
Interconnect Optimization Techniques in Data Path Synthesis

C. A. Mandal P. P. Chakrabarti S. Chose

Department of Computer Science & Engineering
Indian Institute of Technology

Kharagpur 721302, INDIA

Abstract
This work presents methods for interconnect opti-

mization while performing register optimization and
placement of registers in memory. It has been shown
that the port assignment problem is similar to the reg-
ister optimization problem that also considers inter-
connect optimization. The basic formulation of the
register-interconnect optimization problem has been
posed as that of finding a clique cover under some
constraints. A measure of the interconnect area has
been defined. This measure has been integrated with a
traditional well known algorithm for performing clique
cover to achieve both re ister and interconnect min-
imization. Both the tec gh niques show favourable re-
sults.
Keywords: VLSI, Data Path Synthesis, Register Allo-
cation, Port Assignment

1 Introduction
Data path synthesis often starts with a procedu-

ral description of the behaviour of the target system.
This description is transformed into an intermediate
representation that clearly shows the dataflow and the
control flow embedded in the original description. The
intermediate code is often organized as a graph of ba-
sic blocks called the flow graph [l]. The translation
process introduces several temporary variables. Vari-
ables are mapped on registers in the final design. Some
of the registers may be profitably clubbed into memo-
ries. Since registers take up considerable area and also
contribute significantly to the interconnect cost, it is
desirable to optimize the number of registers used in
the final design.

Live variable analysis on the flow graph generates
a profile of the times when the variables carry rele-
vant values, ie. when they are live. Two variables
that not live at the same time can be placed on the
same register. On the other hand, two registers having
ovmlapping life times but disjoint access times can be
placed on the same single port memory, while a mul-
tiport memory is required to house registers that are
accessed simultaneously.

Facet [4] and Real [3] represent two important tech-
niques for register allocation. While Real purely per-
forms register minimization for DAGS, Facet handles
interconnect optimization in a separate phase. Pure
register minimization produces designs with high in-

terconnect complexity. Keeping this difficulty in view
an algorithm was designed to perform register mini-
mization with an interconnect cost lookahead. Reg-
ister optimization alone is not sufficient to generate
feasible designs, for even after minimization the abso-
lute number of registers may still be large. Placement
of registers on memories permits considerable reduc-
tion in the interconnection complexity. In order to
avoid significant degradation in the performance only
small size memories may be used, say upto eight cells.
Owing to the large number of redundlant registers in
the intermediate level of the design, a large number
of memories would be required. A proper optimiza-
tion strategy would need to perform bloth register op-
timization and optmization using memories.

The presentation continues with studies of the
register-interconnect optimization problem, the mem-
ory allocation problem and finally a scheme for overall
optimization. Some results about the performance of
the various strategies are also presented.

2 Register-Interconnect Opti-
mizat ion

2.1 Prologue
Register-interconnect optimization (RIO is an in-

of the design at the time of starting this step is de-
scribed below. The initial description is transformed
into one or more directed acyclic graphs DAG) [l] to

Next, the DAGs are scheduled, possibly on the basis
of a given operator set. Alternatively, the operator set
may be fixed after scheduling is over. Finally the op-
erations in the DAG are bound to specific operators.
These scheduled DAGs where operations are bound to
specific operators serve as the input to the RIO mod-
ule.

2.2 Formulation
The starting point of the formulation is a suitable

representation of the design space. Cidl this space DR
and the initial partial design d ~ , , . The terms variables
and registers are used interchangeably here. First a
live variable analysis [l] is performed on the sched-
uled DAGs. This yields the sharability information
between the variables and is stored in a matrix. The

termediate stage in the synthesis process. 4 he status

represent the data flow and the control B ow, as well.

85
0-8186-246!5-5/91 $1.00 0 1991 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

initial sharability matrix is called so. A sharability
matrix s is symmetric and sjj = 1 only if register rj is
sharable with register r j . A cost function fc, is de-
fined over DR. This cost is a measure of the expected
area of the data path of the system. A transforma-
tion function fT, defined over DR maps the current
design onto a new design as a result of merging two
registers rj and r . Registers rj and ri may be merged
only i f s ” - 1. inother transformation function fT,
is define3 over all square matrices. The function f ~ ,
maps s to s’ as a result of merging registers rj and rj
to form a new sharability matrix.

