
Register Sharing Verification During Data-path Synthesis

C Karfa C Mandal D Sarkar
Department of Computer Sc & Engg

Indian Institute of Technology, Kharagpur
WB 721302, INDIA

{ckarfa, chitta, ds}@iitkgp.ac.in

Chris Reade
Kingston Business School

Kingston University
England KT2 7LB, UK

Chris.Reade@king.ac.uk

Abstract

The variables of the high-level specifications and the au-
tomatically generated temporary variables are mapped on
to the data-path registers during data-path synthesis phase
of high-level synthesis process. The registers in the data-
path are usually shared by the variables and the mapping
is not bijective as most of the high-level synthesis tools per-
form register optimization. In this paper, a formal method-
ology for verifying the correctness of register sharing is de-
scribed. The input and the output of the data-path synthesis
phase are represented as finite state machines with data-
paths (FSMD). The method is based on checking equiva-
lence of two FSMDs. Our technique is independent of the
mechanism used for register optimization and works for
both carrier and value based register optimization. The
method also works for both data intensive and control inten-
sive input specification. Our current implementation is in-
tegrated with an existing synthesis tool and has been tested
for robustness.

1 Introduction

High-level synthesis (HLS) involves translating a be-
havioral specification into a register transfer level (RTL)
structural description containing a data-path and a con-
troller. High-level synthesis process consists of several
inter-dependent phases, namely, preprocessing, scheduling,
allocation and binding followed by controller design [1].
During allocation, minimum numbers of functional units
and registers, required to synthesize the design based on the
scheduling information of the operations, are computed and
during binding, the variables are bound to the registers and
the operators to the functional units (FU). The interconnec-
tions among the data-path elements through buses are de-
cided next. Data-path synthesis comprises these three steps.
In order to optimize the number of registers, several vari-
ables are made to share a register if there respective life-

times do not overlap. The outputs generated and the final
content of the registers may be wrong on two counts - the
registers are not shared properly or the data-path is not set
properly, that is, the controller generates signals such that
wrong register value is put to the FU’s input or the output
of the FU updates a wrong register. The correctness of the
final values of the variables depends on both these issues. In
this work, we assume that the controller generates the sig-
nals correctly, that is, all the data transfers in the data-path
as well as the operations selection for each FUs in each time
step is proper and as intended by the behavioural specifica-
tion. The objective of this work is to ensure that the registers
are shared properly among the variables.

Several authors have proposed techniques for verifica-
tion of synthesized designs. An approach for verification of
register level design was proposed in [2], where verification
can be integrated with synthesis systems which perform lit-
tle or no register optimization. This verification technique
has a limited use in practice as most of the practical HLS
tools perform register optimizations for maximum utiliza-
tion of the hardware. A compositional model for the func-
tional verification of high-level synthesis is proposed in [3]
where the specification and the implementation are encoded
as FSMDs. The method in [4] checks the correctness of
register transfer level (RTL) description with respect to the
scheduled behaviour by model checking. A formal method-
ology for verification of various register allocation schemes
was proposed in [5].

There are two types of register optimization schemes
commonly found in high-level synthesis tools. They are
carrier based [6] and value based[7]. Our proposed
methodology can handle both the schemes. The input be-
haviours are either data-intensive or control-intensive in na-
ture. Symbolic model checking [4] is suitable for formal
verification of control-dominated applications. For the con-
trol intensive behaviours, the control flow is dependent on
the arithmetic bit vector operations; an efficient representa-
tion of the transition behaviour under such situations is dif-
ficult to abtain due to the state space explosion problem [8].

1



The data intensive descriptions can be verified by means
of symbolic simulation [9]. This method, however, allows
only reasoning for a finite number of steps. More specif-
ically, the loops in the description cannot be verified for
an arbitrary number of iterations [8]. The cut-point based
equivalence checking algorithm proposed in this paper has
no such limitations.

The input to the data-path synthesis phase, i.e., the
scheduler’s output, and the output of this phase are repre-
sented as FSMDsM1 and M2, respectively. We have de-
fined a functionfrb that maps the variables (registers) ofM2

to the variables ofM1 in each time step. The present work
describes an algorithm for establishing equivalence between
the FSMDsM1 andM2. For the given FSMDsM1 andM2

and the functionfrb, the equivalence ofM1 andM2 indicates
that the register sharing is correct. The underlying theorem
is also formulated in this work.

