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Abstract 
This work presents methods for interconnect opti- 

mization while performing register optimization and 
placement of registers in memory. It has been shown 
that the port assignment problem is similar to the reg- 
ister optimization problem that also considers inter- 
connect optimization. The basic formulation of the 
register-interconnect optimization problem has been 
posed as that of finding a clique cover under some 
constraints. A measure of the interconnect area has 
been defined. This measure has been integrated with a 
traditional well known algorithm for performing clique 
cover to achieve both re ister and interconnect min- 
imization. Both the tec gh niques show favourable re- 
sults. 
Keywords: VLSI, Data Path Synthesis, Register Allo- 
cation, Port Assignment 

1 Introduction 
Data path synthesis often starts with a procedu- 

ral description of the behaviour of the target system. 
This description is transformed into an intermediate 
representation that clearly shows the dataflow and the 
control flow embedded in the original description. The 
intermediate code is often organized as a graph of ba- 
sic blocks called the flow graph [l]. The translation 
process introduces several temporary variables. Vari- 
ables are mapped on registers in the final design. Some 
of the registers may be profitably clubbed into memo- 
ries. Since registers take up considerable area and also 
contribute significantly to the interconnect cost, it is 
desirable to optimize the number of registers used in 
the final design. 

Live variable analysis on the flow graph generates 
a profile of the times when the variables carry rele- 
vant values, ie. when they are live. Two variables 
that not live at the same time can be placed on the 
same register. On the other hand, two registers having 
ovmlapping life times but disjoint access times can be 
placed on the same single port memory, while a mul- 
tiport memory is required to house registers that are 
accessed simultaneously. 

Facet [4] and Real [3] represent two important tech- 
niques for register allocation. While Real purely per- 
forms register minimization for DAGS, Facet handles 
interconnect optimization in a separate phase. Pure 
register minimization produces designs with high in- 

terconnect complexity. Keeping this difficulty in view 
an algorithm was designed to perform register mini- 
mization with an interconnect cost lookahead. Reg- 
ister optimization alone is not sufficient to generate 
feasible designs, for even after minimization the abso- 
lute number of registers may still be large. Placement 
of registers on memories permits considerable reduc- 
tion in the interconnection complexity. In order to 
avoid significant degradation in the performance only 
small size memories may be used, say upto eight cells. 
Owing to the large number of redundlant registers in 
the intermediate level of the design, a large number 
of memories would be required. A proper optimiza- 
tion strategy would need to perform bloth register op- 
timization and optmization using memories. 

The presentation continues with studies of the 
register-interconnect optimization problem, the mem- 
ory allocation problem and finally a scheme for overall 
optimization. Some results about the performance of 
the various strategies are also presented. 

2 Register-Interconnect Opti- 
mizat ion 

2.1 Prologue 
Register-interconnect optimization (RIO is an in- 

of the design at  the time of starting this step is de- 
scribed below. The initial description is transformed 
into one or more directed acyclic graphs DAG) [l] to 

Next, the DAGs are scheduled, possibly on the basis 
of a given operator set. Alternatively, the operator set 
may be fixed after scheduling is over. Finally the op- 
erations in the DAG are bound to specific operators. 
These scheduled DAGs where operations are bound to 
specific operators serve as the input to the RIO mod- 
ule. 

2.2 Formulation 
The starting point of the formulation is a suitable 

representation of the design space. Cidl this space DR 
and the initial partial design d ~ , ,  . The terms variables 
and registers are used interchangeably here. First a 
live variable analysis [l] is performed on the sched- 
uled DAGs. This yields the sharability information 
between the variables and is stored in a matrix. The 

termediate stage in the synthesis process. 4 he status 

represent the data flow and the control B ow, as well. 
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initial sharability matrix is called so. A sharability 
matrix s is symmetric and sjj = 1 only if register rj is 
sharable with register r j .  A cost function fc, is de- 
fined over DR. This cost is a measure of the expected 
area of the data path of the system. A transforma- 
tion function fT, defined over DR maps the current 
design onto a new design as a result of merging two 
registers rj and r .  Registers rj and ri may be merged 
only i f s ”  - 1. inother  transformation function fT, 
is define3 over all square matrices. The function f ~ ,  
maps s to s’ as a result of merging registers rj and rj 
to form a new sharability matrix. 

