
Hand-in-hand Verification of High-level Synthesis

C. Karfa, D. Sar k ar, C. Mandal
Department of Computer Sc. & Engg.

Indian Institute of Technology, Kharagpur
WB 721302, INDIA

{ckarfa, ds, chitta }@iitkgp.ac.in

C. R eade
Kingston Business School

Kingston University
England KT2 7LB, UK

Chris.Reade-@king.ac.uk

ABSTRACT
This paper describes a formal verification methodology of high-
level synthesis (HLS) process. The abstraction level of the input
to HLS is so high compared to that of the output that the veri-
fication has to proceed hand-in-hand with the synthesis process.
The HLS verification is performed in three phases in this work.
The verification method is based on equivalence checking of two
finite state machines with data-paths (FSMDs). Unlike most re-
ported works that targets the individual phases independently, the
proposed method applies to all these three phases. The method
is strong enough to accommodate control structure modification
of the original behaviour, application of several code motion tech-
niques during scheduling and register optimization during register
allocation. It can also verify the correctness of the controller. A
hand-in-hand synthesis and verification tool SAST has been devel-
oped and tested for effectiveness on several HLS benchmark cir-
cuits.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: VLSI; B.5.2 [Hardware]: Register
Transfer-level Implementation—Verification

General Terms
Verification

Keywords
Formal Verification, Equivalence Checking, FSMD model, High-
level Synthesis

1. INTRODUCTION
The high-level synthesis (HLS) process consists in translating a

behavioural specification into an RTL structural description com-
prising a data-path and a controller so that the data transfers un-
der the control of the controller exhibit the specified behaviour [5].
The synthesis process involves several inter-dependent sub-tasks
such as, scheduling, allocation, binding and data-path and con-
troller generation. The operations in the behavioural description

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

are assigned time steps through scheduling process. The alloca-
tion process computes the minimum number of functional units and
registers required to synthesize the design based on the scheduling
information and selects proper operators from the component li-
brary. The variables are mapped to registers and the operations
are mapped to functional units by the binding process. The next
task is to set the data-path by providing a proper interconnection
path from the source to the destinations for every register transfer
(RT) operation. Finally, the controller is generated which produces
control signals needed for all the data transfers required among the
data-path elements in different control steps and realizes the control
flow of the behaviour.

Scheduling

CDFG

behavioral specification

Verification

RTL

generation

information
Synthesis tool

Verification

FSMD
scheduled

Verification

Scheduling

Alloc. & Bind. info.
FSMD from

Input as FSMD

FSMD from CP−DP

Verification tool

Data−path & Controller

Data−path & Controller

Preprocessing

Allocation and Binding
Register sharing

Figure 1: Hand-in-hand synthesis and verification framework

The complexity of the present VLSI systems is very high. The
input specification of HLS is given at a very high abstraction level
compared to the abstraction level of the output. Also, optimizations
of control steps in the scheduling phase, of registers, functional
units and interconnections in the allocation and binding phase and
of control signals in the controller generation phase are performed.
Therefore, a phase-wise verification technique with opportunity to
handle the difficulties of each synthesis sub-task separately is nec-
essary for HLS verification. An end-to-end verification method for
HLS is very tough and also inadequate in locating the exact sources
of errors. We consider a three phase verification which is performed
hand-in-hand with the synthesis process. The proposed platform is
depicted in figure 1. Phase-I verifies the scheduling process. In
phase-II, correctness of sharing of registers among the variables of
the input behaviour is verified. This phase is called register shar-
ing verification. The correctness of the data-path as well as the
controller are verified in phase-III. The input and output of each
synthesis phase are encoded as finite state machines with data-paths
(FSMD) and verification process is based on equivalence checking
of these two FSMDs.

