10)

€ij ek,
8.1.3 Problem Formulation

The objective of this work is to maximize the route utility for all traffic flows. Therefore,

we formulate the energy-aware traffic engineering problem (ETEP) as:
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8.2. ETHoS: The Proposed Scheme

Maximize ), U, (8.11)
€ fer
subject to
bij < wij, Veij € E, (8.12)
Z T = ’Na’avfaer (813)
n;ENg

Yij < x; and Yij < :):j,Veij € F, (8.14)

1 if n; = sreg,

X g X 95i=9§ -1 ifn; = ,
njEN 1] n N 7t 1 if n; desta,
0 otherwise

Vf, € F,ni €N (8.15)

Equation expresses the link capacity constraint. Equation states that
all switches in the path of a flow are active. Equation ensures that a link can
not be active if it is connected to an inactive switch. Equation expresses the flow
conservation constraint. The objective of ETEP is a combinatorial problem having high
complexity for large-scale network topologies. This is because energy-aware routing is a

NP-hard problem [9]. Therefore, we design heuristic algorithms for solving ETEP.

8.2 ETHoS: The Proposed Scheme

In this section, we present two heuristic approaches — (1) a greedy heuristic approach,
named ETHoS-G, and (2) a simulated annealing (SA) based approach, named ETHoS-
SA. The goal of the proposed heuristic approaches is to maximize the objective function

expressed in Equation (8.11]).
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8. Energy-Aware Traffic Engineering

8.2.1 ETHo0S-G: Energy-Aware Traffic Engineering in Hybrid SDN

with Greedy Heuristic

ETHoS-G generates a feasible network state by deactivating under-utilized SDN links.
We consider e;; as an under-utilized link if the power consumption IP’E is less than a
pre-defined threshold P**. The value of P depends on network-specific parameters
such as traffic load, and type of applications (latency-sensitive or throughput-sensitive).
Algorithm shows the steps of the Feasible State Generation Algorithm (FSGA).
The input to FSGA includes network topology G and the current network state Q0 =

{9 {EQ. No| fa € F}}.

Algorithm 8.1: ETHoS: Feasible State Generation Algorithm
Inputs : G, Q°
Output: Q': Feasible network state
Ol Q0
E' « Set of links with Bij =1 and y;; = 1 and IP’%- < pth
Sort the links in E in ascending order of power usage
for ¢;; € E' do

if G' remains strongly connected with E \ e;; then

E" + E" U{eij}, yl + 0
end

end
Set #! = 0 if an SDN switch n; has no link e;; with yilj =1
F' « Set of flows passing through any link in E”
for f, € F' do
‘ Select the path with the maximum route utility and update N}, E!

end
return Q' « {2 ¢! {El N!|f, € F}}

© 0 g oo Ok W N =

e e e
B W N = O

FSGA selects the set of under-utilized SDN links E', which have power consumption
less than P*. From the set El, links are selected in ascending order of power consump-
tion. A selected link is deactivated if G remains strongly connected without that link.
An SDN switch is deactivated if it is associated with no active link. Accordingly, FSGA

generates an alternate path for each flow involving the deactivated links. An alternative
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8.2. ETHoS: The Proposed Scheme

routing path is a path having the maximum route utility.

Theorem 9. The number of SDN links in a fully connected hybrid SDN is eJ*** =
> %'+1>

nj eN
2

>y !N|—<

nj EN

Proof. Each switch in a fully connected network with |N| switches has |N| — 1 links.
Therefore, if a single SDN switch is present in the network, i.e. 3  «; = 1, the number
of SDN links is | N| — 1. Subsequently, when another legacy swgicjthis upgraded to SDN
switch, the SDN link count becomes (|N| —1) 4+ (|N| — 2) because the link between the
first and the second SDN switch is already upgraded to an SDN link in the previous

stage. Therefore, the number of SDN links in a fully connected hybrid SDN is given by:

n; €
=3 (INl=s)= > aj | IN| - —=——F—= (8.16)
s=1 n;EN

The time complexity of FSGA is estimated based on three parts of the algorithm.
The first part takes O(el**) time to select the set of under-utilized SDN links. The
second part constructs set F in O(|F|) time. The last part involves the selection of
alternate routes for the flows in ' and takes |F'| (|E| 4+ |N|log|N|) time. However, this
time reduces further if the controller stores all the available routes between each pair of

nodes in descending order of route utility.
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8.2.2 ETHoS-SA: Energy-Aware Traffic Engineering in Hybrid SDN

with Simulated Annealing

ETHoS-SA generates a final network state considering a current network state. The
feasible network state Q! generated by FSGA, may not be optimal in terms of the
joint criteria of programmable traffic and energy consumption. Therefore, we use SA
to generate a final network state €2, which is better than Q'. We select SA for optimal
network state generation because it is a meta-heuristic optimization algorithm, which is
time-efficient [70]. SA can generate a globally optimal solution. Therefore, SA is used
for a wide range of applications such as signal processing, production scheduling, and

control engineering [71].

