Register Sharing Verification During Data-path Synthesis

CKarfa C Mandal D Sarkar Chris Reade
Department of Computer Sc & Engg Kingston Business School
Indian Institute of Technology, Kharagpur Kingston University
WB 721302, INDIA England KT2 7LB, UK
{ckarfa, chitta, ds@iitkgp.ac.in Chris.Reade@king.ac.uk
Abstract times do not overlap. The outputs generated and the final

content of the registers may be wrong on two counts - the
The variables of the high-level specifications and the au- registers are not shared properly or the data-path is not set
tomatically generated temporary variables are mapped on properly, that is, the controller generates signals such that
to the data-path registers during data-path synthesis phasewrong register value is put to the FU’s input or the output
of high-level synthesis process. The registers in the data-of the FU updates a wrong register. The correctness of the
path are usually shared by the variables and the mapping final values of the variables depends on both these issues. In
is not bijective as most of the high-level synthesis tools per-this work, we assume that the controller generates the sig-
form register optimization. In this paper, a formal method- nals correctly, that is, all the data transfers in the data-path
ology for verifying the correctness of register sharing is de- as well as the operations selection for each FUs in each time
scribed. The input and the output of the data-path synthesisstep is proper and as intended by the behavioural specifica-
phase are represented as finite state machines with datation. The objective of this work is to ensure that the registers
paths (FSMD). The method is based on checking equiva-are shared properly among the variables.
lence of two FSMDs. Our technique is independent of the Several authors have proposed techniques for verifica-
mechanism used for register optimization and works for tion of synthesized designs. An approach for verification of
both carrier and value based register optimization. The register level design was proposedih [2], where verification
method also works for both data intensive and control inten- can be integrated with synthesis systems which perform lit-
sive input specification. Our current implementation is in- tle or no register optimization. This verification technique
tegrated with an existing synthesis tool and has been testethas a limited use in practice as most of the practical HLS
for robustness. tools perform register optimizations for maximum utiliza-
tion of the hardware. A compositional model for the func-
tional verification of high-level synthesis is proposed.in [3]
1 Introduction where the specification and the implementation are encoded
as FSMDs. The method inl[4] checks the correctness of

High-level synthesis (HLS) involves translating a be- register transfer I_evel (RTL) descripti(_)n with respect to the
havioral specification into a register transfer level (RTL) Scheduled behaviour by model checking. A formal method-
structural description containing a data-path and a con-ology for verification of various register allocation schemes
troller. High-level synthesis process consists of several WaS Proposed in[s]. _ o
inter-dependent phases, namely, preprocessing, scheduling, 1Nere are two types of register optimization schemes
allocation and binding followed by controller design [1]. commonly found in high-level synthesis tools. They are
During allocation, minimum numbers of functional units C&'ier based[6] and value based[7]. Our proposed
and registers, required to synthesize the design based on th&€thodology can handle both the schemes. The input be-
scheduling information of the operations, are computed andhaviours are either data-intensive or control-intensive in na-
during binding, the variables are bound to the registers andtUré- Symbolic model checkingl[4] is suitable for formal
the operators to the functional units (FU). The interconnec- verification of control-dominated applications. For the con-
tions among the data-path elements through buses are gdrol intensive behaviours, the control flow is dependent on
cided next. Data-path synthesis comprises these three Stepgjle arithmetic bit vector operations; an efficient representa-
In order to optimize the number of registers, several vari- tion of the transition behaviour under such situations is dif-
ables are made to share a register if there respective life ficult to abtain due to the state space explosion problem [8].