The problem may now be stated as, starting with
d~~ and SO, obtain a design dRI as a result of apply-
ing fT, on dRo and fT, on $0 and then successively
on the intermediate dR,’S and Si’s such that fc,(dRI)
is minimum. Each application of fT, corresponds to
the updation of the current partial design and each
application of fT, corresponds to the updation of the
current sharability matrix as a result of merging the
two variables selected in the current step. This formu-
lation suggests the use of a branch and bound strategy
for obtaining the optimal solution with respect to the
chosen fc,. It can be easily shown that this problem
is NP-hard by reducing the clique cover problem to
this problem.
2.3 Representation

Two aspects of the design are relevant at this stage,
namely, the sharability information and the intercon-
nection information. The representation of the former
has already been described. Memories are not consid-
ered in the context of RIO. Ports, in this context, only
refer to the ports at the interface of the module under
consideration. The interconnection information may
be summarized as follows:

0 links from registers to operators

0 links from operators to registers

0 links from registers to registers

0 links from operators to operators

0 links from ports to operators

0 links from registers to ports

0 links from operators to ports

0 links from ports to registers

0 links from ports to ports

It is, however, not necessary to separately classify
the inputs and outputs of the operators and the var-
ious ports. As the assignment of operators is already
completed, these may be stored as fixed connection
points. The left input, the right input and the out-
put of each operator are considered to be distinct and
fixed connection points. Registers are stored as vari-
able connection points. Some of the variable connec-
tion points may be merged. Each connection point is

assigned a distinct number. The design is now repre-
sented as an incidence matrix I. I k l = 1 if component
point 1 is incident on component point k. More than
one connection point may be incident a t a single con-
nection point. In such a case a multiplexer is needed.
Multiplexers are not explicitly represented.
2.4 Transformation

As a result of merging registers rj and r. , a’ < j ,
the incidence matrix is updated as follows. All points
receiving from rj now receive from ri. All points feed-
ing ri and rj. now together feed into rj. rj is deleted
from the incidence matrix. The sharability matrix s
is updated to s‘ (say). In s‘ the row and column cor-
responding to rj in s are absent. .& = 1 iff Sik and
s j k = 1 . s ~ , = S p q , p , q # i a n d p , q # j .
2.5 Cost Function

The cost function fc, is a measure of the area oc-
cupied by the registers and the busses. This function
should be easily computable as the time complexity of
the algorithm would be unacceptably high if the time
complexity of computing fc, is high. A measure de-
rived by actually performing the routing and layout is
very costly in terms of computation time. Even area
estimators such as Plest [2] that avoid routing are not
fast enough for our purpose.

The cost function used here is based on the register
and multiplexer usa e. The register cost is propor-

cost is proportional to the number of input channels
and the width of the output. A linear combination
of the register and multiplexer cost is taken as the to-
tal cost. This cost function is being called RMC. Each
register or operator itself takes into account one bus at
every input point. Multiple connections which enter a
point require a multiplexer whose size varies depend-
ing on the number of lines it must multiplex. So it may
be assumed that multiplexer and register cost are rea-
sonable estimators of register-interconnect complexity.
The minimization of this function would result in a re-
duction of the number of registers and multiplexers in
the design. However, the interconnect complexity is
tightly coupled with this cost function. Therefore, the
bus usage is simultaneously reduced along with the
registers and the multiplexers.

tional to the width o 4 the register and the multiplexer

3 RIO Algorithm
3.1 Algorithm

ing the algorithm.
Three factors have been kept in mind while design-

Merging of two registers in general produces a
saving in area. Therefore the greedy algorithm
must attempt to find register pairs that yield
maximum reduction in the interconnect complex-
ity. However, this approach could choose pairs
that rapidly deplete the edges in the sharability
graph and generate a design with too many reg-
isters.
By concentrating on register minimization alone,
a design with high interconnection complexity
could result.