The problem may now be stated as, starting with 
d~~ and SO, obtain a design dRI as a result of apply- 
ing fT, on dRo and fT, on $0 and then successively 
on the intermediate dR,’S and Si’s such that fc,(dRI) 
is minimum. Each application of fT, corresponds to 
the updation of the current partial design and each 
application of fT, corresponds to the updation of the 
current sharability matrix as a result of merging the 
two variables selected in the current step. This formu- 
lation suggests the use of a branch and bound strategy 
for obtaining the optimal solution with respect to the 
chosen fc,. It can be easily shown that this problem 
is NP-hard by reducing the clique cover problem to 
this problem. 
2.3 Representation 

Two aspects of the design are relevant at this stage, 
namely, the sharability information and the intercon- 
nection information. The representation of the former 
has already been described. Memories are not consid- 
ered in the context of RIO. Ports, in this context, only 
refer to  the ports at the interface of the module under 
consideration. The interconnection information may 
be summarized as follows: 

0 links from registers to operators 

0 links from operators to registers 

0 links from registers to registers 

0 links from operators to operators 

0 links from ports to operators 

0 links from registers to ports 

0 links from operators to  ports 

0 links from ports to registers 

0 links from ports to ports 

It is, however, not necessary to separately classify 
the inputs and outputs of the operators and the var- 
ious ports. As the assignment of operators is already 
completed, these may be stored as fixed connection 
points. The left input, the right input and the out- 
put of each operator are considered to be distinct and 
fixed connection points. Registers are stored as vari- 
able connection points. Some of the variable connec- 
tion points may be merged. Each connection point is 

assigned a distinct number. The design is now repre- 
sented as an incidence matrix I. I k l  = 1 if component 
point 1 is incident on component point k. More than 
one connection point may be incident a t  a single con- 
nection point. In such a case a multiplexer is needed. 
Multiplexers are not explicitly represented. 
2.4 Transformation 

As a result of merging registers rj and r. ,  a’ < j ,  
the incidence matrix is updated as follows. All points 
receiving from rj now receive from ri. All points feed- 
ing ri and rj. now together feed into rj. rj is deleted 
from the incidence matrix. The sharability matrix s 
is updated to s‘ (say). In s‘ the row and column cor- 
responding to  rj in s are absent. .& = 1 iff Sik and 
s j k = 1 .  s ~ , = S p q , p , q # i a n d p , q # j .  
2.5 Cost Function 

The cost function fc, is a measure of the area oc- 
cupied by the registers and the busses. This function 
should be easily computable as the time complexity of 
the algorithm would be unacceptably high if the time 
complexity of computing fc, is high. A measure de- 
rived by actually performing the routing and layout is 
very costly in terms of computation time. Even area 
estimators such as Plest [2] that avoid routing are not 
fast enough for our purpose. 

The cost function used here is based on the register 
and multiplexer usa e. The register cost is propor- 

cost is proportional to the number of input channels 
and the width of the output. A linear combination 
of the register and multiplexer cost is taken as the to- 
tal cost. This cost function is being called RMC. Each 
register or operator itself takes into account one bus at 
every input point. Multiple connections which enter a 
point require a multiplexer whose size varies depend- 
ing on the number of lines it must multiplex. So it may 
be assumed that multiplexer and register cost are rea- 
sonable estimators of register-interconnect complexity. 
The minimization of this function would result in a re- 
duction of the number of registers and multiplexers in 
the design. However, the interconnect complexity is 
tightly coupled with this cost function. Therefore, the 
bus usage is simultaneously reduced along with the 
registers and the multiplexers. 

tional to the width o 4 the register and the multiplexer 

3 RIO Algorithm 
3.1 Algorithm 

ing the algorithm. 
Three factors have been kept in mind while design- 

Merging of two registers in general produces a 
saving in area. Therefore the greedy algorithm 
must attempt to find register pairs that yield 
maximum reduction in the interconnect complex- 
ity. However, this approach could choose pairs 
that rapidly deplete the edges in the sharability 
graph and generate a design with too many reg- 
isters. 
By concentrating on register minimization alone, 
a design with high interconnection complexity 
could result. 
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3. It is therefore necessary to have a tradeoff be- 

The following definitions enable a concise presentation 
of the algorithm. 