The data intensive descriptions can be verified by meansconsist of all the registers in the target data-path. The stor-
of symbolic simulation[[B]. This method, however, allows age variables iV, of M1 and the variables i, of M2 will

only reasoning for a finite number of steps. More specif- be respectively designated eariablesandregistersin the
ically, the loops in the description cannot be verified for subsequent sections.

an arbitrary number of iterationsl|[8]. The cut-point based

equivalence checking algorithm proposed in this paper has L0 M [ESvD M, l
no such limitations M éQl’q{lqt""(\)/ﬁ-oﬁgh}” N éQz'?q""’XiQ’f’lg?f'
" where Q1 =101i;,0<1< where Q2 =1(2j,0=] =
The input to the data-path synthesis phase, i.e., the \',:,{Pg‘ Py, Ps} o v {/:jPl, P, Ps}
scheduler's output, and the output of this phase are repre- | vs i o & o = o Rou, oz Ry Fou
sented as FSMDM; and My, respectively. We have de- ?:{gl-h P2} o i 255 [] ?:{g’l,h P2} oun i £i5]
fined a functionf,, that maps the variables (registers)\bf e pom e o

to the variables oM in each time step. The present work Table 1. The FSMDs Mj and M,

describes an algorithm for establishing equivalence between

the FSMDsM1 andM,. For the given FSMD#$11 and M .

and the functiorfy, the equivalence d¥l; andM; indicates 2.2 Paths in an FSMD

itgz;tlégigfrghslire(sjr}irtﬂ%i/g;)kr'rect. The underlying theorem | A path o from g to g, whereg,gj € Q, is a fi
. X) nite sequence of states of the forfy = 1 - & - ,

This paper is organized as follows. In sect[dn 2, the S1

FSMD model, the notion of computations on FSMDs and =~ &-i On =0j) such thavl,1<l<n-1,39 € S_SPCh

the formulation of the correctness problem are defined. Thethat f(ai,s) =01, andok, 1 <k <n—1, are all distinct.

verification method is described in sectidn 3. Several impor- The stated, may be identical tay. \We aften denote such

tant issues that arise during data-path synthesis are analyze® Path asigi = q;), for brevity. Thecondition of execu-

in sectior{%. Some experimental results have been given infion of the patha = (di, < Ay & G, - & G Ra

sectiorf . The paper is concluded in secfipn 6. is a logical expression ov&f Ul UZ such thatRy is sat-

isfied by the (initial) data state af, iff the patha is tra-

versed. We assume that inputs and outputs occur through

named ports. Thé&" input from portP; is a value repre-

sented a®ji. Thus if some variable stores input from port

P; (for thei time along a path), it is equivalent to the as-

signmentv = Pji. The output of an expressi@to a portP;

o _ _ _ is represented aSUT(Pj,e) and put as a member of a list
An FSMD (finite state machine with data-patis a uni- preserved for each path. Thata transformation of a path

versal specification model that can represent all hardwareq ra, OverV is the tuple(sy, Oy), Wheresy is an ordered

designs. The FSMD model was first proposed by Gajski in typle (g) of algebraic expressions over the variable¥in

[l_l The model iS usedin the present work with the addition the inputs inl and the set Of integerz and the output I|St

of a reset state, for encoding the specification and imple-oa = [OUT(P,,e1), OUT(P,,&),...]; the expressiom, in

mentation of the circuit to be verified. Sy represents the value of the variabjefter the execution
The FSMD is formally defined as an ordered tuple of the path in terms of the initial data state (i.e., the values

(Q00,1,V,0,f : Qx 25— Q,h: Qx 2% U), whereQ of the variables at the initial control state); similarly, the ex-

is the finite set of control statesp is the reset statd, is pressions in the output list too are over the initial data state
the set of input signald/ is the set storage variabled,is of the path.

the set of output signald, is the state transition function,

his the update function of the output and the storage vari-2.3 Computations in an FSMD

ablesU = {x< e|x € OUV ande € E} represents a set of

storage or output assignments, whereepresents a set of A computation of an FSMD is a finite walk from the re-

arithmetic expressions over the setV of input and storage set stategp back to itself without having any intermediary

variables an6= {R(a,b)|a,b € E andR s any arithmetic occurrence offp. Such a computational semantics of an

relation} represents a set of status signals as arithmetic re-FSMD is based on the assumption that a revisit of the reset

lations between two expressions from theEset state means the beginning of a new computation and each
The FSMD M; before allocation and binding and the computation terminates. Moreover, any computatiohan