429

#variables: 3, #registers: 2. #control signals: 12

r1 r2

p1 p2
bus1

bus2

Data-path

(d) RTL circuit

(a)Input FSMD (b) After Scheduling (c) After allocation & binding

scheduling
verification

verification verification
q00

q03

q01

q02

y2 <= p2

y1 > y2/

!(y1 > y2)/y2 <= y2 − y1

y1 <= y1 − y2
z <= y1

−/y1 <= p1,

q10

q11

q12

−/y1 <= p1,

y2 <= p2

y2 <= y2 − y1

y1! = y2&y1 > y2

y1 <= y1 − y2

y1! = y2&!(y1 > y2)

z <= y1

q20

q21

q22

−/r1 <= p1,
r2 <= p2

r1! = r2&!(r1 > r2)

r2 <= r2 − r1

r1! = r2&r1 > r2
r1 <= r1 − r2r2 <= r1

sequence
generator sig. gen.

control

status control signal

Control path

OUT (p1, z)
- /

OUT (p1, r2)
- /

OUT (p1, z)

- /

y1 !=y2 / -
!(y1! = y2)/ !(y1! = y2)/ !(r1! = r2)/

Register sharing Data-path controller

Figure 2: High-level synthesis flow for GCD example

Related Works
The methodologies reported in [3] and [9] are applicable to the
scheduling verification phase. Most of these methods are likely
to fail for path-based scheduling [2] as well as when code mo-
tion techniques [6] are used by the scheduler. Several techniques
for verification of the allocation and binding phase are proposed
[11], [1], which can be integrated with the synthesis systems which
perform little or no register optimization. Most of the verification
techniques reported in the literature are applicable to only certain
phases of high-level synthesis and they are likely to fail in some cir-
cumstances which are very common to the modern synthesis tools.
None of the works is generalized enough to handle all the phases
of the HLS process.

Aim of the Present Work
In this work, we proposed a three phases verification techniques
for high-level synthesis. The verification performs hand-in-hand
with the synthesis process as shown in 1. We have formalized an
FSMD based equivalence checking method. The proposed equiv-
alence checking method is applied to all the three phases of HLS
verification. The method is also tuned to handle the difficulties of
each phase of verification. The construction of the FSMD from the
data-path and the controller informations is also discussed.

The paper is organized as follows. An example on high-level
synthesis is given in section 2 to illustrate the motivation of this
work. The equivalence problem of FSMDs is formulated in sec-
tion 3. The three phases of the high-level synthesis verification are
discussed in the section 4. The experimental results are shown in
section 5. The paper concludes in section 6.

2. AN ILLUSTRATIVE EXAMPLE
The example in figure 2 describes the synthesis flow for the GCD

example. The FSMDs at the input, after scheduling, after allocation
and binding phase and the final generated RTL circuits are shown
in the figure. The total number of time steps required to execute
and the control structure of the input behaviour (figure 2 (a)) are
modified by the scheduler as shown in figure 2 (b). The behaviour
after allocation and binding phase is in terms of registers (registers
are denoted as rij in figure 2 (c)); also the number of registers is
minimized in the allocation and binding phase. For this example,
the number of registers is 3 whereas the number of variables in the
input behaviour is 2. Finally, the RTL circuit consisting of a dis-

tinct control path and a data path is generated. The RTL circuit
may behave erroneously due to some fault in the controller or in
the data-path interconnections. It is evident from the figure that the
there is no one-to-one correspondence between the input and the
output (figure 2 (a) and figure 2 (d)). Hence, an end-to-end verifi-
cation can hardly identify the exact points of errors. That is why we
are opting for phase-wise verification of high-level synthesis with
opportunity to handle the difficulties of each phase independently
and more accurately.

3. THE EQUIVALENCE PROBLEM
FORMULATION

An FSMD (finite state machine with data-path) is a universal
specification model, proposed by Gajski in [5], that can represent
all hardware designs. The model is used in the present work with
the addition of a reset state. The FSMD is formally defined as an
ordered tuple 〈Q, q0, I, V, O, f : Q×2S → Q, h : Q×2S → U〉,
where Q is the finite set of control states, q0 is the reset state, I
is the set of input signals, V is the set of storage variables, O is
the set of output signals, f is the state transition function, h is the
update function of the output and the storage variables, U = {x⇐
e|x ∈ O ∪ V and e ∈ E} represents a set of storage or output
assignments, where E represents a set of arithmetic expressions
over the set I ∪ V and S = {R(a, b)|a, b ∈ E and R is any
arithmetic relation} represents a set of status signals as arithmetic
relations between two expressions from the set E.