Common vertex A vertex v is said to be common to 
vertices v1 and v2 if swul = 1 and suu2 = 1. 

Deleted edge An edge (v, v i )  is said to be deleted on 
merging v i  and v2 if swwl = 1 and suu2 = 0. The 
function de(vl,v2) returns the number of edges 
deleted on merging v i  and 212. 

Clique factor  Let Pi be the vertex pairs in s having 
precisely i common vertices. Let Qi = u . : ~ P j .  

tween the two optimization criteria. 

- * ~ _  - 
The clique factor associated with Qj is c f (Q, i) = 

21Q;I 
.-j. 

The algorithm is outlined in figure 1. 
3.2 Performance 

The above algorithm has been tested extensively 
on randomly generated behaviours. The behaviours 
are generated on the basis of two para.meters, viz. the 
number of variables and the number of arithmetic logic 
units (alu). Here alu's are used to denote hardware 
operators capable of performing some predetermined 
functions. For each behaviour the corresponding DAG 
is constructed and scheduled on the basis of the alu's 
generated along with the behaviour. Following a live 
variable analysis, register optimization is performed 
both with and without interconnect cost lookahead. 
The cost per bit of a register or a multiplexer is taken 
as one unit. A register is given twice the weight of 
a multiplexer. It is found that while the number of 
registers needed in both the cases is almost the same, 
the multiplexer cost in the first case is8 much less. The 
comparitive results are tabulated in figure 2. The sav- 
ing is seen to increase with the number of alu's. 

4 Memory Allocation 
4.1 Prologue 

Given a set of registers to be placed in a memory, 
it is necessary to distribute the references to the con- 
stituent members over its ports. A single port memory 
might suffice, or a multiport memory might be called 
for, depending on the distribution of the references. 
The port assignment should be such that the result- 
ing interconnection is minimal. Sometimes the precise 
number of ports to be used is pre-specified and an 
optimal port assignment is to be determined, if one 
exists. In this work, the attempt is to determine the 
minimum number of ports that will result in an op- 
timal interconnection. The optimality in the above 
case is defined with respect to the cost function fcp 
applied on a transformed design. The details of this 
transformation and its use to perform port assignment 
follow later. The same criteria which are used to judge 
the interconnection complexity of a design are used 
to measure the quality of a port assignment. It is 
then necessary to determine which registers are to be 

grouped together for placement in a plarticular mem- 
ory. Some of the registers might even be left as they 
are. As in case of the register-interconmect minimiza- 
tion problem, it is possible to formulate a branch and 
bound algorithm for performing register allocation. 

A simple greedy algorithm has been used to de- 
termine the register groups. At each step a port as- 
signment is performed to determine the quality of the 
assignment and the best candidate is chosen. This ap- 
proach is made possible by the polynomial time char- 
acteristics of the RI with RMC strategy. 
4.2 Memory Allocation Algorithm 

The algorithm described in figure 3 takes the initial 
design dM,, and produces d M ,  as a result of grouping 
registers into memories, when possible. The register 
minimization aspect has not been touclhed upon in this 
algorithm. It is easily incorporated by performing a 
clique partitioning of & after exiting from the loop 
statement. M records the final register groups. 
4.3 Port Assignment 

The design space is now called DM. The design 
instance is represented as d M  and the cost function as 
fc,. The initial design d M o  is in fact vvhat would have 
been dRo if only register compaction were to  be per- 
formed. The same methods are used to represent a de- 
sign and to evaluate the cost function. Only the mem- 
ories and their ports come in as new entities. They are, 
as usual, handled as connection points. The transfor- 
mation function is fT, . It maps the current design to 
a new design as a result of grouping ii set of registers 
into a memory. The mapping is guided by the port 
assignment. The details of fT, follow later. 
4.4 

Given any design d M  and a set of' registers & to 
be placed in a memory, an instance of RI with RMC 
is created for performing the port assignment. The 
transformation is now described. A variable connec- 
tion point is defined in dRo corresponding to each ref- 
erence to a member of &. Fixed connection points 
are defined for all other connection points in diu. To 
construct the initial sharability matrix, two variables 
are marked sharable in SO if their corresponding refer- 
ences occur in different time steps. However, variables 
corresponding to multiple references to the same mem- 
ber in the same time step are marked sharable. This 
enables reads to the same member to be mapped on 
the same port, if needed. 