Algorithm 8.2: ETHoS: Optimal State Generation Algorithm
Inputs : G, QY Ty, 2, L, p
Output: Q: Final network state

1 T < Ty: Current temperature

2 O« Q' Current state

3 while T' > 0 do

4 while L > 0 do
5 Qnert < GenerateNewtState(()
6 if exp <Cost(Q)—gost(Qnezt)) > p then
7 | Q¢ Qreet
8 end
9 L+ L-1
10 end
11 T+ zxT
12 end

13 return Q < {z,y,{Eq, Nu|fa € F}}

Algorithm shows the steps of the SA-based Optimal State Generation Algorithm
(OSGA). The inputs of OSGA include network-specific parameters and parameters re-
quired for SA. The network-specific parameters are network topology G, the feasible
network state Q' = {z!,y',{E} Nl|f, € F}}. The required parameters for SA are

initial temperature T, the rate of cooling z, the length of Markov chain L, and accep-
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8.2. ETHoS: The Proposed Scheme

tance probability p. The initial temperature determines the convergence time of the
algorithm, where a high value of Tj signifies that the time to reach the global optimal
solution is high, and a low Ty may direct the algorithm to a local optimal solution.
The cooling rate determines the amount of decrease in the temperature, and the algo-
rithm terminates when the temperature reaches 0. The length of Markov chain signifies
the maximum number of iterations before decreasing the temperature. The acceptance
probability determines whether a solution is acceptable or not.

OSGA aims to find the optimal routes for the flows that balance the trade-off between
energy-aware routing and programmable traffic. Maximum L iterations are performed
for each value of the current temperature. In each iteration, OSGA generates a next
state using the GenerateNextState method, as shown in Algorithm Algorithm

calculates the cost of the current state and the next state. The next state is selected as

(COSt(Q)_gOSt(Q"m)) > p. After the completion of L iterations,

the current state if exp
the current temperature is reduced. In this work, we use an exponential function as the

cooling method and set the new temperature as T < z x T'.

Algorithm 8.3: GenerateNextState
Inputs : 2: Current state
Output: Q"¢**: Next state

1 Qert Q)

2 Randomly select an SDN link e;; and set y¢** «+ (1 - y”-“t)

ij tj
3 Set z'*** = 0 if SDN switch n; has no link e;; with y?j”t =1
4 Select the alternate shortest path for each affected flow f, and update
Enext Nnext
a ? a
5 return Qnezt — {xnextyynemt’ {Egzemt7 NgLemt|fa c F}}

Algorithm shows the steps of generating the next state given a current state. We
alter the activation status of a randomly selected links. Based on the change of activation
status, the available shortest path is selected as the new route for each affected flow,
and the next network state is formed.

Algorithm estimates the cost of a given network state. The cost of a network
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Algorithm 8.4: Cost
Input : Q)
Output: stateCost: Cost for state (2
1 for f, € F do
2 ‘ stateCost < stateCost + (|[N| —U,)
3 end
5 return stateCost

state is the cumulative cost of all the traffic flows in the network. Therefore, the cost of

a network state Q is defined as:

Cost(Q) = Y IN|-U, (8.17)
fa€F

The cost of a traffic flow increases with the decrease in route utility. Therefore, the
Cost method aims to maximize the total route utility of all traffic flows, which is the
objective represented in Equation .

The time complexity of OSGA depends on the initial temperature T and the cooling
rate z. A high Ty and low z increases the possibility of finding a global optimal solution

at the cost of time complexity.