A path α from qi to qj , where qi, qj ∈ Q, is a finite transition
sequence of states where all the states are distinct. Only, the state
qj may be identical to qi. The condition of execution of the path
α, Rα, is a logical expression over the variables in V and inputs
I such that Rα is satisfied by the (initial) data state of the path iff
the path α is traversed. The data transformation of a path α over
V , rα, is the tuple 〈sα, Oα〉, where sα is an ordered tuple 〈ei〉 of
algebraic expressions over the variables in V and the inputs in I
such that the expression ei represents the value of the variable vi

after the execution of the path in terms of the initial data state of
the path and Oα represents the output list along the path α.

A computation of an FSMD is a finite walk from the reset state
q0 back to itself without having any intermediary occurrence of q0.
Such a computational semantics of an FSMD is based on the as-
sumption that a revisit of the reset state means the beginning of a
new computation and each computation terminates. Any computa-

430

tion c of an FSMD M can be looked upon as a computation along
some concatenated path [α1α2α3...αk] of M such that the path α1

emanates from and the path αk terminates in the reset state q0 of
M and αi, 1 ≤ i ≤ k, may not all be distinct. Two computations
c1 and c2 of an FSMD are said to be equivalent if Rc1 = Rc2 ,
rc1 = rc2 , where Rc1 and rc1 represents the condition of execu-
tion and data transformations of c1, respectively and Rc2 and rc2

represent the same for c2. Computational equivalence of two paths
can be defined in a similar manner. The fact that a path p1 is com-
putationally equivalent to p2 is denoted as p1 	 p2.

Definition 1. Path cover of an FSMD: A finite set of paths
P = {p0, p1, p2, . . . , pk} is said to cover an FSMD M if any
computation c of M can be looked upon as a concatenation of paths
from P .

3.1 Correctness Problem
Let M0 and M1 be two FSMD representations at the input and

the output, respectively, of any phase of high-level synthesis. Our
main goal is to verify whether M0 behaves exactly as M1. This
means that for all possible input sequences, M0 and M1 produce
the same sequences of output values and eventually, when the re-
spective reset states are re-visited, they are visited with the same
storage element values. In other words, for every computation from
the reset state back to itself of one FSMD, there exists an equiv-
alent computation from the reset state back to itself in the other
FSMD and vice-versa. The following definition captures the no-
tion of equivalence of FSMDs.

Definition 2. Two FSMDs M0 and M1 are said to be compu-
tationally equivalent if for any computation c0 of M0, there exists
a computation c1 of M1 such that c0 and c1 are computationally
equivalent and vice-versa.

From definition 1 and definition 2, the following theorem can be
concluded.

Theorem 1. Two FSMDs M0 and M1 are computationally equiv-
alent if there exists a finite cover P0 = {p00, p01, . . . , p0l} of M0

for which there exists a set P 0
1 = {p0

10, p0
11, . . . , p0

1l} of paths of
M1 such that p0i 	 p0

1i, 0 ≤ i ≤ l, and vice-versa.

The equivalence problem formulation can be found in more detail
in [8].

3.2 The Equivalence Checking Method
The above theorem, therefore, suggests an equivalence checking

method which consists of the following steps:

1. Construct the set P0 of paths of M0 so that P0 covers M0.
Let P0 = {p00, p01, · · · , p0k}.

2. Show that ∀p0i ∈ P0, there exists a path p1j of M1 such
that p0i 	 p1j .

3. Repeat steps 1 and 2 with M0 and M1 interchanged.

Because of loops it is difficult to find a path cover of the whole
computation comprising only finite paths. So any computation is
split into paths by putting cutpoints at various places in the FSMD
so that each loop is cut in at least one cutpoint. The set of all paths
from a cutpoint to another cutpoint without having any intermedi-
ary cutpoint is a path cover of the FSMD. The method of decompos-
ing an FSMD by putting cutpoints is identical to the Floyd-Hoare’s
method of program verification [4, 7]. We choose the cutpoints in
any FSMD as follows.

