
TOWARDS SCALABLE SDN: ENHANCEMENT IN
DATA AND CONTROL PLANES

Ilora Maity

TOWARDS SCALABLE SDN: ENHANCEMENT IN
DATA AND CONTROL PLANES

Thesis submitted to the
Indian Institute of Technology Kharagpur

for award of the degree

of

Doctor of Philosophy

by

Ilora Maity

Under the guidance of

Dr. Sudip Misra and Dr. Chittaranjan Mandal

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Kharagpur - 721 302, India
August 2020

© 2020 Ilora Maity. All rights reserved.

CERTIFICATE

Date: 25/08/2020

This is to certify that the thesis entitled Towards Scalable SDN: Enhancement in
Data and Control Planes, submitted by Ilora Maity to Indian Institute of Tech-
nology Kharagpur, is a record of bona fide research work under my supervision and I
consider it worthy of consideration for the award of the degree of Doctor of Philosophy
of the Institute.

Dr. Sudip Misra
Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
Kharagpur - 721 302, India

Dr. Chittaranjan Mandal
Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
Kharagpur - 721 302, India

DECLARATION

I certify that

a. The work contained in the thesis is original and has been done by myself under
the general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or diploma.

c. I have followed the guidelines provided by the Institute in writing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct
of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text) from other
sources, I have given due credit to them by citing them in the text of the thesis
and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put them
under quotation marks and given due credit to the sources by citing them and
giving required details in the references.

Ilora Maity

Dedicated to
My parents, Parents-in-law, and Beloved husband

ACKNOWLEDGMENT

My journey as a doctoral student at the Indian Institute of Technology Kharagpur
has been a wonderful and memorable experience that I will treasure for the rest of my
life. I came across many amazing personalities in the course of this journey. These
people have directly or indirectly helped me shape my academic career by providing
their support, advice, and encouragement. I would like to convey my sincere thanks and
gratitude to all the people instrumental in my doctoral research.

I express my deepest gratitude to my supervisor Dr. Sudip Misra, for his constant
support and motivation. From the very first day of my doctoral research, he has en-
couraged me to aim big and never settle for anything less. I am especially thankful to
him for his precious insights on my research goals and constructive feedback to mitigate
any research lacuna. I will cherish his valuable guidance on transforming a research
objective into a good quality research article. I firmly believe that I have evolved both
as a researcher and a better personality because of his guidance.

I would like to sincerely thank my joint supervisor, Dr. Chittaranjan Mandal, for
his intellectual guidance and infectious enthusiasm, which helped me strengthen my
research base and motivated me to aspire for a higher goal. The stimulating and engaging
interactions with him have made me confident regarding my research outcomes.

I want to express my gratitude to Prof. Rajib Mall and Prof. Goutam Das for their
valuable suggestions, which have enriched my work to a great extent. I am indebted to
Prof. Jhareswar Maiti and Prof. Sudipta Mahapatra for kindly agreeing to serve on my
doctoral scrutiny committee. I sincerely thank the office staffs Mithun Da, Pratap Da,
Anup Da, Binod Da, and Malay Da for helping me whenever needed.

I am genuinely thankful to my colleague Ayan Mondal for his continuous help and
support even in the initial days when I did not have a clear idea about research. His ded-
ication and work ethic motivated me and enabled me to complete this work. I would also
like to thank Niloy, Samaresh, Satendra, and Pradyumna, for patiently listening to my
work presentations and giving constructive feedback. I am grateful to have friends and
colleagues like Kankana, Kumud, Timam, Anudipa, Aishwariya, Rituparna, Sumana,
Arijit, Aritra, and Barnali, who made my campus life colorful and memorable.

Words fail me when I think of the unconditional love and support of my mother,
father, mother-in-law, and father-in-law. I want to sincerely thank them for having faith
in me and supporting my career decisions. Finally, thanks to my husband, Abhishek,

vii

whose endless energy and enthusiasm have enriched my life in every aspect.

Ilora Maity

viii

Abstract

Software-Defined Networking (SDN) architecture involves separate data and control
planes. The SDN data plane consists of switches that store forwarding rules in flow-
tables. On the other hand, the SDN control plane consists of controllers that formulate
the flow-rules and install or update them at the switches. SDN adds flexibility and
programmability to network operations. Due to the additional benefits of softwarization,
traditional networks are being migrated to SDN. The intermediate step of transforming
a conventional backbone network into pure SDN is termed as hybrid SDN.

The limited storage capacity of switches is a key challenge in SDN, as the switches
use Ternary Content Addressable Memories (TCAMs) having very low capacity. Low
rule storage capacity eventually leads to a high number of Packet-In messages and con-
trol plane overloading. On the other hand, the number and locations of SDN controllers
determine the Quality of Service (QoS) parameters, such as network throughput and
flow-processing delays. In particular, the placement of controllers is more challenging
in hybrid SDN because of additional aspects such as SDN switch placement and incre-
mental upgrades. These challenges increase processing latency and decrease the overall
scalability of SDN. Additionally, scalable network operations should ensure optimal en-
ergy consumption. However, the lack of centralized control over the power states of
legacy switches impedes energy-aware traffic engineering in hybrid SDN. On the other
hand, there exists a trade-off between energy-aware routing and programmable traffic
as traffic rerouting may transform programmable traffic to a non-programmable one, if
not rerouted carefully.

Motivated by these challenges, in this thesis, we propose multiple schemes to enhance
the scalability of SDN data and control planes. We propose an approach for consistent
update with redundancy reduction that reduces TCAM usage during update. Addition-
ally, we propose a load reduction strategy that prioritizes traffic flows based on QoS
demands and aims to avoid link congestion and rule-space overflow during flow migra-
tion. Moreover, we apply the concept of tensor decomposition to aggregate flow-rules and
increase the available rule-space. On the other hand, we implement a master controller
assignment scheme based on IoT devices’ mobility and traffic characteristics to prevent
controller overload and distribute traffic optimally across the controllers. In addition,
we propose a priority-based SDN switch placement approach and a game theory-based

ix

controller placement approach for hybrid SDN. In the final scheme, we focus on reduc-
ing energy consumption while maximizing the programmable traffic as it is the primary
purpose of transforming a legacy network to an SDN.

Keywords: SDN, Network Update, Flow Migration, Coalition Game, Rule-Space Man-
agement, Caching, Markov Predictor, IoT, Hybrid SDN, Controller Placement, Pro-
grammable Traffic, Energy Management

x

Contents

Certificate i

Declaration iii

Dedication v

Acknowledgment vii

Abstract ix

Contents xi

List of Figures xv

List of Tables xvii

List of Algorithms xix

List of Symbols and Abbreviations xxi

1 Introduction 1
1.1 Scalability Challenges in SDN . 2
1.2 Scope of the Work . 3
1.3 Problem Statement and Objectives . 4
1.4 Contributions . 6
1.5 Organization of the Thesis . 7

2 Related Work 9
2.1 Data Plane Scalability . 9

2.1.1 Capacity-Aware Consistent Update 10

xi

Contents

2.1.2 Rule-Space Capacity Management 12
2.2 Control Plane Scalability . 13

2.2.1 Control Plane Load Management 14
2.2.2 Controller Placement . 15

2.3 Energy-Aware Traffic Engineering in SDN 16
2.4 Concluding Remarks . 17

3 Consistent Update with Redundancy Reduction 19
3.1 System Model . 19
3.2 CURE: The Proposed Scheme . 22

3.2.1 Switch Classification . 22
3.2.2 Rule Update . 23
3.2.3 Packet Queueing . 24
3.2.4 Packet Processing . 25
3.2.5 Queueing Model . 26

3.3 Performance Evaluation . 30
3.3.1 Result and Discussion . 32

3.4 Concluding Remarks . 37

4 Data Plane Load Reduction for Flow Migration 39
4.1 System Model . 40

4.1.1 Traffic Flow Model . 40
4.1.2 Problem Formulation . 42

4.2 DART: The proposed scheme . 44
4.2.1 Generation of QoS-Aware Migration Schedule 44
4.2.2 Generation of Feasible Migration Schedule 49
4.2.3 Rule-Space Management . 51
4.2.4 Consistent Flow Migration . 52

4.3 Performance Evaluation . 54
4.3.1 Simulation Settings . 54
4.3.2 Benchmark schemes . 54
4.3.3 Performance Metrics . 55
4.3.4 Result and Discussion . 56

4.4 Concluding Remarks . 59

xii

Contents

5 Rule-Space Management 61
5.1 System Model . 61
5.2 TERM: The Proposed Scheme . 63

5.2.1 Rule Aggregation . 64
5.2.2 Rule Reconstruction . 70
5.2.3 Rule Caching . 72

5.3 Performance Evaluation . 73
5.3.1 Result and Discussion . 74

5.4 Concluding Remarks . 76

6 Control Plane Load Reduction 77
6.1 System Model . 77

6.1.1 Mobility Model . 80
6.1.2 Caching Model . 81
6.1.3 Delay Model . 81
6.1.4 Cost Model . 82
6.1.5 Problem Formulation . 84

6.2 CORE: The Proposed Scheme . 85
6.2.1 Mobility Prediction . 85
6.2.2 Rule-Caching . 88
6.2.3 Master Controller Assignment . 89

6.3 Performance Evaluation . 92
6.3.1 Simulation Settings . 92
6.3.2 Benchmark Schemes . 92
6.3.3 Performance Metrics . 92
6.3.4 Observations and Results . 94
6.3.5 Discussion . 96

6.4 Concluding Remarks . 97

7 QoS-Aware Switch and Controller Placement 99
7.1 System Model . 100

7.1.1 Budget Model . 102
7.1.2 Problem Formulation . 103

7.2 SCOPE: The Proposed Scheme . 106
7.2.1 SDN Switch Placement . 106
7.2.2 Coalition Game Formulation for Controller Placement 108

7.3 Performance Evaluation . 114

xiii

Contents

7.3.1 Simulation Settings . 114
7.3.2 Benchmark Schemes . 116
7.3.3 Performance Metrics . 117
7.3.4 Result and Discussion . 117

7.4 Concluding Remarks . 121

8 Energy-Aware Traffic Engineering 123
8.1 System Model . 123

8.1.1 Traffic Flow Model . 125
8.1.2 Power Consumption Model . 126
8.1.3 Problem Formulation . 126

8.2 ETHoS: The Proposed Scheme . 127
8.2.1 ETHoS-G: Energy-Aware Traffic Engineering in Hybrid SDN with

Greedy Heuristic . 128
8.2.2 ETHoS-SA: Energy-Aware Traffic Engineering in Hybrid SDN with

Simulated Annealing . 130
8.2.3 Summary of the Proposed Approach 132

8.3 Performance Evaluation . 135
8.3.1 Simulation Settings . 135
8.3.2 Benchmark Schemes . 136
8.3.3 Performance Metrics . 137
8.3.4 Results and Discussion . 139

8.4 Concluding Remarks . 142

9 Conclusion 143
9.1 Summary . 143
9.2 Contributions . 145
9.3 Limitations . 146
9.4 Future Work . 147

Dissemination of Research Works 149

References 151

xiv

List of Figures

1.1 SDN: Data and Control Planes . 2
1.2 Thesis Objectives . 5

3.1 CURE: SDN Architecture . 20
3.2 SDN Queueing Model . 27
3.3 State-Transition-Rate Diagram of CURE for a Switch 28
3.4 Test Flows in Sprint, NetRail, and Compuserve Topology 31
3.5 CURE: Update Duration . 33
3.6 CURE: Average Rule-Space Utilization . 33
3.7 CURE: Update Duration and Average Rule-Space Utilization 33
3.8 CURE: Average Packet Waiting Time . 34
3.9 CURE: Average Packet Inconsistency . 35
3.10 CURE: Controller Overhead in Sprint Topology 36

4.1 DART: SDN Architecture . 40
4.2 DART: Flow Migration Duration . 57
4.3 DART: Peak Data Link Load . 58
4.4 DART: Rule-Space Usage for Flow Migration 58
4.5 DART: QoS Violated Flows . 58
4.6 DART: Comparison between ILP Solution and DART 59

5.1 TERM: Network Architecture . 62
5.2 Matricization of initial rule tensor . 66
5.3 Mode-3 product of the initial rule tensor 68
5.4 Rule recovery process . 72
5.5 TERM: Average Throughput . 74
5.6 TERM: Average Packet Waiting Time . 74
5.7 TERM: Average Free Rule-Space . 75

xv

List of Figures

5.8 TERM: Average Number of Packet-In Messages 75
5.9 TERM: Effect of Cache Size on Packet-In Message Count 75
5.10 TERM: Rule Aggregation Time . 75
5.11 TERM: Rule Reconstruction Time . 75

6.1 CORE: SDIoT Architecture . 78
6.2 Case 1: Change in Controller-Switch Association 83
6.3 Case 2: Change in Device-Switch Association 83
6.4 CORE: Prediction Accuracy . 94
6.5 CORE: Control Plane Cost . 95
6.6 CORE: Peak Traffic Intensity . 96
6.7 CORE: QoS Violated Flows . 96

7.1 SCOPE: Hybrid SDN Architecture . 100
7.2 SCOPE: Programmable Traffic . 118
7.3 SCOPE: Legacy Switch Utilization . 119
7.4 SCOPE: Effective SDN Throughput . 120
7.5 SCOPE: QoS Violated Flows . 121

8.1 ETHoS: Hybrid SDN Architecture . 124
8.2 Execution of ETHoS by an SDN Controller 133
8.3 ETHoS: Energy Savings . 137
8.4 ETHoS: Programmable Traffic . 138
8.5 ETHoS: Flow Path Length . 139
8.6 ETHoS: Comparison between ILP Solution and ETHoS with 80% SDN

Switches . 141

xvi

List of Tables

2.1 Summary of different works on data plane scalability 10
2.2 Summary of different works on control plane scalability 13

3.1 CURE: Simulation Parameters . 31

4.1 DART: Simulation Parameters . 54

5.1 Integer representation of ternary strings 64
5.2 TERM: Simulation Parameters . 73

6.1 CORE: Simulation Parameters . 93
6.2 Device Category . 93

7.1 SCOPE: Simulation Parameters . 115

8.1 ETHoS: Simulation parameters . 136

xvii

List of Algorithms

3.1 CURE: Rule Update Algorithm . 23
3.2 CURE: Packet Queueing Algorithm . 25
3.3 CURE: Packet Processing Algorithm . 26

4.1 DART: Initial Migration Scheduling Algorithm 49
4.2 DART: Feasible Migration Scheduling Algorithm 50
4.3 DART: Rule-Space Management Algorithm 52

5.1 TERM: Rule Aggregation Algorithm . 66

6.1 CORE: Mobility Prediction Algorithm . 87
6.2 CORE: Rule-Caching Algorithm . 88
6.3 CORE: Master Controller Assignment Algorithm 91

7.1 SCOPE: SDN Switch Placement Algorithm 108
7.2 SCOPE: Coalition Formation Algorithm . 113
7.3 SCOPE: Controller Placement Algorithm 114

8.1 ETHoS: Feasible State Generation Algorithm 128
8.2 ETHoS: Optimal State Generation Algorithm 130
8.3 GenerateNextState . 131
8.4 Cost . 132

xix

List of Symbols and
Abbreviations

List of Symbols

S Set of SDN switches

R Set of legacy switches

C Set of controllers

E Set of links

Qj Device queue of sj ∈ S

Pold Set of old packets

Pnew Set of new packets

Pj Set of incoming packets at sj

Slow Set of low priority SDN switches

Smedium Set of medium priority SDN switches

Shigh Set of high priority SDN switches

bij Bandwidth usage of link eij

wij Capacity of link eij

F Set of traffic flows

Dm Completion time of stage m of flow migration

DR
m Migration duration of a flow in the mth stage

RF (t) Reduction factor at time t

xxi

List of Symbols and Abbreviations

H Device mobility history

η1 Channel overhead of the wireless channel for IoT device to AP
communication

η1 Channel overhead of the wireless channel for AP to switch com-
munication

LBv Lower bound of the vth subproblem

LB0
v Initial value of the lower bound of the vth subproblem

Theff (t) Effective SDN throughput at time-slot t

B Network upgrade budget

Bs Switch placement budget

Bc Controller placement budget

Bs(t) Switch placement budget for time-slot t

Bc(t) Controller placement budget for time-slot t

LW (eij) Weight of link eij

SUj Utilization of jth legacy switch

PR(rj) Priority of legacy switch rj

NS(rj) Number of non-SDN links of legacy switch rj

V ol(rj) Average traffic that traverses legacy switch rj

W (rj) Average weight of the links of legacy switch rj

Pij Baseline power usage of link eij

Pacti Power consumption of the ith switch in active state

Pinacti Power consumption of the ith switch in inactive state

PEij Power consumption of link eij

PNi Power consumption of ith switch

UEij Link utility of link eij

Ua Route utility of flow fa ∈ F

xxii

List of Symbols and Abbreviations

List of Abbreviations

IoT Internet of Things

SDN Software-Defined Networking

TCAM Ternary Content Addressable Memory

IP Internet Protocol

CPP Controller Placement Problem

QoS Quality of Service

ILP Integer Linear Program

AD Access Device

ACL Access Control List

SDIoT Software-Defined Internet of Things

SNMP Simple Network Management Protocol

AP Access Point

API Application Programming Interface

FCFS First-Come-First-Serve

OvA One-Vs-All

LSI Latency-Sensitivity Index

SVD Singular Value Decomposition

RF Reduction Factor

LRU Least Recently Used

LB Lower Bound

NTU Non-Transferable Utility

OSPF Open Shortest Path First

SA Simulated Annealing

xxiii

Chapter 1

Introduction

With the recent advancements of the Internet of Things (IoT) technology, a wide variety

of smart devices have become an integral part of our daily life. These devices perform

several data-intensive operations such as online gaming, video streaming, smart traffic

control, extended reality-based services, smart healthcare, and industrial automation. It

is predicted that the number of IoT devices will be more than 50 billion by the end of

2025 [1]. Moreover, the next decade is expected to witness a substantial development

of next-generation networking platforms such as 5G, beyond 5G, and 6G. These future

networks demand ultra-low latency and high bandwidth [2]. Therefore, flexibility and

scalability are the need of the hour to address the QoS demands of the evolving networks.

SDN is a recent networking paradigm [3] that separates the control plane from the

data plane. As shown in Figure 1.1, SDN controllers placed in the control plane manage

SDN switches in the data plane [4]. Several useful features of SDN [5] (e.g., global view

of the network, separation of the data and control planes, and ability to program the

network functions) adds flexibility to the network management [6] and makes SDN an

attractive choice for network service provisioning.

1

1. Introduction

Figure 1.1: SDN: Data and Control Planes

1.1 Scalability Challenges in SDN

Despite offering flexibility in network management, SDN faces scalability issues in data

and control planes. The capacity of the switches limits the scalability of the data plane.

This limited storage capacity is a problem for network updates that involve changing

configuration of each switch separately. Existing update policies require the storage

of old configuration rules until the whole update process is complete. Hence, in the

worst-case, half of the rule-space needs to be free before the initiation of a network

update. Consequently, the cost of storing redundant rules reduces the network scalability.

Additionally, traffic flow migration is an essential aspect of network updates in SDN.

New traffic flows are generated frequently, and the existing flows are required to migrate

paths to accommodate these new flows. However, more than 80% of the total flows

in IoT networks are latency-sensitive. Therefore, completing traffic flow migration in

minimal time is essential, and the migration process should be consistent.

On the other hand, the control plane’s scalability depends mostly on the placement

of the controllers. The Controller Placement Problem (CPP) addresses two aspects

— (1) the number of controllers required and (2) the position of controllers. Hybrid

2

1.2. Scope of the Work

SDN is an intermediate step of transforming a traditional backbone network into pure

SDN. Therefore, incremental controller placement is an additional aspect of CPP for

hybrid SDN. Moreover, the dynamic distribution of the controllers’ workload is required

to enhance the network performance for large-scale data handling data. Finally, hybrid

SDN needs energy-aware traffic engineering to minimize the carbon footprint and ensure

a satisfactory amount of programmable traffic.

1.2 Scope of the Work

Rule-space capacity in SDN switches is limited. However, existing SDN update policies

ensure consistent packet processing by storing old configuration rules until the whole

update process completes. These approaches require maintaining additional rule-space.

So, minimizing the trade-off between rule-space usage and packet consistency is an issue

which is needed to be addressed. Traffic flow migration is an important aspect of the

SDN update. Existing solution approaches for traffic flow migration do not consider

the diverse traffic characteristics of traffic flows. An unplanned schedule disrupts the

operations of latency-sensitive applications and increases data plane load by link con-

gestion and rule-space overload. Therefore, there is a need for a delay-aware traffic flow

migration schedule that aims to reduce the data plane load. On the other hand, in the

existing literature, researchers have proposed several works for handling the rule-space

capacity constraint. However, the majority of these works do not consider dynamic traf-

fic. Therefore, there is a need for dynamic rule-space aggregation to improve network

operations.

On the other hand, legacy Internet Protocol (IP) networks are converted to SDN to

utilize flexibility and programmability offered by SDN. However, SDN-based futuristic

networks require a distributed control plane instead of a centralized one to address

the massive volume of data traffic with low latency. CPP is an essential aspect of

realizing a distributed control plane. The majority of the existing studies on CPP

3

1. Introduction

consider pure SDN, which does not require a switch upgrade. However, CPP in hybrid

SDN, an intermediate stage of migration from a legacy network to SDN, is incremental

and involves newly added SDN switches in each round. Managing these upgraded SDN

switches is essential to maintain the QoS requirement of the network. On the other

hand, there exists a lacuna in the research literature addressing the problem of control

plane load management for large-scale SDN, including SDIoT, where both mobile and

static devices are present. However, existing solution approaches do not consider device

mobility and heterogeneity while dealing with the dynamic workload. Therefore, there

is a need for a controller assignment scheme that considers heterogeneous mobile and

static IoT devices to reduce the control plane load.

Traffic engineering is another aspect of network scalability that ensures low-latency

processing of traffic flows and limits energy consumption. In the existing literature,

researchers proposed different approaches and architecture for green SDNs, viz., [7–9],

which achieves energy efficiency by activating the minimum number of links. However,

energy management in hybrid SDN should not be at the cost of programmable traf-

fic. Hence, there is a need for a dynamic energy management strategy that optimizes

programmable traffic and reduces the overall energy consumption of the hybrid network.

1.3 Problem Statement and Objectives

The objective of this thesis is to study SDN scalability in the context of — data plane

and control plane. The problem statement of this thesis is:

Rule-space capacity constraint and centralized control plane limit the processing ca-

pability of SDN. These scalability constraints of SDN data and control planes restrict the

adoption of SDN despite offering flexible and programmable network operations.

The objectives of the thesis are as follows:

1. Design of an optimized scheduling scheme for consistent SDN update without

4

1.3. Problem Statement and Objectives

storage of redundant rules.

2. Design of a traffic-aware data plane load reduction scheme for traffic flow migration

in SDN.

3. Design of a rule-space management scheme for reducing flow-table miss in SDN.

4. Design of a controller-switch assignment scheme for control plane load reduction

in SDIoT.

5. Design of a cost-efficient QoS-aware switch and controller placement strategy for

hybrid SDN.

6. Design of an energy-efficient traffic engineering approach for hybrid SDN.

The objectives of this thesis are depicted in Figure 8.2 .

Figure 1.2: Thesis Objectives

5

1. Introduction

1.4 Contributions

The primary contributions of this work are as follows:

• We design a priority-based algorithm for scheduling updates to SDN switches. We

propose a packet queueing mechanism for maintaining the consistency of incoming

packets during an update. Further, we design a packet processing algorithm that

processes the queued packets consistently. We compare our approach with the

existing solutions to highlight the benefits of the proposed scheme.

• We formulate an Integer Linear Program (ILP) to minimize the data link band-

width usage during flow migration. We formulate a coalition graph game to de-

termine the set of flows that must be migrated together. Based on the initial

migration schedule, we propose an algorithm to transform the initial migration

schedule to a feasible schedule, which reduces the data plane load. Additionally,

we analyze the rule-space usage in the switches and propose an algorithm that

ensures the rule-space required for the migration process.

• We propose a scheme that is capable of aggregating heterogeneous flow-rules. We

envision a tensor-based algorithm to compress rules in each switch. We perform an

extensive simulation to analyze the performance of the proposed scheme in terms

of rule-space usage.

• We propose a proactive master controller assignment scheme for control plane load

reduction in Software-Defined Internet of Things (SDIoT). The proposed scheme

uses the Markov Predictor to predict device-switch associations. Based on the pre-

diction results, we propose a device-aware rule-caching approach to reduce the load

of the controllers considering device-specific parameters such as QoS demand and

flow generation rate. Additionally, we design a master controller assignment algo-

rithm that identifies optimal controller-switch assignments in advance to minimize

6

1.5. Organization of the Thesis

the control plane load.

• We present a rank-based approach for the placement of SDN switches in hybrid

SDN. In this approach, we consider switch-specific parameters such as the number

of links, traffic volume, OSPF weights of the links, and the residual lifetime of

legacy switches. We formulate a coalition game to determine the locations of SDN

controllers to maximize the network throughput.

• We define a metric named route utility to estimate the cost of the routing paths

of the traffic flows. The parameters considered for the cost estimation are power

usage of the links, and programmability of the flows. We formulate an ILP for

the problem of energy-aware traffic engineering in hybrid SDN. We propose two

heuristic algorithms to dynamically generate an optimal network state to achieve

the desired objective formulated in the ILP.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows:

• Chapter 1 – Introduction: This chapter contains the background, motivation,

and objectives of the work.

• Chapter 2 – Literature Survey: The related works on scalability in SDN data

and control planes are surveyed in this chapter. We identify research gaps in the

existing works. Additionally, we study state-of-the-art works related to energy-

aware traffic engineering.

• Chapter 3 – Consistent Update with Redundancy Reduction: This chap-

ter considers the effects of rule-space capacity constraint during SDN update. We

evaluate the performance of the proposed solution considering relevant performance

metrics.

7

1. Introduction

• Chapter 4 – Data Plane Load Reduction for Flow Migration: In this

chapter, we study the scenario of flow migration involving latency-sensitive traffic

flows and its effects on the data plane load. We compare the proposed solution

with suitable benchmarks to evaluate its performance.

• Chapter 5 – Rule-Space Management: This chapter presents an approach to

enhance rule-space scalability. We present relevant results to prove the effectiveness

of the proposed scheme.

• Chapter 6 – Control Plane Load Reduction: In this chapter, we explore

load balancing among the controllers in the presence of IoT traffic. Subsequently,

relevant results of performance evaluation are presented.

• Chapter 7 – QoS-Aware Switch and Controller Placement: In this chapter,

we present an approach for the placement of SDN switches and controllers in

hybrid SDN to satisfy QoS demands. We analyze the performance of the proposed

approach considering appropriate performance metrics.

• Chapter 8 – Energy-Aware Traffic Engineering: In this chapter, we study the

trade-off between energy-aware traffic routing and the amount of programmable

traffic in the context of hybrid SDN where both legacy and SDN switches are

present. We present relevant results to show the effectiveness of the proposed

solution in the presence of high traffic volume.

• Chapter 9 – Conclusion: This chapter summarizes the contributions of this

thesis. Additionally, we mention some limitations of this work. Finally, we cite a

few research directions for the future extension of this work.

8

Chapter 2

Related Work

In this chapter, we survey the related literature on data plane scalability, control plane

scalability, and energy-aware traffic engineering in SDN. In the existing literature, several

works focus on addressing the rule-space capacity constraint in SDN. Moreover, some

recent studies are devoted to control plane optimization for enhancing network scala-

bility. Additionally, many prior works investigate the problem of energy management,

which is necessary for handling large-scale data traffic.

The rest of the chapter is organized as follows. Section 2.1 presents works related to

data plane scalability. In Section 2.2, we review the related literature on control plane

scalability. Section 2.3 discusses the existing works on energy-aware traffic engineering

in SDN. Finally, Section 2.4 concludes the chapter.

2.1 Data Plane Scalability

We divide the exiting literature on data plane scalability into two sections – capacity-

aware consistent update and rule-space capacity management. Table 2.1 shows a sum-

mary of different works on data plane scalability.

9

2. Related Work

Table 2.1: Summary of different works on data plane scalability

Studies Solution Approaches Shortcomings

Francois et al. [10] Ordered update Modifies network protocols
and switches

Reitblatt et al. [11] Two-phase update

Overhead due to the addi-
tion of version tags to incom-
ing packets and storage of old
rules

Mizrahi et al. [12] Timed update

Synchronizing updates to all
the switches encounters com-
putational complexity and de-
pends on specific switch prop-
erties

McGeer et al. [13] Buffered update

Overloads the control plane;
additional overhead is in-
curred due to the installation
of the intermediate flow-rules

Meiners et al. [14] Flow-table aggregation High computation time for
the larger partition size

Kanizo et al. [15] Flow-rule partitioning

Increases the total number of
rules, because two separate
rules are generated for each do
not care (*) pivot bits

Kosugiyama et al. [16] Traffic flow aggregation Considers latency-sensitive
flows only

2.1.1 Capacity-Aware Consistent Update

Existing works related to capacity-aware consistent update are categorized in four parts

including ordered, incremental, timed, and buffered updates.

In case of ordered update, the controller partitions the total update procedure into

multiple stages [10], [17], [18]. It waits for the completion of each stage before starting the

next stage. The last stage is garbage collection, where older rules are deleted. Francois

10

2.1. Data Plane Scalability

et al. [10] proposed an ordered update scheme that ensures packet-level consistency by

preventing the formation of loops. However, this approach requires a modification of

network protocols as well as of the forwarding devices. Bera et al. [17] proposed a

prediction-based mobility-aware update mechanism for SDIoT, which inserts new rule

at the next Access Device (AD), and performs garbage collection at the current AD.

Clad et al. [18] generated an optimized sequence for updating the weights of links. The

ordered update policy encounters service latency as the completion of the previous phase

restricts each phase.

In the incremental update approach, the network is updated in multiple phases,

where each phase updates a portion of flow-rules or a subset of switches. Reitblatt et

al. [11] proposed a two-phase update approach where the internal and ingress switches

are updated in phase 1 and phase 2, respectively. Updated ingress switches attach new

version tags to the incoming packets. The incoming packets are processed by either

old or new rules (not both) based on the version tag. Older rules are deleted after

all packets with old version tags are processed. This method increases the load on

the ingress switches, as they have to modify the incoming packets. Moreover, memory

overhead is incurred for storing old rules. In another work, Canini et al. [19] discussed

an incremental update approach, which is similar to database transactions, where either

all switches are updated, or none are. Therefore, the ordered and incremental update

approaches require extra flow-table space for accommodating duplicate rules. Moreover,

the controller is involved until all switches complete update.