8.2.3 Summary of the Proposed Approach

In each such time-period, FSGA detects the under-utilized SDN links. If any under-
utilized link is detected, FSGA generates a feasible network state. Subsequently, OSGA
computes a final network state 2. The final network state {2 portrays the activation
status of the SDN links and the final routes of the flows. An SDN switch is selected for
deactivation if all the associated links are in an inactive state as per the network state 2.
Based on €2, the required switches and links are activated or deactivated. To deactivate a
link, we set the OSPF weight of the link to infinity so that the link is not selected in the
shortest path computation. Before the deactivation of an SDN switch, ETHoS ensures

that the legacy switches which follow traditional routing protocols such as OSPF must
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not transmit any packet to the SDN switch. OSPF detects the active switches based
on the Hello messages sent by the switches. OSPF considers a switch to be an inactive
switch if the switch sends no Hello message for a time interval called the dead interval.
Therefore, in the proposed scheme, an SDN switch, marked for deactivation according
to €, stops sending Hello messages for a duration & greater than the dead interval.
After this duration, the switch is deactivated. We term this duration ¢ as the initiation
interval. Additionally, the OSPF weights of the links are adjusted based on the link

utility metric.

Current network state

Fast processing required—l
ETHoS-G |

Wait for initiation interval

A 4

y
Deactivate selected SDN links
and SDN switches

y
Modify OSPF weights of links
based on link utility

y
Reroute flows based on the final
network state

\

A
ETHoS-SA (End)

Figure 8.2: Execution of ETHoS by an SDN Controller

Figure [8.2] shows the flowchart for the execution of ETHoS by an SDN controller.
ETHoS-G generates a less accurate solution with less convergence time. Therefore, if fast
processing is required and a less precise solution is acceptable, the final network state
is the network state generated by ETHoS-G. However, ETHoS-SA refines the solution

generated by ETHoS-G and produces a more accurate solution.

Definition 33 (Energy Savings). The energy savings by transition from an initial net-

work state Q° to a final network state Q is defined as:
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Y PY(Q) - ¥ PN(Q)
n;EN n;EN

> PY(Q9) ’

n,EN

¢ = (8.18)

where PN (Q0) and PN (Q) represent the power consumption of n; in network states

Q0 and Q, respectively.

Theorem 10. The mazimum energy savings achieved by link deactivation in a pure SDN

. P(IN|-1)(|N|—2) _ _ _ act _ pac
v |N\Pact‘+|z|v|(|)19|—‘1)<P+be)f where bij = b,Pij =P, 0;; = ©,Ve;; € B, P{ =P*,Vn; € N

and |[N| > 2.

Proof. The maximum and the minimum number of links in a pure SDN with | N| switches
are W and |N|— 1, respectively. Let Q0 and € represent the initial network state
with the maximum number of links and the final network state with the minimum number

of links, respectively. Therefore, the maximum number of links that can be deactivated

is given by:

[NI(N] = 1)
2

_ (N[ =D(N][=2)
2

einact —

—(IN[-=1) (8.19)

Let the total bandwidth usage of %! links are equally distributed among |N| — 1

active links. Therefore, additional bandwidth usage in each active link is expressed as:

add _ 0™ B(IN| = D(IN|—=2) _ b(IN[-2)
padd _ N1 N =T = 5 (8.20)

The total power consumption in network state QU is:
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INI(N] = 1)

> RN@) = NP 42

n;EN

(P + bO)

|IN|P*! + |N|(|N| — 1)(P + bO) (8.21)

The total power consumption in network state €2 is:

S BNQ) = NP 2(N] - 1) (P+ (b4 b)0)
n;EN
= |N|P* + (IN| —1)(2P + bn®) (8.22)

Hence, the energy savings is given by:

IN|P*t + N|(IN| = 1)(P + b©) — [N|P*! — (|N] — 1)(2P + bn®)
IN[Pect + [N[(IN| — 1)(P + b©)
PAN| -~ D(N] —2)

= NP+ [N[(N| - 1)(P 1 bO) (8.23)

8.3 Performance Evaluation

8.3.1 Simulation Settings

For performance evaluation ETHoS, we use Abilene topology [38] as the default topology
for performing the simulations. For the simulations performed on Abilene topology, we
use the traffic matrix provided by the Abilene dataset [45], which records traffic between
each pair of switches in Abilene topology in every 5 minute for 6 months. We use the
traffic data for Day 1 from the Abilene dataset. This dataset also provides OSPF weights

of the links. We use the OSPF weights for the calculation of the shortest path. The
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Abilene topology is a publicly available topology that has 12 switches and 30 directed
links. We use the Abilene topology because it is a small-scale topology, where the
deactivation of links is more restricted due to fewer alternate routes. However, Abilene
is a sparse topology with limited paths between nodes. Therefore, we select a 4—pod Fat-
tree for a topology-based comparison. Fat-tree is a dense topology with redundant paths
between nodes [60]. For the simulation performed on Fattree topology, we randomly
generate traffic flows between each pair of switches. The simulation parameters are