86

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

3. It is therefore necessary to have a tradeoff be-

The following definitions enable a concise presentation
of the algorithm.

Common vertex A vertex v is said to be common to
vertices v1 and v2 if swul = 1 and suu2 = 1.

Deleted edge An edge (v, v i) is said to be deleted on
merging v i and v2 if swwl = 1 and suu2 = 0. The
function de(vl,v2) returns the number of edges
deleted on merging v i and 212.

Clique factor Let Pi be the vertex pairs in s having
precisely i common vertices. Let Qi = u . : ~ P j .

tween the two optimization criteria.

- * ~ _ -
The clique factor associated with Qj is c f (Q, i) =

21Q;I
.-j.

The algorithm is outlined in figure 1.
3.2 Performance

The above algorithm has been tested extensively
on randomly generated behaviours. The behaviours
are generated on the basis of two para.meters, viz. the
number of variables and the number of arithmetic logic
units (alu). Here alu's are used to denote hardware
operators capable of performing some predetermined
functions. For each behaviour the corresponding DAG
is constructed and scheduled on the basis of the alu's
generated along with the behaviour. Following a live
variable analysis, register optimization is performed
both with and without interconnect cost lookahead.
The cost per bit of a register or a multiplexer is taken
as one unit. A register is given twice the weight of
a multiplexer. It is found that while the number of
registers needed in both the cases is almost the same,
the multiplexer cost in the first case is8 much less. The
comparitive results are tabulated in figure 2. The sav-
ing is seen to increase with the number of alu's.

4 Memory Allocation
4.1 Prologue

Given a set of registers to be placed in a memory,
it is necessary to distribute the references to the con-
stituent members over its ports. A single port memory
might suffice, or a multiport memory might be called
for, depending on the distribution of the references.
The port assignment should be such that the result-
ing interconnection is minimal. Sometimes the precise
number of ports to be used is pre-specified and an
optimal port assignment is to be determined, if one
exists. In this work, the attempt is to determine the
minimum number of ports that will result in an op-
timal interconnection. The optimality in the above
case is defined with respect to the cost function fcp
applied on a transformed design. The details of this
transformation and its use to perform port assignment
follow later. The same criteria which are used to judge
the interconnection complexity of a design are used
to measure the quality of a port assignment. It is
then necessary to determine which registers are to be

grouped together for placement in a plarticular mem-
ory. Some of the registers might even be left as they
are. As in case of the register-interconmect minimiza-
tion problem, it is possible to formulate a branch and
bound algorithm for performing register allocation.

A simple greedy algorithm has been used to de-
termine the register groups. At each step a port as-
signment is performed to determine the quality of the
assignment and the best candidate is chosen. This ap-
proach is made possible by the polynomial time char-
acteristics of the RI with RMC strategy.
4.2 Memory Allocation Algorithm

The algorithm described in figure 3 takes the initial
design dM,, and produces d M , as a result of grouping
registers into memories, when possible. The register
minimization aspect has not been touclhed upon in this
algorithm. It is easily incorporated by performing a
clique partitioning of & after exiting from the loop
statement. M records the final register groups.
4.3 Port Assignment

The design space is now called DM. The design
instance is represented as d M and the cost function as
fc,. The initial design d M o is in fact vvhat would have
been dRo if only register compaction were to be per-
formed. The same methods are used to represent a de-
sign and to evaluate the cost function. Only the mem-
ories and their ports come in as new entities. They are,
as usual, handled as connection points. The transfor-
mation function is fT, . It maps the current design to
a new design as a result of grouping ii set of registers
into a memory. The mapping is guided by the port
assignment. The details of fT, follow later.
4.4

Given any design d M and a set of' registers & to
be placed in a memory, an instance of RI with RMC
is created for performing the port assignment. The
transformation is now described. A variable connec-
tion point is defined in dRo corresponding to each ref-
erence to a member of &. Fixed connection points
are defined for all other connection points in diu. To
construct the initial sharability matrix, two variables
are marked sharable in SO if their corresponding refer-
ences occur in different time steps. However, variables
corresponding to multiple references to the same mem-
ber in the same time step are marked sharable. This
enables reads to the same member to be mapped on
the same port, if needed.

