
A Genetic Algorithm for the Synthesis of Structured Data Paths

C Mandal R M Zimmer
Department of Information Systems and Computing

Brunel University, England UB8 3PH, UK
crmandal@hotmail.com

Abstract
The technique presented here achieves simultaneous optimization
of schedule time and data path component cost within a structured
data path architecture, using a genetic algorithm. The data path
architecture has been designed to overcome the problem of random
interconnections between data path components by buses, which
makes subsequent physical design more difficult. The data path is
organized as architectural blocks (A-blocks), some or none global
memory units, all interconnected by a few global buses. Each A-
block has a local functional unit, local memory elements and local
interconnections. The operations are scheduled such that the re-
quired data transfers are achieved using the few available global
buses, and their interconnections to the A-blocks. The synthesis
is guided by user specified architectural parameters, such as the
number of A-blocks and global buses. The benchmark examples
synthesized by this technique compare well with those synthesized
by other commonly known synthesis techniques.

1. Introduction
A number of systems such as HAL [1], STAR [2], SAM [3], PAR-
BUS [4], CASS [5], COBRA [5], and GABIND [6] support the
high-level synthesis of digital systems. Most of the current syn-
thesis systems generate data paths with random interconnection-
s between data path elements, which may lead to use of greater
routing area during physical design. The technique presented here
supports the synthesis of structured data paths, specifically avoid-
ing random global interconnects. The aim is to produce designs
with a simple and predictable layout structure, conserving on-chip
wiring resources. This synthesis algorithm is referred to as struc-
tured architectural synthesis technique orSAST.

SAST essentially takes as input, precedence constraints be-
tween operations represented as a partial order, and outputs a
schedule of operations and transfers, and a data path to implement
the schedule. The generated data path is organized as architectural
blocks (A-block), and optional global memory blocks. Each A-
block has a local functional unit (FU), local storage and internal
interconnections. The A-blocks and the memory blocks, if any,
are interconnected by a few global buses. The structure of the da-
ta path is characterized by a set of architectural parameters, such
as, the number of A-blocks, the number of global memories, the
number of global buses, the number of access links which con-
nect an A-block to the global buses and the maximum number of
writes per time step to storage locations in an A-block. The last
parameter becomes relevant if a memory with a fixed number (e.g.

one or two) of write ports is to be used to implement storage in
an A-block. SAST delivers the following:i) a schedule of opera-
tions,ii ) the A-block in which each operation is scheduled,iii ) the
schedule of all transfers over the global buses, satisfying the ar-
chitectural constraints, andiv) the composition of the FU in each
A-block, in terms of specific implementations of operators from
a module database. The option to pick up modules from a data
base permits the flexibility of using units which are pipelined or
combinational and also units varying in speed and size. SAST can
handle specifications with multiple basic blocks [7]. This requires
certain variables carrying data across basic blocks to be located
at predetermined locations. If the value destined for such a vari-
able is defined or available only outside the A-block or memory
where the variable is supposed to be located then, a transfer from
a suitable A-block or memory to the appropriate destination for its
assignment needs to be made.

The main feature of this work is that random long-distance in-
terconnects between data path elements are avoided. This makes
this technique attractive for synthesizing designs targeted towards
programmable structures, where global wiring resources are limit-
ed. The experimental results indicate that this technique compares
favorably, in terms of schedule time and component cost with other
synthesis techniques that do not attempt to generate data paths free
of random long distance interconnects. A brief review of related
work is given in section 2. In section 3 the structured architecture
synthesis problem is discussed. The GA based synthesis algorith-
m is presented in section 4. Some results for SAST are given in
section 5 which is followed by the concluding remarks in section
6.

2. Related work
Initial work on data path synthesis led to the development of sever-
al scheduling and allocation techniques. Force directed scheduling
in HAL [1] attempts to minimize the cost of hardware operators
while trying to find a schedule within a specified number of time
steps. The technique works by greedily minimizing a measure
called force. STAR [2] is a program for data path allocation and
binding, for scheduled designs. It tries to minimize the componen-
t cost and interconnection cost, as estimated through multiplexer
usage. The algorithm used in SAM [3] is based on the scheduling
ideas developed for force directed scheduling [1]. This algorith-
m uses the notion of force to measure the effect that a tentative
scheduling of an operation would have on the resource require-
ments. Another method for integrated scheduling and binding has



been presented by Balakrishnan et al. [8]. The basic scheme is
to schedule an operation and then bind it, along with its associ-
ated source and destination operands. The operands are bound to
storage elements, while each operation is bound to a functional u-
nit. This iteration is carried on till all the operations are scheduled.
More recently a problem space genetic algorithm has been devel-
oped by Dhodhi et al. [9] which does concurrent scheduling and
allocation.