FSMD M after this phase for thBIFFEQ example, con- FSMD M can be looked upon as a computation along some

structed from the result of our HLS tool SAST [10], are concatenated path;020s...0k] of M such that the patb;

given in the tabl¢]1 and also depicted in figufe 1 (a) and in emanates from and the path terminates in the reset state

[(b), respectively. The set of storage variablesn M, go of M anda;, 1 <i <k, may not all be distinct.

2 Equivalence Problem Formulation

2.1 Finite State Machine with Data Path
(FSMD)

=©)

K< Py1 ,8a<=P3

®

Poyy < Pip

Registe Lifetimes of the variables
—/u«<=Pyp
—/Re0 < P22, R12 <= Rz

Roo | (L, 020, O20), (dX O21, O2.13)
¥ —/V1<3x —/Ro3 <= Ro1-Ri2
@ Rou L, 020, 022), (3, 023, 02,13)
y —/v6 <= udx /Roa < Roo.Roo R

2

{

(

(L, 020, O21), (X, 022, O2.4)
RizFeg gU, 05, O25), (VO, O26, O2.7)

(

—/V0 <= Wdxx < x+dx

V3, Obs, Oog), (V5, Opg, U213)

X £ a/vl=3.x

¥ —/V2 < \v0vl g ¥ —/Ro1 <= Ro2.Roz

) o Ros L, Gpo, Op3), (V1, 024, O213)
-/V3¢3V“H-V2 Roo—Ro Rs | (L, o0, G2.4)s (V6, U255, 02.13)
— V5 SXixv3,y < y+v6 RiL R0 Ro | (L, 020, G20), (&, 021, O213)
—/U«:v4—v5 —/Ra0 < Roo — Roz Ru <J" q270’ q2,l>: <X’ q2,27 q2713>

Reo L1, 020, 022), (U, 023, 02,7)

©:®

(
/x<s (/Faz<Fw (V4, 28, 029), (U, 02,10, 02,13)
Ri | (L, 020, O26), (V2, O27, O213)

- >< < a)/Out(Py,x) (Ri2 < Ry0)/Out(Py, Ri2)
/Out(Pz,y),Out(Pl‘u) ~/Out(Py. Ruy) Out(P1, Reo) (c) mapping from registers to variables
(@AM

Figure 1. DIFFEQ Example: a. FSMD after scheduling, b. FSMD after allocation & binding and c. Mapping
of the registers to the variables

2.4 Correctness Problem minimum number of registers, FU, muxes, demuxes, etc.
Optimization like reduction of total time to execute is not

Let us now consider how we can prove that the regis- considered in this phase. So, the FSMD structure in the

ters are shared among the variables properly. If we con-output does not change in this phase. Hence, the function

sider a computation; in My, then the registers are updated fg, is abijection

through different operations and the updated data is used

subsequently along the computation. Finally, the outputs Définition 2 Register binding function fr,: Q2 x Vo —

are generated through ports. logtbe a computationiM,. ViU {_L} maps the registers at each time step ip td vari-

If the outputs are same for botil andc2 and the value ablesin M, i.e., it defines the variable contained in a reg-

of each register ol at the end of computatioc? is the ister at each state of M

same as the value of its corresponding variablélirat the) .

end of the computationl, then the computationsl and If fo(C2i, Vj) = Vi € V1, thenvicis said to be theor-

c2 are equivalent. If the registers are not shared properly"®SPonding variableof the registenj andv; is said to be

among the variables, then in some stage of the computatiorf1€corresponding registeof the variablev, at the statep,.