To reduce this overhead, Mizrahi et al. [12] proposed an extension of OpenFlow

protocol by scheduling the update phases at particular time instants for both ordered

and incremental updates. This approach preserves packet-level consistency by avoid-

ing conflicts in updates. This technique reduces the duration required to store older

rules in SDN switches. However, synchronizing updates to all the switches encounters

computational complexity and depends on particular forwarding devices’ characteristics.

11

2. Related Work

Buffered update approach [13] identifies the incoming packets, whose routes are going

to be affected by the upcoming update, and redirects the packets to the controller by

installing intermediate flow-rules at all switches. These packets are buffered in the control

plane until the switches are updated. After the completion of the update, the packets

are processed according to the new rules. The major limitation of this approach is that

it overloads the controller and increases service latency. Further, additional overhead is

incurred due to the installation of the intermediate flow-rules.

2.1.2 Rule-Space Capacity Management

Prior works related to rule-space capacity management are categorized in three parts

— flow-table aggregation, flow-rule partitioning, and traffic flow aggregation.

Earlier, table aggregation approaches considered only prefix entries, where do not

care (∗)s do not appear at the beginning of the ternary strings. Applegate et al. [20]

proposed a prefix-based minimization technique for Access Control Lists (ACLs), which

have entries similar to TCAMs. Meiners et al. [14] proposed bit weaving, which partitions

the total rule-set and permutes the bit positions for each of the partitions to transform all

non-prefix entries into prefix entries. Finally, these transformed partitions are merged,

after which each entry is re-permuted to their original bit order. However, one of the

significant limitations of bit weaving is high computation time for the larger partition

size. This is even worse in networks where data frequently changes because bit weaving

recomputes the whole rule-set for each rule update.

Other related works concern the approach of partitioning the flow-rules. Kanizo et

al. [15] presented a decomposition technique, which partitions a flow-table into sub-tables

and distributes the sub-tables across the network. They proposed two methods — Pivot

Bit Decomposition (PBD) and Cut-Based Decomposition (CBD). PBD decomposes the

table into sub-tables by selecting a pivot bit/column. However, PBD increases the total

number of rules, because two separate rules are generated for each do not care (*) pivot

12

2.2. Control Plane Scalability

bits. On the other hand, CBD represents the set of rules by a dependency graph. Moshref

et al. [21] proposed a virtual Cloud Rule Information Base (vCRIB), which partitions the

overlapping rules by splitting them. Consequently, the overall number of rules increases.

Traffic flow aggregation approaches minimize the total number of flows to reduce

the number of flow-rules. Kosugiyama et al. [16] proposed an approach that considers

end-to-end delay as a parameter of flow aggregation. However, the authors considered

latency-sensitive flows only.

2.2 Control Plane Scalability

We divide the prior works on control plane scalability into two categories — control plane

load management and controller placement. Table 2.2 shows a summary of different

works on control plane scalability.

Table 2.2: Summary of different works on control plane scalability

Studies Solution Approaches Shortcomings

Bari et al. [22] Dynamic controller pro-
visioning

Does not consider queueing delay at
the controller

Sahoo et al. [23] Switch migration-based
load balancing

Does not consider the effects of un-
even traffic distribution.

Heller et al. [24] Latency-aware con-
troller placement Brute-force approach

Müller et al. [25] Load-aware controller
placement

Ignores the switch-to-controller la-
tency

Huque et al. [26] Load and latency-aware
controller placement

Frequent activation and deactiva-
tion of controllers increases control
plane overhead in terms of messages

13

2. Related Work

2.2.1 Control Plane Load Management

Existing approaches in this field are categorized into two parts — controller placement-

based and switch migration-based.

Controller placement-based schemes select the number and locations of the controllers

to manage the load. Hock et al. [27] considered the maximum control link latency and

the number of switches attached to a controller in order to place the controllers and

stabilize the load. However, the authors assume static traffic between switches and

controllers. Therefore, this approach is not preferable for large-scale networks, including

IoT networks. Ksentini et al. [28] proposed a controller placement technique based on

Nash bargaining game. The authors considered control link latency and equal load

distribution to the controllers as the major objectives. However, this approach does not

consider the master and slave roles of an SDN controller. Huque et al. [26] proposed

LiDy+, which places the controller modules based on data plane traffic prediction. The

load is distributed evenly among the controllers in each module. However, frequent

activation and deactivation increases control plane overhead in terms of messages.

Switch migration-based schemes migrate switches from a highly-loaded controller’s

domain to the domain of a lightly-loaded controller. Dixit et al. [29] proposed a switch-

migration scheme that migrates switches from an overloaded controller to a controller

with less load. The proposed approach includes the addition and removal of controllers,

as required, in the presence of dynamic traffic. However, this approach ignores switch-

to-controller latency. Bari et al. [22] proposed Dynamic Controller Provisioning with

Simulated Annealing (DCP-SA), which dynamically activates and deactivates controllers

to reduce the flow setup cost and the overhead for communication. In this work, the

authors used two heuristics based on greedy knapsack and Simulated Annealing (SA).

The proposed heuristics periodically reassign switches to controllers for addressing load

imbalance at the control plane. The proposed approach does not consider queueing delay

at the controller. Sahoo et al. [23] proposed an Efficient Switch Migration technique for

14

2.2. Control Plane Scalability

Load Balancing (ESMLB) scheme to balance the control plane load in SDIoT. The

proposed approach identifies the overloaded controllers and the switches which send

the maximum Packet-In requests to each overloaded controller. Each selected switch is

migrated to a lightly-loaded target controller, which is selected based on multiple criteria

such as hop count, memory usage, and bandwidth. However, the proposed approach does

not consider the effects of uneven traffic distribution.

2.2.2 Controller Placement

The prior research works related to controller placement can be categorized broadly into

three groups depending, on the parameters considered for placing the controllers.

The first category of work considers only the latency between switches and controllers.

Heller et al. [24] formed an optimization problem to determine the number and location

of controllers for given network topology. This work considered average-case (worst-

case) latency bound as metrics for the optimization problem formulated as a k-median

(k-center) problem. This approach is a brute-force, in which all possible solutions were

evaluated to reach the optimal solution. Lange et al. [4] proposed a heuristic algorithm

to address the CPP. The principal metrics considered in this solution are controller-

switch latency, inter-controller latency, and network resiliency. However, this approach

does not consider network traffic or controller capacity as a parameter for the solution.

The second category of works considers only the traffic load on the controllers. Müller

et al. [25] proposed a controller placement scheme based on three major parameters — (1)

path diversity between controllers and switches, (2) controller capacity, and (3) ordering

of backup controllers. The authors suggested a heuristic method for listing the backup

controllers based on proximity or residual capacity. However, the authors ignored the

latency between switches and controllers.

Another category of work considers both the control plane load and the latency be-

tween the network elements. Ksentini et al. [28] suggested a game-theoretic approach

15

2. Related Work

considering controller load, switch-controller latency, and inter-controller latency. How-

ever, this work assumes static network traffic. Tanha et al. [30] proposed a resilient so-

lution considering deployment cost and propagation latency. The authors recommended

backup controllers at multiple resiliency levels to address controller failure. Sallahi et

al. [31] developed a mathematical model to estimate the number and location of the

SDN controller(s). The authors considered different types of controllers and links for

the solution. However, this solution does not apply to large-scale networks. Huque et

al. [26] proposed a controller placement technique for large-scale networks. The authors

also made a provision for open search that removes the restriction of selecting controller

locations from a set of fixed choices only. However, this work did not consider any QoS

parameters.

2.3 Energy-Aware Traffic Engineering in SDN

Several existing works investigates the problem of energy management in SDN/hybrid

SDN [7, 9, 32]. Giroire et al. [7] considers the rule-space constraint of SDN switches

and minimizes energy consumption by deactivating data links. The authors formulated

an ILP and proposed a heuristic algorithm. Fernández-Fernández et al. [9] considers

in-band control traffic as the basic criteria for deactivating links and proposed an heuris-

tic algorithm. Huin et al. [33] proposed a traffic-aware energy management scheme,

named SENAtoR, for hybrid SDN. This work includes traffic rerouting, link deactiva-

tion, and traffic monitoring to avoid packet loss. SENAtoR reactivates the deactivated

SDN switches in case of a sudden increase in traffic load or link failure. Assefa and

Özkasap [32] proposed a new metric named Ratio for Energy Saving in SDN (RESDN),

which quantifies the amount of link usage. The authors proposed a heuristic algorithm

to assign route, having the maximum RESDN, to each flow.

16

2.4. Concluding Remarks

2.4 Concluding Remarks

In this chapter, we present the state-of-the-art related to SDN scalability. Existing

SDN update approaches store old rules and new rules until all switches are updated to

maintain packet consistency. Hence, for the worst-case scenario, 50% of the storage space

needs to be empty before starting the network update. Therefore, the cost of storing

redundant rules decreases the scalability of the overall network. This problem motivates

us to design a scheme for SDN update without storing old rules, once the new rules

are installed. Moreover, existing solution approaches do not consider the diverse traffic

characteristics of traffic flows during an update. This is problematic for the migration of

latency-sensitive flows, which is a frequent event during the SDN update. Motivated by

this lacuna, we design a traffic-aware flow migration scheme. Additionally, we infer that

there exist a few works for handling the capacity constraint of flow-tables. However,

most of these works do not consider dynamic network traffic, which is usual for IoT

applications. This lacuna motivates us to design a flow-rule aggregation scheme that

considers heterogeneous traffic and reduces control messages.

From the detailed study of the existing literature, we infer that there exists a lacuna

in the research literature addressing the problem of control plane load management for

large-scale SDN, including SDIoT, where the heterogeneous attributes of IoT devices

have a major impact on the control plane load. However, existing solution approaches

do not consider device heterogeneity while dealing with the dynamic workload. More-

over, existing solution approaches ignore the bursty nature of IoT traffic due to different

activation models of IoT devices. Motivated by this problem, we propose a master con-

troller assignment scheme for control plane load reduction in SDIoT while considering

heterogeneous attributes of IoT devices such as mobility, activation model, and QoS

demand. On the other hand, most of the existing literature on CPP seeks to find the

optimum placement of controllers depending on the traffic load and latency between

switches and controllers. In addition, most of the existing studies consider pure SDN,

17

2. Related Work

which does not require a switch upgrade. However, CPP in hybrid SDN is incremental

and involves newly added SDN switches in each round. Managing these upgraded SDN

switches is essential to maintain the QoS requirement of the network. This lacuna moti-

vates us to design a controller placement scheme in hybrid SDN so that each controller

is able to deliver guaranteed service in terms of throughput and delay.

From the exhaustive study of existing literature, it is evident that there exists a need

for an energy management scheme in hybrid SDN, which optimizes the programmable

traffic. Existing solution approaches do not address the trade-off between programmable

traffic and energy-aware routing. Motivated by this research gap, we design an energy-

aware traffic engineering in hybrid SDN considering programmable traffic as a metric.

18

Chapter 3

Consistent Update with

Redundancy Reduction

In this chapter, we present a scheme for Consistent Update with Redundancy Reduction

(CURE) in SDN. Existing SDN update approaches store old rules along with new rules

until all switches are updated. Therefore, for the worst-case scenario, 50% of the storage

space needs to be empty before starting the network update. CURE ensures consistent

flow-rule update without storing old flow-rules. Consequently, the maximum number of

flow-rules present in the network during the update is reduced.

This chapter consists of four sections. The system model of CURE is presented

in Section 3.1. Section 3.2 describes the proposed scheme. Section 3.3 depicts the

experimental results. Finally, Section 3.4 concludes the proposed work and discusses

directions for future work.

3.1 System Model

We model the network as a graph G = (N, E), where N is the set of nodes, and E is the

set of links between the nodes. The set N is expressed mathematically as:

19

3. Consistent Update with Redundancy Reduction

Figure 3.1: CURE: SDN Architecture

N = C ∪ S, (3.1)

where C is the set of controllers, and S is the set of OpenFlow switches. Figure 3.1

shows the network model. The upper bound of the number of flow-rules which can be

stored in an OpenFlow switch si is denoted as Ui. Each switch sj has an associated

device queue denoted as Qj . The set of links E is defined as:

E = Ecc ∪ Ecs ∪ Ess, (3.2)

where Ecc is the set of links between the controllers, Ecs is the set of control links

between the controllers and the OpenFlow switches, and Ess is the set of data links

between the OpenFlow switches for packet forwarding.

For simplicity, we assume a centralized control plane containing a single controller c.

Hence, S = {s1, s2, ..., s|N|−1}, Ecc = φ and the number of links in Ecs is |S| = |N| − 1.

Each switch stores the flow-rules in one or multiple flow-tables [34]. A flow-rule Rji

in sj is a ternary string denoted by a tuple < Prji ,M
j
i , A

j
i >, where Pr

j
i denotes rule

priority, M j
i denotes the set of match fields, and Aji denotes the set of action values.

20

3.1. System Model

Each flow-rule also contains a set of counters for storing the rule statistics, timeout value,

cookie, and flags [34]. If an incoming packet matches multiple rules, then the rule with

the highest priority value is selected, and the corresponding action is taken.

Definition 1 (State of a Switch). The state of sj at time t is defined by:

Λj(t) = {Rj(t), Ejcs(t), Ejss(t), τ j(t)}, (3.3)

where Rj(t) is the set of flow-rules of sj at time t, Ejcs(t) ∈ Ecs is the set of control

links involving sj at time t, Ejss(t) ∈ Ess is the set of data links involving sj at time t,

and τ j is the last update time of sj at time t.

Definition 2 (Network Configuration). Network configuration at time t is defined by:

Γ(t) =
|S|⋃
j=1

Λj(t) (3.4)

Definition 3 (Network Update). Network update in SDN is migration from one network

configuration Γ to another configuration Γ′ such that,

Γ(ti) 6= Γ′(tj), where ti 6= tj (3.5)

Major objective for this work is to minimize the maximum TCAM usage during

update without congesting the links and to maintain packet-level consistency. For a

network update from Γ(ti) to Γ′(tj), the optimization problem is formulated as follows:

min max
tj∑
t=ti

|S|∑
j=1
|Rj(t)| (3.6)

Equation (3.6) minimizes the maximum number of rules in the whole network, subject

to the following constraints:

|Rj(t)| 6 Uj ,∀sj ∈ S (3.7)

21

3. Consistent Update with Redundancy Reduction

Equation (3.7) expresses the switch capacity constraint for storing flow-rules.

M j
r = M j

s and Ajr = Ajs, ∀Λj(ti) = {Rj(ti), Ejcs(ti), Ejss(ti),

τ j(ti)},∀Λj(tk) = {Rj(tk), Ejcs(tk), Ejss(tk), τ j(tk)}, ti < tk,

Rjr ∈ Rj(ti), Rjs ∈ Rj(tk),Duration(Rjr) < Duration(Rjs),

(3.8)

where Duration(Rji) is a counter [34], which denotes the elapsed time after installation

of the flow-rule Rji . Equation (3.8) prohibits the storage of older and newer versions of

a rule in a switch simultaneously.

3.2 CURE: The Proposed Scheme

In this section, we describe the proposed scheme, CURE, for the SDN update. Based on

workload, we first classify the to-be-updated switches into three priority regions, namely

high, medium, and low. Thereafter, we design an algorithm for scheduling updates

among the switches of different priority regions. Next, we propose a packet queueing

mechanism to maintain packet-level consistency during the update. Finally, we propose

an algorithm for processing the queued packets.

3.2.1 Switch Classification

Each OpenFlow switch flow-table maintains a counter field, which records the details

of the matching packets. Based on the counter value, we build a training data set.

Therefore, we employ the existing One-Vs-All (OvA) multiclass classification algorithm

[35] to classify the to-be-updated switches into three priority zones — low, medium,

and high. This classification depends on the network topology, packet arrival rate,

and existing flows in the network. If the traffic load in all switches are approximately

equal, CURE uses the number of active entries in each flow-table as a metric for the

classification. The number of active entries in each flow-table is also stored as a counter

field [34].

22

3.2. CURE: The Proposed Scheme

3.2.2 Rule Update

Algorithm 3.1 schedules the update based on the priority zones. Before starting the

update, c sends UPDATE signal at time T0 to mark the set of switches that are to be

updated. Therefore, the network configuration before update is Γ(T0). c waits for δ time

interval before sending the first update packet. Heavily loaded switches are updated first

at time Thigh > T0. Next, medium priority switches are updated at time Tmedium > Thigh.

Finally, low priority switches are updated at time Tlow > Tmedium. During the update

procedure at a switch, the set of new rules is installed first, and the older rules are

deleted thereafter. In other words, garbage collection at each switch is performed right

after the completion of the update at the switch. Therefore, this algorithm complies

with the constraints stated in Equations (3.7) and (3.8). When every switch is updated,

the network reaches a configuration Γ(Tcomplete) at time Tcomplete > Tlow.

Algorithm 3.1: CURE: Rule Update Algorithm
Inputs : Slow, Smedium, Shigh
Output: S′′ : Set of updated switches

1 UPDATESWITCHES(SReg)
2 forall sj ∈ SReg do
3 Process Pold
4 Insert Rj

′

5 Remove Rj

6 S
′′ ← S

′′ ∪ {sj}
7 end
8 S

′′ ← ∅
9 forall sj ∈ Slow ∪ Smedium ∪ Shigh do

10 SIGNAL(sj , UPDATE)
11 WAIT (δ ms)
12 end
13 UPDATESWITCHES(Shigh)
14 UPDATESWITCHES(Smedium)
15 UPDATESWITCHES(Slow)
16 return S

′′

Definition 4 (Old Packet). After T0, a packet is marked old, if it is processed by a

23

3. Consistent Update with Redundancy Reduction

switch, which is yet to be updated.

Definition 5 (New Packet). After T0, a packet is marked new, if it is processed by a

updated switch.

Let Pold and Pnew denote the sets of old and new packets, respectively. When c

selects a priority region for the update, all p ∈ Pold in that region are processed before

starting the installation of new rules. This ensures that a packet, which is already

processed by an old rule, is only processed by old rules. If an old packet reaches an

updated switch, the packet is sent to c for further decision. Similarly, if a new packet

reaches a to-be-updated switch, which is not in the current update region, the packet is

sent to c for further decision.

Definition 6 (Update Duration). Update duration is the time interval between the dis-

patch of the first update message by c and the update completion of the last switch,

including garbage collection.

Definition 7 (Inconsistent Packet). A packet p ∈ Pold is termed inconsistent, if it

reaches an updated switch. A packet p ∈ Pnew is termed inconsistent if it reaches a

switch, which is not updated and is not in the current update region.

3.2.3 Packet Queueing

Algorithm 3.2 depicts a queueing mechanism for the consistent processing of incoming

packets during an ongoing update procedure. The packet queueing algorithm (PQA)

is triggered for each to-be-updated switch sj ∈ S in the present update region after c

starts update in that region. If sj has received an UPDATE signal recently, PQA checks

statistics at c to verify whether the switch is already updated. PQA stores the packet if

the update process is incomplete in the corresponding switch.

Packets are stored in Qj until it is full. Thereafter, the packets are redirected to the

least priority switch sneighbor, which belongs to a lower priority region and has free buffer

24

3.2. CURE: The Proposed Scheme

Algorithm 3.2: CURE: Packet Queueing Algorithm
Inputs : S

′′ ,sj , P j
Output: Pcount: Number of packets buffered outside of Qj

1 STOREPACKET(p, sj, j)
2 if Qj is not full then
3 Store p in Qj

4 else
5 if sneighbor 6= NULL then
6 Store p in Qneighbor

7 Pcount ← Pcount + 1
8 else
9 Buffer p at c

10 Pcount ← Pcount + 1
11 end
12 end
13 forall p ∈ Pj do
14 if sj ∈ S

′′ then
15 Process p
16 else
17 STOREPACKET(p, sj , j)
18 end
19 end
20 return Pcount

space within one-hop neighbors of sj . In this scenario, a switch-identifier flag is added

to the packet header specifying the switch id where the packet arrived initially. The

packets are buffered at c when no such neighbor exists. For each switch, we maintain a

counter Pcount that counts the number of packets stored outside of the switch’s buffer.

3.2.4 Packet Processing

After the completion of the update, each switch su triggers c by informing that it is

ready for processing packets. Algorithm 3.3 describes the procedure of processing the

waiting-packets. If Qu is full and the buffer size is K, the packet processing algorithm

processes the first K packets waiting at Qu. Then a portion of Qu is reserved for storing

the waiting packets with matching switch-identifier flag in the one-hop neighbor. We

25

3. Consistent Update with Redundancy Reduction

name this buffer space as secondary buffer. The size of secondary buffer is determined

from the available counter value. Packets waiting in Qneighbor and/or c are shifted to the

secondary buffer. After processing these packets, the secondary buffer space is merged

with the switch’s original buffer before processing the new ones.

Algorithm 3.3: CURE: Packet Processing Algorithm
Input : su: Switch that triggered packet processing
Output: P ′′ : Set of packets in secondary buffer

1 if |Qu| == K then
2 P

′′ ← ∅
3 Process first K packets in Qu

4 forall p ∈ Pj stored at sneighbor do
5 Copy p to secondary buffer of Qu

6 P
′′ ← P

′′ ∪ {p}
7 end
8 forall p ∈ Pj buffered at the c do
9 Copy p to secondary buffer of Qu

10 P
′′ ← P

′′ ∪ {p}
11 end
12 Process packets in secondary buffer
13 Merge secondary buffer with Qu

14 end
15 Process packets in Qu

16 return P
′′

3.2.5 Queueing Model

The queue of each switch sj is modeled as aM/M/1/K/α queueing system [36,37] where

the incoming packets follow Poisson’s distribution and those packets are processed by sj

with an exponentially distributed service time. Let, 1
µj

and 1
λj

denote the mean service

time and mean inter-arrival time at sj , respectively. We also consider that each switch

has a finite queue length of K. Figure 3.2 depicts the queueing model for SDN.

Figure 3.3 shows the state-transition-rate diagram of our proposed queueing model

for a single switch. The average packet arrival rate and average service rate for the

switch be λ and µ, respectively. Therefore, the traffic intensity is ρ = λ
µ . The switch is

26

3.2. CURE: The Proposed Scheme

Figure 3.2: SDN Queueing Model

in region r ∈ {high∪medium∪low}. Initially, c sends an update signal to the switch. As

depicted in Figure 3.3, we consider that the update procedure of an OpenFlow switch

consists of three stages. In the first stage, the switch receives an update signal, and

region r has not started the update. The second stage begins when r starts the update.

The final stage begins when the switch completes the update. The switch continues

processing until the second stage begins. During the second stage, the switch queues

the received packets, unless it completes an update. Therefore, the service rate for this

stage is µ = 0. If the switch queue is full, the packets are buffered at the neighbor queue

or the controller buffer, according to Algorithm 2. Hence, the increased traffic intensity

of a neighbor switch sa for buffering packets of the current switch is given by:

ρovera =
(
λ+ λa
µa

)
(3.9)

During the final stage, the switch processes the packets from the neighbor buffer

and its buffer, as mentioned in Algorithm 3.3. Therefore, the new packet arrival rate is

λnew = λ+λneighbor, where λneighbor is the rate at which the packets arrive at the current

switch from the buffer of the neighbor switch. The traffic intensity in this scenario is

27

3. Consistent Update with Redundancy Reduction

Figure 3.3: State-Transition-Rate Diagram of CURE for a Switch

ρnew = λnew

µ . After the switch processes all the packets stored in the neighbor queue, we

set λneighbor = 0 and λnew = λ.

The probabilities that the switch has a packets in the three stages are denoted by

P 1
a , P 2

a , and P 3
a , respectively. However, as per our assumption, the processing of packets

at a switch is a Poisson process. Therefore, according to queueing theory, the steady

state probability that the switch has i packets in the first stage is given by:

P 1
i = ρiP 1

0 (3.10)

We consider the scenario that region r starts update when the switch has i packets

queued and completes update when it has j packets queued. We know, P 2
i = P 1

i . During

the second stage, packets are added to the queue at the rate of λ and no processing is

performed. Hence, we get:

P 2
i = P 2

i+1 = · · · = P 2
K = P 1

i (3.11)

28

3.2. CURE: The Proposed Scheme

Similarly, from Equation (3.11), we get:

P 3
j = P 2

j = P 1
i (3.12)

The probability P 3
j is also expressed as:

P 3
j = (ρnew)jP 3

0 (3.13)

From Equations (3.10), (3.12), and (3.13) we have:

P 3
0 = ρi

(ρnew)j P
1
0 (3.14)

According to queueing theory for finite queue length, at steady state:

P 1
0 = 1− ρ

1− ρK+1 , P
3
0 = 1− ρnew

1− (ρnew)K+1 (3.15)

Hence, from Equations (3.14) and (3.15), the probability P 1
0 is defined as:

P 1
0 = (ρnew)j(1− ρnew)

ρi(1− (ρnew)K+1) (3.16)

Let L and Lnew be the expected number of packets in the switch before starting

update and after the completion of update, respectively. Mathematically,

29

3. Consistent Update with Redundancy Reduction

L = ρ(1 +KρK+1 − (K + 1)ρK)
(1− ρ)(1− ρK+1) (3.17)

Lnew = ρnew(1 +K(ρnew)K+1 − (K + 1)(ρnew)K)
(1− ρnew)(1− (ρnew)K+1) (3.18)

Let W and Wnew be the mean waiting time at the switch before starting update and

after the completion of update, respectively. Therefore, the increase in mean waiting

time at the OpenFlow switch due to update is given by:

Wnew −W =
(
Lnew

λnew −
L
λ

)
= 1

µ

(
−1+KρK+1−(K+1)ρK

(1−ρ)(1−ρK+1)

+1+K(ρnew)K+1−(K+1)(ρnew)K
(1−ρnew)(1−(ρnew)K+1)

) (3.19)

The valueWnew−W provides an estimate of the latency incurred due to rule update.

After the switch completes processing the packets stored in the neighbor queue, Wnew−

W becomes zero, eventually.

3.3 Performance Evaluation

In this section, we evaluate the performance of CURE in terms of the following metrics:

(a) update duration, (b) average rule-space utilization, (c) average packet waiting time,

and (d) inconsistent packet count. To evaluate the performance, we performed two

experiments. In the first experiment, we measured the update duration and the average

rule-space utilization, while varying the number of switches in a leaf-spine topology with
2N
3 leaf (ingress) switches and N

3 spine switches (e.g., [12]). In the second experiment, we

simulated three network topologies available at the Internet Topology Zoo [38], namely

Sprint, NetRail, and Compuserve. As shown in Figure 3.4, we run five test flows in each

30

3.3. Performance Evaluation

of these topologies to compute the performance concerning the average packet waiting

time and inconsistent packet count. Table 3.1 depicts the simulation parameters.

(a) Sprint Topology (b) NetRail Topology

(c) Compuserve Topology

Figure 3.4: Test Flows in Sprint, NetRail, and Compuserve Topology

Table 3.1: CURE: Simulation Parameters
Parameter Value

Number of switches in the leaf-spine topology 6− 48
Rule-space size in a switch 8000 flow entries [39]
Upper bound on controller-to-switch delay 4.865 ms [12]
Upper bound on end-to-end network delay 0.262 ms [12]
Upper bound on time interval between dispatch of two
consecutive update messages 5.240 ms [12]

Average packet arrival rate per switch 0.005− 0.025 mpps
Average packet service rate per switch 0.030 mpps [40]
Average queue size per switch 0.073 million packets
Flow-table lookup time 33.333 µsec [40]

31

3. Consistent Update with Redundancy Reduction

3.3.1 Result and Discussion

3.3.1.1 Update Duration

The update duration is the time interval between the dispatch of the first update message

by the controller and the update completion of the last switch. Garbage collection, i.e.,

the removal of old rules is included in the update duration, as defined in Definition 6.

Figure 3.5 depicts the update duration for two-phase update [11], timed two-phase

update [12], Buffered Update [13], and CURE in a leaf-spine topology. The two-phase

update approach (both untimed and timed) updates the spine switches in phase 1, the

leaf switches in phase 2, and performs garbage collection after completion of phase 2.

From Figure 3.5, we can see that the update duration for the timed two-phase update

is 27.919% less than that of the two-phase update. The update duration for CURE is

37.563% less than that of the two-phase update. The update duration is almost similar

for timed two-phase update and CURE. Duration for the buffered update is high due to

the overhead for the installation of intermediate rules. From Figure 3.5, we yield that

the update duration for CURE is short as it does not have a separate garbage collection

phase.

3.3.1.2 Average Rule-Space Utilization

We calculate the average rule-space utilization as the percentage of rule-space used

during different stages of the update by N switches in the leaf-spine topology.

Figure 3.6 shows the rule-space utilization percentage for two-phase update [11],

timed two-phase update [12], Buffered Update [13], and CURE. CURE and the buffered

update utilize a similar amount of rule-space, as they both do not store redundant

rules. Whereas, rule-space utilization is almost similar for the two-phase update and

the timed two-phase update, as they both require to store both old and new rules until

the start of the garbage collection phase. The average rule-space requirement for CURE

is 29.954% and 30.348% less than that of the two-phase update and timed two-phase

32

3.3. Performance Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

6 12 18 24 30 36 42 48

U
p
d
at

e
D

u
ra

ti
o
n
 (

s)

Number of Switches

 Two-phase Update
 Timed Two-phase Update

 Buffered Update
 CURE

Figure 3.5: CURE: Update Du-
ration

 0

 20

 40

 60

 80

 100

6 12 18 24 30 36 42 48

A
v
er

ag
e

R
u
le

 S
p
ac

e
U

ti
li

za
ti

o
n
 (

%
)

Number of Switches

 Two-phase Update
 Timed Two-phase Update

 Buffered Update
 CURE

Figure 3.6: CURE: Average
Rule-Space Utilization

6
12

18
24

30
36

42
48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 20

 40

 60

 80

 100

A
v
er

ag
e

R
u
le

 S
p
ac

e
U

ti
li

za
ti

o
n
 (

%
)

 Two-phase Update
 Buffered Update

 CURE

Number of Switches Update Duration (s)A
v
er

ag
e

R
u
le

 S
p
ac

e
U

ti
li

za
ti

o
n
 (

%
)

Figure 3.7: CURE: Update Duration and Average Rule-Space Utiliza-
tion

update, respectively. As shown in Figure 3.6, we synthesize that the average rule-space

utilization is short in CURE, as the storage of both versions of rules, simultaneously, is

not required.