This paper is organized as follows. In section 2, the
FSMD model, the notion of computations on FSMDs and
the formulation of the correctness problem are defined. The
verification method is described in section 3. Several impor-
tant issues that arise during data-path synthesis are analyzed
in section 4. Some experimental results have been given in
section 5. The paper is concluded in section 6.

2 Equivalence Problem Formulation

2.1 Finite State Machine with Data Path
(FSMD)

An FSMD (finite state machine with data-path) is a uni-
versal specification model that can represent all hardware
designs. The FSMD model was first proposed by Gajski in
[1]. The model is used in the present work with the addition
of a reset state, for encoding the specification and imple-
mentation of the circuit to be verified.

The FSMD is formally defined as an ordered tuple
〈Q,q0, I ,V,O, f : Q× 2S → Q,h : Q× 2S → U〉, whereQ
is the finite set of control states,q0 is the reset state,I is
the set of input signals,V is the set storage variables,O is
the set of output signals,f is the state transition function,
h is the update function of the output and the storage vari-
ables,U = {x⇐ e|x∈O∪V ande∈ E} represents a set of
storage or output assignments, whereE represents a set of
arithmetic expressions over the setI∪V of input and storage
variables andS= {R(a,b)|a,b∈ E andR is any arithmetic
relation} represents a set of status signals as arithmetic re-
lations between two expressions from the setE.

The FSMDM1 before allocation and binding and the
FSMD M2 after this phase for theDIFFEQ example, con-
structed from the result of our HLS tool SAST [10], are
given in the table 1 and also depicted in figure 1 (a) and in
1 (b), respectively. The set of storage variablesV2 in M2

consist of all the registers in the target data-path. The stor-
age variables inV1 of M1 and the variables inV2 of M2 will
be respectively designated asvariablesandregistersin the
subsequent sections.

FSMD M1 FSMD M2

M1 : 〈Q1,q1,0, I ,V1,O, f1,h1〉, M2 : 〈Q2,q2,0, I ,V2,O, f2,h2〉,
where Q1 = {q1,i ,0≤ i ≤ 13} where Q2 = {q2, j ,0≤ j ≤ 13}
I = {P1, P2, P3} I = {P1, P2, P3}
V1 = {dx, x, y, a, u,v0, v1, V2 = {R00, R01, R02, R03, R04,
v2, v3, v4, v5, v6} R10, R11, R12, R20, R21}
O = {P1, P2} O = {P1, P2}
f1 and h1 are shown in fig 1 f2 and h2 are shown in fig 1

Table 1. The FSMDs M1 and M2

2.2 Paths in an FSMD

A path α from qi to q j , where qi ,q j ∈ Q, is a fi-
nite sequence of states of the form〈qi = q1 −→s1

q2 −→s2
,

· · · , −→sn−1
qn = q j〉 such that∀l ,1≤ l ≤ n−1,∃sl ∈ S such

that f (ql ,sl ) = ql+1, andqk, 1≤ k≤ n−1, are all distinct.
The stateqn may be identical toq1. We aften denote such
a path as〈qi ⇒ q j〉, for brevity. Thecondition of execu-
tion of the pathα = 〈ql0 −→s0

ql1 −→s1
ql2 . . . −→cs−1

qlk〉, Rα,
is a logical expression overV ∪ I ∪Z such thatRα is sat-
isfied by the (initial) data state atql0 iff the pathα is tra-
versed. We assume that inputs and outputs occur through
named ports. Theith input from portPj is a value repre-
sented asPji . Thus if some variablev stores input from port
Pj (for the ith time along a path), it is equivalent to the as-
signmentv = Pji . The output of an expressione to a portPj

is represented asOUT(Pj ,e) and put as a member of a list
preserved for each path. Thedata transformation of a path
α, rα, overV is the tuple〈sα,Oα〉, wheresα is an ordered
tuple 〈ei〉 of algebraic expressions over the variables inV,
the inputs inI and the set of integersZ and the output list
Oα = [OUT(Pi1,e1), OUT(Pi2,e2), . . .]; the expressionei in
sα represents the value of the variablevi after the execution
of the path in terms of the initial data state (i.e., the values
of the variables at the initial control state); similarly, the ex-
pressions in the output list too are over the initial data state
of the path.