some register(s) will be updated with wrong values. Con- The two basic assumptions about the registers consider here

sequently, the outputs as well as the final values of somer€ as follows.

registers ofc, mismatch with the corresponding yariables 1. The registers initially contain some garbage (unde-

in cl. Thus, we need to speak about the following map- fined) value, denoted as.

ping functions to capture the correspondence between the

register set oM, and the variable set ;. 2. Once avalue is stored in a register, it continues to hold

it until the register has been updated by some other

2.4.1 The Mapping Functions value.

Definition 1 The state mapping function fsm: Q1 < Q. The ‘garbage’ value is represented herelas The func-
tion fyy, is total in the sense that any register contains either

In the allocation and binding phase, the scheduler outputthe value of a variable or the garbage valuat each state.
is mapped to the hardware with specific intention of using However, f, may not be a bijection as variables may have

non overlapping lifetimes and accordingly share the same fsy and fy, introduced in subsectidn 2.4.1, we first define

register. Consequently, the number of registerdlinis
less than or equal to the number of variabledvin This
mapping function can be constructed from the lifetime in-
formation of the variables obtained from the allocation and
binding information provided by any high-level synthesis
tool. The mapping functioff, produced by our SAST tool
for the DIFFEQ example is shown in figUrg 1(c). The tuple
(v, start, end) for a registeR indicates that the value of the
variablev is stored in registeR from the state ‘start’ to the
state ‘end’. For example, the tuptex, gz 2, gz 4 > for the
registerRy, in figure[](c) means variablewill be stored in
Ro2 from the statey, » to the statey 4.

So, our main goal is to verify wheth&l, behaves ex-
actly asMy. This means that for all possible input se-
guencesM; and M, produce the same sequences of out-

put values and eventually, when the respective reset statesy,
are re-visited, they are visited with the same storage ele-

ment values. In other words, for every computation from

the equivalence of an expressionMf with an expression
of M. An expressiom; (arithmetic or status) ovéf Ul UZ

at the statey,; of M1 is said to be equivalent to an expres-
sion e (arithmetic or status) ovev> Ul U Z at stateqp

of Mz if fsm(dyi) = dp,j and ey, = e when all the regis-
tersr € V, occurring ine; are replaced by € Vi, where

v = fip(gzj,r). Using an expressioe loosely as a func-
tion, we denote the above phrase syntactically: & . fp,
where o’ stands for function composition.

Let, o1 = (g1 = Gim) andaz = (Gpr = O2s) be two
paths inM; and My, respectively. Let there ba vari-
ables in the behavioural specificatioM4) and k regis-
ters in the data-pathM>) for the given problem. Let the
conditions beRy, =c11 A €12 A ... AcCy andRy,
Co1 A C2 A ... ACy and the data transformations be
(Su;,0q;) @andrq, = (Su,,0a,). In particular, note
that the ordered tuplg, = (€11, €12, ---, €1n), Where each
e1i,1 <i<n,is an expression ovetJuVy UZ representing

the reset state back to itself of one FSMD, there exists anthe value of the variablg after the execution of the path

equivalent computation from the reset state back to itself in
the other FSMD and vice-versa. The following definition
captures the notion of equivalence of FSMDs.

Definition 3 Two FSMDs M and M, are said to be equiv-
alent if for any computationjcof Mz, there exists a com-
putation ¢ of My such that ¢ and ¢ are computationally
equivalent.

But, an FSMD may contain an exponential number of com-
putations. So, it is not feasible to enumarate all possible
computations in one FSMD and find their equivalent com-
putations in another FSMD. To overcome this problem , we
define “finite path cover” as follows.

Definition 4 A finite set of paths B {po, p1, P2, ---, Pk}

is said to cover an FSMD M if any computation ¢ of M can
be looked upon as a concatenation of paths from P. P is
said to be a “finite path cover” of the FSMD M.

The above two definitions suggests the following theorem.