Figure 3.7 portrays the relationship between the number of switches, average rule-

space utilization, and update duration for the two-phase update, buffered update, and

CURE.We see that CURE outperforms the others, considering both performance metrics

— average rule-space utilization and update duration.

33

3. Consistent Update with Redundancy Reduction

 0

 5

 10

 15

 20

 25

0.005 0.01 0.015 0.02 0.025

A
v
er

ag
e

P
ac

k
et

 W
ai

ti
n
g
 T

im
e

(m
s)

Average Arrival Rate (mpps)

 Flow s1
 Flow s2
 Flow s3

 Flow s4
 Flow s5

(a) Sprint Topology

 0

 5

 10

 15

 20

 25

0.005 0.01 0.015 0.02 0.025

A
v
er

ag
e

P
ac

k
et

 W
ai

ti
n
g
 T

im
e

(m
s)

Average Arrival Rate (mpps)

 Flow n1
 Flow n2
 Flow n3

 Flow n4
 Flow n5

(b) NetRail Topology

 0

 5

 10

 15

 20

 25

0.005 0.01 0.015 0.02 0.025

A
v
er

ag
e

P
ac

k
et

 W
ai

ti
n
g
 T

im
e

(m
s)

Average Arrival Rate (mpps)

 Flow c1
 Flow c2
 Flow c3

 Flow c4
 Flow c5

(c) Compuserve Topology

Figure 3.8: CURE: Average Packet Waiting Time

3.3.1.3 Average Packet Waiting Time

For each of the three topologies — Sprint, NetRail, and Compuserve, we simulate five

test flows, and calculate the average waiting time for the incoming packets that are either

waiting in the switch queues or are in process. Figure 3.4 depicts the topologies, and

the test flows. We estimate the delay of each link based on the distance between the

corresponding nodes. Similar to Ref. [12], we assume 5 microsecond delay per kilometer.

34

3.3. Performance Evaluation

 0

 2

 4

 6

 8

0.005 0.01 0.015 0.02 0.025A
v
er

ag
e

In
co

n
si

st
en

cy
 (

%
)

Average Arrival Rate (mpps)

 Two-Phase Update
 Timed Two-Phase Update

 CURE

(a) Sprint Topology

 0

 2

 4

 6

 8

0.005 0.01 0.015 0.02 0.025A
v
er

ag
e

In
co

n
si

st
en

cy
 (

%
)

Average Arrival Rate (mpps)

 Two-Phase Update
 Timed Two-Phase Update

 CURE

(b) NetRail Topology

 0

 2

 4

 6

 8

0.005 0.01 0.015 0.02 0.025A
v
er

ag
e

In
co

n
si

st
en

cy
 (

%
)

Average Arrival Rate (mpps)

 Two-Phase Update
 Timed Two-Phase Update

 CURE

(c) Compuserve Topology

Figure 3.9: CURE: Average Packet Inconsistency

3.3.1.4 Inconsistent Packet Count

Figure 3.8 depicts the average packet waiting time for different packet arrival rate for

each of the test flows in each of the topologies. The average packet queue size is 0.073

million packets. The average packet waiting time increases with increasing packet arrival

rate.

We measure inconsistency as a percentage of inconsistent packets in the system.

Inconsistent packets are identified based on Definition 7.

Figure 3.9 compares inconsistency count in CURE with two-phase update and timed

two-phase update [12] for different average packet arrival rates. We simulate test flows

35

3. Consistent Update with Redundancy Reduction

Figure 3.10: CURE: Controller Overhead in Sprint Topology

s1, n1, and c1 in topologies Sprint, NetRail, and Compuserve, respectively. The average

queue size per switch is 0.073 million packets. In the two-phase update approaches (both

untimed and timed), inconsistency count decreases with increasing packet arrival rate. In

two-phase update, the average inconsistency counts for Sprint, NetRail, and Compuserve

are 2.976%, 1.118%, and 1.327%, respectively. In the timed two-phase update, the

average inconsistency counts for Sprint, NetRail, and Compuserve are 2.629%, 1.237%,

and 1.389%, respectively. However, the average inconsistency count for CURE is similar

for different packet arrival rates. The average inconsistency count for Sprint, NetRail,

and Compuserve is 0.322%, 0.205%, and 0.240%, respectively. Therefore, we yield that in

CURE, an initial percentage of incoming packets become inconsistent due to the ongoing

network update, and inconsistency count reduces as time elapses after completion of the

update.

3.3.1.5 Controller Overhead

Controller overhead is calculated as the percentage of packets sent to the controller

during an ongoing update. In Sprint topology, CURE incurs 0.31% controller overhead

for packet arrival rate 0.005 mpps. Figure 3.10 depicts that the controller overhead in the

buffered update is 82.209% higher than that in CURE. This is because CURE redirects

36

3.4. Concluding Remarks

packets to the controller only in the absence of a neighbor switch having lower priority

and free buffer space. Whereas, buffered update keeps redirecting all the affected packets

to the controller until the update completes.

3.4 Concluding Remarks

In this chapter, we present a scheme, named CURE, that emphasizes reduction of TCAM

usage during SDN update to increase scalability required for handling large-scale data.

CURE modifies the update scheme of OpenFlow-enabled SDN and proposes a multilevel

queue-based policy for ensuring packet-level consistency. Simulation results show that

CURE significantly reduces the update duration and the average rule-space requirement

by approximately 38% and 30%, respectively, during the SDN update.

37

Chapter 4

Data Plane Load Reduction for

Flow Migration

In this chapter, we present a scheme for Data Plane Load Reduction for Traffic Flow

Migration (DART) in SDN. SDN update involves rerouting of multiple traffic flows to

accommodate new flows. An unplanned flow migration schedule overloads the data

plane by burdening the data links and flooding the rule-space of capacity-constrained

SDN switches. The overload of data links and switches blocks the update process, and

the network fails to address the QoS demands of the traffic flows especially latency-

sensitive flows. Prior approaches migrate flows without considering load reduction of

the data plane and QoS demands of the flows. DART prioritizes traffic flows based on

QoS demands and aims to avoid link congestion and rule-space overflow during flow

migration.

This chapter consists of four sections. The system model of DART is presented

in Section 4.1. Section 4.2 describes the proposed scheme. Section 4.3 depicts the

experimental results. Finally, Section 4.4 concludes the proposed work and discusses

directions for future work.

39

4. Data Plane Load Reduction for Flow Migration

4.1 System Model

In this section, we discuss the system model and the problem statement for data plane

load reduction during flow migration in SDN. The system consists of a set of network

elements and a set of traffic flows.

Figure 4.1: DART: SDN Architecture

As shown in Figure 4.1, SDN involves heterogeneous devices that transmit flows to

SDN switches via gateways. The rule-space of each switch is managed by a controller.

Let C and S denote the set of controllers and the set of switches, respectively. The rule-

space usage for switch sa ∈ S is represented as Ra. Let Rmax be the rule-space capacity

of a switch. At time t, the bandwidth usage and capacity of the data link between sa

and sa′ is denoted by baa′ (t) and waa′ , respectively.

4.1.1 Traffic Flow Model

F denotes the set of existing traffic flows in the network. A traffic flow fj ∈ F is denoted

by a tuple <src(fj), dest(fj), bw(fj), P (fj), α(fj)>, where src(fj) denotes the source,

dest(fj) is the destination, bw(fj) is the bandwidth of fj , P (fj) represents the ordered

set of switches along the path of fj , and 0 ≤ α(fj) ≤ 1 signifies the latency-sensitivity

index (LSI) for fj . A high α(fj) indicates that fj is highly latency sensitive.

40

4.1. System Model

Let F ′ ⊂ F denote the set of to-be-migrated traffic flows. A traffic flow fj is a

member of F ′ if P (fj) 6= P
′(fj), where P

′(fj) is the new path of fj after migration. In

this work, we assume that the source and destination of a traffic flow fj ∈ F
′ do not

change after migration.

Let us consider that the network update procedure for traffic flow migration starts

at time t0. After t0, a packet is termed old if it is handled by a to-be-updated switch.

Otherwise, the packet is termed new. Therefore, the migration of a traffic flow fj ∈ F is

consistent when each old packet follows the old path only, and each new packet follows

the new path only. We express consistent traffic flow migration as:

Ψ(fj) =

1 if the migration of fj is consistent,

0 otherwise.
(4.1)

Initially, each switch in the new path receives an UPDATE signal from its master

controller. Therefore, the set of to-be-updated switches are represented as:

γ(sa) =

1 if sa ∈ S received UPDATE signal,

0 otherwise.
(4.2)

Therefore, the set of to-be-updated switches for a flow fj ∈ F
′ is expressed as:

S
′(fj) =

|S|⋃
a=1

sa, where sa ∈ P
′(fj) and γ(sa) = 1 (4.3)

The migration of a flow fi involves the update of each switch sa ∈ S
′(fj). For the

migration of a flow fj ∈ F
′ , the controller sends update packets to all switches in the

set S′(fj). Therefore, the total rule update time required fj is given by:

Tfj =

|S
′ (fj)|∑
k=1

γ(sk)− 1

∆ + δsc, (4.4)

41

4. Data Plane Load Reduction for Flow Migration

where ∆ is the maximum time interval between dispatch of two successive update

messages from the controller and δsc is the maximum controller-to-switch delay [12].

Let the flow migration process be divided into multiple update stages, and in each

stage, single or multiple flows are migrated, based on the flow migration schedule. Let

M be the total number of update stages. To express the flow migration schedule, we

define a binary variable as:

χ(fj ,m) =

1 if fj ∈ F

′ is migrated in stage m,

0 otherwise.
(4.5)

Definition 8 (Correlated Flow). Two flows fi and fj are correlated if at least one

common link exists between the old (new) path of fi and the new (old) path of fj.

Definition 9 (Stage Completion Time). The completion time of a stage m is defined

as:

Dm =
∑
fj∈F ′

χ(fj ,m)Tfj (4.6)

Definition 10 (Flow Migration Duration). The migration duration of each flow which

is migrated in stage m is defined as:

DR
m = (m0 − t0) + Dm, (4.7)

where m0 is the time when stage m starts.

4.1.2 Problem Formulation

The objective of this work is to minimize the maximum data link bandwidth usage

during flow migration. Therefore, we formulate the load-aware flow migration problem

(LFMP) as:

42

4.1. System Model

Minimize
χ

∑
sa,s

a
′∈S

baa′ (t), t ∈ [m0,m0 + Dm],m ≤M (4.8)

subject to

Ψ(fj) = 1,∀fj ∈ F
′
, (4.9)

Ra ≤ Rmax, ∀sa ∈ S
′(fj), ∀fj ∈ F

′ (4.10)

DR
m ≤ Tmaxj , χ(fj ,m) = 1,m ≤M,∀fj ∈ F

′
, (4.11)

M∑
m=1

χ(fj ,m) = 1,∀fj ∈ F
′
, (4.12)

baa′ ≤ waa′ , ∀sa, sa′ ∈ S, a 6= a
′ (4.13)

Equation (4.9) expresses the consistency constraint for all traffic flows in the network

during update. Equation (4.10) represents the rule-space capacity constraint of switches.

Equation (4.11) ensures that the flow migration duration for each traffic flow fj does

not exceed the maximum allowable delay Tmaxj of the flow. Equation (4.12) ensures that

each flow is migrated only once. Equation (4.13) denotes the link capacity constraint.

Theorem 1. The load-aware flow migration problem (LFMP) is NP-hard.

Proof. To prove the NP-hardness of LFMP, we reduce the well-known 0 − 1 knapsack

problem [41] to LFMP. The 0 − 1 knapsack problem, which is an NP-hard problem,

involves a set of items so that each item has a weight and a value. Given a knapsack

with a fixed capacity, the goal is to maximize the total value of items included in the

knapsack. Moreover, the decision for including an item in a knapsack is binary, i.e., an

item can be added to the knapsack as a whole or not added at all.

We construct an instance I of the LFMP for an update stage m. We reduce an

instance I ′ of the 0− 1 knapsack problem to I. In this case, each item in I ′ refers to the

flows fj ∈ F
′ . The weight and value of each item correspond to bandwidth bw(fj) and

LSI α(fj), respectively. The capacity of the knapsack is mapped to the link capacity

43

4. Data Plane Load Reduction for Flow Migration

bab,∀sa, sa′ ∈ S. In I, the value of the decision variable χ(fj ,m) is restricted to 0 or 1,

depending on whether fj is migrated in stage m or not. The goal of LFMP is to find

a feasible solution that includes the maximum number of flows with high LSI in each

update stage without violating the link capacity constraint for any flow. Therefore, the

optimal solution to the instance of the 0 − 1 knapsack problem I
′ is also the optimal

solution of the instance of LFMP I. Hence, the LFMP is also NP-hard.

As the optimization problem in Equation (4.8) is NP-hard, we propose a heuristic

approach for solving the problem.

4.2 DART: The proposed scheme

In this section, we discuss the proposed scheme, DART, which has three modules — 1)

generation of QoS-aware migration schedule, 2) generation of feasible migration schedule,

and 3) rule-space management. The QoS-aware migration scheduling module analyzes

the QoS demand of each migrating flow and generates an initial flow migration schedule

as defined in Equation 4.5. The feasible migration scheduling module evaluates whether

the initial flow migration schedule is feasible or not and updates the schedule to avoid

link congestion. The rule-space management module checks the available rule-space in

each to-be-updated switch and frees up rule-space as per the requirement.

4.2.1 Generation of QoS-Aware Migration Schedule

We formulate a coalition graph game to form groups of flows so that each group is

migrated in each update stage. In this game, F ′ is the set of players. Each coalition Ak ∈

F
′ denotes the set of traffic flows {f1, f2, . . . , f|Ak|} which are migrated simultaneously.

Within a coalition, the traffic flow having the highest LSI is termed as the coalition-

head. Therefore, a coalition-head has |Ak| − 1 children nodes, which are termed as

coalition members. To form the coalitions, the proposed game constructs a coalition

44

4.2. DART: The proposed scheme

graph G = (F ′
, E), where E is the set of edges representing the correlation between

flows as defined in Definition 8. Therefore, there exists an edge between fi ∈ F
′ and

fj ∈ F
′ if fi and fj are correlated flows.

4.2.1.1 Suitability of the Coalition Graph Game for QoS-Aware Migration

Scheduling

In SDN, multiple flows, which share the data links, are migrated together. Therefore, for

migration, each flow behaves cooperatively and decides its optimum strategy to satisfy

QoS demand and achieve Pareto optimal distribution of link capacity. Moreover, the

correlation between flows serves as a critical aspect for forming the groups as the update

of one flow may cause link congestion in the flow-path of a correlated flow. Hence, a

coalition graph game approach is the most appropriate approach for the formation of

a QoS-aware migration schedule, where migrating flows form cooperative groups, which

are migrated simultaneously for optimal utilization of the available link capacity.

Definition 11 (Coalition Structure). A coalition structure is a set of coalitions defined

as:

VA = {A1, A2, . . . , AQ},where
Q⋃
k=1

Ak = F
′
, Ak ∩Al = φ, ∀k 6= l (4.14)

4.2.1.2 Utility Function of a Coalition

The controllers try to maximize the cumulative payoff obtained from the utility functions

of the coalitions. Let U(Ak, VA) denote the utility value of a coalition Ak ∈ VA and uj(.)

denote the utility value of a player fj ∈ Ak. The marginal utility of each traffic flow fj

increases with decrease in the rule update time of the flow. Mathematically,

∂uj(.)
∂Tfj

< 0 (4.15)

45

4. Data Plane Load Reduction for Flow Migration

The utility function uj(.) varies linearly with the LSI, and the number of corre-

lated flows in the coalition (Nj) so that a high number of flows are migrated at a time

depending on their traffic characteristics. Therefore, we get:

∂uj(.)
∂α(fj)

> 0, and ∂uj(.)
∂Nj

> 0 (4.16)

Therefore, we define the utility function of a flow fj as:

uj(.) = Nj

(
α(fj)−

Tfj
Tmaxj

)
(4.17)

Hence, the utility function U(Ak, VA) is formulated as:

U(Ak, VA) =

∑

fj∈Ak
uj(.) if |Ak| > 1,

0 otherwise.
(4.18)

The total utility of all the coalitions in a coalition structure VA is given by:

U(VA) =
M∑
k=1

U(Ak, VA) (4.19)

4.2.1.3 Coalition Graph Formation

The to-be-updated traffic flows, which are the players of the coalition graph game, form

the coalition graph based on the utility function defined in Equation (4.19). We consider

that the proposed coalition graph game is hedonic, which implies that a player has a

preference for the choice of the coalition. The preference relation is defined as:

Definition 12 (Preference Relation). The relation VA �F ′′ VB denotes that the way

VA partitions F ′′ is preferred to the way VB partitions F ′′, where F ′′ ⊆ F
′ is a set of

players.

In this work, we consider Pareto order [42] as the basis for the preference relation �.

46

4.2. DART: The proposed scheme

According to Pareto order, a coalition structure VA is preferred over another coalition

structure VB if the change of coalition structure from VB to VA improves utility for at

least one player without decreasing the utility of any other player. Let uj(A) denote the

utility of player fj in a coalition Ak ∈ VA. Mathematically,

VA �F ′′ VB ⇔ {uj(A) ≥ uj(B)},∀fj ∈ F
′′
, F

′′ =
|VA∪VB |⋃
k=1

Ak,∀Ak ∈ VA ∪ VB, (4.20)

with at least one player fx having the strict inequality ux(A) > ux(B).

The coalitions are updated periodically based on merge and split rules as follows:

Definition 13 (Merge Rule). Merge any set of coalitions {A1, A2, . . . , Ak} where {
k⋃
l=1

Al} �F ′′

{A1, A2, . . . , Ak}, F
′′ =

k⋃
l=1

Ai. Therefore, {A1, A2, . . . , Ak} →
k⋃
l=1

Al.

Definition 14 (Split Rule). Split any set of coalitions
k⋃
i=1

Al where {A1, A2, . . . , Ak} �F ′′

{
k⋃
l=1

Al}, F
′′ =

k⋃
l=1

Al. Therefore,
k⋃
l=1

Al → {A1, A2, . . . , Ak}.

Therefore, multiple coalitions merge into a large coalition if merging is preferable to

the set of players according to Equation (4.20). Similarly, one large coalition splits into

multiple coalitions if splitting is beneficial to the set of players. To restrict the search

space for the merge operation, we consider a greedy approach to decide the potential

candidates for the attempt of merging. In this approach, a coalition Al attempts to

merge with coalition Ak only if there exists at least one edge eij ∈ E between fi ∈ Al

and fj ∈ Ak. This constraint ensures that the merged utility is always positive.

Definition 15 (Stable Coalition). A coalition Ak ∈ VA is stable if

1. no player fj can improve its utility by leaving its coalition Ak and acting individ-

ually.

2. no other coalition Al ∈ VA can improve its utility by joining Ak.

47

4. Data Plane Load Reduction for Flow Migration

Definition 16 (Stable Coalition Structure). A coalition structure VA is stable if Ak ∈

VA,∀k ∈ [1, Q] is stable.

Algorithm 4.1 describes the generation of the initial migration schedule. Initially,

each traffic flow forms an individual coalition. The Initial Migration Scheduling Algo-

rithm (IMSA) sorts the coalitions in descending order based on the LSI of the coalition-

heads. In each iteration, each coalition Ak forms a potential candidate list Lk. The list

Lk is sorted based on the LSI of the coalition-heads. Ak attempts to merge with the first

coalition in Lk. If the merge attempt is successful, both coalitions are merged. Other-

wise, Ak attempts to merge with the next coalition in the list. This merge process can

be performed distributively, where each coalition makes a greedy attempt to merge with

the coalitions in its potential candidate list. After completing greedy merge attempts

for all coalitions, the split operation is performed, if any split is possible. The merge and

split process is repeated until VA is stable. The initial migration schedule χ′ is formed

by scheduling the flows of each coalition from vA in each update stage.

The time complexity of IMSA depends on the number of merge and split attempts.

For |F ′ | flows, the maximum number of possible coalitions is |F ′ |. In the worst case,

each coalition attempts to merge with all the others. In this case, the fist coalition makes

|F ′ | − 1 merge attempts, the second coalition requires |F ′ | − 2 merge attempts, and so

on. Therefore, the maximum number of merge attempts is |F
′ |(|F ′ |−1)

2 . However, in a

practical scenario, the number of merge attempts is significantly less as each coalition

attempts to merge only with coalitions in the potential candidate list. In the worst case,

the split operation of a coalition involves finding all partitions of the coalition. The

total number of partitions is given by the Bell number [43], which grows exponentially

with the number of players in the coalition. However, in a practical scenario, once a

coalition splits based on the Pareto order as stated in Equation (4.20), no further split is

attempted. Therefore, the total number of split attempts is significantly less in practice.

Theorem 2. IMSA converges to a stable coalition structure.

48

4.2. DART: The proposed scheme

Algorithm 4.1: DART: Initial Migration Scheduling Algorithm
Input : F ′ : Set of migrating flows
Output: χ′ : Initial migration schedule

1 Set E ← E ∪ {eij} if fi ∈ F
′ and fj ∈ F

′ are correlated flows
2 Ak ← Ak ∪ {fk}, VA ← VA ∪ {Ak},∀fk ∈ F

′

3 while VA is not stable do
4 Sort VA in descending order of the LSI of the coalition-heads
5 forall Ak ∈ VA do
6 Form potential candidate list Lk for merge attempt using E
7 Sort the coalitions in Lk in descending order of the LSI of the

coalition-heads
8 if merge attempt successful for Al ∈ Lk then
9 Merge Ak and Al using Definition 28

10 Update VA
11 end
12 Attempt merge with Al+1 ∈ Lk
13 end
14 Split coalitions in VA using Definition 29
15 Update VA
16 end
17 Set χ′(fj , k) = 1, ∀fj ∈ Ak, ∀Ak ∈ VA
18 return χ

′

Proof. Initially, each player forms an individual coalition having zero utility. Therefore,

a player has the lowest utility value when it acts individually. In subsequent iterations,

each player tries to increase its utility via the merge and split operations. This process

continues if at least one player is capable of improving its utility by joining another

coalition. Hence, the termination of the merge and split process implies that no coalition

can improve its utility by joining another coalition. Therefore, IMSA generates a stable

coalition structure, VA.

4.2.2 Generation of Feasible Migration Schedule

The coalitions from the stable coalition structure VA are selected one-by-one for consis-

tent flow migration, and only one coalition is migrated in each update stage. However,

the migration of a flow may trigger congestion in one or multiple links. This is because

49

4. Data Plane Load Reduction for Flow Migration

those links have to-be-migrated flows which are scheduled to be migrated in a later

stage. Therefore, prospective link congestion makes a flow migration schedule infeasible.

Therefore, we propose a greedy heuristic algorithm to analyze the feasibility of the ini-

tial migration schedule and prepare the final migration schedule that reduces the data

link load. Algorithm 4.2 shows the steps for the generation of a feasible flow migration

schedule.

Algorithm 4.2: DART: Feasible Migration Scheduling Algorithm
Inputs : χ′ , VA
Output: χ

1 while m 6= |VA| do
2 forall fj ∈ F

′ do
3 if χ′(fj ,m) = 1 and migration of fj violates link capacity constraint

then
4 Set χ(fj ,m+ 1) = 1 and update VA
5 end
6
7 Set χ(fj ,m) = 1
8 end
9 end

10 return χ

Each iteration of the Feasible Migration Scheduling Algorithm (FMSA) checks the

initial migration schedule and determines whether the migration of the flows in a stage

is feasible in terms of the link capacity constraint. If any flow violates the link capacity

constraint, FMSA moves the infeasible flow to the next update stage. As we migrate

the flows is each update stage together, the possibility of link congestion reduces for

some links, and some infeasible flows become feasible. Therefore, FMSA takes a greedy

approach to allocate the infeasible flows to the nearest update stage. FMSA runs in

O(|F ′ |) time as each flow in an update stage checks for link capacity violation based on

the bandwidth usage data of the links, which is available to the controller.

50

4.2. DART: The proposed scheme

4.2.3 Rule-Space Management

FMSA generates the final migration schedule, which reduces link congestion during flow

migration. However, another part of the data plane load is rule-space usage. SDN

switches have limited rule-space, and the overflow of rule-space makes the migration

process inconsistent and incomplete. However, in each stage, we update the switches

based on the approach proposed in our earlier work, CURE [44]. This approach deletes

old rules immediately after installing new flow-rules. Therefore, the switches, which are

part of both old and new paths of a flow, require no additional rule-space. However,

the switches, which only belong to the new path, require the installation of additional

flow-rules to define the new path. So, we propose a heuristic algorithm to ensure that

these switches have enough capacity to address the additional rule-space requirement.

The proposed rule-space management process requires the deletion of unimportant

flow-rules from the switches, which have low free rule-space. To select the rules that

are no longer required, we estimate the popularity of the flow-rules store in the rule-

space of a switch. We sort the flow-rules of the corresponding switch in descending

order of the received packet count. For a switch sa, the rule popularity is denoted by

Θ = {θ1, θ2, θ3, . . . , θRa}, where θk is the probability that a flow matches with the kth

rule. We estimate the rule popularity based on Zipf distribution [36], which is expressed

as:

θk =
1
kε

Ra∑
i=1

1
iε

, (4.21)

where ε is the skewness of the rule popularity. The value ε = 0 denotes uniform

popularity distribution and a larger ε signifies more uneven rule popularity.

Algorithm 4.3 shows the steps of the rule-space management process based on the

feasible flow migration schedule.

The Rule-space Management Algorithm (RSMA) identifies the set of switches S′′ ,

51

4. Data Plane Load Reduction for Flow Migration

Algorithm 4.3: DART: Rule-Space Management Algorithm
Inputs : χ, λ
Output: S′′

1 while m 6= |VA| do
2 forall fj ∈ F

′ do
3 if χ(fj ,m) = 1 then
4 S

′′ ← S
′′ ∪

(
P

′(fj) \ P (fj)
)

5 addRules(sa)← addRules(sa) + 1,∀sa ∈
(
P

′(fj) \ P (fj)
)

6 end
7 end
8 end
9 forall sa ∈ S

′′ do
10 if Ra ≥ λ then
11 Delete Ra − addRules(sa) least popular rules using Equation 4.21
12 end
13 end
14 return S

′′

which require the installation of additional flow-rules. Additionally, RSMA estimates

the rule-space requirement for each switch in S′′ . To identify the overloaded switches,

RSMA checks if the rule-space usage for any switch in S′′ exceeds a predefined rule-space

threshold λ. Finally, RSMA frees the required rule-space in the overloaded switches

by deleting the required number of rules starting with the least popular rule. The

time complexity of RSMA is composed of two parts — the time complexity for the

formation of S′′ and the time complexity for the reduction of rule-space usage in the

overloaded switches. Each flow is visited to identify the set of switches for inclusion in

S
′′ . This operation is completed in O(|F ′ |) time. The rule-space reduction process takes

O(|S|) time because, in the worst case, the reduction must be performed for all switches.

Therefore, RSMA run in O(|F ′ |+ |S|) time.

4.2.4 Consistent Flow Migration

The set of to-be-updated switches for update stage m, is expressed as:

52

4.2. DART: The proposed scheme

Sm =
|F ′ |⋃
j=1

S
′(fj), where χ(fj ,m) = 1 (4.22)

For consistent flow migration, in each update stage m, DART processes the old

packets and starts queuing the new packets for the switches in Sm. This step ensures

packet-level consistency. After processing all the old packets, new rules are installed,

and old rules are deleted. This step addresses the rule-space constraint of the switches

as only a single version of a flow-rule is stored at a time. After the modification of all

the required rules, DART processes the queued packets [44].

Theorem 3. Flow migration in DART is blackhole free.

Proof. Let fj ∈ F
′ be a flow that is scheduled to be migrated in stagem. In stagem, new

flow-rules are installed in all switches in S′(fj). However, the old packets are processed

by the old flow-rules before updating the first switch in stage m. As the update of the

first switch in stage m starts, the new packets are queued until all switches in stage m

complete update. Once stage m completes update, the queued packets are processed by

the new flow-rules. Therefore, all packets that enter a switch belonging to the old path

P (fj) or to the new path P ′(fj) is equal to the packets that leave the switch. Since, no

packet of a flow fj is dropped, the flow migration process in DART is blackhole free.

Theorem 4. Flow migration in DART is loop free.

Proof. All the old packets of a flow fj ∈ F
′ are processed by old flow-rules entirely.

New flow-rules are installed to all switches in S′(fj) before processing the new packets.

Therefore, each packet in fj either follows the old path P (fj) or the new path P ′(fj).

Since, no packet is processed by incorrect flow-rules, the flow migration in DART is loop

free.

53

4. Data Plane Load Reduction for Flow Migration

4.3 Performance Evaluation

4.3.1 Simulation Settings

We evaluate DART’s performance by performing simulations on the Abilene topology,

which has 12 switches and 30 directed links [38]. We use the Abilene topology because

it is a small-scale topology, where the number of correlated flows for each flow is high.

For simulation, we use the Abilene dataset [45], which provides the OSPF weights and

the maximum capacity of each link. Based on the parameters available in the Abilene

dataset, we randomly generate traffic flows to perform the simulations for different traffic

volumes. Table 4.1 represents the simulation parameters. For the simulation, we consider

that 80% flows are latency-sensitive with LSI between 0.9 to 1.

Table 4.1: DART: Simulation Parameters
Parameter Value

Topology Abilene [38]
Number of traffic flows 100− 400
Bandwidth of a traffic flow 0.0001− 0.39 Gbps [45]
Maximum link capacity 9.92 Gbps [45]
Number of switches 12 [45]
Number of links 30 [45]
Maximum controller-to-switch delay (δsc) 4.87 ms [44]
Maximum time interval between dispatch of two suc-
cessive update messages from the controller (∆) 5.24 ms [44]

Maximum allowable delay 1− 1000 ms [46]
Rule popularity skewness (ε) 0.56
Rule-space capacity (Rmax) 500 flow-rules
Rule-space threshold (λ) 250 flow-rules

4.3.2 Benchmark schemes

We compare the performance of DART with three benchmark schemes — two-phase up-

date [11], flow migration scheme proposed by Basta et al. [47], and the Greedy approach.