2.3 Computations in an FSMD

A computation of an FSMD is a finite walk from the re-
set stateq0 back to itself without having any intermediary
occurrence ofq0. Such a computational semantics of an
FSMD is based on the assumption that a revisit of the reset
state means the beginning of a new computation and each
computation terminates. Moreover, any computationc of an
FSMDM can be looked upon as a computation along some
concatenated path[α1α2α3...αk] of M such that the pathα1

emanates from and the pathαk terminates in the reset state
q0 of M andαi ,1≤ i ≤ k, may not all be distinct.

2



−/v1⇐ 3.x

−/v6⇐ u.dx

−/u⇐ v4−v5

−/u⇐ P22

x < a/v1 = 3.x

−/dx⇐ P11 ,a⇐ P31

−/v2⇐ v0.v1

−/v3⇐ 3.y

−/x⇐ P21

,v4⇐ u−v2

,y⇐ P12

−/v0⇐ u.dx

,y⇐ y+v6−/v5⇐ dx.v3

q1,0

q1,1

q12

q1,3

q1,4

q1,5

q1,6

q1,7

q1,8

q1,9

(a)M1

q1,13

−/Out(P2,y),Out(P1,u)

q1,12

q1,11

−/x < a

q1,10

!(x < a)/Out(P1,x)−/−

,x⇐ x+dx

q2,0

q2,1

q22

q2,3

q2,4

q2,5

q2,6

q2,7

q2,8

−/R03⇐ R01.R12

−/R04⇐ R20.R00

−/R21⇐ R02.R03

−/R20⇐ R20−R02

−/−

q2,9

−/R00⇐ P11
,R10⇐ P31

−/R02⇐ P21
,R11⇐ P12

−/R12⇐ R12.R00
,R02⇐ R02+R00

−/R02⇐ R01.R11
,R20⇐ R20−R21

−/R11⇐ R11+R04
,R02⇐ R00.R02

R03 = R01.R12

R12 < R10/

q2,10

q2,11

−/R12 < R10

(b) M2

q2,13

−/Out(P2,R11),Out(P1,R20)

q2,12

!(R12 < R10)/Out(P1,R12)

−/R20⇐ P22,R12⇐ R02

Register Lifetimes of the variables

〈⊥, q2,0, q2,0〉, 〈dx, q2,1, q2,13〉
〈⊥, q2,0, q2,2〉, 〈3, q2,3, q2,13〉
〈⊥, q2,0, q2,1〉, 〈x, q2,2, q2,4〉
〈u, q2,5, q2,5〉, 〈v0, q2,6, q2,7〉
〈v3, q2,8, q2,8〉, 〈v5, q2,9, q2,13〉
〈⊥, q2,0, q2,3〉, 〈v1, q2,4, q2,13〉
〈⊥, q2,0, q2,4〉, 〈v6, q2,5, q2,13〉
〈⊥, q2,0, q2,0〉, 〈a, q2,1, q2,13〉
〈⊥, q2,0, q2,1〉, 〈x, q2,2, q2,13〉
〈⊥, q2,0, q2,2〉, 〈u, q2,3, q2,7〉
〈v4, q2,8, q2,9〉, 〈u, q2,10, q2,13〉
〈⊥, q2,0, q2,6〉, 〈v2, q2,7, q2,13〉

R00

(c) mapping from registers to variables

R01

R02

R03

R04

R10

R11

R20

R21

Figure 1. DIFFEQ Example: a. FSMD after scheduling, b. FSMD after allocation & binding and c. Mapping
of the registers to the variables

2.4 Correctness Problem

Let us now consider how we can prove that the regis-
ters are shared among the variables properly. If we con-
sider a computationc2 in M2, then the registers are updated
through different operations and the updated data is used
subsequently along the computation. Finally, the outputs
are generated through ports. Letc1 be a computation inM1.
If the outputs are same for bothc1 andc2 and the value
of each register ofM2 at the end of computationc2 is the
same as the value of its corresponding variable inM1 at the
end of the computationc1, then the computationsc1 and
c2 are equivalent. If the registers are not shared properly
among the variables, then in some stage of the computation
some register(s) will be updated with wrong values. Con-
sequently, the outputs as well as the final values of some
registers ofc2 mismatch with the corresponding variables
in c1. Thus, we need to speak about the following map-
ping functions to capture the correspondence between the
register set ofM2 and the variable set ofM1.