The reported techniques address optimizations for the data path
with respect to its performance or the cost of the components used,
but not particularly the physical design cost. Estimation of the
physical design cost, at this stage, is expensive. An approach to
handle this problem is to impose restrictions on the structure of
the data path so that it will have a predictable layout structure.
This approach has been adopted in the current work, and also in
varying degrees in GABIND [6], a related earlier work by one of
the authors, and also in the works reported in STAR [2], PARBUS
[4], CASS [5] and COBRA [5]. SAST, in particular, permits better
control over the structure of the synthesized data path, by means
of architectural parameters.

3. The Structured Architecture Synthesis
Problem

It is necessary to find a schedule of operations such that each oper-
ation is scheduled in one of the A-blocks. The composition of an
FU is determined by all the operations that it has to perform. It is
also necessary to find a schedule of transfers of values between the
A-blocks using the permitted buses as access links. It is assumed
that sufficient storage is available in an A-block. There are a set
of global buses interconnecting the A-blocks to permit the transfer
of data between them. Each A-block is connected to the global
buses by means of a specific number ofaccess links. The number
of access links limit the maximum transfer bandwidth between an
A-block and the global buses.

A functional unit in an A-block is a set of one or more hard-
ware operators such that in any time step only one operation can
be initiated and in any time step only one result can be generated.
Operations scheduled on an FU are not permitted to have input or
output conflicts. Similarly, execution conflicts are not permitted in
which operations try to execute simultaneously on the same hard-
ware. It may be noted that multiple operations may execute on a
pipelined unit without execution conflict.

If a variable is required by an operation scheduled in an A-
block, it should either be available in that A-block or it should be
transferred from another A-block or memory where it is already
available. A variable becomes available in an A-block at a partic-
ular time step if it is either defined there or transferred therein, in
that time step.

Certain variables, referred to here asprogram variablesare
meant to reside at specific storage locations in specific A-blocks,
as explained later in section 4.1. These are initialized as being
available for use in the appropriate A-block from the first time
step. Variables in an A-block are stored in local storage elements.
Any two variables which are live [7] at the same time need to be
assigned to distinct locations. The present implementation also
permits the use of multiple implementations of an operator, such
as a slow adder or a fast adder. Use of pipelined operators, such a

pipelined multipliers is also supported.
Thus several decisions need to be taken, which are as follows:

i) The time step where an operation is to be scheduled.ii ) The
A-block in which the operation is to execute.iii ) The particular
module that will implement an operation in the FU in an A-block.
iv) The time step when an input for an operation is to be transferred
over a global bus, if it is not already available in the local A-block.
v) If such a transfer is required, then the A-block from where the
value should be obtained. It may be noted that a value may be
present in more than one A-block.vi) Transfers between A-blocks
that may be required for definingprogram variables(explained in
section 4.1) – indicating the time step, source and destination.

4. GA Based Scheduling Algorithm
A genetic algorithm has been designed and implemented for solv-
ing the scheduling problem. A brief overview of the GA is given
now. The detailed description follows in the sub-sections that fol-
low. In view of the complex nature of the problem a structured so-
lution representation has been used, as against a simple bit string.
An initial population of solutions is generated at random. New
solutions are obtained by inheriting values of decision variables
from parent solutions, selected from the population. The decision
values of the solution attributes are not independent and so the so-
lution representation resulting from inheritance could correspond
to an infeasible solution. To handle this situation a completion
algorithm has been used to obtain a feasible solution from the so-
lution representation resulting from a crossover. The completion
algorithm is also used to obtain a feasible solution from a solution
representation obtained by randomly assigning values to solution
attributes, while generating the initial population of solutions. A
scheduling heuristic has been used in the completion algorithm
and this has been found to improve the performance of the genetic
algorithm. A population control mechanism had to be employed
to sustain diversity in the population, while at the same time re-
taining solutions with good overall and partial fitness. The genetic
algorithm is run up to a fixed number of iterations and this serves
as the stopping criterion. The last improvement in solution cost
(i.e. when the best solution is obtained) usually occurs well before
all the iterations are completed.