The two-phase update is not incremental and schedules all traffic flows together for mi-

54

4.3. Performance Evaluation

gration. The two-phase update scheme updates the ingress switches after updating the

internal switches. Basta et al. [47] update switches according to the shortest common

supersequence formed from the ordered sets of switches denoting the new paths of the

migrating flows. In the Greedy approach, flows are migrated in descending order of the

LSI value, and the correlated flows are migrated together. On the other hand, DART

considers flow-specific QoS requirements while preparing the migration schedule and mi-

grates the flows consistently. We select the two-phase update as one of the benchmark

schemes to show the effectiveness of incremental flow migration. We select the flow

migration scheme proposed by Basta et al. [47] to show the importance of considering

individual flow paths as compared to an integrated flow path in order to reduce data

link congestion. In addition, we select the Greedy approach as a benchmark scheme to

show that the formation of groups for flow migration should not depend only on the LSI

value.

4.3.3 Performance Metrics

We consider the following metrics to analyze the performance of DART:

• Flow migration duration: The migration duration of a traffic flow is defined in

Definition (10). This metric quantifies the time required for a flow to change its

path from old to new.

• Peak Load of the data links : This metric shows the highest load of the data

links during flow migration. A high data link load signifies that the possibility of

link congestion is high.

• Rule-space usage for flow migration: This metric measures the rule-space

required for the flow migration process. This metric is important because of the

rule-space capacity limitation of SDN switches.

• QoS violated flows: QoS violated flows are traffic flows that have a migration

55

4. Data Plane Load Reduction for Flow Migration

duration greater than the maximum allowable duration. This metric shows the

QoS-awareness of DART.

4.3.4 Result and Discussion

4.3.4.1 Flow Migration Duration

We estimate the average migration duration by varying the number of flows. From

Figure 4.2(a), we observe that the average flow migration duration for DART is 28.82%

less than that of the two-phase update. This is because DART migrates the flows

incrementally, resulting in reduced waiting time for each traffic flow. However, the

average flow migration duration for DART is higher than the approach proposed by

Basta et al. [47] and the Greedy approach because DART migrates flows in multiple

stages, where controller-switch communications are initiated for each switch in each

update stage. Figure 4.2(b) depicts the effects of LSI on the average flow migration

duration for 400 flows. For this experiment, we form 5 groups, each having 80 flows.

The LSI of the flows in the group 1, group 2, group 3, group 4, and group 5 are [0.1, 0.2],

[0.3, 0.4], [0.5, 0.6], [0.7, 0.8], and [0.9, 1], respectively. We observe that the average flow

migration duration for both DART and Greedy decreases as LSI of migrating traffic

flows increases. In particular, for DART, the average migration duration of the flows in

the group 5 is 28.22% less than the flows in the group 1. However, the change of LSI

does not affect the migration duration of benchmark schemes. Therefore, it is evident

that DART prioritizes latency-sensitive flows and schedules their migration earlier to

satisfy the QoS demands.

4.3.4.2 Peak Load of the Data Links

We analyze the peak load of data links as it is the primary contributor to the data plane

load. Figure 4.3 sketches the peak data link load with varying number of flows. From

the simulation result, we observe that the peak data link load is 13.75%, 13.78%, and

56

4.3. Performance Evaluation

0

20

40

60

80

100 200 300 400

F
lo

w
 M

ig
ra

ti
o
n
 D

u
ra

ti
o
n
 (

m
s)

Number of Flows

 Two-phase Update
 Basta et al.

 Greedy
 DART

(a) Effect of Traffic Load

0

20

40

60

80

0.1-0.2

0.3-0.4

0.5-0.6

0.7-0.8

0.9-1

F
lo

w
 M

ig
ra

ti
o
n
 D

u
ra

ti
o
n
 (

m
s)

Latency Sensitivity Index

 Two-phase Update
 Basta et al.

 Greedy
 DART

(b) Effect of LSI

Figure 4.2: DART: Flow Migration Duration

9.19% less than the two-phase update, the approach proposed by Basta et al. [47], and

Greedy approach, respectively. Moreover, we observe that the performance of DART

improves as the traffic load increases. This is due to the fact that high traffic load

increases the possibility of link congestion, and using FMSA DART reduces the data

link load. Therefore, for high traffic load, DART proves to be a reliable scheme that

reduces data loss caused by link congestion.

4.3.4.3 Rule-Space Usage for Flow Migration

For DART and the benchmark schemes, we estimate the additional rule-space require-

ment because of the flow migration process. Figure 4.4 shows the average rule-space

usage with varying traffic load. From the simulation result, we observe that DART

uses 67.93%, 57.74%, and 63.07% less rule-space as compared to the two-phase update,

the approach proposed by Basta et al. [47], and Greedy approach, respectively. This is

because RSMA deletes less popular rules to accommodate new flow-rules, and DART

performs consistent flow migration where old flow-rules are not stored redundantly.

57

4. Data Plane Load Reduction for Flow Migration

0

20

40

60

80

100

100 200 300 400

P
ea

k
 D

at
a

L
in

k
 L

o
ad

 (
%

)

Number of Flows

 Two-phase Update
 Basta et al.

 Greedy
 DART

Figure 4.3: DART: Peak Data Link Load

0

2

4

6

8

10

100 200 300 400

R
u
le

-S
p
ac

e
U

sa
g
e

 f
o
r

F
lo

w
 M

ig
ra

ti
o
n
 (

%
)

Number of Flows

 Two-phase Update
 Basta et al.

 Greedy
 DART

Figure 4.4: DART: Rule-Space Usage for
Flow Migration

0

10

20

30

40

100 200 300 400Q
o
S

 V
io

la
te

d
 F

lo
w

s
(%

)

Number of Flows

 Two-phase Update
 Basta et al.

 Greedy
 DART

Figure 4.5: DART: QoS Violated Flows

4.3.4.4 QoS Violated Flows

We analyze the amount of QoS violation considering heterogeneous traffic where each

flow fj has different QoS requirement in terms of the maximum allowable delay Tmaxj .

From Figure 4.5, we observe that the number of QoS violated flows in DART is 56.36%

less than the same using the two-phase update, 26.65% less than the approach proposed

by Basta et al. [47], and 1.92% less than the same using Greedy approach. This is due

to the fact that DART migrates the traffic flows in order of the LSI values so that each

flow fulfils the specific QoS demand. Additionally, DART considers the link capacity

constraint and schedules feasible flows together.

From the above analysis, it is evident that the proposed scheme, DART, significantly

58

4.4. Concluding Remarks

0

5

10

15

20

25

20 40 60 80F
lo

w
 M

ig
ra

ti
o
n
 D

u
ra

ti
o
n
 (

m
s)

Number of Flows

 ILP DART

(a) Flow Migration Duration

0

5

10

15

20

25

30

20 40 60 80

C
o
m

p
u
ta

ti
o
n
 T

im
e

(m
s)

Number of Flows

 ILP DART

(b) Computation Time

Figure 4.6: DART: Comparison between ILP Solution and DART

reduces the peak load of the data links and additional rule-space usage for flow migration

with acceptable flow migration duration. Additionally, it is noteworthy to observe that

DART achieves remarkable performance in terms of addressing QoS demands of het-

erogeneous flows considering heterogeneous traffic as an essential parameter of realistic

networks.

We solve the ILP formulated in Equation (4.8) using Gurobi Optimizer [48]. Figure

4.6 shows the comparison between the ILP solution and the proposed heuristic approach,

DART. We observe that DART achieves performance similar to the ILP solution while

having low computation time.

4.4 Concluding Remarks

In this chapter, we present a scheme, named DART, that migrates traffic flows in different

update stages. Each update stage is formed based on the QoS demand of the flows, and

bandwidth usage of the links. DART also addresses the rule-space capacity constraint

so that no switch reaches its rule-space capacity limit due to flow migration. Simulation

results show that DART reduces the additional rule-space usage by 67.93%, and the

number of QoS violated flows by 56.36% compared to the two-phase update.

59

Chapter 5

Rule-Space Management

In this chapter, we present a scheme for Tensor-Based Rule-Space Management (TERM)

in SDN. The limited storage capacity of switches is a crucial challenge in SDN as the

switches use TCAMs having deficient capacity. Low rule storage capacity eventually

leads to a high number of Packet-In messages and control plane overloading. TERM

addresses rule-space capacity constraint by aggregating flow-rules using tensor decom-

position.

This chapter consists of four sections. The system model of TERM is presented

in Section 5.1. Section 5.2 describes the proposed scheme. Section 5.3 depicts the

experimental results. Finally, Section 5.4 concludes the proposed work and discusses

directions for future work.

5.1 System Model

Figure 5.1 depicts the network architecture considered for TERM. The set of switches

in the data plane is denoted as S = {s1, s2, . . . , sD}. In the control plane, there exist

multiple sub-controllers connected with a controller c. The set of sub-controllers is

denoted as Csub = {csub1 , csub2 , . . . , csubM }. The sub-controllers are placed using existing

controller placement algorithms [26]. All the sub-controllers are connected to c. Each

61

5. Rule-Space Management

switch sj is connected to a sub-controller. Therefore, the assignment between switches

and sub-controllers is defined as aD×M binary matrix L. Each element of L is expressed

as:

Figure 5.1: TERM: Network Architecture

lij =

1, if si is connected to csubj .

0, otherwise.
(5.1)

Definition 17 (Region). A region rj is defined as:

rj =
⋃
i

si,∀lij = 1 (5.2)

The set of rules in switch si at time t is denoted as:

Ri(t) = Ric(t) ∪Ria(t) ∪Riu(t), (5.3)

where Ric(t) is the set of cached rules, Ria(t) is the set of aggregated rules, and Riu(t)

62

5.2. TERM: The Proposed Scheme

denotes the set of uncompressed rules in switch si at time t.

A switch si generates pi(t) number of Packet-In messages at time t. Packet-In mes-

sages are generated whenever incoming packets fail to match with any of the flow-rules

in Ri(t).

The objective of this work is to minimize the number of Packet-In messages by

maximizing the total number of rules stored in each switch. Mathematically,

min

|S|∑
i=1

pi(t) (5.4)

subject to

|Ric(t)| < Ni,∀si ∈ S (5.5)

|Riu(t)| < Ni, ∀si ∈ S, (5.6)

where Ni denotes that the TCAM in a SDN switch si is capable of storing Ni entries.

Equations (5.5) and (5.6) express that the number of cached rules and the number of

uncompressed rules are less than the storage capacity of the TCAM.

5.2 TERM: The Proposed Scheme

In this section, we describe the proposed scheme, TERM, which includes three modules

— rule aggregation, rule reconstruction, and rule caching. Rule aggregation and rule

reconstruction procedures of a region rj are performed by csubj . The rule aggregation

module compresses the flow-rules in each switch with a tensor-based approach to increase

the available capacity of the flow-tables. The rule reconstruction module reconstructs

the compressed rules in a switch, whenever an incoming packet fails to match the un-

compressed rules. Additionally, each switch has a rule caching module which caches the

63

5. Rule-Space Management

most frequently used rules. This avoids the reconstruction of rules every time a packet

reaches a switch.

Therefore, for an incoming packet, a switch first checks for a rule match in the cached

rules, and then the uncompressed flow-rules in the flow-tables. If no match is found, it

informs the sub-controller that the reconstruction of compressed rules is required. The

sub-controller reconstructs the compressed rules and checks for a possible rule match.

If a match is found in multiple rules, the higher priority rule is selected. If no match

is found even after checking the compressed rules, the packet is redirected to c, which

generates the new rule as per the existing OpenFlow policy [34].

5.2.1 Rule Aggregation

The rule aggregation module includes three sub-modules — rule restructuring, tensoriza-

tion, and reduction.

5.2.1.1 Rule Restructuring

Rule restructuring converts the ternary string of each rule into an integer value. We

consider a 4-bit ternary value for each match field and 4-bit binary value for the action

field. Each ternary string of length 2 is transformed into an integer digit based on the

transformation rules presented in Table 5.1.

Table 5.1: Integer representation of ternary strings
Ternary String Integer Representation

** 1
*0 2
*1 3
0* 4
1* 5
00 6
01 7
10 8
11 9

64

5.2. TERM: The Proposed Scheme

Example 1. Consider a ternary string of two match fields and one action value {∗11∗, 10∗

0, 1101}. Therefore, after transformation, the resulting integer string will be {35, 82, 97}.

5.2.1.2 Tensorization

In this work, we use tensor to formalize the flow-tables in SDN switches. We transform

each modified rule-set into a three-order tensor, as shown below:

T ∈ R1×Nf×Nt , (5.7)

where Nf denotes the number of fields in a TCAM entry, which includes the priority

value, match fields, and action value. Nf depends on the OpenFlow protocol version.

Nt denotes the total number of uncompressed rules in the switch.

5.2.1.3 Reduction

Algorithm 5.1 transforms T to a compressed tensor C ∈ R1×Nf×Nr , where Nr < Nt. Nr

is termed as the reduction factor (RF). The value of RF at time t is selected as:

RF (t) = Nr = Nf +
⌊(Qmax −Qcurrent)

Qmax
× 100

⌋
, (5.8)

where Qmax and Qcurrent denote the queue length and the number of packets queued

at the switch, respectively. If a switch has a high number of queued packets, a low Nr

enables the switch to store more number of uncompressed rules.

Therefore, the reduction coefficient is expressed as:

q = Nt −Nr

Nt
× 100% (5.9)

Algorithm 5.1 reduces the dimensions of the initial rule tensor T and transforms it

to the reduced tensor C. In Theorem 5, we discuss that this reduction permits a switch

to store more rules, than in the case of a traditional SDN architecture. As we aim to

65

5. Rule-Space Management

Algorithm 5.1: TERM: Rule Aggregation Algorithm
Input : T ∈ R1×Nf×Nt : Initial rule tensor
Output: key = {C ∈ R1×Nf×Nr , Uk}: Core data set

1 Compute T(3) from tensor T
2 [USV]← SV D(T(3))
3 Truncate Uk ∈ RNt×Nr from U
4 C← T ×3 U

T
k

5 key ← {C, Uk}
6 return key

reduce the rule count, we consider the mode-3 unfolded matrix to perform the tensor

decomposition method. Mode-3 matrix of tensor T is computed in Line 1 using the

procedure of Tensor Unfolding or Matricization [49]. Figure 5.2 shows three unfolded

matrices of an initial rule tensor T ∈ R1×4×8, which represents eight flow-rules each with

one priority value and two match fields and action value. The corresponding unfolded

matrices are T(1) ∈ R1×32, T(2) ∈ R4×8, and T(3) ∈ R8×4.

Figure 5.2: Matricization of initial rule tensor

A tensor element T (a1, a2, ..., aN) for a tensor T ∈ RI1×I2×...×IN corresponds to the

matrix element T(p)(ap, b), where

b = 1 +
N∑

k=1,k 6=p

(ak − 1)
k−1∏

m=1,m 6=p
Im

 (5.10)

66

5.2. TERM: The Proposed Scheme

In Line 2, the unfolded matrix T(3) is decomposed using the singular value decom-

position (SVD) technique. SVD factorizes matrix T(3) into the form:

T(3) = USV T , (5.11)

where U and V are the left and right unitary orthogonal matrices, respectively; S is

a diagonal matrix, whose elements are singular values of T(3) [50]. Singular values of

matrix T(3) are the square roots of the common eigen values of T(3)T
T
(3) and T T(3)T(3).

The matrices U and V consist of column vectors, which are transposed eigen vectors of

matrices T(3)T
T
(3) and T T(3)T(3), respectively.

The left singular matrix U is truncated in Line 3, which is given by:

Uk ∈ RNt×Nr (5.12)

The matrix Uk is needed to be stored for rule reconstruction. We store this matrix

Uk in parts in the sub-controllers based on their available memory.

Line 4 generates the compressed tensor C by computing the mode-3 product of tensor

T with transpose of matrix Uk, which can be expressed with unfolded matrices as:

C = (T ×3 U
T
k)⇔ C(3) = UTk × T(3) (5.13)

Space complexity of Algorithm 5.1 is O(N2
t)+O(Nt(Nr+Nf)), which decomposes to

O(N2
t) as Nt is greater than both Nf and Nr. The time complexity of performing SVD

on the unfolded matrix T(3) in Line 2 is O(min{N2
t Nf , NtN

2
f }) [51]. The time complex-

ity of computing mode-3 product in Line 3 is O(NtNrNf). Therefore, time complexity

of Algorithm 5.1 is O(min{N2
t Nf , NtN

2
f }) +O(NtNrNf). Figure 5.3 describes the com-

putation of mode-3 product for an order-3 tensor T ∈ R1×4×8 multiplied by transpose

of truncated orthogonal matrix Uk ∈ R8×4.

The sub-controller triggers the rule aggregation procedure if free memory of a switch

67

5. Rule-Space Management

Figure 5.3: Mode-3 product of the initial rule tensor

si drops below a specific threshold value th. This limit th is predefined based on the

nature of the applications. During an aggregation procedure at time t, all the rules in

Riu(t) are aggregated to form a new set of aggregated rules.

Theorem 5. The maximum number of rules stored in the TERM SDN architecture

is greater than the maximum number of rules stored in a traditional SDN architecture

with D OpenFlow switches, where D > 1, N > Nf ; N is the storage capacity of each

OpenFlow switch in the traditional SDN architecture in terms of the number of entries,

and Nf is the number of fields in a TCAM entry.

Proof. The maximum number of entries stored in a traditional SDN architecture with

D switches, each having a TCAM capable of storing N entries, is given by:

Maxt = D ×N (5.14)

We denote the maximum number of entries stored in the TERM SDN architecture

as:

Maxm = D × α, (5.15)

68

5.2. TERM: The Proposed Scheme

where α is the storage capacity of each switch in terms of the number of entries of the

modified architecture. Therefore, we need to prove that,

Maxm > Maxt, where D > 1. (5.16)

Let T ∈ R1×Nf×Nt be the tensor representing rules of a switch with Nt uncompressed

entries, where each entry has Nf fields, and 0 < Nt < N . The corresponding switch

contains total (N −Nt) entries comprising of cached entries and the aggregated entries

generated from the previous aggregation phase.

The p-mode product of a tensor is the basic flow-rule reduction operation for reducing

tensor dimensions. To reduce the dimension of the nth order of a tensor T from In to Ip

(In > Ip), we need to compute n-mode product of tensor T by a truncated left singular

vector matrix U ∈ RIp×In .

The aim of our rule aggregation approach is to reduce the 3rd order of tensor

T ∈ R1×Nf×Nt from Nt to Nr, where Nr < Nt, to allow storage of larger flow-tables.

Therefore, the compressed tensor C ∈ R1×Nf×Nr is expressed as:

C = T ×3 U
T
3 , (5.17)

where U3 is obtained by retaining the left Nr unitary orthogonal vectors from the left

singular vector matrix generated from singular value decomposition of the mode-3 matrix

of tensor T . Figure 5.3 illustrates the operation of computing compressed tensor C from

an initial tensor T . From experimental results, we observe that the minimum value for

Nr is Nf for the exact reconstruction of flow-rules. Therefore, the maximum percentage

of rule reduction for a switch is N−Nf
N ×100 %. Nr can be chosen dynamically, depending

on the application type. If the application is latency-sensitive, then the optimal value

of Nr should be chosen, considering the processing time of both rule reduction and

reconstruction for approximate rule-set size.

69

5. Rule-Space Management

After rule aggregation in each switch, an extra space is available for storing maximum

(Nt −Nf) entries. So, L switches can support upto ((Nt −Nf)×D) extra entries. So,

Maxm can be expressed as:

Maxm = D × (N + (Nt −Nf)), (5.18)

where the storage capacity of each switch in TERM is α = (N + (Nt −Nf)). The term

(N + (Nt − Nf)) > 0, as 0 < Nf 6 45, L > 0, Nt > 0, and N > Nf [34]. Hence, the

statement of Equation (5.16) is true.

5.2.2 Rule Reconstruction

The corresponding sub-controller reconstructs the aggregated rules of the switch to verify

whether there is a match. Rules in the switch do not change during this process. The

reconstructed rules are stored in the sub-controller. After the sub-controller completes

the verification process for a possible rule match, it releases the memory used for rule

reconstruction.

Change in network policies or topology triggers rule update or the addition of new

rules. To handle these changes, the aggregated rules of selected switches are recon-

structed and then aggregated again after incorporating the changes.

5.2.2.1 Approximate Rule Tensor Generation

For rule reconstruction, initially, we generate an approximate rule tensor TA ∈ R1×Nf×Nt ,

by computing the mode-3 product of compressed tensor C ∈ R1×Nf×Nr with truncated

unitary orthogonal matrix Uk computed using (Equation (5.12)) and stored. This pro-

70

5.2. TERM: The Proposed Scheme

cess is expressed as:

TA = C×3 Uk. (5.19)

Equation (5.19) can also be expressed as:

TA(3) = Uk × C(3), (5.20)

where TA(3) and C(3) are the mode-3 unfolded matrices of approximate rule and com-

pressed rule tensors, respectively [49]. The space complexity of the rule reconstruction

procedure is O(Nt(Nr +Nf)). The time complexity of the rule reconstruction procedure

is O(NtNrNf).

The absolute error of approximation between initial rule tensor T and approximated

rule tensor TA is measured as:

ε = ||T − TA|| =

√√√√√ 1∑
i1=1

Nf∑
i2=1

Nt∑
i3=1

(ti1i2i3 − tAi1i2i3)2, (5.21)

where ||X|| denotes the norm of a tensor X [49]. This error is introduced due to

approximation of the floating-point values in the truncated unitary orthogonal matrix

Uk. From experimental results, it is observed that ε = 0 for Nr = [Nf , Nt].

The size of the matrix Uk depends on RF which we calculate using Equation (5.8).

Hence, the rule reconstruction time is high for a high value of RF due to the computation

of mode-3 product in Equation (5.19).

5.2.2.2 Rule Recovery

After approximate rule tensor is generated, exact rule entries are recovered. Each mode-

2 fiber [49] of tensor TA corresponds to one row of flow-table. At this stage, the action

71

5. Rule-Space Management

value and all the match fields of the flow-table entries are in an integer format. Using

transformation logic described in Table 5.1 , we transform each entry of the flow-table

back to ternary string. Figure 5.4 shows the process of rule recovery.

Figure 5.4: Rule recovery process

5.2.3 Rule Caching

Each switch si caches the most frequently used rules. Incoming packets that match the

cached rules directly follow the actions mentioned in the matched rule. For “cache miss",

the packets first search for a match in Riu(t). If no match is found, the corresponding

sub-controller reconstructs the aggregated rules and checks for a match.

We used the least recently used (LRU) cache algorithm. In the OpenFlow protocol

version (v1.5.1) [34], each flow-table entry contains a counters field, which is updated

when incoming packets are matched with the corresponding flow-rule. Investigation of

this field allows us to discard the least recently used rules and select the frequently used

ones as the potential caching candidates. The discarded rules are added to the Riu(t) set.

If a rule in the aggregated rule-set Ria(t) qualifies as a potential caching candidate, then

72

5.3. Performance Evaluation

that rule is added to set Ric(t) with a flag indicating that the rule is also available in the

aggregated rule-set Ria(t). Therefore, when the rule is no longer needed to be cached, it

can be simply deleted from set Ric(t) without adding it to set Riu(t).

5.3 Performance Evaluation

In this Section, we evaluate the efficiency of TERM, while comparing with traditional

OpenFlow-based approach, flow-table partitioning approach — Pallet [15], and flow

aggregation approach (FAA) [16]. We consider Sprint topology [38] for performance

evaluation. We generate random flow-table entries, each with a priority value, a counter

value, 45 match fields, and an action value. The performance of TERM is evaluated

based on throughput, average packet waiting time, free rule-space, Packet-In message

count, and rule aggregation and reconstruction time. The simulation parameters are

depicted in Table 5.2.

Table 5.2: TERM: Simulation Parameters
Parameter Value
Network topology Sprint [38]
Simulation area 3563.90 km × 1655.20 km [38]
Total number of flows [20000, 100000]
Number of switches 11
Switch capacity 8000 flow-rules [39]
Packet arrival rate per switch 0.02 mpps [44]
Packet processing rate per switch 0.03 mpps [44]
Rule matching time 20 µs [52]
Transmission delay 5 µs per kilometer [12]
Average queue size per switch 0.07 million packets [44]

73

5. Rule-Space Management

5.3.1 Result and Discussion

5.3.1.1 Throughput

Throughput is measured as the percentage of packets processed per unit time. Figure 5.5

shows the average throughput when the total number of flows is varied between 20000

and 100000. The average packet arrival rate and packet processing rate per switch are

0.02 mpps and 0.03 mpps, respectively. From the simulation, we observe that the average

throughput for TERM is almost similar to Pallet, traditional SDN approach, and FAA.

 0

 20

 40

 60

 80

 100

20000
40000

60000
80000

100000

T
hr

ou
gh

pu
t (

%
)

Total Number of Flows

 TERM
 Traditional SDN

 Pallet: CBD
 FAA

Figure 5.5: TERM: Average Throughput

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

20000
40000

60000
80000

100000

A
ve

ra
ge

 P
ac

ke
t

W
ai

tin
g

T
im

e
(s

)

Total Number of Flows

 TERM
 Traditional SDN

 Pallet: CBD
 FAA

Figure 5.6: TERM: Average Packet Wait-
ing Time

5.3.1.2 Average Packet Waiting Time

Figure 5.6 depicts the average packet waiting time for TERM, traditional SDN, Pallet,

and FAA. The average packet waiting time of TERM is 14.81%, 30.30%, and 43.90%

less than traditional SDN, Pallet, and FAA, respectively. Therefore, we yield that the

average packet waiting time is short in TERM, as the most frequently used rules are

cached in each switch.

5.3.1.3 Free Rule-Space

The amount of free rule-space is the percentage of total rule-space available for storing

new flow-rules. As shown in Figure 5.7, the average free rule-space is significantly higher

74

5.3. Performance Evaluation

in TERM, as each rule aggregation procedure aggregates the existing rules and releases

rule-space.

 0

 20

 40

 60

 80

 100

20000
40000

60000
80000

100000Fr
ee

 R
ul

e-
Sp

ac
e

(%
)

Total Number of Flows

 TERM
 Traditional SDN

 Pallet: CBD
 FAA

Figure 5.7: TERM: Average Free Rule-
Space

 0

 3

 6

 9

 12

 15

20000
40000

60000
80000

100000N
um

be
r

of
 P

ac
ke

t-
In

M
es

sa
ge

s
(t

ho
us

an
d)

Total Number of Flows

 TERM
 Traditional SDN

 Pallet: CBD
 FAA

Figure 5.8: TERM: Average Number of
Packet-In Messages

 0

 1

 2

 3

 4

 5

0 5 10 15 20

N
um

be
r

of
 P

ac
ke

t-
In

M
es

sa
ge

s
(t

ho
us

an
d)

Cache Size (%)

Figure 5.9: TERM: Effect of Cache Size
on Packet-In Message Count

 0

 1

 2

 3

 4

 5

 6

1000
2000

3000
4000

5000
6000

7000
8000

R
ul

e
A

gg
re

ga
tio

n
T

im
e

(s
)

Number of Flow-Rules

Figure 5.10: TERM: Rule Aggregation
Time

 0

 1

 2

 3

 4

 5

1000
2000

3000
4000

5000
6000

7000
8000

R
ec

on
st

ru
ct

io
n

T
im

e
(m

s)

Number of Flow-Rules

Figure 5.11: TERM: Rule Reconstruction Time

75

5. Rule-Space Management

5.3.1.4 Packet-In Message Count

Figure 5.8 shows the average number of Packet-In messages generated from each switch

in the network. The cached rule-space size is fixed to 10% of the total rule-space.

The average number of Packet-In messages is 49.45%, 70.83%, and 57.78% less than

traditional SDN, Pallet, and FAA, respectively.

Figure 5.9 depicts the average number of Packet-In messages generated from each

switch for different cache sizes. The total number of flows is 10000. As shown in Figure

5.9, the number of Packet-In messages for 20% cache size is 22.96% less than that for

no cache. Therefore, we yield that caching reduces the Packet-In message count. In

addition, we synthesize that after a specific size of Ric(t), the Packet-In message count

decreases as most of the packets are matched in Ric(t).

5.3.1.5 Rule Aggregation and Reconstruction Time

The rule aggregation time is the time required to compress the flow-rules of a switch into

a lesser number of TCAM entries. Similarly, the rule reconstruction time is the time

needed to transform the aggregated TCAM entries into actual flow-rules. Figure 5.10

and Figure 5.11 depict the average rule aggregation and reconstruction time of a switch,

respectively. From the simulation results, we observe that the rule reconstruction time

is significantly less than the rule aggregation time.

5.4 Concluding Remarks

In this chapter, we present a scheme, named TERM, that aims to reduce flow-table

miss by increasing the available capacity of switches in SDN. TERM uses the tensor de-

composition technique to compress heterogeneous flow-rules. Simulation results indicate

enhanced performance in terms of reduced packet waiting time, increased free rule-space,

and reduced number of Packet-In messages.

76

Chapter 6

Control Plane Load Reduction

In this chapter, we propose a scheme for — Control Plane Load Reduction (CORE) in

SDIoT. The management of control plane load is an essential issue for IoT networks

because of the dynamic traffic characteristics. IoT traffic is highly dynamic due to the

heterogeneity of IoT devices in terms of mobility, activation model, QoS demand, and

flow generation rate. The challenge is to prevent controller overload and distribute traffic

optimally, considering heterogeneous IoT devices. CORE estimates the load on each

controller based on the mobility and traffic characteristics of IoT devices and performs

an optimal master controller assignment to reduce the control plane load.

This chapter consists of four sections. The system model of CORE is presented

in Section 6.1. Section 6.2 describes the proposed scheme. Section 6.3 depicts the

experimental results. Finally, Section 6.4 concludes the proposed work and discusses

directions for future work.

6.1 System Model

The SDIoT architecture considered in CORE is depicted in Figure 6.1. The architecture

comprises three layers — application, network, and perception. The application layer

consists of IoT applications, which perform services requested by the users based on the

77

6. Control Plane Load Reduction

Figure 6.1: CORE: SDIoT Architecture

data collected from the network layer. The network layer consists of data plane and

control plane. Let G = (S,E) represent the data plane topology, where S is the set of

SDN switches and E is the set of links. We assume that each switch stores up to Rmax

flow-rules. Each flow-rule re has a timeout duration Te seconds. Let C represent the set

of controllers. We consider that each switch si is attached to single master controller

and one or multiple slave (read-only) controllers [34] during a time-slot. Let, ε seconds

be the duration of each time-slot. The master controller for switch si is expressed as:

xij(t) =

1 if cj is the master controller of si,

0 otherwise.
(6.1)

78

6.1. System Model

The slave controller for switch si is expressed as:

yij(t) =

1 if cj is the slave controller of si,

0 otherwise.
(6.2)

A controller cannot be both master and slave for the same switch at the same time-slot.

xij(t) + yij(t) ≤ 1,∀si ∈ S,∀cj ∈ C (6.3)

Definition 18 (Controller Capacity). The capacity of a controller cj is the maximum

number of Packet-In requests the controller handles in a time-slot and is denoted by Ωj.