2.4.1 The Mapping Functions

Definition 1 The state mapping function fsm : Q1 ↔Q2.

In the allocation and binding phase, the scheduler output
is mapped to the hardware with specific intention of using

minimum number of registers, FU, muxes, demuxes, etc.
Optimization like reduction of total time to execute is not
considered in this phase. So, the FSMD structure in the
output does not change in this phase. Hence, the function
fsm is abijection.

Definition 2 Register binding function frb: Q2×V2 →
V1∪{⊥} maps the registers at each time step in M2 to vari-
ables in M1, i.e., it defines the variable contained in a reg-
ister at each state of M2.

If frb(q2,i , v j) = vk ∈ V1, thenvk is said to be thecor-
responding variableof the registerv j andv j is said to be
thecorresponding registerof the variablevk at the stateq2,i .
The two basic assumptions about the registers consider here
are as follows.

1. The registers initially contain some garbage (unde-
fined) value, denoted as⊥.

2. Once a value is stored in a register, it continues to hold
it until the register has been updated by some other
value.

The ‘garbage’ value is represented here as⊥. The func-
tion frb is total in the sense that any register contains either
the value of a variable or the garbage value⊥ at each state.
However, frb may not be a bijection as variables may have

3



non overlapping lifetimes and accordingly share the same
register. Consequently, the number of registers inM2 is
less than or equal to the number of variables inM1. This
mapping function can be constructed from the lifetime in-
formation of the variables obtained from the allocation and
binding information provided by any high-level synthesis
tool. The mapping functionfrb produced by our SAST tool
for the DIFFEQ example is shown in figure 1(c). The tuple
〈v, start, end〉 for a registerR indicates that the value of the
variablev is stored in registerR from the state ‘start’ to the
state ‘end’. For example, the tuple< x, q2,2, q2,4 > for the
registerR02 in figure 1(c) means variablex will be stored in
R02 from the stateq2,2 to the stateq2,4.

So, our main goal is to verify whetherM1 behaves ex-
actly asM2. This means that for all possible input se-
quences,M1 andM2 produce the same sequences of out-
put values and eventually, when the respective reset states
are re-visited, they are visited with the same storage ele-
ment values. In other words, for every computation from
the reset state back to itself of one FSMD, there exists an
equivalent computation from the reset state back to itself in
the other FSMD and vice-versa. The following definition
captures the notion of equivalence of FSMDs.

Definition 3 Two FSMDs M1 and M2 are said to be equiv-
alent if for any computation c1 of M1, there exists a com-
putation c2 of M2 such that c1 and c2 are computationally
equivalent.

But, an FSMD may contain an exponential number of com-
putations. So, it is not feasible to enumarate all possible
computations in one FSMD and find their equivalent com-
putations in another FSMD. To overcome this problem , we
define “finite path cover” as follows.

Definition 4 A finite set of paths P= {p0, p1, p2, ..., pk}
is said to cover an FSMD M if any computation c of M can
be looked upon as a concatenation of paths from P. P is
said to be a “finite path cover” of the FSMD M.

The above two definitions suggests the following theorem.

Theorem 1 Two FSMDs M1 and M2 are equivalent if there
exists a finite path cover P1 = {p10, p11, · · · , p1l} of M1 and
P2 = {p20, p21, · · · , p2l} of M2 such that p1i is equivalent to
p2i for all i = 1 to l.

Theorem 1 clearly depicts how the equivalence problem
of two FSMDs reduces to finding the equivalence of their
paths. The notion of equivalence of paths is included as
follows.

2.4.2 Equivalence of paths of two FSMDs

Given two FSMDsM1 = 〈Q1, q1,0, I , V1, O, f1, h1〉 and
M2 = 〈Q2, q20, I ,V2, O, f2, h2〉 and the mapping function

fsm and frb introduced in subsection 2.4.1, we first define
the equivalence of an expression ofM1 with an expression
of M2. An expressione1 (arithmetic or status) overV1∪ I∪Z
at the stateq2,i of M1 is said to be equivalent to an expres-
sion e2 (arithmetic or status) overV2 ∪ I ∪ Z at stateq2, j

of M2 if fsm(q1,i) = q2, j and e1 = e2 when all the regis-
ters r ∈ V2 occurring ine2 are replaced byv ∈ V1, where
v = frb(q2, j , r). Using an expressione2 loosely as a func-
tion, we denote the above phrase syntacticallye1 = e2 ◦ frb,
where ‘◦’ stands for function composition.