Suppose that a reference to a member of & is a
data transfer to some connection point in d M , ie. a
read. The corresponding connection point in is
marked as the destination of the variable connection
point in dRo corresponding to that particular refer-
ence. In case of a write the marking used is that of
a source. This defines the transformiztion of the port
assignment problem to RI with1 RMC.

4.5 Interpretation of Results
Each variable cluster obtained after solving the RI

with RMC problem corresponds to a port. Each port
is a new connection point in db obtained from diu.
These connection points are essentially independent.

Transformation to RI with RMC

87

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

procedure regmin
1. dR = dRo
2. s = so
3. while (the sharability matrix is not exhausted) do
4. { determine the maximum 3: and the corresponding

Q such that c f (Q, 3:) 2 1; in the absence of
such an 2, let Q include all the edges in s.
determine the member (q, v2) of Q which
has the minimum value of

/* the denominator represents khe'saving
/* a trade-off is made between the deleted edges and the saving */

5.
de(v1, v2)

fcR dR -fcR fTR dR!v i , v j
a jesult of ierging v1 and z)2 */

6. dR = ~ T R (~ R , v2)
7.

9. dRf = dR

s = fTs (s, 01, v2)
8. 1

no.
var

5

10
10
10
15
15
15
20
20
20
25
25
25

Figure 1: Register minimization algorithm.

no.
alu

1
5 2
5 3

1
2
3
1
2
3
1
2
3
1
2
3

ters
Ze N Z / Z

49.00 1.05
76.75 1.01
91.75 1.03
95.25 1.06

113.75 1.01
135.75 1.06
144.75 1.07
151.00 1.02
180.00 1.05
182.30 1.07
190.75 1.02
219.00 1.05
234.00 1.07

2:;; ::;:
Reg

DAG" I NZb
10.84 I 38.'(5

?
NZ

1:;:;;
250.25
125.75
280.75
471.25
183.75
410.25
674.50
251.25
526.25
849.70
312.75
636.00

1045.50

20.69
30.62
20.84
41.37
61.22
32.47
61.28
92.22
42.19
82.44

122.67
53.41

103.28
153.03

47.25
51.25
77.25
94.50

100.75
115.25
143.50
154.50
154.00
188.00
194.91
193.75
229.50
249.50

- ~~

%noptimized number of registers
*cost when using RMC with non-zero mux. cost
'cost when using RMC with zero mux. cost

Iltiplexer
Z

69700-
183.50
317.00
138.75
375.75
623.00
200.00
553.75
919.00
271.75
722.00

1206.79
340.50
886.75

1523.00

0.80
0.79
0.91
0.75
0.76
0.92
0.74
0.73
0.92
0.73
0.71
0.92
0.72
0.69

0.84
0.83
0.94
0.81
0.80
0.95
0.81
0.78
0.96
0.79
0.75
0.95
0.78
0.74

Figure 2: Performance of register minimization algorithm.

88

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

procedure mem-alloc
1. d~ = d M o
2 .
3. M = 0
4. loop
5. {
6.
7. R = R - { r }
8.

10.
11. find r E R t at maximizes

R = { r I r is a register in d ~ ~ }

if R = 8 then break /* all registers already placed */
r +- any register of R

Ro = { r } /* the first register in the current memory */

{
9. loop

if R = 0 or Ro 12 memsize then break /* no further placement possible */
p = fc,(dAf) - fc,,,(f~ (d ~ , Ro U { r })) /* the interconnect saviing */
and leads to the usage 3 no more than maxqorts ports
let p,,$ be this value of p
if p,,, 2 0 /* some saving has actually been made */
{ & = Ro U { r } /* include this register */

R = R - { r }

h

12.
13.
14.
15. } else
16. break

18.
19.