shown in Table . The value of P is set to the average power consumption of the

links.
Table 8.1: ETHoS: Simulation parameters
Parameter Value
Topology Abilene [38], 4— pod Fat-tree [60] |
Maximum traffic volume 144 flows |
Bandwidth of a traffic flow 0.0001 — 0.39 Gbps [45]
Maximum link capacity 9.92 Gbps [45]
Number of switches 12 (Abilene), 20 (Fat-tree)
Percentage of SDN switches 0—100

Power consumption of a switch n; in active
act

state (P¢")

Power consumption of a switch n; in inac-

tive state (IPinact)

Baseline power usage of a link e;; (P;;) 30 W [73]

150 W 72

95 W [72]

Power coefficient (©;;) 10 W [73]
Initial temperature for SA (7p) 90 [54]
Cooling rate (z) 0.97 [54]
Length of Markov chain (L) 200 [54]
Acceptance probability (p) 0.85 [54]

8.3.2 Benchmark Schemes

For performance evaluation, we consider ETHoS-G, MaxRESDN [32], and SENEToR [33]
as the benchmark schemes. We consider ETHoS-G as a benchmark to show the necessity

of final network state generation by ETHoS-SA. ETHoS-G reroutes the flows based
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on the feasible network state generated by the greedy FSGA. We select RESDN as a
benchmark scheme because it reroutes the flows based on the RESDN metric similar to
ETHoS, which reroutes flows based on route utility metric. We select SENEToR as a

benchmark scheme because it considers hybrid SDN similar to ETHoS.
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(c) Comparison between Abilene and Fat-tree Topology with
100% Traffic Volume and 80% SDN Switches

Figure 8.3: ETHoS: Energy Savings

8.3.3 Performance Metrics
We consider the following metric to evaluate the performance of ETHoS:

e Energy savings: The amount of energy savings is evaluated by comparing the
cumulative power usage by the switches in the final network state with that of

the initial network state. Therefore, this metric shows the energy efficiency of the
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Figure 8.4: ETHoS: Programmable Traffic

proposed scheme in comparison with the benchmarks.

e« Programmable traffic: We use this metric to quantify the trade-off between

energy-aware routing and programmable traffic.

e Flow path length: We estimate the average path length of the traffic flows as a

performance metric to assess the overhead caused by traffic rerouting.
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Figure 8.5: ETHoS: Flow Path Length

8.3.4 Results and Discussion
8.3.4.1 Energy Savings

Figure portrays the comparison between the energy savings of ETHoS and that
of the benchmarks with 100% traffic and varying SDN deployment. ETHoS-SA saves
11.65%, 48.95%, and 28.91% more energy than ETHoS-G, MaxRESDN, and SENEtoR,
respectively. As shown in Figure [8.3(b)|, ETHoS-SA saves 6.91%, 23.12%, and 19.94%
more energy than ETHoS-G, MaxRESDN, and SENEtoR, respectively. Figure

illustrates that energy savings in Fat-tree topology is significantly high for all schemes.

Inference: ETHoS-G performs local optimization and deactivates SDN links that
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have low power usage. MaxRESDN reroutes flows based on RESDN value and deacti-
vated unused links. However, with low SDN deployment, most of the selected links are
non-SDN links and cannot be deactivated. Therefore, the energy savings of MaxRESDN
is less, especially for less number of SDN switches. SENEtoR does not select the al-
ternative routing path or tunnel based on link usage. Therefore, some links experience
high traffic and high energy consumption due to tunneling or rerouting. On the other
hand, ETHoS-SA considers activating an inactive SDN link to obtain a globally optimal
performance that minimizes the cost of the network state. With fixed SDN deployment,
the difference between the performance of ETHoS-SA and the benchmarks is almost
constant with varying traffic because the bandwidth usage of the links has a limited
contribution to energy consumption. Energy conservation is high in Fat-tree topology
because many alternative paths are available in the Fat-tree topology than the Abilene
topology. This is also the reason for the better performance of ETHoS that performs

repeated analysis to select the best alternative path.