Let, α1 = 〈q1,l ⇒ q1,m〉 andα2 = 〈q2,r ⇒ q2,s〉 be two
paths inM1 and M2, respectively. Let there ben vari-
ables in the behavioural specification (M1) and k regis-
ters in the data-path (M2) for the given problem. Let the
conditions beRα1 = c11 ∧ c12 ∧ . . . ∧ c1x and Rα2 =
c21 ∧ c22 ∧ . . . ∧ c2x and the data transformations be
rα1 = 〈sα1,Oα1〉 and rα2 = 〈sα2,Oα2〉. In particular, note
that the ordered tuplesα1 = 〈e11, e12, · · · , e1n〉, where each
e1i ,1≤ i ≤ n, is an expression overI ∪V1∪Z representing
the value of the variablevi after the execution of the pathα1

in M1 in terms of the initial data state of the path. Similarly,
sα2 = 〈e21, e22, · · · , e2k〉, where eache2i ,1≤ i ≤ k, is an
expression overI ∪V2∪Z representing the value of register
r i after the execution of the pathα2 in M2 in terms of the
initial data state of the path. The output list of the respec-
tive paths areOα1 andOα2. The conditionRα1 is equivalent
to Rα2 with respect to the mapping functionfrb, i.e. Rα1 =
Rα2 ◦ frb, if c1i = c2i ◦ frb, ∀i, 1≤ i ≤ x. Similarly, the data
transformationsrα1 and rα2 are equal with respect tofrb,
i.e., rα1 = rα2 ◦ frb, if ∀i,1≤ i ≤ k,∃ j,1≤ j ≤ n s.t v j =
frb(q2,s r i) ∧ e1 j = e2i ◦ frb andOα1 = Oα2 ◦ frb.

Definition 5 Equivalence of two paths in two different FS-
MDs:

Let, the FSMD M1 be 〈Q1, q1,0, I , V1, O, f1, h1〉, the
FSMD M2 be 〈Q2, q20, I ,V2, O, f2, h2〉 and the mapping
function frb : Q2×V2 → V1. A pathα1 of M1 is equiva-
lent to a pathα2 of M2 if Rα1 = Rα2 ◦ frb and rα1 = rα2 ◦
frb, whenever both the paths start with the same initial data
state, i.e., all vk of V2 and frb(q2,0,vk) of V1 have the same
data state initially.

Equivalence of pathα1 andα2 is denoted asα1 ' α2.

3 Verification Method

Theorem 1 suggests that instead of finding all possible
computations in one FSMD, it is better to find the finite
path cover of that FSMD and try to find the equivalent path
of each path of that set. Owing to the presence of loops
it is difficult to find a path cover of an FSMD comprising
only finite paths. So any computation is split into paths by
puttingcutpointsat various places in the FSMD so that each
loop is cut in at least one cutpoint. The set of all paths from

4



a cutpoint to another cutpoint without having any interme-
diary cutpoint is a path cover of the FSMD. The method of
decomposing an FSMD by putting cutpoints is identical to
the Floyd-Hoare’s method of program verification [11, 12].
In any FSMD, we define cutpoints as follows

1. The reset state is a cutpoint.

2. A stateqi is a cutpoint if there is a divergence of flow
from qi .

Obviously, the cutpoints chosen by the above rules cut each
loop of the FSMD in at least one cutpoint, because each
internal loop has an exit point. We can easily construct the
finite path cover ofM1(M2) by the above rule.

We have already discussed in section 2 that the structure
of bothM1 andM2 would be the same and have equal num-
ber of states. As a result, the number of cutpoints would be
equal inM1 andM2; also the path coversP1 andP2 of M1

andM2 respectively have the same number of paths. It is
also possible to find the correspondence between the paths
among the setsP1 andP2 using the state mapping function
fsm. The path〈q1,1 −→s1

q1,2 −→s2
, · · · , −→sn−1

q1,n〉 of M1 and the
path〈q2,1 −→s′1

q2,2 −→s′2
, · · · , −→

s′n−1
q2,n〉 of M2 are said to the

corresponding to each other if∀i, 1≤ i ≤ n, q2,i = fsm(q1,i).
So, it would suffice to show the equivalence between the
corresponding paths of the setsP1 andP2. The verification
algorithm is given next.