Theorem 1 Two FSMDs M and M, are equivalent if there
exists a finite path covernP= {pio, p11,---, Py} of My and
P> = {p20, P21, - -, P2 } of My such that g is equivalent to
pzi foralli=1tol.

Theorem 1 clearly depicts how the equivalence problem
of two FSMDs reduces to finding the equivalence of their

in M1 in terms of the initial data state of the path. Similarly,
Su, = (€21, €2, -+, €x), Where eachey,1 <i <Kk, is an
expression ovelrUV, U Z representing the value of register
ri after the execution of the patlp in M» in terms of the
initial data state of the path. The output list of the respec-
tive paths aré®,, andOq,. The conditionRy, is equivalent

to Ry, with respect to the mapping functidp,, i.e. Ry, =

Ra, o fro, if C1i = Coi o frp, Vi, 1 <i < x. Similarly, the data
transformationsq, andrq, are equal with respect téy,

e, fq =Tg, o fip, IFVi,1<i<k3j, 1< j<nstvj=
frio(OosTi) A €1j =i fip andOq; = Oq, o frp.

Definition 5 Equivalence of two paths in two different FS-
MDs:

Let, the FSMD M be (Q1, 0o, |, V1, O, fy, hi), the
FSMD M be (Q2, gz, I,V2, O, f2, hy) and the mapping
function fp : Q2 x Vo — V4. A pathaj of Mz is equiva-
lent to a patha, of My if Ry; = Ry, o fro @and Iy, =rq, o
frn, Wwhenever both the paths start with the same initial data
state, i.e., all y of V> and (02,0,) of V4 have the same
data state initially.

Equivalence of patlx; anda; is denoted asi; ~ a5>.

3 Verification Method

Theorem 1 suggests that instead of finding all possible

follows.

2.4.2 Equivalence of paths of two FSMDs

Given two FSMDsMy = (Q1, Guo, |, Vi, O, f1, hy) and
Mz = (Qz, G20, |,V2, O, f2, hp) and the mapping function

path cover of that FSMD and try to find the equivalent path
of each path of that set. Owing to the presence of loops
it is difficult to find a path cover of an FSMD comprising
only finite paths. So any computation is split into paths by
puttingcutpointsat various places in the FSMD so that each
loop is cut in at least one cutpoint. The set of all paths from

a cutpoint to another cutpoint without having any interme- 4 Analysis

diary cutpoint is a path cover of the FSMD. The method of

decomposing an FSMD by putting cutpoi_n_ts iS_ identical to In this section, we analyze some important issues like

the Floyd-Hoare's method of program verification![11} 12]. different register optimization schemes and the nature of the

In any FSMD, we define cutpoints as follows input specification that arises during data-path synthesis and
1. The reset state is a cutpoint. show how our algorithm works for these cases.

2. A stateq is a cutpoint if there is a divergence of flow 4.1 Register Optimization Schemes

from g.

Obviously, the cutpoints chosen by the above rules cut each N the carrier based approach, two or more variables
loop of the FSMD in at least one cutpoint, because eachshare a register if their respective lifetimes do not overlap.

internal loop has an exit point. We can easily construct the One variable always maps to only one register. Therefore,
finite path cover oMy (Mj) by the above rule. the mapping from the specification variables to the regis-
We have already discussed in secfipn 2 that the structurd©'S iS @ many-to-one relation. On the other hand, in the
of bothM; andM, would be the same and have equal num- value based gpprqach, two or more variables are as&gqed
ber of states. As a result, the number of cutpoints would be 1€ Same register if they use the same data value or the life
equal inM; andM,; also the path coverg, andP, of M; span of at least one data value used by each variable is non-
and M, respectively have the same number of paths. It is overlapping. It is obvious that a variable during its lifetime

also possible to find the correspondence between the path§'ay assume different values. Also, it is possible that the
among the setB; andP using the state mapping function Same value is assigned to different variables. So, the associ-