In the rest of this section the solution representation, the cost
function, the parent selection scheme, the crossover scheme, the
completion algorithm, the replacement scheme and the heuristic to
enhance the performance of the genetic algorithm are explained.

4.1. Solution representation
Each solution comprises of several decisions which are required
for the proper implementation of the design. Figure 1 indicates
the decisions required for scheduling an operation. For each op-
eration the time when it is to be scheduled and the A-block where
it has to be scheduled are stored. For each input operand of an
operation the A-block from where this value is to be obtained and
the transfer time are given. If the operand is present in the same
A-block then the time of transfer is redundant, as no transfer is
necessary between A-blocks.

With loop based computations, which are very common, some
of the variables defined in some basic block are required for sub-
sequent iterations of a loop. Such variables are referred to aspro-
gram variables. A program variable needs to reside at a fixed loca-



Group of operations
to be scheduled in
the same A-block.

* marked entries correspond to design decisions related to the 
scheduling of the operation that need to be taken.

 source operands of operation

 an operation

 time frame of operation

. . .

source A-block of operand *

 time of initiation of 
operation *

 A-block in which operation
 is scheduled *

time steps

times of fetching 
source operands *

Figure 1: Decisions for scheduling an operation.

tion before the basic block in which it is used starts executing. For
each program variable the time step of assignment and the A-block
from where the value is to be obtained are indicated.

The period after which the result of an operation becomes avail-
able after it has been initiated on an FU depends on how long the
particular module implementing the operation in the FU takes to
deliver the result. For example, an addition could be implemented
by a fast adder in a single time step or by a slow adder in a two
time steps. Similarly, a multiplication could be implemented by
a combinatorial multiplier or by a pipelined multiplier. The de-
cisions involved in determining the composition of the FU need
to be represented. It is necessary to indicate which operations an
FU can implement and also the modules used for implementing
these operations. The former need not be stored explicitly because
it is fully implied by the union of all the types of operations that
are scheduled on it. However, the module information needs to be
stored explicitly.

Thus there are three types of information to be represent-
ed, which are as follows:i) Information directly related to the
scheduling of operations,ii ) information indicating the scheduling
of variable transfers andiii ) information regarding the composi-
tion of FUs. A structured representation is used for storing the
above information. This is suitable for performing the algorithmic
crossover (described in the section 4.5), which leads to a feasible
solution representation.

It is often desirable to partially normalize a representation to
reduce redundancies in the representation arising from permuta-
tion of attribute assignments. It may be noted that permutations of
operation to A-block bindings alone do not correspond to equiv-

alent solutions because the program variables are also bound to
specific A-blocks. Such a permutation would, in general, lead to
distinct transfer requirements.

4.2. Cost function
The scheduling algorithm tries to find a schedule of operations and
transfers within a specified number of time steps. The solution cost
is constructed to indicate the cost of the hardware and the extra
time steps used in the schedule. It is of the form

C = (penalty)(extra time steps) + (cost of FUs):

The penalty is chosen to accord priority to finding a solution with-
in the specified number of time steps. The penalty on the extra
number of time steps is a constant chosen to be an order of magni-
tude higher that maximum possible cost of the FUs. In addition the
cost of FUs is also separately accessible for performing population
control, to be explained later in section 4.7.

4.3. Parent selection
The parents are selected on the basis of their costs using the
roulette wheel technique [10]. This being a minimization prob-
lem, the selection probability of a parent is computed taking into
account the maximum cost of solutions in the population as fol-

lows: psi =
Cmax + Æ � Ci

Nsols(Cmax + Æ)�
P

i
Ci

; wherepsi is selection

the probability for solutioni, Æ � 0, Ci is the cost of the solution,
Cmax is the maximum solution cost in the current population and
Nsols is the number of solutions in the population. Solutions with
higher cost are selected with lower probability. IfÆ = 0 then the
solutions with costCmax will never be selected. Selection is done
with replacement so that a member solution of the population may
participate more than once in crossovers, in one generation.

procedure crossover()
1. chose two parents from the population

of solutions.
2. mutate a each parent according to the mutation

probability.
3. for each operation to schedule do
4. inherit the various scheduling information

of the operation (such as, the A-block
where it is to be scheduled, the time when
the operation is to be initiated, for each
input operand, the source A-block and the
transfer time) from the two parents.