8.3.4.2 Programmable Traffic

As depicted in Figure for fixed traffic volume, programmable traffic in ETHoS is
0.92%, 2.77%, and 3.08% higher than that of ETHoS-G, MaxRESDN, and SENEtoR,
respectively. On the other hand, for fixed SDN deployment, ETHoS performs 1.24%,
3.23%, and 3.22% better than ETHo0S-G, MaxRESDN, and SENEtoR, respectively as
shown in Figure From Figure we notice that the programmable traffic
with Fat-tree topology is 10.51% less than that with Abilene topology.

Inference: The volume of programmable traffic in ETHoS (both ETHoS-SA and
ETHoS-G) is high because ETHoS uses route utility metric for optimal route selection
of the flows. The amount of programmable traffic is low in Fat-tree because Fat-tree has

more routing paths between the pair of nodes, which enables some flows to be routed

through non-SDN links.
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Figure 8.6: ETHoS: Comparison between ILP Solution and ETHoS with 80% SDN
Switches

8.3.4.3 Flow Path Length

Figureand Figure show the average flow path length for fixed traffic volume
and fixed SDN deployment, respectively. For fixed traffic volume, the average flow
path length is 9.26%, 9.13%, and 48.64% less than that of ETHoS-G, MaxRESDN, and
SENEtoR, respectively. On the other hand, for fixed SDN deployment, the average flow
path length is 2.30%, 6.37%, and 48.10% less than that of ETHo0S-G, MaxRESDN, and
SENEtoR, respectively. From Figure we observe that the average control path
length is less for the Fat-tree topology than the Abilene topology.

Inference: The average flow path length is less in ETHoS-SA because OSGA selects

the shortest path available at the time of a new network state generation. Addition-
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ally, lower flow path length in Fat-tree topology signifies that the overhead due to flow
rerouting is less in Fat-tree as the availability of alternative minimal length path is high
in Fat-tree.

We solve the ILP formulated in Equation (8.11)) using Gurobi Optimizer [48]. Figure
shows that ETHoS-SA achieves performance similar to the ILP solution while having

low computation time.

8.4 Concluding Remarks

In this chapter, we presented a traffic engineering scheme to address the trade-off be-
tween programmable traffic and energy-aware routing for hybrid SDN. The proposed
scheme, ETHoS, optimizes the network’s energy consumption by selective deactivation
of SDN switches and careful rerouting of the affected flows so that the optimal amount
of programmable traffic is retained after traffic rerouting. We proposed a faster and less
accurate greedy solution, named ETHoS-G, along with an optimized solution having
high accuracy, called ETHoS-SA. Simulation results show that ETH0oS-SA is capable of
saving a significant amount of energy as compared to the benchmarks. In particular,
with 80% SDN deployment, ETH0S-SA consumes 23.12% less energy than the existing
scheme MaxRESDN.
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Chapter 9

Conclusion

In this thesis, we proposed a scalable framework for SDN to handle a large number of
traffic flows. We considered several challenges, such as rule-space capacity constraint,
controller capacity constraint, and the trade-off between energy management and pro-
grammable traffic. In Chapters , we discussed the schemes proposed in this thesis.
We present the summary of the thesis in Section[9.1] In Section[9.2] we enlist the primary
contributions of the thesis work. The limitations of our work is presented in Section

Finally, we conclude the thesis and cite future directions in Section

9.1 Summary

This thesis was presented in six chapters. Chapter [I] presented a brief discussion on
scalability challenges in SDN, the scope of the work, and the main objectives of this
thesis.

Chapter [2| surveyed the existing literature on data plane scalability, control plane
scalability, and energy-aware traffic engineering in SDN. Additionally, we summarized
the shortcomings of the existing schemes and the motivation of this thesis.

Chapterpresented a scheme for consistent update with redundancy reduction (CURE)

in SDN. The proposed scheme, CURE, ensures consistent rule update without the stor-
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age of multiple versions of flow-rules. CURE prioritizes switches according to their
usage pattern and schedules updates based on priority zones. We performed extensive

simulations to evaluate the performance of the proposed scheme.

In Chapter [d we presented an approach for data plane load reduction for traffic
flow migration (DART) that formulates a coalition graph game to generate a QoS-aware
flow migration schedule. Based on the initial schedule, DART verifies the possibility of
link congestion and prepares a feasible migration schedule. We compared the proposed

scheme with relevant benchmarks to analyze its performance.

Chapter [5| presented a tensor-based rule-space management scheme (TERM) that
applies the concept of tensor decomposition to aggregate flow-rules. TERM also employs
a rule caching mechanism for better throughput. We evaluated the proposed scheme
through simulations and compared the results for various performance metrics with

relevant benchmark schemes.