fom The pathii1 < Q12 < -, < Gun) of Mz and the ation of specification variables and the registers is a many-
' - AL Y

ath(- oo } of My are said to the to-many relation in this case. In both these cases, at any
PatiQer g Q22 g oo g7 Gen 2 state, each register must contain the value of only one vari-

corresponding to each othef, 1 <i<n, gz; = fsm(qui). able and this variable is called the corresponding variable
So, it would suffice to show the equivalence between the of this register in that state. Also, one variable is mapped to
corresponding paths of the s&sandP,. The verification only one register at each state. During equivalence check-

algorithm is given next. ing of two corresponding paths, our algorithm compares the
. . . value of each register at the end state of that path with the
3.1 Verification Algorithm value of corresponding variable. Hence, the algorithm is

Input: The FSMDsM1, M, and the mapping functionsm, independent of the schemes used for register optimization.

fip.

Output: The ‘yes/no’ answer for¥; is equivalent tavi,”.
Method:

Insert cutpoints itM1 and inM.

Find the path coverB, andP,, whereP; is the set of paths
of My andP; is the set of paths dfl, and each path spans
from a cutpoint to a cutpoint with no intermediary cutpoint;

4.2 Nature of the Input Specification

Our algorithm is also independent of the nature of input
specifications. The control intensive behaviours are broken
into path segments by putting cutpoints in all the branch
states. These sets of path segments constitute the path cover
of the FSMD. Each path segment is then checked for equiv-

Va e Py alence with the corresponding path segmentdin Equiv-

do alence of all the corresponding paths among two FSMDs
match=0; implies that, for any computation of one FSMD, there is an
B = getPatl{a, P>); /* This function returns a patp equivalent computation in the other FSMD. It means that for
from P, which is the corresponding path of*/ all possible executions, the registers are shared properly. On
match =checkEquivalerty, B, fip); the other hand, a data-intensive specification in general have
/* This function returns 1 iftx ~ 3; 0 otherwise */ only one path in each FSMD. Equivalence among these two

if('/match) Report:M; andM; are not equivalent”; exit, paths proves the correctness of register sharing.
end do;
Report: ‘M; andM; are equivalent”; 5 Experimental Results

O

A stronger equivalence checker can be found in our pa- The proposed algorithm has been implemented in ‘C’
per [13]. We have restricted our equivalence checker in thisand integrated with an existing high-level synthesis tool,
work as the register sharing verification does not required SAST [10]. This tool generates the input and the output
such strong equivalence checking. FSMDs of the data-path synthesis phase, the state mapping

function fsmand the register binding functidiy, as byprod- Name | #var #ireg #FSMD| #FSMD CPU
ucts with the synthesis results. in Mp | in M, | state paths time
The algorithm has been run on an Intel Pentium 4, 1.70[gyr 38 17 20 1 2174 ms
GHz, 256MB RAM machine on the outputs generated by | 1Irr 24 18 16 1 1.922 ms
SAST for several HLS benchmarks as shownintBble 2. The| bct 53 26 24 1 2.048 ms
number of registers in the data-path, the number of variables DIFFEQ 13 10 14 3 1.874 ms
in the input behaviour, the number of states in each of the| GCD 3 2 5 4 1.955 ms
FSMDs M; and M,, the number of paths in each FSMD | MODN 7 6 7 8 1.851 ms
and the CPU time are tabulated for each benchmark. It is__TL¢ 11 11 ! 12| 2.512 ms