5. for each of the program variables do
6. inherit the time of assignment and the

source A-block from the the two parents.
7. for each of the A-blocks
8. inherit library module to implement

operations to be realized in the FU of
this A-block from the two parents.

Figure 2: Generating initial attributes of offspring by
crossover.

4.4. Crossover
New solutions are generated through crossover. An outline of the
crossover mechanism used in SAST is given in figure 2. An ex-
ample illustrating the formation of operation scheduling attributes
through crossover and its subsequent completion is given in exam-



ple 1. First two parent solutions are selected. These go through
a mutation and then the actual crossover takes place to generate a
raw offspring. The crossover proceeds with inheritance of solution
attributes values from each of the two parents. These attributes
include schedule times and A-block bindings of operations, trans-
fer times for operation inputs and the defined program variables.
The FU configuration of the solution is also formed by inheritance
from the parents. Inheritance of the attributes from either of the
two parents proceeds in the (inverse) ratio of their solution cost-
s. This may be considered to be a discrete multi-point crossover
scheme. The solution representation available after inheritance, in
general, not feasible. This is corrected by applying the completion
algorithm.

4.5. Solution completion
It was noticed that optimization obtained only by applying the ge-
netic operators of mutation and crossover, with small enough pop-
ulation sizes to be practical, do not perform very well. This is
because of the vast numbers of solution representations generat-
ed that do not correspond to a feasible solution. A procedure for
solution completionis applied to the raw solution resulting from
attribute inheritance during crossover. Solution completion is al-
so applied while generating new solutions because the randomly
generated attributes used to construct the initial solutions may not
correspond to feasible solutions either. The procedure is essential-
ly a list scheduling algorithm with some programming intricacies
to support the various features for structured architecture synthe-
sis. A simplified version is shown in figure 3. The main data struc-
tures are a pair of lists, the ready list and the active list. A pair of
these lists are used for scheduling operations and another pair for
scheduling assignments. Operations or assignments in both types
of lists are ready for scheduling in the current time step. However,
it is only attempted to schedule operations or assignments from the
corresponding active list. In each iteration the ready lists are pro-
cessed to transfer some operations or transfers to the correspond-
ing active lists. It is first attempted to schedule operations in the
active list on the unit indicated in the solution representation for
that operation. If this attempt to schedule the operation fails then
it is attempted to schedule these operations on other available FUs.
This is done to utilize FUs which may otherwise go unutilized in
the current time step and is done only after it has been attempted to
schedule all the operations on the active list on the designated FU.
If any operation gets scheduled then the process of transferring op-
erations to the active list from the ready list and then scheduling
them is repeated. The intention of maintaining an active list of
operations is to give priority to the operations in this list over the
operations in the ready list for scheduling in the current time step.
Assignments are normally handled after all the operations in the
current time step have been scheduled. To avoid any excessive ad-
verse effect of such a bias, assignments are sometimes attempted
before trying the second round of scheduling operations, as indi-
cated above, on other available FUs. When no more scheduling is
possible, data structures are updated to close the current time step
and scheduling proceeds from the next time step. Data structures
have been chosen so that single step, multi-cycle and pipelined
operators implementing operations are handled homogeneously as
the scheduling is done.

A scheduling heuristic is also used intermittently with the in-
tention of improving the quality of the solutions in the population.
The heuristic may be used while transferring operations from the
ready list to the active list (line 4, in figure 3). Normally operations
are selected from the active list for scheduling at random (line 5, in
figure 3). However, if the heuristic is being used then operations
are chosen from the list on the basis of the scheduling heuristic.
The application of the heuristic is explained in the section 4.6.

While trying to schedule an operation in an A-block at a spe-
cific time, first it is checked whether the FU can be used with-
out input-conflict, output-conflict or execution-conflict. Next the
availability of operands is checked. If an operand is not present
in the current A-block then it needs to be transferred from another
A-block, in the current or a preceding time step. For an operand
or variable to be transferred at a particular time a free transfer path
from the source to the destination needs to be identified. Thus a
free bus and a free access link at the source and destination A-
blocks have to be found. An operation can be scheduled in an A-
block only if the FU can be used without conflict, and the operands
are available or can be made available.