The perception layer contains static and mobile IoT devices that are heterogeneous

in terms of QoS requirements. The flows generated by the IoT devices are transmitted

over the wireless channel to switches via access points (APs) having different radio access

capabilities such as WiFi, WiMax, Bluetooth, 3G, 4G, Zigbee, mmWave, and TV White

Space. In this work, we assume that each IoT device is capable of communicating via

more than one radio access technique. For a time-slot t, we consider that the number

of IoT devices present in the network is nr(t). The set of IoT devices is denoted by

the set D(t) = {d1, d2, . . . , dnr(t)}. For simplicity, we assume that all the flow-rules are

exact-match flow-rules [34], where the mapping between flow-rule and flow type is one-

to-one. Further, we assume that each device generates only single type of flow. Let

Qk be the number of flows generated by dk per second. We assume that the controllers

record device specific parameters such as the flow generation rate, the mapped flow type,

and QoS requirement for each time-slot. At time-slot t, the association between an IoT

device and an SDN switch is expressed as:

zik(t) =

1 if dk is associated with si,

0 otherwise.
(6.4)

79

6. Control Plane Load Reduction

We consider that a device is associated with single switch only, as each AP sends

data to a specific SDN switch. Therefore,
|S|∑
i=1

zik(t) = 1,∀dk ∈ D(t).

Each IoT device dk activates/deactivates following either — (1) random activation

model or (2) periodic activation model [53]. A device dk following random activation

model activates at time τ ∈ [0, T] according to the beta distribution with shape param-

eters β1, and β2, which is expressed as:

fk(τ) = τβ1−1(T − τ)β2−1

T β1+β2−1 ∫ 1
0 τ

β1−1(1− τ)β2−1dτ
, (6.5)

where [0, T] is the duration within which the devices are operational. On the other

hand, a device dk following periodic activation model activates repeatedly after a fixed

duration τk seconds. Therefore, the probability that a device dk following periodic

activation model activates at time τ ∈ [0, T] given by:

fk(τ) =

1 if the interval between τ and the last active time of dk is more than τk,

0 otherwise.
(6.6)

The maximum number of Packet-In messages generated by dk in time-slot t is

Mk(t) =
∫ t0+ε
t0

fk(τ)Qkdτ , where t0 is the start time of time-slot t.

6.1.1 Mobility Model

We consider a network which has a large number of static or mobile IoT devices. Exam-

ples of some mobile IoT devices are smart wearables, cameras, and AR/VR glasses [54].

During each time-slot, SDN controllers collect device locations using Simple Network

Management Protocol (SNMP) via south bound APIs [55]. We use this collected data

as a history data set to predict device-switch associations.

80

6.1. System Model

6.1.2 Caching Model

Each flow-entry has a default timeout duration [34]. However, an IoT device usually

generates similar flow requests for a particular time duration. The interval of the arrival

of such similar flows may be greater than the timeout duration of the corresponding flow-

rule. In this case, a Packet-In message is re-generated, and an expired rule is re-installed.

Rule-caching is one of the measures to reduce the number of Packet-In requests. However,

as the cache size increases, the rule-space required for storing new rules decreases, and

the number of Packet-in requests increases. Therefore, CORE considers that each SDN

switch caches maximum Rcache < Rmax flow-rules. To express whether a switch si caches

a flow-rule for dk during time-slot t we define a binary variable as:

wik(t) =

1 if si caches flow-rule that maps to the flow type of dk,

0 otherwise.
(6.7)

6.1.3 Delay Model

Delay of an IoT flow of type fk has three components — a) device to AP communication

delay δ1
k(t), b) AP to switch communication delay δ2

k(t), and c) flow setup delay δexk (t)

at the switch. Mathematically, δ1
k(t) = ∆1(t) + gk(t)

G1η1 and δ2
k(t) = ∆2(t) + gk(t)

G2η2 , where

∆1(t) is the transmission delay from device to AP, ∆2(t) is the transmission delay from

from AP to switch, gk(t) represents the number of bytes sent by dk in time-slot t, G1 is

the bandwidth of the wireless channel from device to AP, G2 represents the bandwidth

of the wireless channel from AP to switch, η1 and η2 represent the channel overheads of

the corresponding wireless channels. The flow setup delay δexk (t) is:

δexk (t) =
|S|∑
i=1

|C|∑
j=1

zik(t)xij(t)
(
2δij(t) + δquej (t)

)
, (6.8)

81

6. Control Plane Load Reduction

where δij(t) is the transmission delay associated with the control link and δquej (t) is the

queueing delay at controller cj . A controller stores the Packet-In requests in its queue

and processes the requests in a First-Come-First-Serve (FCFS) order. We consider each

request as an individual and independent Poisson process. Therefore, we model controller

queue as a M/M/1 queue. The service rate of this queueing model is controller capacity

Ωj . The maximum request arrival rate λj(t) is given by:

λj(t) =
|S|∑
i=1

|D(t)|∑
k=1

xij(t)zik(t)(1− wik(t))Mk(t) (6.9)

Here, (6.9) considers the associated devices which have no rules cached and estimates

the maximum number of Packet-In requests based on the active duration of the devices

for each controller cj in time-slot t. The queueing delay at cj is: δquej (t) = 1
Ωj−λj(t) .

6.1.4 Cost Model

Control plane cost has two components — 1) controller-switch communication cost and

2) inter-controller communication cost due to device mobility. The controller-switch

communication cost at cj is the traffic intensity ρj(t) = λj(t)
Ωj . Controllers collect global

network data by synchronizing with other controllers at regular intervals. We assume

that each controller completes this synchronization process at the beginning of a time-

slot. Additionally, there exist two cases when a controller synchronizes with another.

• Case 1: Change in Controller-Switch Association

At time-slot t, each controller cj records the switches to which cj served as a slave

controller for time-slot t− 1 before changing its role to a master controller. In this

case, cj needs to synchronize with the former master controller(s) of the switches.

Figure 6.2 shows an example where the master controller of switch s3 changes from

c1 to c2 at time-slot t. Therefore, for seamless handover, c2 collects unfinished

session data and flow information from c1. For each controller cj , the number of

82

6.1. System Model

master-slave role changes during a time-slot is χjc(t) =
|S|∑
i=1
|xij(t)− xij(t− 1)|.

Figure 6.2: Case 1: Change in
Controller-Switch Association

Figure 6.3: Case 2: Change in
Device-Switch Association

• Case 2: Change in Device-Switch Association

At time-slot t, each controller cj records the mobile IoT devices which are newly

associated with the switches assigned to cj . If the old switches have different

master controller(s), cj needs to synchronize with the master controller(s) of the

old switches. Figure 6.3 shows an example in which a mobile device changes the

associated switch from s3 to s4 at time-slot t. As s3 and s4 have different master

controllers c1 and c2, controller synchronization is required for seamless handover.

For each controller cj , the number of such changes where controller synchronization

is required is χjs(t) =
|S|∑
i=1

|D(t)|∑
k=1

ξjk(t), where ξk(t) is expressed as:

ξjk(t) =

1 if xij(t)zik(t) = xi′j′ (t− 1)zi′k(t− 1) = 1, i 6= i

′ , j 6= j
′
,

0 otherwise.
(6.10)

Therefore, the total inter-controller communication cost for cj is Γj(t) = χjc(t) + χjs(t).

83

6. Control Plane Load Reduction

6.1.5 Problem Formulation

The objective of CORE is to determine optimal controller-switch assignments to mini-

mize the control plane cost of the network. Therefore, we formulate the cache-enabled

minimum cost master controller assignment (CMCA) problem as:

Minimize
x(t),w(t)

α
|C|∑
j=1

ρj(t) + (1− α)
|C|∑
j=1

Γj(t) (6.11)

subject to

λj(t) ≤ Ωj ,∀cj ∈ C, (6.12)
|C|∑
j=1

xij(t) = 1,∀si ∈ S, (6.13)

|D(t)|∑
k=1

wik(t) ≤ Rcache, ∀si ∈ S, (6.14)

xij(t) = xij(t− 1) + yij(t− 1),

∀si ∈ S, ∀cj ∈ C (6.15)
|S|∑
i=1

wik(t) ≤ 1,∀dk ∈ D(t), (6.16)

δk ≤ δmaxk ,∀dk ∈ D(t) , (6.17)

where α ∈ [0, 1] is a weighting factor to control the relative importance of controller-

switch communication cost and inter-controller communication cost. The relation in

(6.12) ensures that none of the controllers is overloaded. The truth that each switch

belongs to a single master controller is presented in (6.13). Additionally, (6.14) ensures

that the number of cached flow-rules in each switch does not exceed the maximum

allowable limit Rcache. The relation in (6.15) ensures that a controller can be assigned

with the master role for a switch in time-slot t if and only if it is the master or slave

controller for that switch in the previous time-slot. Moreover, (6.16) ensures that a

device can have cached rule only in single switch as each switch has limited rule storage

capacity. Finally, (6.17) expresses the delay constraint for each device, where δmaxk is

the maximum allowable delay for dk.

84

6.2. CORE: The Proposed Scheme

Theorem 6. CMCA problem is NP-hard.

Proof. Let us consider a particular instance of the CMCA problem by excluding the

rule caching at switches. In this case, we have |C| controllers and |S| switches. Each

controller-switch association increases traffic intensity at the corresponding controller.

In addition, each controller has a maximum capacity. For example, a switch si can be

associated with a master controller cj only if λj(t) < Ωj . A feasible solution ensures

completeness constraint in (6.13) that each switch is assigned to exactly one master

controller. The goal of the problem is to find a feasible solution that minimizes the total

control traffic intensity. This is in the form of a generalized assignment problem [56],

which has been proved as NP-hard. Hence, the CMCA problem is also NP-hard.

As the optimization problem in (6.11) is NP-hard, it is difficult to obtain a solution

in reasonable time. Therefore, we propose a master controller assignment scheme based

on the branch and bound technique [57] to determine near-optimal solutions.

6.2 CORE: The Proposed Scheme

CORE contains three modules for the purpose of — (a) mobility prediction, (b) rule-

caching, and (c) master controller assignment. The mobility prediction module ana-

lyzes mobility history of IoT devices to predict device-switch association information.

Thereafter, the selected flow-rules are cached by the rule-caching module to reduce the

control plane load. Finally, the master controller assignment module determines optimal

controller-switch associations.

6.2.1 Mobility Prediction

We determine the control plane load based on the number of control messages it handles

during a time-slot. However, the number of control messages depends on the devices

associated with the switches at a time-slot. Consequently, we predict the device-switch

85

6. Control Plane Load Reduction

associations, while considering the movement history of the devices. Subsequently, we

use this prediction data to cache device-specific flow-rules in switches and determine

optimal controller-switch associations. We use the existing Markov Predictor [58], which

is one of the most popular location prediction algorithms to predict the future location

of a mobile device based on its mobility history. An O(m) Markov Predictor considers

m most recent locations of a mobile device and predicts the next location. Markov

Predictor consumes less space and performs better than other popular predictors for low

values of m [59]. Therefore, we use order-m (O(m)) Markov Predictor to determine each

device’s future location. For predicting the location of a device dk, the components of

an order-m (O(m)) Markov Predictor are:

• Input: The input set Hk(t) = {{Lt,k,Tt,k, Vt,k}, Pt,k} represents the mobility his-

tory of dk at time-slot t, where Lt,k = {ltk1, ltk2, . . . , ltkn} is the set of locations

or meaningful places that the device visits, Tt,k = {τtk1, τtk2, . . . , τtkn} denotes the

set of arrival times at the locations in Lt,k, Vt,k = {vtk1, vtk2, . . . , vtkn} is the set of

durations of stay at each location in Lt,k, and Ptkij ∈ Pt,k represents the transition

probability from location ltki to location ltkj , i 6= j.

• Output: The output lt+1,k ∈ Lt,k is the predicted location of dk in time-slot t+ 1.

• Context: The context is h=Lt,k(n−m+1, n)={ltk(n−m+1), ltk(n−m+2), . . . , ltk(n−1), ltkn}.

Markov Predictor extracts the context h from the input set Hk(t) and examines the

duration of stay Vl at a location l that follows h. Mathematically,

Vl = {vtki|vtki = τtk(i+1) − τtki, where Lt,k(i−m+ 1, i+ 1) = hl} (6.18)

From each Vl, we compute the conditional probability Pl(τ ≤ v < τ + ∆τ |h, τ) that

the device shifts to location l within ∆τ time beyond the current elapsed time τ . We

consider ∆τ as the remaining time of the current time-slot. Therefore, for a given h and

86

6.2. CORE: The Proposed Scheme

τ , the probability of each device moving to each possible location l within ∆τ time is:

P (l|h, τ) = P (l)Pl(τ ≤ v < τ + ∆τ |h, τ), (6.19)

where P (l) is the transition probability of every possible next location l which is:

P (ltk(n+1) = l|Lt,k) ≈ P̂ (ltk(n+1) = l|Lt,k) = N(hl, Lt,k)
N(h, Lt,k)

, (6.20)

where N(hl, Lt,k) signifies the number of occurrences of hl in the set Lt,k. Therefore,

the output of the Markov Predictor which is the most likely next location of dk is:

ltk(n+1) = arg max
l∈Lt,k

P (ltk(n+1) = l) (6.21)

If N(h, Lt,k) = 0, the O(m) Markov Predictor fails to return a result. Therefore, we

use fallback Markov Predictor [58] which backtracks to an O(m − 1) Markov predictor

whenever an O(m) Markov Predictor fails to return a result. The O(0) Markov Predictor

yields the location that occurs most frequently in the location history set Lt,k.

Algorithm 6.1: CORE: Mobility Prediction Algorithm
Inputs : Hk(t− 1), h
Output: z(t)

1 Extract Lt−1,k from Hk(t− 1)
2 Compute Vl at possible locations l using (6.18)
3 Calculate P (l|h, τ) using (6.19)
4 Predict the next location using (6.21)
5 Select the nearest AP which covers the predicted location and matches the radio

access capability of the dk
6 Set zik(t) = 1 if si is associated with the selected AP

Algorithm 6.1 presents the steps required for mobility prediction of a device dk and

the formulation of device-switch association zik(t). The Mobility Prediction Algorithm

(MPA) is executed for each device dk. An O(m) Markov Predictor returns a location

where the device is predicted to be present in time-slot t. We consider that dk associates

87

6. Control Plane Load Reduction

with the nearest AP that covers the predicted location and matches its radio access

capability. Let si be the switch associated with the selected AP. Therefore, MPA predicts

the device-switch association zik(t) = 1.

6.2.2 Rule-Caching

To estimate rule popularity, rule-caching module sorts the flow-rules in each switch in

descending order of the received packet count. Let Ri be the set of flow-rules in si.

Therefore, the rule popularity is denoted by Θ = {θ1, θ2, θ3, . . . , θ|Ri|}, where θj ∈ [0, 1]

is the probability that an incoming flow matches with the jth flow-rule. In this work, we

assume that rule popularity satisfies the Zipf distribution [36]. Therefore, the popularity

of the jth ordered flow-rule is θj =
1
jγ

|Ri|∑
a=1

1
aγ

, where γ ∈ [0, 1] denotes the skewness of the

rule popularity. The value γ = 0 signifies uniform popularity distribution and a larger

γ implies more uneven rule popularity.

Algorithm 6.2: CORE: Rule-Caching Algorithm
Inputs : Ri, γ, z(t)
Output: w(t)

1 Compute popularity of the rules in Ri
2 Sort the flow-rules in descending order of popularity
3 foreach rule re in the sorted list do
4 Select the device dk whose flow type maps to re
5 if zik(t) == 1 and re not cached then
6 Delete the least popular rule from cache if cache is full
7 Set Te = 1

Qk(t−1) + (T0 − δmaxk), wik(t) = 1
8 end
9 end

Algorithm 6.2 presents the steps of the proposed greedy solution for caching rules

in each switch si. For each switch si, the Rule-Caching Algorithm (RCA) sorts the

flow-rules present in the rule-space of the switch based on the rule popularity. For each

flow-rule re which maps to the flow type of dk, RCA checks whether zik(t) == 1 from

the output of MPA. In addition, RCA checks whether the rule is already cached by si.

88

6.2. CORE: The Proposed Scheme

If the cache size reaches its maximum limit Rcache, RCA deletes the least popular rule

from the cache by setting its timeout as the default timeout T0. For caching re, RCA

sets the timeout value as Te = 1
Qk(t−1) + (T0 − δmaxk). This timeout value ensures that

latency-sensitive flows are prioritized over other flows as a larger timeout value signifies

lower chance of flow-table miss.

6.2.3 Master Controller Assignment

We derive the optimization problem for minimum cost master controller assignment

from the joint optimization problem of cache-enabled minimum cost master controller

assignment stated in (6.11). Hence, for a given caching policy w(t), the optimization

problem P0 for minimum cost master controller assignment (MCA) is given by:

Minimize
x(t)

α
|C|∑
j=1

ρj(t) + (1− α)
|C|∑
j=1

Γj(t) (6.22)

subject to

λj(t) ≤ Ωj , ∀cj ∈ C, (6.23)
|C|∑
j=1

xij(t) = 1, ∀si ∈ S, (6.24)

xij(t) = xij(t− 1) + yij(t− 1),

∀si ∈ S, ∀cj ∈ C (6.25)
|S|∑
i=1

wik(t) ≤ 1,∀dk ∈ D(t), (6.26)

δk ≤ δmaxk ,∀dk ∈ D(t) (6.27)

The MCA problem is non-convex because of the presence of binary decision variables.

For solving the MCA problem, we use the branch and bound technique [57] which defines

a common structure to solve a wide range of non-convex optimization problems. There-

fore, the master controller assignment scheme for the MCA problem has two significant

components — 1) branching method and 2) lower-bounding method.

89

6. Control Plane Load Reduction

6.2.3.1 Branching Method

Let P0 denote the MCA problem stated in (6.22). The branching method starts with

P0 as the root of the search tree. The total number of levels in the tree is |S| + 1

starting from level 0. Each level corresponds to the selection of a master controller for

each switch si. For example, level 1 corresponds to the selection of a master controller

for switch s1. Therefore, each node at a level denotes a subproblem. At each level, we

partition the leaves or subproblems. Each child node of a node Pv at level l corresponds

to a feasible master controller for sl+1. Let Cv be the set of feasible master controllers

for sl+1. From constraint (6.25), we find that a controller cj ∈ C is a member of Cv if

xl+1,j(t− 1) + yl+1,j(t− 1) = 1. Therefore, the number of children of Pv is |Cv|.

6.2.3.2 Lower-Bounding Method

Initially, we construct a lower bound for the original MCA problem. To find the initial

lower bound, we construct a relaxed problem MCA-R by removing the controller capacity

constraint in (6.23). Therefore, each switch freely selects the master controller so that

the control plane cost is minimum. For a given switch si, the cost for the assignment

to a master controller cj is Uij = αρj(t) + (1 − α)Γj(t), where xij = 1 and xij′ = 0

for all j 6= j
′ . Therefore, the cost of a minimum cost controller-switch association for

a given switch si is expressed as Uiji = min
∀cj
{Uij}. Hence, the LB for problem P0 is

LB0 =
|S|∑
i=1

Uiji . Subsequently, we find the LB for each subproblem Pv where v 6= 0. Let

xv(t) be the allocation matrix for the branch ending at a node Pv at level l. Therefore, the

initial value of Lower Bound (LB) is LB0
v =

∑
∀cj∈C,si∈S

Uijx
v(t). S′ = sl+1, sl+2, . . . , s|S|

denotes the set of unassigned switches for the current branch. For each switch si ∈ S
′ , we

find the minimum cost controller-switch association that satisfies the constraints (6.23),

(6.24), (6.25) and (6.27). Therefore, the LB of Pv is LBv = LB0
v +

∑
si∈S′

min
∀cj
{Uij}.

90

6.2. CORE: The Proposed Scheme

Algorithm 6.3: CORE: Master Controller Assignment Algorithm
Inputs : P0, C, S, z(t), w(t)
Output: {x∗(t), u∗}

1 P ← {P0}, u∗ = + inf, x∗(t) = 0
2 while P 6= φ do
3 Select a node Pv ∈ P
4 P ← P − {Pv}
5 Apply branching method to Pv and generate subproblems Pv1 , Pv2 , . . . , Pv|Cv |

6 foreach Pva do
7 Compute LBva
8 if LBva > u∗ then
9 Delete Pva

10 if Pva gives a complete solution {x′(t), u′} then
11 u∗ = u

′

12 x∗(t) = x
′(t)

13 else
14 P ← P ∪ {Pva}
15 end
16 end
17 end
18 end

6.2.3.3 Master Controller Assignment Algorithm

Algorithm 3 shows the branch and bound procedure to solve the MCA problem. The

Master Controller Assignment Algorithm (MCAA) initializes the values of optimal so-

lution x∗(t) and the optimal objective value u∗. In addition, MCAA adds the root node

P0 to the set of live nodes P . For each live node Pv ∈ P , MCAA applies branching

method to generate child nodes or subproblems. A subproblem is deleted if it has a

LB greater than the optimal objective value u∗. The values x∗(t) and u∗ are updated

when a subproblem generates a complete solution with each switch assigned to a master

controller. Otherwise, the subproblem is added to the set of live nodes P . The output of

MCAA signifies an optimal master controller assignment x∗(t) for time-slot t. At time-

slot t − 1, we compute x∗(t) and change the controller-switch assignments accordingly

91

6. Control Plane Load Reduction

by using Role-Change messages [34]. Additionally, we deactivate the controllers which

have no assigned switches.

6.3 Performance Evaluation

6.3.1 Simulation Settings

For the simulation, we consider random controller placement. In addition, we consider

an equal number of randomly and periodically activated devices. We conduct two sets

of experiments for performance evaluation. In the first experiment, we consider that

80% devices generate high traffic. This experiment evaluates the performance of the

proposed scheme in the presence of high IoT traffic volume. In the second experiment,

we set the percentage of latency-sensitive devices as 80% to analyze the performance

for time-critical IoT applications. Table 6.2 shows the specific parameters considered

for categorizing high traffic generating and latency-sensitive devices. The simulation

parameters are depicted in Table 6.1.

6.3.2 Benchmark Schemes

We compare CORE with existing switch migration-based schemes — DCP-SA [22] and

ESMLB [23]. DCP-SA considers flow setup delay and inter-controller communication in

the presence of dynamic traffic. ESMLB considers the control traffic generated by the

switches as primary criteria for switch migration-based load balancing in SDIoT control

plane. On the other hand, CORE considers flow setup delay, inter-controller commu-

nication, dynamic network traffic, device mobility, and heterogeneous QoS demands to

determine feasible controller-switch assignment.

6.3.3 Performance Metrics

The performance metrics considered for evaluating the proposed scheme are as follows:

92

6.3. Performance Evaluation

Table 6.1: CORE: Simulation Parameters
Parameter Value

Network topology 8−pod Fat-tree [60]
Simulation Area 500 m × 500 m
Mobility model Gauss-Markov [61]
Number of IoT devices 200− 2500
Speed of IoT devices 1− 2 m/s [62]
Number of switches 20
Flow-rule default timeout T0 10 s
Number of controllers 5
Controller capacity 7200− 10800 K req/time-slot [63]
Average packet size 94− 234 bytes [64]
Mean data rate 462− 11388 bytes/s [64]
Maximum allowable delay 0.001− 1 s [46]
Time-slot duration ε 1 hour
Skewness of rule popularity γ 0.56
Shape parameter β1 3 [53]
Shape parameter β2 4 [53]
Weighing factor α 0.8

Table 6.2: Device Category

Category Average packet
size (bytes)

Mean
data rate
(bytes/s)

Maximum allow-
able delay (s)

High traffic generating 234 [64] 11388 [64] 0.001− 1 [46]
Latency-sensitive 94 [64] 462 [64] 0.001− 0.25 [46]

• Prediction accuracy: Prediction accuracy shows the correctness of mobility

prediction for the IoT devices.

• Control plane cost: Control plane cost is the cumulative cost of controller-

switch communication cost and inter-controller communication cost, as mentioned

in (6.11). We evaluate this metric to estimate the load on the control plane as a

high controller load increases the cost.

• Peak traffic intensity: We calculate the peak traffic intensity across all con-

trollers to analyze the distribution of control traffic. Mathematically, the peak

93

6. Control Plane Load Reduction

traffic intensity is given as max (ρj(t)) ,∀cj ∈ C.

• QoS violated flows: QoS violated flows are the flows which do not satisfy end-

to-end delay requirement of the flow type. We evaluate this metric to show the

efficiency of CORE in terms of QoS.

6.3.4 Observations and Results

6.3.4.1 Prediction Accuracy

For the simulation, we fix the order of the Markov predictor as k = 3. We use a Twitter

dataset [65] involving 200−1000 devices to analyze the prediction accuracy of the Markov

predictor. Figure 6.4 shows that the average prediction accuracy is 83.72%. From the

simulation, we infer that CORE is capable of correctly predicting the device locations

for a significant number of cases, although the mobility pattern and speed of the devices

are highly dynamic.

0

20

40

60

80

100

200 400 600 800 1000

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Number of Devices

Figure 6.4: CORE: Prediction Accuracy

6.3.4.2 Control Plane Cost

Figure 6.5(a) shows that CORE achieves 46.94% and 9.82% reduction in control plane

cost compared to DCP-SA and ESMLB, respectively, for high traffic load. Figure 6.5(b)

shows that CORE achieves 65.63% and 20.14% reduction in control plane cost compared

94

6.3. Performance Evaluation

to DCP-SA and ESMLB, respectively, when the majority of the devices are latency-

sensitive.

0

0.5

1

1.5

2

1000 1500 2000 2500

C
on

tr
ol

 P
la

ne
 C

os
t

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(a) Experiment 1

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500

C
on

tr
ol

 P
la

ne
 C

os
t

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(b) Experiment 2

Figure 6.5: CORE: Control Plane Cost

6.3.4.3 Peak Traffic Intensity

Figure 6.6(a) shows that for 2500 devices, the peak traffic intensity of CORE is 18.66%

and 25.27% less as compared to DCP-SA and ESMLB, respectively, for the first ex-

periment. Figure 6.6(b) shows that CORE achieves 23.08% and 16.67% reduction in

peak traffic intensity compared to DCP-SA and ESMLB, respectively, for the second

experiment.

6.3.4.4 QoS Violated Flows

From Figure 6.7(a), we observe that the percentage of QoS violated flows is less for

CORE even when the number of devices is high. Figure 6.7(b) shows the amount of

QoS violated flows with high number of latency-sensitive devices. For this experiment,

CORE achieves 23.73% and 22.82% better performance as compared to DCP-SA and

ESMLB, respectively.

95

6. Control Plane Load Reduction

0

0.1

0.2

0.3

0.4

0.5

1000 1500 2000 2500

Pe
ak

 T
ra

ff
ic

 I
nt

en
si

ty

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(a) Experiment 1

0

0.05

0.1

0.15

0.2

0.25

1000 1500 2000 2500

Pe
ak

 T
ra

ff
ic

 I
nt

en
si

ty

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(b) Experiment 2

Figure 6.6: CORE: Peak Traffic Intensity

0

3

6

9

12

15

1000 1500 2000 2500

Q
oS

 V
io

la
te

d
Fl

ow
s

(%
)

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(a) Experiment 1

0

1

2

3

4

5

6

1000 1500 2000 2500

Q
oS

 V
io

la
te

d
Fl

ow
s

(%
)

Number of IoT Devices

 CORE
 DCP-SA

 ESMLB

(b) Experiment 2

Figure 6.7: CORE: QoS Violated Flows

6.3.5 Discussion

From the simulation result, we observe that CORE significantly outperforms the bench-

marks. The majority of the IoT flows are latency-sensitive, and CORE has low control

plane cost for a high number of latency-sensitive devices. This is because the rule-caching

module prioritizes latency-sensitive flows and reduces controller-switch communication.

It is noteworthy that with less number of IoT devices, the peak traffic intensity of CORE

is similar to the benchmark schemes. This is because, at a lower load, the control traffic

is well-distributed across the controllers. However, IoT networks expect the presence of

96

6.4. Concluding Remarks

a massive number of IoT devices, and CORE reduces the peak traffic intensity for a high

number of IoT devices. Therefore, we deduce that CORE is more suitable for reducing

control plane load in the IoT environment than the benchmark scheme.

6.4 Concluding Remarks

This chapter presents a prediction-based approach to reduce the control plane load in

SDIoT. In this scheme, we designed rule-caching and master controller assignment algo-

rithms considering heterogeneous attributes of IoT devices. Simulation results indicate

that the proposed scheme reduces the average control plane cost for varying traffic load

and varying QoS demand compared to the benchmarks. Specifically, for high traffic

load, the average control plane cost decreased approximately by 46.94% and 9.82% as

compared to DCP-SA and ESMLB, respectively.

97

Chapter 7

QoS-Aware Switch and Controller

Placement

In this chapter, we propose a scheme for QoS-aware Switch and Controller Placement

(SCOPE) in hybrid SDN. Hybrid SDN is an intermediate step of transforming a tradi-

tional backbone network into pure SDN. For hybrid SDN, QoS is a primary concern for

ensuring service guarantee of a traditional network, while providing additional benefits

of softwarization. The positions of SDN controllers determine the QoS parameters, such

as network throughput and flow-processing delays. SCOPE addresses the joint switch

and controller placement problem in hybrid SDN by (a) selecting legacy switches for

upgrade, and (b) determining the locations and the number of controllers based on the

upgraded switches.

This chapter consists of four sections. The system model of SCOPE is discussed

in Section 7.1. Section 7.2 describes the proposed scheme. Section 7.3 depicts the

experimental results. Finally, Section 7.4 concludes the proposed work.