17. 1
if I RO I> 1 /* a memory must have atleast two members */
{ M = Ad U Ro /* include this memory */

20. d M = . ~ T M (dM &)
21. 1
22. }
23. d M f = d M

Comparison of results
max. max. memory usage no. of multiplexer usage no. of no. of lines
sizea port mem. mux. multipbexed

6 3 3 port mem; 1 no. 3 3 inp. mux.; 2 nos. 3 8

8 3 3 port mem; 2 nos. 2 3 inp. mux.; 1 no. 2 I ''

8 2 2 port mem; 3 nos. 3 3 inp. mux.; 2 nos. 3 8 '

6 2 2 port mem; 3 nos. 3 3 inp. mux.; 1 no. 3 [

2 port mem; 2 nos. 2 inp. mux.; 1 no.

4 inp. mux.; 1 no.

2 inp. mux.; 1 no.

2 inp. mux.; 2 nos.

Figure 3: Memory allocation algorithm.

3 2 inp. mux.; 1 no. 4 , I I I :port memb 3 nos.

port mem'; 2 nos. 2

9 i z e of the memory
bDetails of design in 5
=Details of design in [ti]

3 inp. mux.; 3 nos.
2 inp. mux.; 4 nos.

Figure 4: Performance of memory allocation algorithm.

89

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

As mentioned earlier each variable corresponds to a
memory reference. If it is a read then the connection
point corresponding to the source is incident on the
port. On the other hand if it is a write then that
connection point receives from the port. This also
defines the transformation function f T M .

4.6 Performance
The memory allocation strategy using the afore-

mentioned port assignment method has been tested
against a design reported in [5]. The results are tabu-
lated in figure 4. Memory allocation was performed on
the reported design for memory sizes of six and eigth,
and port sizes of two and three. The last two rows of
the table indicate statistics of the reported design in

when only two port memories are permitted and
!%en only three port memories are permitted. It is
seen to produce marginally better results.

5 Overall Strategy
5.1 Method

In order to obtain feasible designs both register op-
timization and placement of registers on memories is
required. The basic source of optimization through
the use of memories comes from our ability to dis-
tribute the accesses to the constituent registers to re-
duce multiplexer usage. Two registers writing to the
same terminal, at different times, placed in different
memories entail the use of a multiplexer. It is there-
fore desirable to place registers having common targets
in the same memory. In order to reduce the number
of memories required such registers also need to be
suitably merged, subject to their compatibility. But
this is just the direction in which register-interconnect
optimization works.

In view of this observation, first a RIO is run on the
intermediate design available after scheduling is per-
formed. Subsequently the registers are grouped into
memories using the memory allocation algorithm.

5.2 Performance
The performance of the above strategy was tested

on randomly generated behaviours, as in case of RIO,
but on a much smaller set. For each behaviour and the
corresponding set of alu's two sets of experiments were
performed. On set involved performing RIO with the
interconnect cost lookahead forced to zero and then
doing memory allocation. The second set involved
RIO with proper interconnect cost lookahead and then
doing memory allocation. In both the cases memory
allocation produced significant cost. reduction. How-
ever, the second experiment seems to produce better
results than the first only when RIO in the second case
produces a design with much lower cost than the first.
Otherwise the experiments produce similar results.

References
[l] Ullman J . D. Aho A. V., Setlii R. ' COMPILERS

Principles, Techniques and Tools. Addison-Wesley
Publishing Company, June 1987.

Parker A. C. Kurdahi F. J . 'Plest: A program for
area estimation of VLSI integrated circuits. Pro-
ceedings of the 29rd Design Automation Confer-
ence, 1986.

Parker A. C. Kurdahi F. J. 'Real: A program for
register allocation. Proceedings of the 84th Design
Automation Conference, 1987.

Siewiorek D. P. Tseng C. J . 'Automated synthesis
of data paths in digital systems. IEEE Ransaction
on Computer Aided Design, CAD-5(3), July 1986.

Majithia J . C. Majumdar A. I<. Wilson T. C.
Banerjee D. K.' Optimal allocation of multiport
memories in datapath synthesis. Proceedings of
the Sdnd Midwest Symposium on Circuits and Sys-
tems, 1989.

90

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on August 25, 2009 at 09:16 from IEEE Xplore. Restrictions apply.