3.1 Verification Algorithm

Input: The FSMDsM1, M2 and the mapping functionsfsm,
frb.
Output: The ‘yes/no’ answer for “M1 is equivalent toM2”.
Method:
Insert cutpoints inM1 and inM2.
Find the path coversP1 andP2, whereP1 is the set of paths
of M1 andP2 is the set of paths ofM2 and each path spans
from a cutpoint to a cutpoint with no intermediary cutpoint;

∀α ∈ P1

do
match=0;
β = getPath(α, P2); /* This function returns a pathβ
from P2 which is the corresponding path ofα */
match =checkEquivalent(α, β, frb);
/* This function returns 1 ifα' β; 0 otherwise */
if(!match) Report:“M1 andM2 are not equivalent”; exit;

end do;
Report: “M1 andM2 are equivalent”;

2

A stronger equivalence checker can be found in our pa-
per [13]. We have restricted our equivalence checker in this
work as the register sharing verification does not required
such strong equivalence checking.

4 Analysis

In this section, we analyze some important issues like
different register optimization schemes and the nature of the
input specification that arises during data-path synthesis and
show how our algorithm works for these cases.

4.1 Register Optimization Schemes

In the carrier based approach, two or more variables
share a register if their respective lifetimes do not overlap.
One variable always maps to only one register. Therefore,
the mapping from the specification variables to the regis-
ters is a many-to-one relation. On the other hand, in the
value based approach, two or more variables are assigned
the same register if they use the same data value or the life
span of at least one data value used by each variable is non-
overlapping. It is obvious that a variable during its lifetime
may assume different values. Also, it is possible that the
same value is assigned to different variables. So, the associ-
ation of specification variables and the registers is a many-
to-many relation in this case. In both these cases, at any
state, each register must contain the value of only one vari-
able and this variable is called the corresponding variable
of this register in that state. Also, one variable is mapped to
only one register at each state. During equivalence check-
ing of two corresponding paths, our algorithm compares the
value of each register at the end state of that path with the
value of corresponding variable. Hence, the algorithm is
independent of the schemes used for register optimization.

4.2 Nature of the Input Specification

Our algorithm is also independent of the nature of input
specifications. The control intensive behaviours are broken
into path segments by putting cutpoints in all the branch
states. These sets of path segments constitute the path cover
of the FSMD. Each path segment is then checked for equiv-
alence with the corresponding path segments inM2. Equiv-
alence of all the corresponding paths among two FSMDs
implies that, for any computation of one FSMD, there is an
equivalent computation in the other FSMD. It means that for
all possible executions, the registers are shared properly. On
the other hand, a data-intensive specification in general have
only one path in each FSMD. Equivalence among these two
paths proves the correctness of register sharing.

5 Experimental Results

The proposed algorithm has been implemented in ‘C’
and integrated with an existing high-level synthesis tool,
SAST [10]. This tool generates the input and the output
FSMDs of the data-path synthesis phase, the state mapping

5



function fsmand the register binding functionfrb as byprod-
ucts with the synthesis results.

The algorithm has been run on an Intel Pentium 4, 1.70
GHz, 256MB RAM machine on the outputs generated by
SAST for several HLS benchmarks as shown in table 2. The
number of registers in the data-path, the number of variables
in the input behaviour, the number of states in each of the
FSMDs M1 and M2, the number of paths in each FSMD
and the CPU time are tabulated for each benchmark. It is
evident from the table that the sharing of registers among
the variables are quite high. For example, only 26 regis-
ters are required for 53 variables in the DCT example. It
may be noted that EWF, IIR FILTER, DCT examples are
data-intensive behaviours as there is only one path in each
behaviour. On the other hand, DIFFEQ, GCD, MODN,
TLC examples are control-intensive behaviour as number
of paths are quite high compared to the numbers of state
in the respective FSMDs. Our algorithm can successfully
verify the register sharing in both the cases. The execution
times for different benchmarks suggest that our algorithm is
also quite efficient.