The inward transfer of a variable currently unavailable is made
as follows. The variable can be transferred any time between the
first time step and the current time step. It can be transferred from
any A-block where the variable is available at the time the transfer
is being attempted. The transfer is first attempted at the time and
from the A-block indicated for that value in the solution. If the
transfer cannot be satisfied this way then other times and A-blocks
are considered in the following order:ts+1; ts�1; ts+2; : : : and
(bs+1) mod totb; (bs+2) mod totb; : : :, respectively, wherets
is the desired time of transfer,bs is the desired source A-block
andtotb is the total number of A-blocks. The order of scanning is
block major (i.e. the block index changes slower).

Table 1: Crossover of scheduling attributes of a hypo-
thetical operation.

Attribute P1 P2 CS SP

Initiation time 3 4 3 1
A-blk. where scheduled 1 2 1 1

Source A-blk. of left operand 1 2 2 2
Transfer time of left operand 3 4 4 2

Source A-blk. of right operand 2 1 2 1
Transfer time of right operand 3 3 3 1 or 2

Example 1 Consider an operation having inputsv0andv1. Table
1 shows hypothetical scheduling attributes values of the operation
in the two parent solutions (column ‘P1’ and ‘P2’), and those of
the resulting offspring solution (column ‘CS’). The parent from
which the attribute is inherited is shown in column ‘SP’. There
are obvious inconsistencies in the inherited attribute values. These
may be corrected by the completion algorithm as follows.

Assume that this operation occurs in the active list while
scheduling for time step ‘3’. Let us assume that A-block ‘1’ is
available for this operation. The algorithm would find that it is not
feasible to transfer the left operand into the A-block in time step 4,
and would consider all feasible time steps for transferring in this



operand so as to monotonically recede from the time step indicat-
ed in the offspring. Thus if the feasible transfer times for the left
attribute were time steps 2 and 3 then the algorithm would first
consider time step 3 and then time step 2. Let us assume that it is
feasible to transfer in the first operand in the third time step from
A-block ‘3’. Now while considering the second operand suppose
that it is not feasible to transfer it from A-block ‘2’, as indicated
in the offspring attribute. The algorithm would then try to source
the operand from other A-blocks. Let us assume that it succeeds
in sourcing the operand from A-block ‘1’. This operation is now
scheduled in time step 3.

procedure complete_solution()
1. prepare initial ready lists of operations and

variable assignments.
2. while (operations and assignments remain

to be scheduled)
3. { decide whether heuristic scheduling is to be used

<sch_heur_flg> or priority will be given to
transfers <priority_trn_flag>.

4. transfer some operations to active list from
ready list.

5. try to schedule active operations on units
indicated in the chromosome.

6. if (priority_trn_flag)
7. try to schedule active assignments.
8. try of schedule remaining operations on

other units.
9. if (an operation has been scheduled)
10. redo iteration.
11. if (not priority_trn_flag)
12. try to schedule active assignments.
13. update ready list of operations.
14. update status of FUs.
15. bring in ready transfer candidates to active

transfer list.
16. move some transfers from ready list to active list.
17. update data structures and flags.
18. increment the time step.
19. }

Figure 3: Completion algorithm.

4.6. Application of Heuristic
The heuristic assists the completion algorithm. It is applied s-
tochastically. The heuristic is based on a weight computed for
each operation, which is defined aswi =

P
oj � oi

(dj +W );

whereoi andoj are operations,oj is a successor ofoi andW is
a fixed positive value. While selecting an operation to schedule
using the heuristic, it is chosen at random in proportion of its com-
puted weight. A stochastic choice is made to avoid excessive bias
to a particular decision.

The heuristic is applied at two places, while selecting opera-
tions from the active list and while transferring operations from
the ready list to the active list. While completing a solution it
is applied with a certain probability that is taken as a parameter.
Even when it is being applied it is turned on and off at random as
scheduling progress through the time steps to avoid excessive bias
from the heuristic which might undo the evolutionary process.