99

7. QoS-Aware Switch and Controller Placement

7.1 System Model

The system includes a collection of service requests, a set of devices, and network ele-

ments. Figure 7.1 shows the hybrid SDN architecture. We consider a service request as a

Figure 7.1: SCOPE: Hybrid SDN Architecture

flow denoted by fi. A flow fi ∈ F is denoted by a tuple< id(fi), src(fi), dest(fi), rate(fi) >,

where id(fi) represents the flow identification number, src(fi) denotes the source, dest(fi)

is the destination, and rate(fi) is the traffic rate. A flow fi is termed new, if no match-

ing flow-rule is present in the ingress switch. For a time-slot t, the set of devices is

denoted by D(t) = {d1, d2, . . . , dm}. Let Fk(t) denote the set of service requests gen-

erated by dk. We model a hybrid SDN as a connected graph G(N,E) having a set of

nodes N = C ∪ S ∪ R. The set C = {c1, c2, . . . ca} is the set of available locations for

placing the controllers. The selection of a location for controller placement is expressed

as:

CP (j, t) =

1 if at time-slot t, an active controller is present at location cj ,

0 otherwise.
(7.1)

S = {s1, s2, . . . sb} and R = {r1, r2, . . . rn} denote the sets of SDN and legacy switches,

respectively. The legacy switches forward packets based on traditional routing protocols,

including OSPF. In this work, we consider heterogeneous legacy switches having different

100

7.1. System Model

expected lifetime. At time-slot t, the controller-switch association is expressed as:

SC(i, j, t) =

1 if CP (j, t) = 1 and cj is the master controller of si,

0 otherwise.
(7.2)

The weight of a data link eij ∈ E is denoted by LW (eij), which specifies the priority

of the link for the shortest path routing protocols such as OSPF. A data link having at

least one SDN switch is termed as an SDN link. Otherwise, the data link is called a

non-SDN link. Therefore, a traffic or flow is termed as programmable if it passes through

at least one SDN link. Programmable traffic is expressed as:

Υ(i) =

1 if fi ∈ F is programmable,

0 otherwise.
(7.3)

The number of Packet-In requests generated by si ∈ S at time-slot t is given by:

Ψi(t) =
∑

dk∈Di(t)

∑
fl∈Fk(t)

(1− pmatch), (7.4)

where 0 ≤ pmatch ≤ 1 is the rule matching probability, and Di(t) ⊆ D(t) is the set of

devices sending service requests to si at time-slot t. The maximum number of Packet-

In requests of si which are processed by the associated controller during time-slot t is

Ψsucc
i (t) = 1

δi(t) , where δi(t) is the average flow-setup delay for a flow originating from

si at time-slot t. The flow-setup delay consists of — (1) switch-to-controller delay for

transmitting the Packet-In request to the controller and receiving the new flow-rule from

the controller (δtri (t)), (2) queueing delay at the controller (δquej (t)), and (3) processing

delay at the controller for deciding the forwarding path (δpr(t)). Therefore, δi(t) =

2δtri (t)+δquej (t)+δpr(t). For simplicity, we assume that all controllers are homogeneous in

terms of capacity and the maximum number of Packet-In requests handled by a controller

101

7. QoS-Aware Switch and Controller Placement

during a time-slot is Ω. For time-slot t, the number of Packet-In requests received by

an active controller placed at location cj is Ωj(t) =
|S|∑
i=1

SC(i, j, t)Ψi(t). Therefore, the

queueing delay at the corresponding controller is δquej (t) = 1
Ω−Ωj(t) . The time required

for calculating single source route depends on the network size [66]. Therefore, the

processing delay is δpr(t) = 1
ΩO(|S|2).

Definition 19 (Effective SDN Throughput). The effective SDN throughput consists of

the programmable service requests for which new flow-rules are installed as well as the

service requests having matching flow-rules. Accordingly, we define the effective SDN

throughput at time-slot t as:

Theff (t) =
|S|∑
i=1

Ψact
i (t) +

 ∑
dk∈Di(t)

|Fk(t)| −Ψi(t)

 , (7.5)

where Ψact
i (t) ≤ Ψsucc

i (t) is the actual number of processed service requests that have

no matching flow-rules and
(∑
dk∈Di(t)

|Fk(t)| −Ψi(t)
)

is the number of service requests

having matching flow-rules.

7.1.1 Budget Model

For hybrid SDN, the number of upgraded switches and placed controllers depend on

the available upgrade budget. Let B denote the total budget for upgrading a traditional

network to SDN and T denote the number of time-slots allocated for the upgrade process.

Therefore, the upgrade budget is B = Bs + Bc, where Bs is the budget allocated for

replacing all legacy switches with SDN switches and Bc is the budget allocated for the

installation of controllers. We consider that the switch upgrade budget at each time-slot

is different. Let Bs(t) denote the switch upgrade budget and Bc(t) denote the controller

placement budget for time-slot t ≤ T . Additionally, we consider that replacing a legacy

switch with an SDN switch costs θs,t unit at time-slot t ≤ T and placement of a controller

102

7.1. System Model

costs θc,t unit at time-slot t ≤ T . The upgrade of a legacy switch rj is expressed as:

vjt =

1 if rj ∈ R upgrades at time-slot t,

0 otherwise.
(7.6)

Therefore, the consumed switch upgrade budget at time-slot t is
|R|∑
j=1

vjtθs,t. The place-

ment of a controller at location cj is expressed as:

v
′
jt =

1 if CP (j, t) = 1 and CP (j, t− 1) = 0,

0 otherwise.
(7.7)

Therefore, the consumed controller installation budget at time-slot t is
|C|∑
j=1

v
′
jtθc,t.

7.1.2 Problem Formulation

Objective 1 The first objective of this work is finalizing the switch upgrade policy

which maximizes the programmable traffic. The switch upgrade policy specifies a set of

to-be-upgraded legacy switches for each time-slot. Therefore, we formulate the switch

placement problem (SPP) as:

Maximize
v

|F |∑
i=1

Υ(i) (7.8)

subject to∑
t∈T

vjt ≤ 1, ∀rj ∈ R, (7.9)

|R|∑
j=1

vjtθs,t ≤ Bs(t), ∀t ∈ T, (7.10)

∑
t∈T

Bs(t) ≤ Bs (7.11)

Equation (7.9) ensures that a legacy switch is upgraded only once. Equation (7.10)

103

7. QoS-Aware Switch and Controller Placement

ensures that the total expense for switch upgrade does not exceed the switch upgrade

budget for each time-slot. Equation (7.11) ensures that the total upgrade expenditure

is within the switch upgrade budget. The inputs of the SPP are R, t, θs,t, and Bs(t).

Theorem 7. SPP is NP-hard.

Proof. To prove the NP-hardness of SPP, we reduce the 0− 1 knapsack problem, which

has been proven as NP-hard, to SPP. The 0−1 knapsack problem involves a set of items

so that each item has a weight and a value. The goal is to add items in a knapsack

of fixed capacity so that the total value is the maximum. However, the decision for

including an item in a knapsack is binary, i.e., an item can be added to the knapsack as

a whole or not added at all.

Let us consider a specific instance of the SPP by limiting the number of time-slots

T to unity. We reduce an instance of the 0 − 1 knapsack problem to this instance of

SPP. In this case, each item in the 0 − 1 knapsack problem refers to a legacy switch

rj ∈ R. The weight and value of each item correspond to the upgrade cost θs,1 and the

traffic volume V ol(rj) that traverses the switch rj , respectively. The capacity of the

knapsack is mapped to the total switch upgrade budget Bs(1). In SPP, the value of the

decision variable vj1 is restricted to 1 or 0, depending on whether rj ∈ R is selected for

upgrade or not. The goal of the SPP is to find a feasible solution that maximizes the

total programmable traffic without exceeding the switch upgrade budget. Therefore, the

optimal solution to the 0− 1 knapsack problem is also the optimal solution of the SPP.

Hence, the SPP is also NP-hard.

As SPP is NP-hard, we propose a greedy algorithm that computes priorities of the

legacy switches and selects the switches accordingly.

Objective 2 The second objective of this work is finalizing the controller placement

policy which maximizes the effective SDN throughput. The controller placement pol-

104

7.1. System Model

icy specifies controller locations, given the set of upgraded switches in each time-slot.

Therefore, we formulate the QoS-aware controller placement problem (QCPP) as:

Maximize
v′

T∑
t=1

Theff (t) (7.12)

subject to

CP (j, t)Ωj(t) < Ω,∀cj ∈ C, ∀t ∈ T, (7.13)
|C|∑
j=1

v
′
jtθc,t ≤ Bc(t), ∀t ∈ T, (7.14)

∑
t∈T

Bc(t) ≤ Bc, (7.15)

|C|∑
j=1

SC(i, j, t) = 1,∀si ∈ S,∀t ∈ T, (7.16)

δi(t) ≤ δmax,∀si ∈ S, ∀t ∈ T, (7.17)

where Equation (7.13) states the controller capacity constraint. Equation (7.14)

ensures that the total expense for controller placement does not exceed the controller

placement budget for each time-slot. Equation (7.15) ensures that the total expenditure

for controller placement is within the controller installation budget. Equation (7.16)

expresses that each SDN switch has single controller. Equation (7.17) states the QoS

requirement of a service request in terms of flow-setup delay, where δmax denotes the

maximum allowable delay. The inputs of the QCPP are C, t, and S′(t) ∈ S that denotes

the set of upgraded switches in time-slot t.

Theorem 8. QCPP is NP-hard.

Proof. To prove the NP-hardness of QCPP, we reduce the well-known facility location

problem to QCPP. The facility location problem, which has been proven as NP-hard,

involves a set of potential locations for opening a facility. In addition, there exists a set

of demand points. The goal of the problem is to find a set of locations to open facilities

which minimizes the distance of each demand point to the nearest facility and the total

105

7. QoS-Aware Switch and Controller Placement

facility opening cost.

Let us consider a particular instance of QCPP by limiting the number of time-slots

T to unity. In this case, we consider each potential controller location cj ∈ C as a facility

location. The installation of a controller at a potential location costs θc,1, given the

total controller placement budget Bc(1). The demand points are the SDN switches. For

the unmatched service requests, SDN switches send Packet-In messages to the connected

controllers. The flow-setup delay of a service request depends on the switch-to-controller

distance. The goal of QCPP is to find a set of controller locations for placing active

controllers which maximizes the overall utility for each device by minimizing the switch-

to-controller distance for each SDN switch without exceeding the controller placement

budget and controller capacity. Therefore, the optimal solution of the facility location

problem is also the optimal solution of QCPP. Hence, QCPP is also NP-hard.

As QCPP is NP-hard, we propose a coalition game-based algorithm which forms

coalitions of SDN switches to select the locations for the placement of controllers.

7.2 SCOPE: The Proposed Scheme

The process of transforming a traditional network into a pure SDN involves multiple

rounds or time-slots. In each time-slot, a new set of legacy switches are swapped with

SDN switches. Based on the current set of SDN switches, we formulate a coalition game

to determine the placement policy of new SDN controllers.

7.2.1 SDN Switch Placement

For SDN switch placement, we design a priority-based algorithm which assigns priority

values to the legacy switches and selects switches for upgrade considering the upgrade

budget. The priority value of a legacy switch rj ∈ R depends on the following parameters:

106

7.2. SCOPE: The Proposed Scheme

1. Number of Non-SDN Links: Replacing a legacy switch having more number

of non-SDN links results into higher programmable traffic.

2. Traffic Volume: Priority of a switch is directly proportional to the traffic volume

that traverses the switch. This is because the upgrade of heavily used switches

produces higher programmable traffic.

3. Link Weightage: A switch is likely to be a part of the shortest route if it has the

lowest average weight for the adjacent links. Upgrading a legacy switch which is a

part of the shortest route increases programmable traffic. Therefore, the priority

of a switch is inversely proportional to the average link weightage.

4. Residual Lifetime of the Switch: The expected lifetime of a legacy switch is 3

to 5 years and these switches are very expensive [67]. Moreover, the initial upgrade

cost is directly proportional to the residual lifetime of a legacy switch because the

switch upgrade cost decreases over time-slots [67]. Therefore, replacing a legacy

switch which has a high residual lifetime is not cost-effective.

Definition 20 (Legacy Switch Utilization). The utilization of each legacy switch rj

before upgrade is defined as:

SUj = Tc(rj)
T(rj)

, (7.18)

where T(rj) is the total lifespan of rj and Tc(rj) ≤ T(rj) denotes the consumed

lifespan of rj.

Definition 21 (Priority of a Legacy Switch). The priority of a legacy switch rj is:

PR(rj) = z1NS(rj) + z2
V ol(rj)
V ol + z3

1
W (rj)

+ z4SUj , (7.19)

where NS(rj) denotes the number of non-SDN links for rj, V ol(rj) is the average

traffic that traverses rj, V ol is the total traffic volume of the network, W (rj) is the

107

7. QoS-Aware Switch and Controller Placement

average weight of the links of rj, and zi ∈ [0, 1] terms denote user-defined weighting

constants.

Definition 22 (Switch Upgrade Budget). The switch upgrade budget for time-slot t ≤ T

is:

Bs(t) =

100 1

ξt if t < T ,

100−
T−1∑
t=1

Bs(t) otherwise,
(7.20)

where ξ > 1 is a constant that controls the budget allocation in each time-slot.

Algorithm 7.1: SCOPE: SDN Switch Placement Algorithm
Inputs : G(N,L), t, θs,t
Output: {S′(t), v}: Upgraded switches

1 Compute Bs(t) using Equation (7.20) and set Bcons,t ← 0
2 while Bcons,t < Bs(t) do
3 Select the maximum priority switch rj ∈ R

4 Set S ← S ∪ {rj}, vjt ← 1, S′(t)← S
′(t) ∪ {rj}, R← R− {rj},

Bcons,t ← Bcons,t + θs,t
5 end
6 foreach rj ∈ S

′(t) do
7 Set LW (eij)← LW (eij)

2 , ∀ri ∈ R

8 end
9 return {S′(t), v}

Algorithm 7.1 describes the SDN switch placement process at time-slot t ≤ T . The

SDN Switch Placement Algorithm (SSPA) selects the legacy switches in priority order

without exceeding the specified upgrade budget. After completion of each upgrade sched-

ule, SSPA decreases the weights of the new SDN links by half to redirect more traffic

through SDN links.

7.2.2 Coalition Game Formulation for Controller Placement

Coalition formation game is a form of distributed cooperation algorithm which is used for

a wide variety of network problems such as fair rate allocation in an interference channel,

108

7.2. SCOPE: The Proposed Scheme

energy-aware cooperation in routing protocols, and resource allocation [42]. In SDN

architecture, a group of SDN switches is connected to each controller. So, the capacity

of a controller is shared by the connected switches. Therefore, each SDN switch behaves

cooperatively and decides its optimum strategy to achieve Pareto optimal distribution of

controller capacity. Hence, a coalition formation game approach is the most appropriate

approach for the placement of controllers in hybrid SDN, where the newly placed SDN

switches form cooperative groups to select suitable controller locations. We formulate a

coalition game with non-transferable utility (NTU) because each player’s utility depends

on the joint actions chosen by the other players in the coalition. In this game, SDN

switches act as rational players who decide the preferable coalition for them. Each

coalition represents a set of switches. The switches in a coalition are associated with a

controller location. The proposed game ensures that each player is part of precisely one

coalition at any time. The main components of the proposed game are as follows:

• The SDN switches in set S are the players of the game.

• The strategy of each switch si ∈ S corresponds to the flow processing rate that is

the maximum amount of processed service requests Ψsucc
i (t) in a time-slot t.

• The utility function ui represents the benefit resulted from the choice of si.

Definition 23 (Pseudo-Price Coefficient). At time-slot t, the pseudo-price coefficient

for cj is defined as:

αj(t) =

1−
Ωres
j

(
Bc(t) −

|C|∑
j=1

v
′
jtθc,t

)
ΩBc(t)

 , (7.21)

where Ωres
j ≥ 0 is the residual capacity of the controller placed at location cj.

The value Ωres
j is determined based on the demand of the associated SDN switches.

Mathematically, Ωres
j = Ω− Ωj(t).

109

7. QoS-Aware Switch and Controller Placement

7.2.2.1 Utility Function of a Coalition

At time t, each switch si ∈ S uses its utility function ui(·) to determine its optimal

coalition which in turn determines the location for the master controller. In particular,

ui(·) is expresses the willingness of si to be in a coalition. Let, Ak denote the kth coalition

which is associated with a controller location cj . The utility function ui(·) for coalition

Ak(t) must satisfy the following properties:

1. Each SDN switch si tries to maximize the flow processing rate and we refer this

number Ψsucc
i (t) as the demand of si. So, the utility function of the SDN switches

is formulated as a non-decreasing function. Mathematically,

∂ui(·)
∂Ψsucc

i (t) ≥ 0 (7.22)

2. The utility of a switch si is inversely proportional to the switch-to-controller delay

δtri (t). Therefore, we get:
∂ui(·)
∂δtri (t) < 0 (7.23)

3. The utility value decreases if the pseudo-price coefficient αj(t) for cj increases.

Mathematically,
∂ui(·)
∂αj(t)

< 0 (7.24)

Therefore, we formulate the utility function of an SDN switch si as a concave function,

which is represented as follows:

ui(·) =
∑

dk∈Di(t)
|Fk(t)| log

(
Ψsucc
i (t) + δmax − δtri (t)

δmax
− αj(t)

)
, (7.25)

110

7.2. SCOPE: The Proposed Scheme

where Ψsucc
i (t) ∈

[
0,max

(
Ψi(t),Ω−

|Ak(t)|∑
x=1,x 6=i

Ψsucc
x (t)

)]
. Therefore, the utility of a

coalition Ak(t) is given by:

U (Ak(t), cj) =
|Ak(t)|∑
i=1

ui(·) (7.26)

The utility function conforms to the objective stated in Equation (7.12) as Theff (t)

depends on Ψsucc
i (t) and αj(t) addresses the controller capacity and budget constraints.

Definition 24 (Coalition Structure). A coalition structure Vw is defined as:

Vw(t) = {A1(t), A2(t), . . . , Am(t)}, (7.27)

where
z⋃

k=1
Ak(t) = S, Ai(t) ∩ Aj(t) = φ, ∀i 6= j, and m denotes the total number of

coalitions for Vw(t).

The total number possible coalition structures for m coalitions is calculated using

the Bell number, which is expressed as:

Γm =
m−1∑
q=0

(
m− 1
q

)
Γq, (7.28)

where m ≥ 1 and Γ0 = 1.

Definition 25 (Stable Coalition). A coalition Ak(t) ∈ Vw(t) is stable if

1. no player si can improve its utility by leaving its coalition Ak(t) and acting indi-

vidually.

2. no other coalition Al(t) ∈ Vw(t) can improve its utility by joining Ak(t).

Definition 26 (Stable Coalition Structure). A coalition structure Vw(t) is stable if

Ai ∈ Vw(t),∀i ∈ [1,m] is stable.

111

7. QoS-Aware Switch and Controller Placement

We consider that the proposed coalition formation game is hedonic, which implies

that a player has a preference for the choice of coalition.

Definition 27 (Preference Relation). The relation Vp(t) �Sa VB denotes that the way

Vp(t) partitions Sa is preferred to the way Vq(t) partitions Sa, where Sa ⊆ S is a set of

players.

The coalitions are updated periodically based on merge and split rules.

Definition 28 (Merge Rule). Merge any set of coalitions {A1(t), A2(t), . . . , Ak(t)},

where {
k⋃
i=1

Ai(t)} �Sa {A1(t), A2(t), . . . , Ak(t)}, Sa =
k⋃
i=1

Ai(t). Therefore, {A1(t), A2(t),

. . . , Ak(t)} →
k⋃
i=1

Ai(t).

Definition 29 (Split Rule). Split any set of coalitions
k⋃
i=1

Ai(t), where {A1(t), A2(t), . . . ,

Ak(t)} �Sa {
k⋃
i=1

Ai(t)}, Sa =
k⋃
i=1

Ai(t). Therefore,
k⋃
i=1

Ai(t)→ {A1(t), A2(t), . . . , Ak(t)}.

Let Ap(t) and Aq(t) be two coalitions having associated controller locations ce and

cf , respectively. The associated controller location for a merged coalition Ap(t) ∪ Aq(t)

is:

cpq =

ce if U (Ap(t) ∪Aq(t), ce) ≥ U (Ap(t) ∪Aq(t), cf),

cf otherwise.
(7.29)

Let Al(t) be a coalition having an associated controller location cg. Let Al(t) is split

into two coalitions Ap(t) and Aq(t) having associated controller locations ce and cf ,

respectively. Mathematically,

ce =

cg if U (Ap(t), cg) ≥ U (Aq(t), cg),

cx otherwise,
(7.30)

112

7.2. SCOPE: The Proposed Scheme

and

cf =

cg if U (Ap(t), cg) < U (Aq(t), cg),

cx otherwise,
(7.31)

where cx ∈ C \ {cg} is the nearest controller location and CP (x) = 0. If ce = cx or

cf = cx, we update CP (x) = 1.

Algorithm 7.2: SCOPE: Coalition Formation Algorithm
Inputs : G(N,L), t, S′(t) ⊆ S, C
Output: V ∗w(t): Stable coalition structure

1 if t == 1 then
2 Form coalition Aj(t) for each controller location cj ∈ C

3 end
4 foreach si ∈ S

′(t) do
5 Select the nearest controller location cj with CP (j, t) = 1
6 if Ωres

j ≥ Ψi(t) then
7 Aj(t)← Aj(t) ∪ {si}
8 else
9 Select the nearest cj with CP (j, t) = 0

10 Aj(t)← Aj(t) ∪ {si}
11 end
12 end
13 Add the non-empty coalitions to initial coalition structure Vw(t)
14 while Vw(t) is not stable do
15 Form new coalition structure using Merge and Split rules
16 end
17 V ∗w(t)← Vw(t)
18 Update CP (j, t) for each cj ∈ C

19 return V ∗w(t)

7.2.2.2 Coalition Formation

SDN switches decide their strategies to form an optimal stable coalition structure or

equivalently the locations for placing active controllers. Algorithm 7.2 describes the

process of forming a stable coalition structure. Each coalition is a non-empty subset of

S, having attached to single controller location. For the first time-slot, an empty coalition

is associated with each controller location. In each time-slot, each newly placed SDN

113

7. QoS-Aware Switch and Controller Placement

switch selects the nearest controller location having an active controller and enough

residual capacity to handle the service requests. If no such active controller is available,

the corresponding switch selects the nearest controller location, which does not have an

active controller. Stable coalition structure is achieved using merge and split rules, as

mentioned in Definitions (28) and (29), respectively. Finally, the controller locations

with active controllers are determined based on the stable coalition structure.

Algorithm 7.3: SCOPE: Controller Placement Algorithm
Inputs : C, t, θc,t, Bc(t), V ∗w(t)
Output: v′

1 Bconc,t ← 0
2 while Bconc,t < Bc(t) do
3 Select the coalition Ak(t) ∈ V ∗w(t) having maximum utility
4 Select the associated controller location cj
5 Set CP (j, t) = 1, v′

jt = 1, Bconc,t = Bconc,t + θc,t
6 end
7 return v

′

7.2.2.3 Controller Placement

Algorithm 7.3 describes the process of controller placement after Coalition Formation

Algorithm (CFA) computes a stable coalition partition. The Controller Placement Al-

gorithm (CPA) checks the availability of budget and selects the controller location as-

sociated with the coalition which has the maximum utility. Accordingly, a controller is

placed in the selected location and the controller placement budget is updated.

7.3 Performance Evaluation

7.3.1 Simulation Settings

We evaluate the performance of SCOPE by performing two experiments for each objec-

tive. In the first experiment, we perform the simulations on the Abilene dataset [67],

114

7.3. Performance Evaluation

with 30 directed links and 12 switches to evaluate the performance of the proposed switch

placement scheme. The Abilene dataset records the data transferred between each pair

of nodes in every 5 minutes for six months. For the simulation, we consider the traf-

fic matrix of 144 flows from the dataset of Day 1, 8:00 pm. We use Abilene dataset

because it is publicly available, and it provides an accurate description of the network

setup required for the first objective. Abilene is a small-scale topology with limited net-

work traffic. However, the performance evaluation of the proposed controller placement

scheme requires large-scale topology to assess the impact of high network traffic on the

control plane load. Therefore, in the second experiment, we perform simulations on a

large-scale topology, an 8-pod Fat-tree topology [60], having 80 switches. The simulation

parameters are depicted in Table 7.1.

Table 7.1: SCOPE: Simulation Parameters
Parameter Value

Network topology Abilene [45], Fat-tree [60]
Number of switches 12 (Abilene) [67], 80 (Fat-tree)

Number of flows 144 (Abilene) [67], 0.1 − 0.5 million
(Fat-tree)

Number of time-slots 1− 5
Duration of each time-slot 1 year [67]
Lifetime of a legacy switch [3, 4, 5] years [67]
Initial switch upgrade cost [$36K, $60K, $100K] [67]
Switch upgrade budget $200K-$1M [67]
Traffic rate increment 22% per year [67]
Switch upgrade cost decrement 40% per year [67]
ξ 2
Initial controller placement cost $1465 [26]
Controller placement cost decrement 10% per year
Controller placement budget $10K-$30K
Controller capacity 0.02− 0.03 mfps [63]
Maximum allowable delay 0.001− 1 s [46]

In the first experiment, we vary switch upgrade budget and the number of time-slots

to analyze the effect on the performance metrics. In the second experiment, we vary the

number of flows, controller placement budget, the number of time-slots, and controller

115

7. QoS-Aware Switch and Controller Placement

capacity because these are the significant parameters that affect the performance metrics.

In each subset of the second experiment, we vary only one parameter while keeping the

other three parameters static. For each static parameter, we set the number of flows,

controller placement budget, the number of time-slots, and the controller capacity as 0.5

million, $30K, 5, and 0.03 mfps, respectively.

7.3.2 Benchmark Schemes

We compare the switch upgrade performance of SCOPE with DEG, VOL [68], and Local

Search [67]. DEG upgrades legacy switches in decreasing order of the number of adjacent

links. VOL upgrades switches in decreasing order of traffic volume that traverses the

switch. Local Search maximizes the volume of programmable traffic by selecting locally

feasible solutions. On the other hand, for SDN switch placement, SCOPE considers het-

erogeneous parameters such as the number of non-SDN links, traffic volume, link weigh-

tage, and the residual lifetime of a legacy switch. We select the aforementioned schemes

as the benchmarks to highlight the efficacy of SCOPE, where the parameter domain is

more holistic. To the best of our knowledge, there exists no incremental controller place-

ment scheme exclusively for hybrid SDN. Therefore, we select the benchmarks based

on the existing controller placement schemes in pure SDN, which is a subset of hybrid

SDN. We compare the controller placement performance of SCOPE with LiDy+ [26]

and Greedy. LiDy+ activates or deactivates controllers in each controller module based

on dynamic traffic load. The Greedy approach activates the minimum number of con-

trollers conforming to the available budget, and each switch selects the nearest active

controller as the master controller. However, in SCOPE, SDN switches cooperatively

decide the locations for placing active controllers so that the effective SDN throughput

is the maximum.

116

7.3. Performance Evaluation

7.3.3 Performance Metrics

• Programmable traffic: We evaluate the programmable traffic achieved by each

upgrade scheme. This metric quantifies the amount of network upgrade.

• Legacy switch utilization: This metric shows the effectiveness of SCOPE in

terms of the usage of expensive legacy switches.

• Effective SDN throughput: High effective SDN throughput signifies large num-

ber of processed programmable service requests. Therefore, high effective SDN

throughput is one of the preferable criteria of IoT networks which is loss-sensitive.

• QoS violated flows: QoS violated flows are the flows which do not satisfy the

maximum allowable delay requirement. This metric shows the efficiency of SCOPE

in terms of QoS.

In the first experiment, we measure programmable traffic and legacy switch utilization.

In the second experiment, we measure effective SDN throughput and QoS violation.

7.3.4 Result and Discussion

7.3.4.1 Programmable Traffic

Figure 7.2(a) shows the programmable traffic achieved by each scheme for different switch

upgrade budgets. For this simulation, we set the number of time-slots as 1 and vary

the switch upgrade budget from $0K to $1M. From the simulation result, we observe

that SCOPE performs 10.08% and 5.59% better than DEG and VOL, respectively. For

SCOPE, the amount of programmable traffic is high because SCOPE reduces the OSPF

weights of the SDN links so that more flows are forwarded thorough the SDN links.

Figure 7.2(b) shows the programmable traffic achieved by each scheme for different

numbers of time-slots. For this simulation, we set the switch upgrade budget as $200K

and vary the number of time-slots from 1 to 5. From the simulation result, we observe

117

7. QoS-Aware Switch and Controller Placement

that SCOPE performs better than DEG and VOL because DEG and VOL upgrade a

limited number of switches as all upgrades are performed in the first time-slot. On the

other hand, SCOPE increases the programmable traffic by upgrading more switches in

each subsequent time-slot.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10Pr
og

ra
m

m
ab

le
 T

ra
ff

ic
 (

%
)

Switch Upgrade Budget (x $100000)

 DEG
 VOL

 Local Search
 SCOPE

(a) Effect of Budget

 0

 20

 40

 60

 80

 100

1 2 3 4 5Pr
og

ra
m

m
ab

le
 T

ra
ff

ic
 (

%
)

Number of Time Slots

 DEG
 VOL

 Local Search
 SCOPE

(b) Effect of Upgrade Duration

Figure 7.2: SCOPE: Programmable Traffic

7.3.4.2 Legacy Switch Utilization

To estimate legacy switch utilization, we set the weighting constant z4 in Equation

(7.19) to a value higher than other weighing constants. Figure 7.3(a) shows the legacy

switch utilization for different switch upgrade budgets. For this simulation, we set the

number of time-slots as 3. From the simulation result, we observe that SCOPE performs

better for low budget conditions. A low budget allows the upgrade of less number of

legacy switches. In this case, SCOPE priorities switches, which have a less residual

lifetime. Moreover, in SCOPE, legacy switch utilization reduces with the increasing

budget because, with more budget, more switches are upgraded even if their consumed

lifetime is less. Figure 7.3(b) shows the legacy switch utilization for different number of

time-slots. For this simulation, we set the switch upgrade budget as $100K. From the

simulation result, we observe that SCOPE performs better than the benchmark schemes,

and SCOPE’s performance improves with an increasing number of time-slots. In the case

118

7.3. Performance Evaluation

of larger time-slots, SCOPE upgrades legacy switches with a lesser residual lifetime in

the early stages of the upgrade process, and legacy switches with higher residual lifetimes

are upgraded at the final stages. Therefore, the consumed lifetime in SCOPE is higher

for a larger number of time-slots.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10

L
eg

ac
y

Sw
itc

h
U

til
iz

at
io

n
(%

)

Switch Upgrade Budget (x $100000)

 DEG
 VOL

 Local Search
 SCOPE

(a) Effect of Budget

 0

 20

 40

 60

 80

 100

1 2 3 4 5

L
eg

ac
y

Sw
itc

h
U

til
iz

at
io

n
(%

)

Number of Time Slots

 DEG
 VOL

 Local Search
 SCOPE

(b) Effect of Upgrade Duration

Figure 7.3: SCOPE: Legacy Switch Utilization

7.3.4.3 Effective SDN Throughput

From Figure 7.4, we observe that SCOPE performs better than the benchmarks in terms

of effective SDN throughput. This is because SCOPE optimizes the maximum number

of processed service requests Ψsucc
i (t) for each SDN switch si ∈ S. Figure 7.4(a) shows

that the performance of the Greedy approach and LiDy+ degrades with an increasing

number of flows. For 0.5 million flows, SCOPE performs 14.76% and 3.72% better than

LiDy+ and Greedy, respectively. The Greedy approach is not scalable, as SDN switches

select master controllers based on switch-to-controller delay only, and some controllers

experience a high queueing delay when the network traffic is high. LiDy+ aims to

increase the switch count per active controller. Therefore, for high traffic load, queueing

delay of the controllers is high, and the effective SDN throughput is low. From Figure

7.4(b), we observe that effective SDN throughput increases with the increasing budget

for all schemes. However, in this case, SCOPE performs better than the benchmarks

119

7. QoS-Aware Switch and Controller Placement

even for low budget.