Suppose that a reference to a member of & is a 
data transfer to some connection point in d M ,  ie. a 
read. The corresponding connection point in is 
marked as the destination of the variable connection 
point in dRo corresponding to that particular refer- 
ence. In case of a write the marking used is that of 
a source. This defines the transformiztion of the port 
assignment problem to RI with1 RMC. 

4.5 Interpretation of Results 
Each variable cluster obtained after solving the RI 

with RMC problem corresponds to a port. Each port 
is a new connection point in db obtained from diu. 
These connection points are essentially independent. 

Transformation to RI with RMC 

87 

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore.  Restrictions apply. 



procedure regmin 
1. dR = dRo 
2. s = so 
3. while (the sharability matrix is not exhausted) do 
4. { determine the maximum 3: and the corresponding 

Q such that c f (Q, 3:) 2 1; in the absence of 
such an 2, let Q include all the edges in s. 
determine the member (q, v2) of Q which 
has the minimum value of 

/* the denominator represents khe'saving 
/* a trade-off is made between the deleted edges and the saving */ 

5. 
de(v1, v2) 

fcR dR -fcR fTR dR!v i , v j  
a jesult of ierging v1 and z)2 */ 

6. dR = ~ T R ( ~ R ,  v2) 
7. 

9. dRf = dR 

s = fTs  (s, 01, v2) 
8. 1 

no. 
var 

5 

10 
10 
10 
15 
15 
15 
20 
20 
20 
25 
25 
25 

Figure 1: Register minimization algorithm. 

no. 
alu 

1 
5 2  
5 3  

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

ters 
Ze N Z / Z  

49.00 1.05 
76.75 1.01 
91.75 1.03 
95.25 1.06 

113.75 1.01 
135.75 1.06 
144.75 1.07 
151.00 1.02 
180.00 1.05 
182.30 1.07 
190.75 1.02 
219.00 1.05 
234.00 1.07 

2:;; ::;: 
Reg 

DAG" I NZb 
10.84 I 38.'(5 

? 
NZ 

1:;:;; 
250.25 
125.75 
280.75 
471.25 
183.75 
410.25 
674.50 
251.25 
526.25 
849.70 
312.75 
636.00 

1045.50 

20.69 
30.62 
20.84 
41.37 
61.22 
32.47 
61.28 
92.22 
42.19 
82.44 

122.67 
53.41 

103.28 
153.03 

47.25 
51.25 
77.25 
94.50 

100.75 
115.25 
143.50 
154.50 
154.00 
188.00 
194.91 
193.75 
229.50 
249.50 

- ~~ 

%noptimized number of registers 
*cost when using RMC with non-zero mux. cost 
'cost when using RMC with zero mux. cost 

Iltiplexer 
Z 

69700- 
183.50 
317.00 
138.75 
375.75 
623.00 
200.00 
553.75 
919.00 
271.75 
722.00 

1206.79 
340.50 
886.75 

1523.00 

0.80 
0.79 
0.91 
0.75 
0.76 
0.92 
0.74 
0.73 
0.92 
0.73 
0.71 
0.92 
0.72 
0.69 

0.84 
0.83 
0.94 
0.81 
0.80 
0.95 
0.81 
0.78 
0.96 
0.79 
0.75 
0.95 
0.78 
0.74 

Figure 2: Performance of register minimization algorithm. 
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procedure mem-alloc 
1. d~ = d M o  
2 .  
3. M = 0  
4. loop 
5. { 
6. 
7. R =  R -  { r }  
8. 