6 Conclusions

Advances in VLSI technology have enabled its deploy-
ment into complex circuits. Synthesis flow of such circuits
comprises various phases where each phase performs the
task algorithmically providing for ingenious interventions
of experts. The gap between the original behaviour and the
finally synthesized circuits is too wide to be analyzed by any
reasoning mechanism. The validation tasks, therefore, must
be planned to go hand in hand with each phase of synthe-
sis. The present work concerns itself with the validation of
the register sharing among the specification variables dur-
ing datapath synthesis phase. Both the behaviours prior to
and after the datapath synthesis have been modeled as FS-
MDs. The validation task has been treated as an equiva-
lence problem of FSMDs. Our technique is independent of
the mechanism used for register optimization and works for
both carrier and value based register mapping. The tech-
nique is also independent of the nature of the input spec-
ification. The current implementation has been integrated
with a synthesis tool and tested for several high-level syn-
thesis benchmarks successfully.

References

[1] D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,”IEEE transactions on Design and Test of Com-
puters, pp. 44–54, 1994.

[2] N. Mansouri and R. Vemuri, “A methodology for automated
verification of synthesized rtl designs and its integration with
a high-level synthesis tool,” inIn Proceedings of FMCAD,
pp. 204–221, 1998.

Name #var #reg #FSMD #FSMD CPU
in M1 in M2 state paths time

EWF 38 17 20 1 2.174 ms
IIRF 24 18 16 1 1.922 ms
DCT 53 26 24 1 2.048 ms

DIFFEQ 13 10 14 3 1.874 ms
GCD 3 2 5 4 1.955 ms
MODN 7 6 7 8 1.851 ms
TLC 11 11 7 12 2.512 ms

Table 2. Results for different high-level synthesis
benchmarks

[3] D. Borrione, J. Dushina, and L. Pierre, “A compositional
model for the functional verification of high-level synthe-
sis results,” IEEE Transactions on VLSI Systems, vol. 8,
pp. 526–530, October 2000.

[4] P. Ashar, S. Bhattacharya, A. Raghunathan, and
A. Mukaiyama, “Verification of rtl generated from sched-
uled behavior in a high-level synthesis flow,” inProc. of the
IEEE/ACM ICCAD, pp. 517–524, 1998.

[5] N. Mansouri and R. Vemuri, “Accounting for various regis-
ter allocation schemes during post-synthesis verification of
rtl designs,” inProceedings of the DATE’99, pp. 223–230,
March 1999.

[6] N.-S. Woo, “A global, dynamic register allocation and bind-
ing for data path synthesis system,” inProcs. of 27th DAC,
pp. 505–510, 1990.

[7] F. Kurdhai and A. Parker, “Real: A program for register alo-
cation,” inProcs. of 24th DAC, pp. 210–215, 1987.

[8] C. Blank, “Formal verification of register binding,” inProcs.
of Workshop on Advances in Verification (WAVE) 2000,
2000.

[9] Y. Morihiro and T. Toneda, “Formal verification of data-path
circuits based on symbolic simulation,” inProcs. of 9th ATS,
pp. 329–336, Dec 2000.

[10] C. Mandal and R. M. Zimmer, “A genetic algorithm for
the synthesis of structured data paths,” in13th International
Conf. on VLSI Design, pp. 206–211, 2000.

[11] R. W. Floyd, “Assigning meaning to programs,” inProceed-
ings the 19th Symposium on Applied Mathematics, pp. 19–
32, American Mathematical Society, 1967. Mathematical
Aspects of Computer Science.

[12] C. A. R. Hoare, “An axiomatic basis of computer program-
ming,” Communications ACM, pp. 576–580, 1969.

[13] C. Karfa, C. Mandal, D. Sarkar, S. Pentakota, and C. Reade,
“A formal verification method of scheduling in high-level
synthesis,” inIn Proc. ISQED ’06, pp. 71–78, March 2006.

6


	Introduction
	Equivalence Problem Formulation 
	Finite State Machine with Data Path (FSMD)
	Paths in an FSMD
	Computations in an FSMD
	Correctness Problem
	The Mapping Functions
	Equivalence of paths of two FSMDs


	Verification Method 
	Verification Algorithm

	Analysis
	Register Optimization Schemes
	Nature of the Input Specification

	Experimental Results 
	Conclusions 