evident from the table that the sharing of registers among
the variables are quite high. For example, only 26 regis- Table 2. Results for different high-level synthesis
ters are required for 53 variables in the DCT example. It benchmarks
may be noted that EWF, IIR FILTER, DCT examples are
data-intensive behaviours as there is only one path in each [3] D. Borrione, J. Dushina, and L. Pierre, “A compositional
behaviour. On the other hand, DIFFEQ, GCD, MODN, model for the functional verification of high-level synthe-
TLC examples are control-intensive behaviour as number sis results,"IEEE Transactions on VLS| Systemal. 8,
of paths are quite high compared to the numbers of state PP 526-530, October 2000.
in the respective FSMDs. Our algorithm can successfully [4] P. Ashar, S. Bhattacharya, A. Raghunathan, and
verify the register sharing in both the cases. The execution A. Mukaiyama, “Verification of rtl generated from sched-
times for different benchmarks suggest that our algorithm is uled behavior in a high-level synthesis flow,”R1oc. of the
also quite efficient. IEEE/ACM ICCAD pp. 517-524, 1998.

[5] N. Mansouri and R. Vemuri, “Accounting for various regis-
6 Conclusions ter allocation schemes during post-synthesis verification of

rtl designs,” inProceedings of the DATE'9%p. 223-230,

Advances in VLSI technology have enabled its deploy- March 1999.
ment into complex circuits. Synthesis flow of such circuits [6] N.-S. Woo, “A global, dynamic register allocation and bind-
comprises various phases where each phase performs the ing for data path synthesis system,"fmocs. of 27th DAC
task algorithmically providing for ingenious interventions pp. 505-510, 1990.
of experts. The gap between the original behaviour and the [7] F. Kurdhai and A. Parker, “Real: A program for register alo-
finally synthesized circuits is too wide to be analyzed by any cation,” in Procs. of 24th DACpp. 210-215, 1987.
reasoning mechanism. The validation tasks, therefore, must [g] c. Blank, “Formal verification of register binding,” Procs.
be planned to go hand in hand with each phase of synthe- of workshop on Advances in Verification (WAVE) 2000
sis. The present work concerns itself with the validation of 2000.
the register sharing among the specification variables dur- (9] v, Morihiro and T. Toneda, “Formal verification of data-path

ing datapath synthesis phase. Both the behaviours prior to -~ circuits based on symbolic simulation,” Rrocs. of 9th ATS
and after the datapath synthesis have been modeled as FS- pp. 329-336, Dec 2000.

MDs. The validation task has beeni treaFeq as an equiva- 10] C. Mandal and R. M. Zimmer, *A genetic algorithm for
lence problem of FSMDs. Our technique is independent of the synthesis of structured data paths,18th International
the mechanism used for register optimization and works for Conf. on VLSI Desigrpp. 206211, 2000.

b.Oth C.amer a.nd value based register mapplng._ The tech_[11] R. W. Floyd, “Assigning meaning to programs,”froceed-
nigue is also independent of the nature of the input spec- ings the 181 Symposium on Applied Mathematigm. 19—
ification. The current implementation has been integrated 32, American Mathematical Society, 1967. Mathematical
with a synthesis tool and tested for several high-level syn- Aspects of Computer Science.

thesis benchmarks successfully. [12] C. A. R. Hoare, “An axiomatic basis of computer program-

ming,” Communications ACMop. 576-580, 1969.

[13] C. Karfa, C. Mandal, D. Sarkar, S. Pentakota, and C. Reade,
“A formal verification method of scheduling in high-level
synthesis,” inn Proc. ISQED '06 pp. 71-78, March 2006.

References

[1] D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,"IEEE transactions on Design and Test of Com-
puters pp. 44-54, 1994.

[2] N. Mansouri and R. Vemuri, “A methodology for automated
verification of synthesized rtl designs and its integration with
a high-level synthesis tool,” iln Proceedings of FMCAD
pp. 204-221, 1998.

	Introduction
	Equivalence Problem Formulation
	Finite State Machine with Data Path (FSMD)
	Paths in an FSMD
	Computations in an FSMD
	Correctness Problem
	The Mapping Functions
	Equivalence of paths of two FSMDs

	Verification Method
	Verification Algorithm

	Analysis
	Register Optimization Schemes
	Nature of the Input Specification

	Experimental Results
	Conclusions