10. 
11. find r E R t at maximizes 

R = { r  I r is a register in d ~ ~ }  

if R = 8 then break /* all registers already placed */ 
r +- any register of R 

Ro = { r }  /* the first register in the current memory */ 

{ 
9. loop 

if R = 0 or Ro 12 memsize then break /* no further placement possible */ 
p = fc,(dAf) - fc,,,(f~ ( d ~ ,  Ro U { r } ) )  /* the interconnect saviing */ 
and leads to the usage 3 no more than maxqorts ports 
let p,,$ be this value of p 
if p,,, 2 0 /* some saving has actually been made */ 
{ & = Ro U { r }  /* include this register */ 

R = R - { r }  

h 

12. 
13. 
14. 
15. } else 
16. break 

18. 
19. 

17. 1 
if I RO I> 1 /* a memory must have atleast two members */ 
{ M = Ad U Ro /* include this memory */ 

20. d M  = . ~ T M  (dM &) 
21. 1 
22. } 
23. d M f  = d M  

Comparison of results 
max. max. memory usage no. of multiplexer usage no. of no. of lines 
sizea port mem. mux. multipbexed 

6 3 3  port mem; 1 no. 3 3 inp. mux.; 2 nos. 3 8 

8 3 3  port mem; 2 nos. 2 3 inp. mux.; 1 no. 2 I '' 

8 2 2  port mem; 3 nos. 3 3 inp. mux.; 2 nos. 3 8 '  

6 2 2  port mem; 3 nos. 3 3 inp. mux.; 1 no. 3 [ 

2 port mem; 2 nos. 2 inp. mux.; 1 no. 

4 inp. mux.; 1 no. 

2 inp. mux.; 1 no. 

2 inp. mux.; 2 nos. 

Figure 3: Memory allocation algorithm. 

3 2 inp. mux.; 1 no. 4 , I I I :port memb 3 nos. 

port mem'; 2 nos. 2 

9 i z e  of the memory 
bDetails of design in 5 
=Details of design in [ti] 

3 inp. mux.; 3 nos. 
2 inp. mux.; 4 nos. 

Figure 4: Performance of memory allocation algorithm. 
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As mentioned earlier each variable corresponds to a 
memory reference. If it is a read then the connection 
point corresponding to the source is incident on the 
port. On the other hand if it is a write then that 
connection point receives from the port. This also 
defines the transformation function f T M .  

4.6 Performance 
The memory allocation strategy using the afore- 

mentioned port assignment method has been tested 
against a design reported in [5]. The results are tabu- 
lated in figure 4. Memory allocation was performed on 
the reported design for memory sizes of six and eigth, 
and port sizes of two and three. The last two rows of 
the table indicate statistics of the reported design in 

when only two port memories are permitted and 
!%en only three port memories are permitted. It is 
seen to produce marginally better results. 

5 Overall Strategy 
5.1 Method 

In order to obtain feasible designs both register op- 
timization and placement of registers on memories is 
required. The basic source of optimization through 
the use of memories comes from our ability to dis- 
tribute the accesses to the constituent registers to re- 
duce multiplexer usage. Two registers writing to the 
same terminal, at different times, placed in different 
memories entail the use of a multiplexer. It is there- 
fore desirable to place registers having common targets 
in the same memory. In order to reduce the number 
of memories required such registers also need to be 
suitably merged, subject to their compatibility. But 
this is just the direction in which register-interconnect 
optimization works. 

In view of this observation, first a RIO is run on the 
intermediate design available after scheduling is per- 
formed. Subsequently the registers are grouped into 
memories using the memory allocation algorithm. 

5.2 Performance 
The performance of the above strategy was tested 

on randomly generated behaviours, as in case of RIO, 
but on a much smaller set. For each behaviour and the 
corresponding set of alu's two sets of experiments were 
performed. On set involved performing RIO with the 
interconnect cost lookahead forced to zero and then 
doing memory allocation. The second set involved 
RIO with proper interconnect cost lookahead and then 
doing memory allocation. In both the cases memory 
allocation produced significant cost. reduction. How- 
ever, the second experiment seems to produce better 
results than the first only when RIO in the second case 
produces a design with much lower cost than the first. 
Otherwise the experiments produce similar results. 
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