Figure 7.4: SCOPE: Effective SDN Throughput

7.3.4.4 QoS Violated Flows

From Figure 7.5(a), we observe that for a higher number of flows, the performance of

SCOPE improves more than the benchmark schemes. For low network traffic, Greedy

performs better than SCOPE because Greedy selects the nearest active controller, which

reduces delay. However, with the increase of network traffic, control plane delay increases

in Greedy, and a significant number of flows fail to meet the latency bound. Figure 7.5(b)

depicts that the number of QoS violated flows is less in SCOPE than the benchmark

schemes for different controller placement budget. SCOPE performs better even for a low

budget. We observe that the QoS violation stabilizes as the controller placement budget

reaches $25K. This signifies that the number of active controllers installed within this

budget is sufficient to address the QoS requirements of the service requests. Therefore,

in this case, $25K is the QoS-optimal controller placement budget for SCOPE. From

Figure 7.5(c), we observe that QoS violation is less in SCOPE than the benchmarks

120

7.4. Concluding Remarks

irrespective of the number of time-slots. In each time-slot, SCOPE refines the stable

coalition structure to address the QoS requirements of more service requests or flows.

Therefore, SCOPE has a steady performance even for large upgrade duration. Figure

7.5(d) shows that the number of QoS violated flows for different controller capacity is ap-

proximately 51.28% and 24.43% less than LiDy+ and Greedy, respectively. Additionally,

we observe that the performance of SCOPE is uniform for different controller capacity.

This is because SCOPE forms the coalitions based on the pseudo-price coefficient of the

controller locations, which is formulated using the controller capacity.

Figure 7.5: SCOPE: QoS Violated Flows

7.4 Concluding Remarks

This chapter presents a cost-efficient QoS-aware switch and controller placement ap-

proach for hybrid SDN. The proposed solution prioritizes the provision of QoS-guaranteed

service to the users in the presence of dynamic network traffic and restricted upgrade bud-

get. The proposed scheme increases the legacy switch utilization and the effective SDN

throughput compared to benchmarks. We compared the proposed scheme, SCOPE, with

121

7. QoS-Aware Switch and Controller Placement

existing solutions. If the number of time slot is 5, SCOPE increases the legacy switch

utilization approximately by 37.40% as compared to Linear Search. In addition, for 0:5

million flows, SCOPE increases the effective SDN throughput approximately by 14.76%

and 3.72% as compared to LiDy+ and Greedy, respectively.

122

Chapter 8

Energy-Aware Traffic Engineering

In this chapter, we present an energy-aware traffic engineering scheme in hybrid SDN

(ETHoS). The lack of centralized control over the power states of legacy switches impedes

energy-aware traffic engineering in hybrid SDN. On the other hand, there exists a trade-

off between energy-aware routing and programmable traffic as traffic rerouting may

transform programmable traffic to a non-programmable one, if not rerouted carefully.

In this paper, we propose a scheme for dynamic activation of SDN links and optimal

route selection of existing flows. Different from previous works, we focus on reducing

energy consumption while maximizing the programmable traffic as it is the primary

purpose of transforming a legacy network to an SDN.

This chapter consists of four sections. The system model of ETHoS is presented

in Section 8.1. Section 8.2 describes the proposed scheme. Section 8.3 depicts the

experimental results. Finally, Section 8.4 concludes the proposed work.

8.1 System Model

We consider a hybrid SDN environment consisting of multiple controllers and both legacy

IP switches and SDN switches. The link between a controller and an SDN switch is

termed as a control link. On the other hand, the data links are the links between SDN

123

8. Energy-Aware Traffic Engineering

switches and IP switches. The data links are categorized as SDN links and non-SDN

links. A data link is an SDN link if it connects at least one SDN switch. Otherwise, the

link is termed as a non-SDN link. A flow is termed as programmable traffic if it passes

through at least one SDN link. Controllers have direct access to the SDN switches

and SDN links [44]. Therefore, only SDN switches and SDN links can be turned off to

reduce energy consumption. Traffic routing in legacy switches follows traditional routing

protocols such as Open Shortest Path First (OSPF) [69]. The schematic diagram of the

hybrid SDN architecture is shown in Figure 8.1.

Figure 8.1: ETHoS: Hybrid SDN Architecture

We represent the hybrid SDN as a graph G = (N,E), where N denotes the set

of switches, and E denotes the set of links. We define a binary variable αi to denote

whether a switch ni is a legacy switch or an SDN switch. Therefore,

αi =

1 if ni ∈ N is an SDN switch,

0 otherwise.
(8.1)

In addition, we express the type of links as:

βij =

1 if eij ∈ E is an SDN link,

0 otherwise.
(8.2)

124

8.1. System Model

The activation status of the switches is expressed as:

xi =

1 if ni ∈ N is active,

0 otherwise.
(8.3)

The activation status of the links is expressed as:

yij =

1 if eij ∈ E is active,

0 otherwise.
(8.4)

Let bij and wij denote the bandwidth usage and capacity of eij ∈ E. The bandwidth

usage of the data links consists of data packets of the traffic flows. On the other hand,

the bandwidth usage of the control links consists of control messages.

8.1.1 Traffic Flow Model

Let F denote the set of traffic flows. A flow fa ∈ F is represented by a tuple <

srca, desta, Ea, Na >, where srca, desta, Ea, and Na denote the source, destination,

the set of edges signifying the routing path, and the set of switches along the routing

path of fa. For each link eij ∈ E, we express the traffic matrix as:

gaij =

1 if eij ∈ Ea,

0 otherwise.
(8.5)

A flow fa is programmable if and only if at least one switch in Na is an SDN switch.

Definition 30 (Network State). The state of the network is defined as:

Ω = {x, y, {Ea, Na|fa ∈ F}} (8.6)

125

8. Energy-Aware Traffic Engineering

8.1.2 Power Consumption Model

The power consumption of a hybrid SDN has two parts — (1) power consumption of

the links and (2) power consumption of the switches. The power consumption of a link

eij ∈ E is expressed as:

PEij = yijPij + bijΘij , (8.7)

where Pij is the baseline power usage when not transmitting, and Θij is the power

coefficient [33].

Therefore, the power consumption of a switch ni ∈ N is estimated as:

PNi = xi

Pacti +
∑
nj∈N

PEij

+ (1− xi)Pinacti , (8.8)

where Pacti and Pinacti are the power consumption by a switch in active and inactive

states, respectively.

Definition 31 (Link Utility). The route utility of a link eij is defined as:

UEij = (αi + αj)
(

1−
PEij

yijPij + wijΘij

)
(8.9)

Definition 32 (Route Utility). The route utility of a traffic flow fa is defined as:

Ua =
∑

eij∈Ea
UEij (8.10)

8.1.3 Problem Formulation

The objective of this work is to maximize the route utility for all traffic flows. Therefore,

we formulate the energy-aware traffic engineering problem (ETEP) as:

126

8.2. ETHoS: The Proposed Scheme

Maximize
Ω

∑
fa∈F

Ua (8.11)

subject to

bij ≤ wij ,∀eij ∈ E, (8.12)∑
ni∈Na

xi = |Na|,∀fa ∈ F, (8.13)

yij ≤ xi and yij ≤ xj ,∀eij ∈ E, (8.14)

∑
nj∈N

gaij −
∑

nj∈N
gaji =

1 if ni = srca,

−1 if ni = desta,

0 otherwise

,

∀fa ∈ F, ni ∈ N (8.15)

Equation (8.12) expresses the link capacity constraint. Equation (8.13) states that

all switches in the path of a flow are active. Equation (8.14) ensures that a link can

not be active if it is connected to an inactive switch. Equation (8.15) expresses the flow

conservation constraint. The objective of ETEP is a combinatorial problem having high

complexity for large-scale network topologies. This is because energy-aware routing is a

NP-hard problem [9]. Therefore, we design heuristic algorithms for solving ETEP.

8.2 ETHoS: The Proposed Scheme

In this section, we present two heuristic approaches — (1) a greedy heuristic approach,

named ETHoS-G, and (2) a simulated annealing (SA) based approach, named ETHoS-

SA. The goal of the proposed heuristic approaches is to maximize the objective function

expressed in Equation (8.11).

127

8. Energy-Aware Traffic Engineering

8.2.1 ETHoS-G: Energy-Aware Traffic Engineering in Hybrid SDN

with Greedy Heuristic

ETHoS-G generates a feasible network state by deactivating under-utilized SDN links.

We consider eij as an under-utilized link if the power consumption PEij is less than a

pre-defined threshold Pth. The value of Pth depends on network-specific parameters

such as traffic load, and type of applications (latency-sensitive or throughput-sensitive).

Algorithm 8.1 shows the steps of the Feasible State Generation Algorithm (FSGA).

The input to FSGA includes network topology G and the current network state Ω0 =

{x0, y0, {E0
a, N

0
a |fa ∈ F}}.

Algorithm 8.1: ETHoS: Feasible State Generation Algorithm
Inputs : G , Ω0

Output: Ω1: Feasible network state
1 Ω1 ← Ω0

2 E
′ ← Set of links with βij = 1 and yij = 1 and PEij ≤ Pth

3 Sort the links in E′ in ascending order of power usage
4 for eij ∈ E

′ do
5 if G remains strongly connected with E \ eij then
6 E

′′ ← E
′′ ∪ {eij}, y1

ij ← 0
7 end
8 end
9 Set x1

i = 0 if an SDN switch ni has no link eij with y1
ij = 1

10 F
′ ← Set of flows passing through any link in E′′

11 for fa ∈ F
′ do

12 Select the path with the maximum route utility and update N1
a , E1

a

13 end
14 return Ω1 ← {x1, y1, {E1

a, N
1
a |fa ∈ F}}

FSGA selects the set of under-utilized SDN links E′ , which have power consumption

less than Pth. From the set E′ , links are selected in ascending order of power consump-

tion. A selected link is deactivated if G remains strongly connected without that link.

An SDN switch is deactivated if it is associated with no active link. Accordingly, FSGA

generates an alternate path for each flow involving the deactivated links. An alternative

128

8.2. ETHoS: The Proposed Scheme

routing path is a path having the maximum route utility.

Theorem 9. The number of SDN links in a fully connected hybrid SDN is emaxs =

∑
nj∈N

αj

|N | −
(∑
nj∈N

αj+1

)
2

.

Proof. Each switch in a fully connected network with |N | switches has |N | − 1 links.

Therefore, if a single SDN switch is present in the network, i.e.
∑

nj∈N
αj = 1, the number

of SDN links is |N | − 1. Subsequently, when another legacy switch is upgraded to SDN

switch, the SDN link count becomes (|N | − 1) + (|N | − 2) because the link between the

first and the second SDN switch is already upgraded to an SDN link in the previous

stage. Therefore, the number of SDN links in a fully connected hybrid SDN is given by:

emaxs =

∑
nj∈N

αj∑
s=1

(|N | − s) =
∑
nj∈N

αj

|N | −
(∑
nj∈N

αj + 1
)

2

 (8.16)

The time complexity of FSGA is estimated based on three parts of the algorithm.

The first part takes O(emaxs) time to select the set of under-utilized SDN links. The

second part constructs set F ′ in O(|F |) time. The last part involves the selection of

alternate routes for the flows in F ′ and takes |F ′ | (|E|+ |N | log |N |) time. However, this

time reduces further if the controller stores all the available routes between each pair of

nodes in descending order of route utility.

129

8. Energy-Aware Traffic Engineering

8.2.2 ETHoS-SA: Energy-Aware Traffic Engineering in Hybrid SDN

with Simulated Annealing

ETHoS-SA generates a final network state considering a current network state. The

feasible network state Ω1 generated by FSGA, may not be optimal in terms of the

joint criteria of programmable traffic and energy consumption. Therefore, we use SA

to generate a final network state Ω, which is better than Ω1. We select SA for optimal

network state generation because it is a meta-heuristic optimization algorithm, which is

time-efficient [70]. SA can generate a globally optimal solution. Therefore, SA is used

for a wide range of applications such as signal processing, production scheduling, and

control engineering [71].

Algorithm 8.2: ETHoS: Optimal State Generation Algorithm
Inputs : G, Ω1, T0, z, L, p
Output: Ω: Final network state

1 T ← T0: Current temperature
2 Ω← Ω1: Current state
3 while T > 0 do
4 while L > 0 do
5 Ωnext ← GenerateNextState(Ω)
6 if exp

(
Cost(Ω)−Cost(Ωnext)

T

)
> p then

7 Ω← Ωnext

8 end
9 L← L− 1

10 end
11 T ← z × T
12 end
13 return Ω← {x, y, {Ea, Na|fa ∈ F}}

Algorithm 8.2 shows the steps of the SA-based Optimal State Generation Algorithm

(OSGA). The inputs of OSGA include network-specific parameters and parameters re-

quired for SA. The network-specific parameters are network topology G, the feasible

network state Ω1 = {x1, y1, {E1
a, N

1
a |fa ∈ F}}. The required parameters for SA are

initial temperature T0, the rate of cooling z, the length of Markov chain L, and accep-

130

8.2. ETHoS: The Proposed Scheme

tance probability p. The initial temperature determines the convergence time of the

algorithm, where a high value of T0 signifies that the time to reach the global optimal

solution is high, and a low T0 may direct the algorithm to a local optimal solution.

The cooling rate determines the amount of decrease in the temperature, and the algo-

rithm terminates when the temperature reaches 0. The length of Markov chain signifies

the maximum number of iterations before decreasing the temperature. The acceptance

probability determines whether a solution is acceptable or not.

OSGA aims to find the optimal routes for the flows that balance the trade-off between

energy-aware routing and programmable traffic. Maximum L iterations are performed

for each value of the current temperature. In each iteration, OSGA generates a next

state using the GenerateNextState method, as shown in Algorithm 8.3. Algorithm 8.4

calculates the cost of the current state and the next state. The next state is selected as

the current state if exp
(
Cost(Ω)−Cost(Ωnext)

T

)
> p. After the completion of L iterations,

the current temperature is reduced. In this work, we use an exponential function as the

cooling method and set the new temperature as T ← z × T .

Algorithm 8.3: GenerateNextState
Inputs : Ω: Current state
Output: Ωnext: Next state

1 Ωnext ← Ω
2 Randomly select an SDN link eij and set ynextij ←

(
1− ynextij

)
3 Set xnexti = 0 if SDN switch ni has no link eij with ynextij = 1
4 Select the alternate shortest path for each affected flow fa and update

Enexta , Nnext
a

5 return Ωnext ← {xnext, ynext, {Enexta , Nnext
a |fa ∈ F}}

Algorithm 8.3 shows the steps of generating the next state given a current state. We

alter the activation status of a randomly selected links. Based on the change of activation

status, the available shortest path is selected as the new route for each affected flow,

and the next network state is formed.

Algorithm 8.4 estimates the cost of a given network state. The cost of a network

131

8. Energy-Aware Traffic Engineering

Algorithm 8.4: Cost
Input : Ω
Output: stateCost: Cost for state Ω

1 for fa ∈ F do
2 stateCost← stateCost+ (|N | − Ua)
3 end
55 return stateCost

state is the cumulative cost of all the traffic flows in the network. Therefore, the cost of

a network state Ω is defined as:

Cost(Ω) =
∑
fa∈F

|N | − Ua (8.17)

The cost of a traffic flow increases with the decrease in route utility. Therefore, the

Cost method aims to maximize the total route utility of all traffic flows, which is the

objective represented in Equation (8.11).

The time complexity of OSGA depends on the initial temperature T0 and the cooling

rate z. A high T0 and low z increases the possibility of finding a global optimal solution

at the cost of time complexity.

8.2.3 Summary of the Proposed Approach

In each such time-period, FSGA detects the under-utilized SDN links. If any under-

utilized link is detected, FSGA generates a feasible network state. Subsequently, OSGA

computes a final network state Ω. The final network state Ω portrays the activation

status of the SDN links and the final routes of the flows. An SDN switch is selected for

deactivation if all the associated links are in an inactive state as per the network state Ω.

Based on Ω, the required switches and links are activated or deactivated. To deactivate a

link, we set the OSPF weight of the link to infinity so that the link is not selected in the

shortest path computation. Before the deactivation of an SDN switch, ETHoS ensures

that the legacy switches which follow traditional routing protocols such as OSPF must

132

8.2. ETHoS: The Proposed Scheme

not transmit any packet to the SDN switch. OSPF detects the active switches based

on the Hello messages sent by the switches. OSPF considers a switch to be an inactive

switch if the switch sends no Hello message for a time interval called the dead interval.

Therefore, in the proposed scheme, an SDN switch, marked for deactivation according

to Ω, stops sending Hello messages for a duration δ greater than the dead interval.

After this duration, the switch is deactivated. We term this duration δ as the initiation

interval. Additionally, the OSPF weights of the links are adjusted based on the link

utility metric.

Figure 8.2: Execution of ETHoS by an SDN Controller

Figure 8.2 shows the flowchart for the execution of ETHoS by an SDN controller.

ETHoS-G generates a less accurate solution with less convergence time. Therefore, if fast

processing is required and a less precise solution is acceptable, the final network state

is the network state generated by ETHoS-G. However, ETHoS-SA refines the solution

generated by ETHoS-G and produces a more accurate solution.

Definition 33 (Energy Savings). The energy savings by transition from an initial net-

work state Ω0 to a final network state Ω is defined as:

133

8. Energy-Aware Traffic Engineering

ξ =

∑
ni∈N

PNi (Ω0)−
∑
ni∈N

PNi (Ω)∑
ni∈N

PNi (Ω0)
, (8.18)

where PNi (Ω0) and PNi (Ω) represent the power consumption of ni in network states

Ω0 and Ω, respectively.

Theorem 10. The maximum energy savings achieved by link deactivation in a pure SDN

is P(|N |−1)(|N |−2)
|N |Pact+|N |(|N |−1)(P+bΘ) , where bij = b,Pij = P,Θij = Θ,∀eij ∈ E, Pacti = Pact,∀ni ∈ N

and |N | > 2.

Proof. The maximum and the minimum number of links in a pure SDN with |N | switches

are |N |(|N |−1)
2 and |N | − 1, respectively. Let Ω0 and Ω represent the initial network state

with the maximum number of links and the final network state with the minimum number

of links, respectively. Therefore, the maximum number of links that can be deactivated

is given by:

einact = |N |(|N | − 1)
2 − (|N | − 1) = (|N | − 1)(|N | − 2)

2 (8.19)

Let the total bandwidth usage of einact links are equally distributed among |N | − 1

active links. Therefore, additional bandwidth usage in each active link is expressed as:

badd = beinact

|N | − 1 = b(|N | − 1)(|N | − 2)
2(|N | − 1) = b(|N | − 2)

2 (8.20)

The total power consumption in network state Ω0 is:

134

8.3. Performance Evaluation

∑
ni∈N

PNi (Ω0) = |N |Pact + 2 |N |(|N | − 1)
2 (P + bΘ)

= |N |Pact + |N |(|N | − 1)(P + bΘ) (8.21)

The total power consumption in network state Ω is:

∑
ni∈N

PNi (Ω) = |N |Pact + 2(|N | − 1)
(
P + (b+ badd)Θ

)
= |N |Pact + (|N | − 1)(2P + bnΘ) (8.22)

Hence, the energy savings is given by:

ξ = |N |Pact + |N |(|N | − 1)(P + bΘ)− |N |Pact − (|N | − 1)(2P + bnΘ)
|N |Pact + |N |(|N | − 1)(P + bΘ)

= P(|N | − 1)(|N | − 2)
|N |Pact + |N |(|N | − 1)(P + bΘ) (8.23)

8.3 Performance Evaluation

8.3.1 Simulation Settings

For performance evaluation ETHoS, we use Abilene topology [38] as the default topology

for performing the simulations. For the simulations performed on Abilene topology, we

use the traffic matrix provided by the Abilene dataset [45], which records traffic between

each pair of switches in Abilene topology in every 5 minute for 6 months. We use the

traffic data for Day 1 from the Abilene dataset. This dataset also provides OSPF weights

of the links. We use the OSPF weights for the calculation of the shortest path. The

135

8. Energy-Aware Traffic Engineering

Abilene topology is a publicly available topology that has 12 switches and 30 directed

links. We use the Abilene topology because it is a small-scale topology, where the

deactivation of links is more restricted due to fewer alternate routes. However, Abilene

is a sparse topology with limited paths between nodes. Therefore, we select a 4−pod Fat-

tree for a topology-based comparison. Fat-tree is a dense topology with redundant paths

between nodes [60]. For the simulation performed on Fattree topology, we randomly

generate traffic flows between each pair of switches. The simulation parameters are

shown in Table 8.1. The value of Pth is set to the average power consumption of the

links.

Table 8.1: ETHoS: Simulation parameters
Parameter Value

Topology Abilene [38], 4− pod Fat-tree [60]
Maximum traffic volume 144 flows
Bandwidth of a traffic flow 0.0001− 0.39 Gbps [45]
Maximum link capacity 9.92 Gbps [45]
Number of switches 12 (Abilene), 20 (Fat-tree)
Percentage of SDN switches 0− 100
Power consumption of a switch ni in active
state (Pacti) 150 W [72]

Power consumption of a switch ni in inac-
tive state (Pinacti) 95 W [72]

Baseline power usage of a link eij (Pij) 30 W [73]
Power coefficient (Θij) 10 W [73]
Initial temperature for SA (T0) 90 [54]
Cooling rate (z) 0.97 [54]
Length of Markov chain (L) 200 [54]
Acceptance probability (p) 0.85 [54]

8.3.2 Benchmark Schemes

For performance evaluation, we consider ETHoS-G, MaxRESDN [32], and SENEToR [33]

as the benchmark schemes. We consider ETHoS-G as a benchmark to show the necessity

of final network state generation by ETHoS-SA. ETHoS-G reroutes the flows based

136

8.3. Performance Evaluation

on the feasible network state generated by the greedy FSGA. We select RESDN as a

benchmark scheme because it reroutes the flows based on the RESDN metric similar to

ETHoS, which reroutes flows based on route utility metric. We select SENEToR as a

benchmark scheme because it considers hybrid SDN similar to ETHoS.

0

2

4

6

8

10

20 40 60 80 100

E
n
er

g
y

 S
av

in
g

s
(%

)

Number of SDN Switches (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(a) Abilene Topology with 100% Traffic Volume

0

2

4

6

8

10

20 40 60 80 100

E
n
er

g
y

 S
av

in
g

s
(%

)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(b) Abilene Topology with 80% SDN Switches

0

10

20

30

40

ETHoS-SA ETHoS-G MaxRESDN SENEtoR

E
n
er

g
y
 S

av
in

g
s

(%
)

Scheme

 Abilene topology
 Fat-tree topology

(c) Comparison between Abilene and Fat-tree Topology with
100% Traffic Volume and 80% SDN Switches

Figure 8.3: ETHoS: Energy Savings

8.3.3 Performance Metrics

We consider the following metric to evaluate the performance of ETHoS:

• Energy savings: The amount of energy savings is evaluated by comparing the

cumulative power usage by the switches in the final network state with that of

the initial network state. Therefore, this metric shows the energy efficiency of the

137

8. Energy-Aware Traffic Engineering

0

20

40

60

80

100

20 40 60 80 100P
ro

g
ra

m
m

ab
le

 T
ra

ff
ic

(%
)

Number of SDN Switches (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(a) Abilene Topology with 100% Traffic Volume

90

92

94

96

98

100

20 40 60 80 100P
ro

g
ra

m
m

ab
le

 T
ra

ff
ic

(%
)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(b) Abilene Topology with 80% SDN Switches

70

75

80

85

90

95

100

ETHoS-SA ETHoS-G MaxRESDN SENEtoRP
ro

g
ra

m
m

ab
le

 T
ra

ff
ic

 (
%

)

Scheme

 Abilene topology
 Fat-tree topology

(c) Comparison between Abilene and Fat-tree Topology with
100% Traffic Volume and 80% SDN Switches

Figure 8.4: ETHoS: Programmable Traffic

proposed scheme in comparison with the benchmarks.

• Programmable traffic: We use this metric to quantify the trade-off between

energy-aware routing and programmable traffic.

• Flow path length: We estimate the average path length of the traffic flows as a

performance metric to assess the overhead caused by traffic rerouting.

138

8.3. Performance Evaluation

0

2

4

6

8

10

20 40 60 80 100

F
lo

w
 P

at
h

 L
en

g
th

Number of SDN Switches (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(a) Abilene Topology with 100% Traffic Volume

0

2

4

6

8

10

20 40 60 80 100

F
lo

w
 P

at
h

 L
en

g
th

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 MaxRESDN
 SENEtoR

(b) Abilene Topology with 80% SDN Switches

0

2

4

6

8

10

ETHoS-SA ETHoS-G MaxRESDN SENEtoR

E
n
er

g
y
 S

av
in

g
s

(%
)

Scheme

 Abilene topology
 Fat-tree topology

(c) Comparison between Abilene and Fat-tree Topology with
100% Traffic Volume and 80% SDN Switches

Figure 8.5: ETHoS: Flow Path Length

8.3.4 Results and Discussion

8.3.4.1 Energy Savings

Figure 8.3(a) portrays the comparison between the energy savings of ETHoS and that

of the benchmarks with 100% traffic and varying SDN deployment. ETHoS-SA saves

11.65%, 48.95%, and 28.91% more energy than ETHoS-G, MaxRESDN, and SENEtoR,

respectively. As shown in Figure 8.3(b), ETHoS-SA saves 6.91%, 23.12%, and 19.94%

more energy than ETHoS-G, MaxRESDN, and SENEtoR, respectively. Figure 8.3(c)

illustrates that energy savings in Fat-tree topology is significantly high for all schemes.

Inference: ETHoS-G performs local optimization and deactivates SDN links that

139

8. Energy-Aware Traffic Engineering

have low power usage. MaxRESDN reroutes flows based on RESDN value and deacti-

vated unused links. However, with low SDN deployment, most of the selected links are

non-SDN links and cannot be deactivated. Therefore, the energy savings of MaxRESDN

is less, especially for less number of SDN switches. SENEtoR does not select the al-

ternative routing path or tunnel based on link usage. Therefore, some links experience

high traffic and high energy consumption due to tunneling or rerouting. On the other

hand, ETHoS-SA considers activating an inactive SDN link to obtain a globally optimal

performance that minimizes the cost of the network state. With fixed SDN deployment,

the difference between the performance of ETHoS-SA and the benchmarks is almost

constant with varying traffic because the bandwidth usage of the links has a limited

contribution to energy consumption. Energy conservation is high in Fat-tree topology

because many alternative paths are available in the Fat-tree topology than the Abilene

topology. This is also the reason for the better performance of ETHoS that performs

repeated analysis to select the best alternative path.

8.3.4.2 Programmable Traffic

As depicted in Figure 8.4(a), for fixed traffic volume, programmable traffic in ETHoS is

0.92%, 2.77%, and 3.08% higher than that of ETHoS-G, MaxRESDN, and SENEtoR,

respectively. On the other hand, for fixed SDN deployment, ETHoS performs 1.24%,

3.23%, and 3.22% better than ETHoS-G, MaxRESDN, and SENEtoR, respectively as

shown in Figure 8.4(b). From Figure 8.4(c), we notice that the programmable traffic

with Fat-tree topology is 10.51% less than that with Abilene topology.

Inference: The volume of programmable traffic in ETHoS (both ETHoS-SA and

ETHoS-G) is high because ETHoS uses route utility metric for optimal route selection

of the flows. The amount of programmable traffic is low in Fat-tree because Fat-tree has

more routing paths between the pair of nodes, which enables some flows to be routed

through non-SDN links.

140

8.3. Performance Evaluation

7

7.5

8

8.5

9

5 10 15 20

E
n
er

g
y

 S
av

in
g

s
(%

)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 ILP

(a) Energy Savings in Abilene Topology

0

20

40

60

80

100

5 10 15 20

C
o
m

p
u
ta

ti
o
n

 T
im

e
(m

s)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 ILP

(b) Computation Time in Abilene Topology

30

35

40

45

50

5 10 15 20

E
n
er

g
y
 S

av
in

g
s

(%
)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 ILP

(c) Energy Savings in Fat-tree Topology

1

10

100

1000

5 10 15 20

C
o

m
p
u
ta

ti
o
n

 T
im

e
(m

s)

Traffic Volume (%)

 ETHoS-SA
 ETHoS-G

 ILP

(d) Computation Time in Fat-tree Topology

Figure 8.6: ETHoS: Comparison between ILP Solution and ETHoS with 80% SDN
Switches

8.3.4.3 Flow Path Length

Figure 8.5(a) and Figure 8.5(b) show the average flow path length for fixed traffic volume

and fixed SDN deployment, respectively. For fixed traffic volume, the average flow

path length is 9.26%, 9.13%, and 48.64% less than that of ETHoS-G, MaxRESDN, and

SENEtoR, respectively. On the other hand, for fixed SDN deployment, the average flow

path length is 2.30%, 6.37%, and 48.10% less than that of ETHoS-G, MaxRESDN, and

SENEtoR, respectively. From Figure 8.5(c), we observe that the average control path

length is less for the Fat-tree topology than the Abilene topology.

Inference: The average flow path length is less in ETHoS-SA because OSGA selects

the shortest path available at the time of a new network state generation. Addition-

141

8. Energy-Aware Traffic Engineering

ally, lower flow path length in Fat-tree topology signifies that the overhead due to flow

rerouting is less in Fat-tree as the availability of alternative minimal length path is high

in Fat-tree.