4.7. Replacement
The replacement policy is designed to ensure that all solutions
generated stay in the population for at least one iteration. This
is done by introducing all the new solutions generated through
crossover during one generation of the GA into the population, and

replacing an equal number of existing solutions. The offsprings
are stored in an adjoint pool, to be introduced into the main popu-
lation once all the offsprings from the current generation are pro-
duced. The solutions to be replaced are mostly chosen at random.
This could lead to removal of apparently good solutions, with low
cost, from the population. To counter this a scheme has been used,
at the same time, to retain the solutions with better costs, and also
maintain a diversity of FU configurations in the population.

During implementation it had been observed that solutions with
low cost FU configurations initially have schedules requiring more
time steps than are desirable. These, therefore, have a higher cost
and tend to get displaced. The population is then left mostly with
solutions having expensive FU configurations. In order to retain
low cost FU configurations a fixed number ofbucketsof a certain
capacity are used to retain solutions having the same FU cost, al-
though they may differ in their solution costs. Solutions which are
in these buckets do not get replaced by a newly generated solution.
These buckets are used to forcibly retain solutions with a range of
low FU costs, even if their solution cost is high.

When a new solution is generated, first a check is made to see
whether it can be placed in one of these buckets. If the cost of the
solution matches FU cost of one of the buckets then it is introduced
there if there is space in that bucket. Otherwise it replaces an infe-
rior solution from that bucket, if any. In the absence of a matching
bucket, the solution is placed in a free bucket, if one is available.
Otherwise, solutions from the most expensive bucket are released.
If the FU cost of these exceed the that of the new solution under
consideration and this solution is put in.

a_out

b1l_in r_in

+ *

v_1_13_14_18_22

v_f_24_27

v_g

MC_5

MC_14

MC_22

MC_27

a_out

b1l_in r_in

a_out

v_b_I_26

v_0_16_17_20

v_e_2_8_15

v_d_3_4_9

v_c_5_7

v_g_1_10_11

v_h

+

b1l_in r_in

v_6_10_21_23_25

v_19

v_h

MC_6

MC_11

MC_19

MC_25

+ *

Figure 4: Structured architecture for Elliptic Wave Fil-
ter (EWF) in 18 time steps.

5. Experimentation
SAST has been implemented in ‘C’ in a SUN SPARC-5 under So-
laris. It has been used successfully to synthesize designs satisfy-
ing given architectural requirements. In particular the differential
equation solver [1], fifth order elliptic wave filter (EWF) [11] and
discrete cosine transform (DCT) [12] examples were worked out
and the results have been given in table 2. The experimentation
has been done to investigate the effectiveness of the basic schedul-
ing algorithm, the ability to use the appropriate implementation of
an operator when many are possibly available and to find sched-
ules under tight architectural constraints. All the designs require
up to two concurrent writes per A-block. The run times for the
tabulated examples vary between two to five minutes, depending



Table 2: Comparison of results with other synthesis
techniques.

System
No.
time
steps

No. + No. * No. Bus, Blk., A.
link

No. Reg.

Elliptic wave filter scheduled in 18 steps using multi-cycle multipliers
SAST 18 3 2 1, 3, 1 13
COBRA 18 3 2 3, 3, - 12
CASS 18 3 2 5, 4, - 16
HAL 18 3 2 — 12
PSGA 18 3 2 — 10

Elliptic wave filter scheduled in 19 steps using multi-cycle multipliers
SAST 19 2 2 2, 3, 2 12
COBRA 19 3 2 3, 3, - 13
CASS 19 2 2 4, 4, - 17
HAL 19 2 2 — 12
PSGA 19 2 2 — 9

Elliptic wave filter using pipelined multipliers
SAST 18 2 1 2, 3, 2 12
COBRA 18 2 1 3, 3, - 13
HAL 18 3 1 — 12
PSGA 18 3 1 — 10
SAM 19 2 1 — 12
STAR 19 2 1 — 11
PARBUS 19 2 1 — 12

System
No.
time
steps

No. + No. – No. * No. Bus, Blk.,
A. link

No. Reg.

Discrete Cosine Transform scheduled in 20 steps.
SAST 20 2 3 1 2, 3, 2 18
COBRA 20 2 2 2 3, 3, - 12

on the difficulty of the problem. The run time is determined by
the number of generations of the GA that need to be executed be-
fore a desirable solution is obtained. Each generation is completed
quickly.