In Chapter @ we presented a scheme for control plane load reduction (CORE) in
the presence of IoT traffic. CORE uses a Markov Predictor to predict device-switch
associations based on device mobility. Additionally, CORE computes optimal controller-
switch assignments to prevent control plane overload. We compared the performance of

CORE with relevant benchmarks to show its effectiveness.

Chapter [7| presented a scheme for switch and controller placement (SCOPE) in hy-
brid SDN. SCOPE ranks legacy switches according to different network parameters and
selects a set of legacy switches for an upgrade in the current round while considering
the upgrade budget. Additionally, SCOPE forms a coalition game involving the SDN
switches to decide the locations for the controllers. The proposed scheme was evaluated
through simulations, and the results for various performance metrics were compared

with benchmark schemes.

In Chapter |5, we presented an energy-aware traffic engineering scheme in hybrid

SDN (ETHoS). The proposed scheme, ETHoS, focuses on reducing energy consumption
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in hybrid SDN while maximizing the programmable traffic as it is the primary purpose
of transforming a legacy network to an SDN. We evaluated ETHoS by implementing
a discrete event simulator and compared the performance metrics with relevant bench-

marks.

9.2 Contributions

In this thesis, multiple approaches were proposed to enhance the scalability of SDN
data and control planes. The proposed schemes address several issues, such as limited
rule-space, control plane load optimization, and energy-aware routing. We list the major

contributions of this thesis as follows.

Consistent Update with Reduced Rule-Redundancy: We emphasize reduction
of rule-space usage and propose a rule update scheme that ensures packet-level consis-

tency using a multilevel queue-based policy.

Traffic-Aware Data Plane Load Reduction during Flow Migration: We pro-
pose a traffic-aware flow-migration scheme that migrates traffic flows in different update
stages. Each update stage is formed based on the QoS demand of the flows, and band-

width usage of the links.

Rule-Space Management: We propose a rule-space management system which aims

to reduce flow-table miss by increasing the available capacity of switches in SDN.

Control Plane Load Reduction for IoT Flows: We propose a prediction-based
approach to reduce the control plane load in SDIoT. This approach includes rule-caching

and master controller assignment considering heterogeneous attributes of IoT devices.
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Switch and Controller Placement in Hybrid SDN: We propose a cost-efficient
QoS-aware switch and controller placement approach for hybrid SDN. The proposed
solution prioritizes the provision of QoS-guaranteed service to the users in the presence

of dynamic network traffic and restricted upgrade budget.

Energy-Aware Traffic Engineering in Hybrid SDN: We propose a traffic engi-
neering scheme to address the trade-off between programmable traffic and energy-aware
routing for hybrid SDN. The proposed scheme optimizes the network’s energy consump-
tion by selective deactivation of SDN switches and careful rerouting of the affected flows

to retain the optimal amount of programmable traffic after traffic rerouting.

9.3 Limitations

One of the critical challenges faced in this work is the lack of suitable datasets. Therefore,
it would be interesting to implement the proposed schemes in a real testbed. Addition-

ally, we made some assumptions while designing the proposed schemes.

e In CURE, we assumed centralized control plane.

e In DART, we assumed that controllers determine the new path for the migration

of each traffic flow.

e We assumed exact match flow-rules where the mapping between a flow-rule and a

flow type is one-to-one.

o We assumed that mobile IoT devices follow the Gauss-Markov mobility model.

e In SCOPE, we assumed that exactly one SDN switch replaces a legacy switch.
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9.4 Future Work

e Future extension of the proposed scheme, CURE, includes an extension of the
proposed scheme in the distributed SDN control plane, where multiple controllers
perform network update concurrently. Additionally, flow-level consistency can be

considered along with packet-level consistency.

o Future extension of the work, DART, includes consideration of energy consumption
at the switches during traffic flow migration. Additionally, the impact of network

disruptions such as link failure and traffic spike can be analysed.

o Future extension of the problem, TERM, includes optimizing the rule caching

procedure and the placement of flow-rules in SDN switches.

e Future extension of the proposed work, CORE, includes increasing the prediction

accuracy further.

o Future extension of the scheme, SCOPE, includes minimizing the overall energy

consumption considering IoT networks.

e Future extension of the proposed approach, ETHoS, includes consideration varying

traffic load, traffic with different QoS demands, and fault tolerance.
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