We solve the ILP formulated in Equation (8.11) using Gurobi Optimizer [48]. Figure

8.6 shows that ETHoS-SA achieves performance similar to the ILP solution while having

low computation time.

8.4 Concluding Remarks

In this chapter, we presented a traffic engineering scheme to address the trade-off be-

tween programmable traffic and energy-aware routing for hybrid SDN. The proposed

scheme, ETHoS, optimizes the network’s energy consumption by selective deactivation

of SDN switches and careful rerouting of the affected flows so that the optimal amount

of programmable traffic is retained after traffic rerouting. We proposed a faster and less

accurate greedy solution, named ETHoS-G, along with an optimized solution having

high accuracy, called ETHoS-SA. Simulation results show that ETHoS-SA is capable of

saving a significant amount of energy as compared to the benchmarks. In particular,

with 80% SDN deployment, ETHoS-SA consumes 23.12% less energy than the existing

scheme MaxRESDN.

142

Chapter 9

Conclusion

In this thesis, we proposed a scalable framework for SDN to handle a large number of

traffic flows. We considered several challenges, such as rule-space capacity constraint,

controller capacity constraint, and the trade-off between energy management and pro-

grammable traffic. In Chapters 3-8 , we discussed the schemes proposed in this thesis.

We present the summary of the thesis in Section 9.1. In Section 9.2, we enlist the primary

contributions of the thesis work. The limitations of our work is presented in Section 9.3.

Finally, we conclude the thesis and cite future directions in Section 9.4.

9.1 Summary

This thesis was presented in six chapters. Chapter 1 presented a brief discussion on

scalability challenges in SDN, the scope of the work, and the main objectives of this

thesis.

Chapter 2 surveyed the existing literature on data plane scalability, control plane

scalability, and energy-aware traffic engineering in SDN. Additionally, we summarized

the shortcomings of the existing schemes and the motivation of this thesis.

Chapter 3 presented a scheme for consistent update with redundancy reduction (CURE)

in SDN. The proposed scheme, CURE, ensures consistent rule update without the stor-

143

9. Conclusion

age of multiple versions of flow-rules. CURE prioritizes switches according to their

usage pattern and schedules updates based on priority zones. We performed extensive

simulations to evaluate the performance of the proposed scheme.

In Chapter 4, we presented an approach for data plane load reduction for traffic

flow migration (DART) that formulates a coalition graph game to generate a QoS-aware

flow migration schedule. Based on the initial schedule, DART verifies the possibility of

link congestion and prepares a feasible migration schedule. We compared the proposed

scheme with relevant benchmarks to analyze its performance.

Chapter 5 presented a tensor-based rule-space management scheme (TERM) that

applies the concept of tensor decomposition to aggregate flow-rules. TERM also employs

a rule caching mechanism for better throughput. We evaluated the proposed scheme

through simulations and compared the results for various performance metrics with

relevant benchmark schemes.

In Chapter 6, we presented a scheme for control plane load reduction (CORE) in

the presence of IoT traffic. CORE uses a Markov Predictor to predict device-switch

associations based on device mobility. Additionally, CORE computes optimal controller-

switch assignments to prevent control plane overload. We compared the performance of

CORE with relevant benchmarks to show its effectiveness.

Chapter 7 presented a scheme for switch and controller placement (SCOPE) in hy-

brid SDN. SCOPE ranks legacy switches according to different network parameters and

selects a set of legacy switches for an upgrade in the current round while considering

the upgrade budget. Additionally, SCOPE forms a coalition game involving the SDN

switches to decide the locations for the controllers. The proposed scheme was evaluated

through simulations, and the results for various performance metrics were compared

with benchmark schemes.

In Chapter 5, we presented an energy-aware traffic engineering scheme in hybrid

SDN (ETHoS). The proposed scheme, ETHoS, focuses on reducing energy consumption

144

9.2. Contributions

in hybrid SDN while maximizing the programmable traffic as it is the primary purpose

of transforming a legacy network to an SDN. We evaluated ETHoS by implementing

a discrete event simulator and compared the performance metrics with relevant bench-

marks.

9.2 Contributions

In this thesis, multiple approaches were proposed to enhance the scalability of SDN

data and control planes. The proposed schemes address several issues, such as limited

rule-space, control plane load optimization, and energy-aware routing. We list the major

contributions of this thesis as follows.

Consistent Update with Reduced Rule-Redundancy: We emphasize reduction

of rule-space usage and propose a rule update scheme that ensures packet-level consis-

tency using a multilevel queue-based policy.

Traffic-Aware Data Plane Load Reduction during Flow Migration: We pro-

pose a traffic-aware flow-migration scheme that migrates traffic flows in different update

stages. Each update stage is formed based on the QoS demand of the flows, and band-

width usage of the links.

Rule-Space Management: We propose a rule-space management system which aims

to reduce flow-table miss by increasing the available capacity of switches in SDN.

Control Plane Load Reduction for IoT Flows: We propose a prediction-based

approach to reduce the control plane load in SDIoT. This approach includes rule-caching

and master controller assignment considering heterogeneous attributes of IoT devices.

145

9. Conclusion

Switch and Controller Placement in Hybrid SDN: We propose a cost-efficient

QoS-aware switch and controller placement approach for hybrid SDN. The proposed

solution prioritizes the provision of QoS-guaranteed service to the users in the presence

of dynamic network traffic and restricted upgrade budget.

Energy-Aware Traffic Engineering in Hybrid SDN: We propose a traffic engi-

neering scheme to address the trade-off between programmable traffic and energy-aware

routing for hybrid SDN. The proposed scheme optimizes the network’s energy consump-

tion by selective deactivation of SDN switches and careful rerouting of the affected flows

to retain the optimal amount of programmable traffic after traffic rerouting.

9.3 Limitations

One of the critical challenges faced in this work is the lack of suitable datasets. Therefore,

it would be interesting to implement the proposed schemes in a real testbed. Addition-

ally, we made some assumptions while designing the proposed schemes.

• In CURE, we assumed centralized control plane.

• In DART, we assumed that controllers determine the new path for the migration

of each traffic flow.

• We assumed exact match flow-rules where the mapping between a flow-rule and a

flow type is one-to-one.

• We assumed that mobile IoT devices follow the Gauss-Markov mobility model.

• In SCOPE, we assumed that exactly one SDN switch replaces a legacy switch.

146

9.4. Future Work

9.4 Future Work

• Future extension of the proposed scheme, CURE, includes an extension of the

proposed scheme in the distributed SDN control plane, where multiple controllers

perform network update concurrently. Additionally, flow-level consistency can be

considered along with packet-level consistency.

• Future extension of the work, DART, includes consideration of energy consumption

at the switches during traffic flow migration. Additionally, the impact of network

disruptions such as link failure and traffic spike can be analysed.

• Future extension of the problem, TERM, includes optimizing the rule caching

procedure and the placement of flow-rules in SDN switches.

• Future extension of the proposed work, CORE, includes increasing the prediction

accuracy further.

• Future extension of the scheme, SCOPE, includes minimizing the overall energy

consumption considering IoT networks.

• Future extension of the proposed approach, ETHoS, includes consideration varying

traffic load, traffic with different QoS demands, and fault tolerance.

147

Dissemination of Research Works

Journal

• I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consistent Update With
Redundancy Reduction in SDN,” IEEE Transactions on Communications, vol. 66,
no. 9, pp. 3974-3981, Sep. 2018.

• I. Maity, A. Mondal, S. Misra and C. Mandal, “Tensor-Based Rule-Space Man-
agement System in SDN,” IEEE Systems Journal, vol. 13, no. 4, pp. 3921-3928,
Dec. 2019.

• I. Maity, S. Misra and C. Mandal, “Prediction-Based Control Plane Load Reduc-
tion in Software-Defined IoT Networks,” IEEE Transactions on Communications
(Under Review).

• I. Maity, S. Misra and C. Mandal, “SCOPE: Cost-Efficient QoS-Aware Switch and
Controller Placement in Hybrid SDN,” IEEE Transactions on Emerging Topics in
Computing (Under Review).

• I. Maity, S. Misra and C. Mandal, “DART: Data Plane Load Reduction for Traffic
Flow Migration in SDN,” IEEE Transactions on Communications (Under Review).

• I. Maity, S. Misra and C. Mandal, “ETHoS: Energy-Aware Traffic Engineering
in Hybrid SDN,” IEEE Transactions on Green Communications and Networking
(Under Review).

Conference

• I. Maity, S. Misra and C. Mandal, “Traffic-Aware Consistent Flow Migration
in SDN,” in Proceedings of IEEE International Conference on Communications
(ICC), Dublin, Ireland, June 2020, pp. 1-6, DOI: 10.1109/ICC40277.2020.9148983.

149

References

[1] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. u. Rasool, and W. Dou, “Comple-
menting IoT Services through Software Defined Networking and Edge Comput-
ing: A Comprehensive Survey,” IEEE Commun. Surveys Tuts., pp. 1–1, 2020, doi:
10.1109/COMST.2020.2997475.

[2] H. Alameddine, M. H. K. Tushar, and C. Assi, “Scheduling of Low Latency Ser-
vices in Softwarized Networks,” IEEE Trans. Cloud Comput., pp. 1–1, 2019, doi:
10.1109/TCC.2019.2907949.

[3] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A Sur-
vey of Software-Defined Networking: Past, Present, and Future of Programmable
Networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1617–1634, 2014.

[4] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoff-
mann, “Heuristic Approaches to the Controller Placement Problem in Large Scale
SDN Networks,” IEEE Trans. Netw. Service Manag., vol. 12, no. 1, pp. 4–17, Mar.
2015.

[5] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined networking:
SDN for big data and big data for SDN,” IEEE Netw., vol. 30, no. 1, pp. 58–65,
Jan. 2016.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experi-
ence with a Globally-deployed Software Defined Wan,” in Proc. ACM SIGCOMM,
New York, NY, USA, 2013, pp. 3–14.

[7] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing rule placement in software-
defined networks for energy-aware routing,” in Proc. IEEE GLOBECOM, Dec. 2014,
pp. 2523–2529.

[8] A. Ruiz-Rivera, K. W. Chin, and S. Soh, “GreCo: An Energy Aware Controller As-
sociation Algorithm for Software Defined Networks,” IEEE Commun. Lett., vol. 19,
no. 4, pp. 541–544, Apr. 2015.

[9] A. Fernández-Fernández, C. Cervello-Pastor, and L. Ochoa-Aday, “Achieving En-
ergy Efficiency: An Energy-Aware Approach in SDN,” in Proc. IEEE GLOBECOM,
Dec. 2016, pp. 1–7.

151

References

[10] P. Francois and O. Bonaventure, “Avoiding Transient Loops During the Convergence
of Link-state Routing Protocols,” IEEE/ACM Transactions on Networking, vol. 15,
no. 6, pp. 1280–1292, 2007.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions
for Network Update,” in Proc. of ACM SIGCOMM, New York, NY, USA, 2012, pp.
323–334.

[12] T. Mizrahi, E. Saat, and Y. Moses, “Timed Consistent Network Updates in
Software-Defined Networks,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3412–
3425, Dec. 2016.

[13] R. McGeer, “A Safe, Efficient Update Protocol for Openflow Networks,” in Proc.
of HOT SDN, New York, NY, USA, 2012, pp. 61–66.

[14] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-Prefix Approach
to Compressing Packet Classifiers in TCAMs,” IEEE/ACM Trans. Netw., vol. 20,
no. 2, pp. 488–500, Apr. 2012.

[15] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in software-defined
networks,” in Proc. of IEEE INFOCOM, Apr. 2013, pp. 545–549.

[16] T. Kosugiyama, K. Tanabe, H. Nakayama, T. Hayashi, and K. Yamaoka, “A flow
aggregation method based on end-to-end delay in SDN,” in Proc. of IEEE ICC,
May 2017, pp. 1–6.

[17] S. Bera, S. Misra, and M. S. Obaidat, “Mobility-Aware Flow-Table Implementation
in Software-Defined IoT,” in Proceedings of IEEE Global Communications Confer-
ence (GLOBECOM), December 2016, pp. 1–6.

[18] F. Clad, S. Vissicchio, P. Mérindol, P. Francois, and J. J. Pansiot, “Computing Min-
imal Update Sequences for Graceful Router-Wide Reconfigurations,” IEEE/ACM
Transactions on Networking, vol. 23, no. 5, pp. 1373–1386, October 2015.

[19] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Software Transactional Net-
working: Concurrent and Consistent Policy Composition,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.
New York, NY, USA: ACM, 2013, pp. 1–6.

[20] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and J. Wang,
“Compressing Rectilinear Pictures and Minimizing Access Control Lists,” in Proc.
of ACM-SIAM SODA. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2007, pp. 1066–1075.

[21] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “vCRIB: Virtualized Rule Man-
agement in the Cloud,” in Proc. of HotCloud, 2012.

152

References

[22] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed,
and R. Boutaba, “Dynamic Controller Provisioning in Software Defined Networks,”
Proc. IEEE CNSM, pp. 18–25, Oct. 2013.

[23] K. S. Sahoo, D. Puthal, M. Tiwary, M. Usman, B. Sahoo, Z. Wen, B. P. S. Sa-
hoo, and R. Ranjan, “ESMLB: Efficient Switch Migration-based Load Balancing
for Multi-Controller SDN in IoT,” IEEE Internet Things J., pp. 1–1, 2019, doi:
10.1109/JIOT.2019.2952527.

[24] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement Problem,”
Proc. ACM SIGCOMM Workshop on HotSDN, pp. 7–12, 2012.

[25] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos,
“Survivor: An enhanced controller placement strategy for improving SDN surviv-
ability,” Proc. IEEE GLOBECOM, pp. 1909–1915, Dec. 2014.

[26] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-Scale Dynamic
Controller Placement,” IEEE Trans. Netw. Service Manag., vol. 14, no. 1, pp. 63–
76, Mar. 2017.

[27] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia,
“Pareto-optimal resilient controller placement in SDN-based core networks,” Proc.
ITC, pp. 1–9, Sep. 2013.

[28] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using bargaining game
for Optimal Placement of SDN controllers,” Proc. IEEE ICC, pp. 1–6, May 2016.

[29] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella, “Towards an
Elastic Distributed SDN Controller,” Proc. ACM SIGCOMM, vol. 43, no. 4, pp.
7–12, Aug. 2013.

[30] M. Tanha, D. Sajjadi, and J. Pan, “Enduring Node Failures through Resilient Con-
troller Placement for Software Defined Networks,” Proc. IEEE GLOBECOM, pp.
1–7, Dec. 2016.

[31] A. Sallahi and M. St-Hilaire, “Optimal Model for the Controller Placement Problem
in Software Defined Networks,” IEEE Commun. Lett., vol. 19, no. 1, pp. 30–33, Jan.
2015.

[32] B. G. Assefa and Ö. Özkasap, “RESDN: A Novel Metric and Method for Energy Ef-
ficient Routing in Software Defined Networks,” IEEE Trans. Netw. Service Manag.,
pp. 1–1, 2020, doi: 10.1109/TNSM.2020.2973621.

[33] N. Huin, M. Rifai, F. Giroire, D. Lopez Pacheco, G. Urvoy-Keller, and J. Moulierac,
“Bringing Energy Aware Routing Closer to Reality With SDN Hybrid Networks,”
IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1128–1139, 2018.

[34] “OpenFlow Switch Specification (Version 1.5.1): Open Networking Foundation,”
Mar. 2015.

153

References

[35] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, “Efficient classification for
multiclass problems using modular neural networks,” IEEE Trans. Neural Netw.,
vol. 6, no. 1, pp. 117–124, Jan. 1995.

[36] A. F. Tayel, S. I. Rabia, and Y. Abouelseoud, “An Optimized Hybrid Approach
for Spectrum Handoff in Cognitive Radio Networks With Non-Identical Channels,”
IEEE Trans. Commun., vol. 64, no. 11, pp. 4487–4496, Nov. 2016.

[37] D. Li, W. Saad, I. Guvenc, A. Mehbodniya, and F. Adachi, “Decentralized Energy
Allocation for Wireless Networks With Renewable Energy Powered Base Stations,”
IEEE Trans. Commun., vol. 63, no. 6, pp. 2126–2142, Jun. 2015.

[38] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The Internet
Topology Zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9, pp. 1765–1775, Oct.
2011.

[39] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” in Proc.
of the IEEE, vol. 103, no. 1, Jan. 2015, pp. 14–76.

[40] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Sime-
onidou, “An Analytical Model for Software Defined Networking: A Network
Calculus-Based Approach,” in Proc. of IEEE GLOBECOM, Dec. 2013, pp. 1397–
1402.

[41] S. Shirali-Shahreza and Y. Ganjali, “Delayed Installation and Expedited Eviction:
An Alternative Approach to Reduce Flow Table Occupancy in SDN Switches,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1547–1561, Aug. 2018.

[42] W. Saad, Z. Han, M. Debbah, and A. Hjorungnes, “A Distributed Coalition For-
mation Framework for Fair User Cooperation in Wireless Networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 9, pp. 4580–4593, Sep. 2009.

[43] M. Ahmed, M. Peng, M. Abana, S. Yan, and C. Wang, “Interference Coordination
in Heterogeneous Small-Cell Networks: A Coalition Formation Game Approach,”
IEEE Syst. J., vol. 12, no. 1, pp. 604–615, Mar. 2018.

[44] I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consistent Update With
Redundancy Reduction in SDN,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3974–
3981, Sep. 2018.

[45] Abilene Dataset, Accessed: May, 2020. [Online]. Available: http://www.cs.utexas.
edu/~yzhang/research/AbileneTM

[46] S. F. Abedin, M. G. R. Alam, S. M. A. Kazmi, N. H. Tran, D. Niyato, and C. S.
Hong, “Resource Allocation for Ultra-Reliable and Enhanced Mobile Broadband
IoT Applications in Fog Network,” IEEE Trans. Commun., vol. 67, no. 1, pp. 489–
502, Jan. 2019.

154

http://www.cs.utexas.edu/~yzhang/research/AbileneTM
http://www.cs.utexas.edu/~yzhang/research/AbileneTM

References

[47] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Efficient Loop-Free
Rerouting of Multiple SDN Flows,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp.
948–961, Apr. 2018.

[48] Gurobi Optimizer, Gurobi Optimizer Reference Manual, Accessed: May, 2020.
[Online]. Available: http://www.gurobi.com

[49] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM
Review, 2009.

[50] E. Henry and J. Hofrichter, “Singular value decomposition: Application to analysis
of experimental data,” in Numerical Computer Methods. Academic Press, 1992,
vol. 210, pp. 129 – 192.

[51] T. Wu, S. A. N. Sarmadi, V. Venkatasubramanian, A. Pothen, and A. Kalyanara-
man, “Fast SVD Computations for Synchrophasor Algorithms,” Trans. Power Syst.,
vol. 31, no. 2, pp. 1651–1652, Mar. 2016.

[52] K. Sood, S. Yu, and Y. Xiang, “Performance Analysis of Software-Defined Network
Switch Using M/Geo/1 Model,” IEEE Commun. Lett., vol. 20, no. 12, pp. 2522–
2525, Dec. 2016.

[53] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile Unmanned Aerial
Vehicles (UAVs) for Energy-Efficient Internet of Things Communications,” IEEE
Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589, Nov. 2017.

[54] D. Wu, J. Yan, H. Wang, and R. Wang, “User-centric Edge Sharing Mechanism in
Software-Defined Ultra-Dense Networks,” IEEE J. Sel. Areas Commun., pp. 1–1,
2020.

[55] K.-K. Yap, M. Kobayashi, R. Sherwood, N. Handigol, T.-Y. Huang, M. Chan,
and N. McKeown, “OpenRoads: Empowering research in mobile networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126, 2010.

[56] L. Õzbakir, A. Baykasoğlu, and P. Tapkan, “Bees algorithm for generalized assign-
ment problem,” Applied Mathematics and Computation, vol. 215, no. 11, pp. 3782
– 3795, 2010.

[57] A. Jarray and A. Karmouch, “Decomposition Approaches for Virtual Network
Embedding With One-Shot Node and Link Mapping,” IEEE/ACM Trans. Netw.,
vol. 23, no. 3, pp. 1012–1025, Jun. 2015.

[58] S. Bera, S. Misra, and M. S. Obaidat, “Mobi-Flow: Mobility-Aware Adaptive Flow-
Rule Placement in Software-Defined Access Network,” IEEE Trans. Mobile Com-
put., vol. 18, no. 8, pp. 1831–1842, Aug. 2019.

[59] S. Sigg, D. Gordon, G. v. Zengen, M. Beigl, S. Haseloff, and K. David, “Investigation
of Context Prediction Accuracy for Different Context Abstraction Levels,” IEEE
Trans. Mobile Comput., vol. 11, no. 6, pp. 1047–1059, Jun. 2012.

155

http://www.gurobi.com

References

[60] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center
Network Architecture,” in Proc. ACM SIGCOMM, 2008, pp. 63–74.

[61] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc
Network Research,” Wireless Communications and Mobile Computing, vol. 2, no. 5,
pp. 483–502, Aug. 2002.

[62] R. W. Bohannon, “Comfortable and maximum walking speed of adults aged 20-79
years: reference values and determinants,” Age and Ageing, vol. 26, no. 1, pp. 15–19,
Jan. 1997.

[63] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
Controller Performance in Software-defined Networks,” Proc. USENIX Conf. Hot
Topics Manage. Internet, Cloud, Enterprise Netw. Services, pp. 1–6, 2012.

[64] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman, “Characterizing and classifying IoT traffic in smart cities
and campuses,” in Proc. IEEE INFOCOM Workshops, May 2017, pp. 559–564.

[65] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory Design and Power Control
for Multi-UAV Assisted Wireless Networks: A Machine Learning Approach,” IEEE
Trans. Veh. Technol., vol. 68, no. 8, pp. 7957–7969, Aug. 2019.

[66] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[67] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “Optimizing Gradual
SDN Upgrades in ISP Networks,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp.
288–301, Feb. 2019.

[68] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopticon:
Reaping the Benefits of Incremental SDN Deployment in Enterprise Networks,”
in USENIX Annual Technical Conference, 2014.

[69] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,”
in Proc. IEEE INFOCOM, vol. 2, 2000, pp. 519–528 vol.2.

[70] B. K. Saha, S. Misra, and S. Pal, “SeeR: Simulated Annealing-Based Routing in
Opportunistic Mobile Networks,” IEEE Trans. Mobile Comput., vol. 16, no. 10, pp.
2876–2888, 2017.

[71] H. M. E. Abdelsalam and H. P. Bao, “A simulation-based optimization framework
for product development cycle time reduction,” IEEE Trans. Eng. Manag., vol. 53,
no. 1, pp. 69–85, 2006.

[72] T. Vu, “Sleep mode and wakeup method for OpenFlow switches,” J. Low Power
Electron., vol. 10, no. 3, pp. 347–353, 2014.

156

References

[73] Cisco 1941 Series Integrated Services Routers Data Sheet, Accessed: Aug, 2014.
[Online]. Available: http://www.cisco.com/c/en/us/products/collateral/routers/
1900-series-integrated-services-routers-isr

157

http://www.cisco.com/c/en/us/products/collateral/routers/1900-series-integrated-services-routers-isr
http://www.cisco.com/c/en/us/products/collateral/routers/1900-series-integrated-services-routers-isr

BIO-DATA

1. Bio-data

• Name: Ms. Ilora Maity
• Roll No.: 15IT91R03
• Date of Birth: 7th September, 1986
• Permanent Address: N-119/3, H. C. Banerjee Lane,

P.O. - Konnagar, Dist. - Hooghly,
State - West Bengal, India, PIN - 712235

• E-Mail: iloramaity7@gmail.com, imaity@iitkgp.ac.in
• Homepage: https://iloramaity.wixsite.com/ilora

2. Present Status: PhD Research Scholar, IIT Kharagpur, India.

3. Academic Qualification:

• Master of Engineering (M. E.) in Computer Science and Engineering, Bengal
Engineering and Science University, Shibpur, West Bengal, India, 2011.

• Bachelor of Technology (B. Tech) in Computer Science and Engineering, West
Bengal University of Technology, West Bengal, India, 2008.

4. Professional Experience:

• September, 2011 – July, 2015, Technical Analyst, Cognizant Technology So-
lutions India Private Ltd.

5. Journal Publications:

• I. Maity, A. Mondal, S. Misra, and C. Mandal, “Tensor-Based Rule-Space
Management System in SDN," IEEE Systems Journal, vol. 13, no. 4, pp.
3921-3928, December 2019.

• I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consistent Update
with Redundancy Reduction in SDN," IEEE Transactions on Communica-
tions, vol. 66, no. 9, pp. 3974-3981, September 2018.

• A. Mondal, S. Misra, and I. Maity, “Buffer Size Evaluation of OpenFlow
Systems in Software-Defined Networks," IEEE Systems Journal, vol. 13, no.
2, pp. 1359-1366, June 2019.

• A. Mondal, S. Misra, and I. Maity, “AMOPE: Performance Analysis of
OpenFlow Systems in Software-Defined Networks," IEEE Systems Journal,
vol. 14, no. 1, pp. 124-131, March 2020.

6. Conference Publications:

• I. Maity, S. Misra, and C. Mandal, “Traffic-Aware Consistent FlowMigration
in SDN," in Proceedings of IEEE International Conference on Communica-
tions (ICC), Dublin, Ireland, June 2020, pp. 1-6.

• I. Maity, G. Bhattacharya, S. Das, and B. K Sikdar, “A Cellular Automata
based Scheme for Diagnosis of Faulty Nodes in WSN," in Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Anchor-
age, AK, pp. 1212-1217, October 2011.

• N. Khan, I. Maity, S. Das, and B. K. Sikdar, “Cellular Automata Based
Scheme for Energy Efficient Fault Diagnosis in WSN", In Proceedings of In-
ternational Conference on Cellular Automata, pp. 234-243, 2012.

• B. Das, G. Bhattacharya, I. Maity, and B. K. Sikdar, “Impact of Inaccurate
Design of Branch Predictors on Processors’ Power Consumption," in Proceed-
ings of IEEE International Conference on Dependable, Autonomic and Secure
Computing, Sydney, NSW, pp. 335-342, December 2011.

• G. Bhattacharya, I. Maity, B. K Sikdar, and B. Das, “Exploring Impact
of Faults on Branch Predictors’ Power for Diagnosis of Faulty Module," in
Proceedings of Asian Test Symposium, New Delhi, pp. 226-231, November
2011.

7. Referee Services:

• Journal:
– Peer reviewed articles for IEEE Transactions on Network and Service

Management
– Peer reviewed articles for IEEE Transactions on Mobile Computing
– Peer reviewed articles for Pervasive and Mobile Computing
– Peer reviewed articles for International Journal of Communication Sys-

tems
– Peer reviewed articles for IEEE Transactions on Network Science and

Engineering
• Conference:

– Peer reviewed articles for IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), 2016

8. Achievements:

• Received recognition for review contributions to International Journal of
Communication Systems (2020).

• Received fellowship for pursuing Ph.D degree from Ministry of Human Re-
source Development (MHRD), India (2015).

• Recipient of Assimilator of the Quarter (Best Newcomer) award, Cog-
nizant Technology Solutions India Private Ltd., Kolkata, Q1 (2013).

• Recipient of award for 1st rank in M.E. in Department of Computer Sci-
ence and Engineering in Bengal Engineering and Science University, Shibpur
(2012).

• Qualified GATE (The Graduate Aptitude Test in Engineering) with a per-
centile score of 97.52 (2009).

• Qualified the 3rd National IT Aptitude Test (NIIT) with a percentile of
88.00 (2007).

• Recipient of award for 2nd rank in Serampore Girls High School in Higher
Secondary Examination (2004).

9. Professional Affiliations

• Student member, IEEE
• Student member, IEEE Computer Society
• Student member, IEEE Communications Society

	Certificate
	Declaration
	Dedication
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols and Abbreviations
	Introduction
	Scalability Challenges in SDN
	Scope of the Work
	Problem Statement and Objectives
	Contributions
	Organization of the Thesis

	Related Work
	Data Plane Scalability
	Capacity-Aware Consistent Update
	Rule-Space Capacity Management

	Control Plane Scalability
	Control Plane Load Management
	Controller Placement

	Energy-Aware Traffic Engineering in SDN
	Concluding Remarks

	Consistent Update with Redundancy Reduction
	System Model
	CURE: The Proposed Scheme
	Switch Classification
	Rule Update
	Packet Queueing
	Packet Processing
	Queueing Model

	Performance Evaluation
	Result and Discussion

	Concluding Remarks

	Data Plane Load Reduction for Flow Migration
	System Model
	Traffic Flow Model
	Problem Formulation

	DART: The proposed scheme
	Generation of QoS-Aware Migration Schedule
	Generation of Feasible Migration Schedule
	Rule-Space Management
	Consistent Flow Migration

	Performance Evaluation
	Simulation Settings
	Benchmark schemes
	Performance Metrics
	Result and Discussion

	Concluding Remarks

	Rule-Space Management
	System Model
	TERM: The Proposed Scheme
	Rule Aggregation
	Rule Reconstruction
	Rule Caching

	Performance Evaluation
	Result and Discussion

	Concluding Remarks

	Control Plane Load Reduction
	System Model
	Mobility Model
	Caching Model
	Delay Model
	Cost Model
	Problem Formulation

	CORE: The Proposed Scheme
	Mobility Prediction
	Rule-Caching
	Master Controller Assignment

	Performance Evaluation
	Simulation Settings
	Benchmark Schemes
	Performance Metrics
	Observations and Results
	Discussion

	Concluding Remarks

	QoS-Aware Switch and Controller Placement
	System Model
	Budget Model
	Problem Formulation

	SCOPE: The Proposed Scheme
	SDN Switch Placement
	Coalition Game Formulation for Controller Placement

	Performance Evaluation
	Simulation Settings
	Benchmark Schemes
	Performance Metrics
	Result and Discussion

	Concluding Remarks

	Energy-Aware Traffic Engineering
	System Model
	Traffic Flow Model
	Power Consumption Model
	Problem Formulation

	ETHoS: The Proposed Scheme
	ETHoS-G: Energy-Aware Traffic Engineering in Hybrid SDN with Greedy Heuristic
	ETHoS-SA: Energy-Aware Traffic Engineering in Hybrid SDN with Simulated Annealing
	Summary of the Proposed Approach

	Performance Evaluation
	Simulation Settings
	Benchmark Schemes
	Performance Metrics
	Results and Discussion

	Concluding Remarks

	Conclusion
	Summary
	Contributions
	Limitations
	Future Work

	Dissemination of Research Works
	References