The differential equation example was synthesized with a
choice of fast and slow adders. SAST synthesized a data path of
three A-blocks and one global bus. The FUs configuration in the
three A-blocks were:hslow +,<, –i, h2-cycle *, +i andh2-cycle
*i. SAST uses a slow adder to make use of the available slack
time and a fast adder otherwise. This is achieved by scheduling
the operations such that such in one of the A-blocksall the sched-
uled additions have a slack time. Seven storage cells are used for
the three program variables and other intermediate results.

The elliptic wave filter example has been scheduled in 18 and
19 time steps using two-cycle multipliers and single cycle adders.
It has also been scheduled in 18 time steps using pipelined multi-
pliers. The usage of adders, multipliers and storage for the various
cases are indicated in table 2. The architectural characteristics of
the solutions are indicated in the column labeled ‘No. Bus, Blk.,
A. link,’ to indicate the number of buses, A-blocks and access links
per block. The structured architecture for EWF in 18 time steps is
given in figure 4.

The architecture for DCT was chosen to have three A-blocks,
two global buses and two access links per block. SAST was per-
mitted to use both a pipelined and a multi-cycle multiplier and
it finds a schedule using only one pipelined multiplier, two sub-
tracters and three adders, which is a desirable solution.

6. Concluding Remarks
We present here SAST, a technique for synthesizing structured ar-
chitectures with a simple and predictable layout structure. It re-
lies on a GA for scheduling and allocation. The target architec-
ture is characterized by the number of A-blocks, global memories,
global buses, access links an A-block can have and the number
of write ports used in the local storage for an A-block. SAST is
able to handle multiple implementations of operations varying in
speed, including multi-cycle and pipelined implementations. In all
cases the FU cost of designs synthesized by SAST compare very
favourably with those of other systems. An important feature of
this work is that random long-distance interconnects between data
path elements in the synthesized design are avoided. Designs pro-
duced by SAST compare favorably with other systems that do not
attempt to generate structured data paths, and the run times for the
tested examples are reasonable.

References
[1] P. G. Paulin and J. P. Knight, “Force-directed scheduling for

ASICs,” IEEE Trans. on C. A. D., June 1989.

[2] F.-S. Tsai and Y.-C. Hsu, “STAR - An automatic data path
allocator,” IEEE Trans. on C. A. D., pp. 1053–1064, Sep.
1992.

[3] R. J. Cloutier and D. E. Thomas, “Thc combination of
scheduling, allocation and mapping in a single algorithm,”
in Procs. of the 27th ACM/IEEE DAC, pp. 71–76, June 1990.

[4] C. Ewering, “Automatic high-level synthesis of partitioned
busses,” inProcs. of 1990 IEEE International Conference on
Computer Aided Design, pp. 304–307, 1990.

[5] A. A. Duncan and D. C. Hendry, “Area efficient dsp syn-
thesis,” inProcs. of the 1995 European Design Automation
Conference, pp. 130–135, Sep. 1995.

[6] C. A. Mandal, P. P. Chakrabarti, and S. Ghose, “Alloca-
tion and binding for data path synthesis using a genetic ap-
proach,” in9th International Conference on VLSI Design,
pp. 122–125, 1996.

[7] A. V. Aho, R. Sethi, and J. D. Ullman,COMPILERS Prin-
ciples, Techniques and Tools. Addison-Wesley Publishing
Company, June 1987.

[8] M. Balakrishnan and P. Marwedel, “Integrated scheduling
and binding: A synthesis approach for design space explo-
ration,” in Procs. of the 26th ACM/IEEE DAC, pp. 68–74,
1989.

[9] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhaskar,
“Datapath synthesis using a problem-space genetic algorith-
m,” IEEE Trans. on C. A. D., vol. 14, no. 8, pp. 934–944,
1995.

[10] D. E. Goldberg,Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Pub. Co. Inc., 1989.

[11] S. Y. Kung, H. J. Whitehouse, and T. Kailath,VLSI and Mod-
ern Signal Processing. Prentice Hall, 1984.

[12] J. P. Neil and P. B. Denyer, “Simulated annealing based syn-
thesis of fast discrete cosine transform blocks,” inAlgorith-
mic and Knowledge Based CAD for VLSI(G. Taylor and
G. Russel, eds.), ch. 4, pp. 75–93, Peter Peregrinus, 1992.