1. The reset state.

2. Any state with more than one outward transition.

Obviously, cutpoints chosen by the above rules cut each loop of the
FSMD in at least one cutpoint, because each internal loop has an
exit point.

This equivalence checking method is applied to all the three
phases of HLS verification. However, some additional entities such
as, mapping informations from the variables to the registers, etc,
may be needed depending upon the functionalities of each phase.
The equivalence of two paths and the cutpoints selection rule are
defined in this section. But, they might differ in the different phases
depending upon the requirements of each phase. We will discuss
the modifications in the following section.

4. HAND-IN-HAND VERIFICATION
The basic steps of equivalence checking, i.e., constructing the

path cover by inserting cutpoints in one FSMD and finding the
equivalent path of each member of this path cover in the other
FSMD, can be applied to all the phases of HLS verification. In
this section, the objectives of each HLS verification phase and the
required modifications to adapt the basic equivalence method are
discussed. The FSMDs corresponding to the behaviours at the in-
put to HLS, after scheduling, after allocation and binding and at the
output of HLS are denoted as M0 = 〈Q0, q00, I, V0, O, f0, h0〉,
M1 = 〈Q1, q10, I, V1, O, f1, h1〉, M2 = 〈Q2, q20, I, V2, O, f2,
h2〉 and M3 = 〈Q3, q30, I, V3, O, f3, h3〉, respectively, in this
work. The construction of M3 from the data-path and the controller
informations is not straightforward. This task is also discussed in
this work.

4.1 Scheduling Verification
Objectives:

The scheduler tries to schedule all the operations of the input
behaviour in minimum number of time steps. To do so, the input
behaviour to the scheduler is modified in several ways. For exam-
ple, the control structure of the input behaviour may be modified by
the path-based scheduler [2] as it tries to merge some consecutive
path segments of the input behaviour. Also, incorporation of sev-
eral code motion techniques [6] in the scheduling process leads to
transformations in the input specification. For example, some of the
operations may be moved beyond the conditional statement (specu-
lation, reverse speculation), extra variables may be used to rename
some of the variables in the input behaviour (renaming) and some
of the variables and operations of the input behaviour may be elim-
inated (dead code elimination). Naturally, the results of scheduling
do not have a one-to-one correspondence with the input. Hence, it
is important to ensure that the scheduling process preserves the be-
haviour of the original specification, irrespective of the scheduling
technique used.

Required modifications:
Due to application of different code motion techniques like re-

naming and dead-code eliminations along with scheduling, the vari-
able sets V0 of M0 and V1 of M1 may not be equal. So, the expres-
sions that represent the condition of execution or the data transfor-
mation of any path in M0 or in M1 need to be restricted to the vari-
able set V0 ∩ V1 and the input set I . It means that they are defined
over the variables in V0∩V1 and the inputs I . If the condition of ex-
ecution and the data transformation of any path of M0 contain some
variable(s) from the set V0−V1, then it will become undefined; the
same is applicable for any path of M1 if its condition of execution
and the data transformation contain some variable(s) from V1−V0.

431

Also, the final values of only the variables in V0 ∩V1 are compared
while checking the equivalence of two paths. However, the situa-
tion where the restrictions on Rα and rα of a path α make them
undefined usually do not occur as argued below. Some of the vari-
ables of V0 may not exist in V1 when the scheduler eliminates some
dead code involving these variables in (V0−V1). Clearly, they have
no effect in the condition of execution or in the data transformation
of any path in M0. On the other hand, the scheduler generally uses
some extra variables to reduce the data dependencies among the
variables to increase the parallelism among the operations in the
behaviour. These variables are first assigned some values in terms
of V0∩V1 and I and used subsequently. Obviously, these variables
(in V1 − V0) will not occur in the condition of execution or in the
data transformation of any path in M1.

The control structure of the input behaviour may be modified
by the scheduler due to path based scheduling algorithm [2] or the
application of several code motion techniques [6] like speculation,
reverse speculation, branch balancing, etc. Accordingly, the rules
to find cutpoints defined in the subsection 3.2 do not work always.
In the following, we propose one method which combines the first
two steps of the method described in subsection 3.2 into one. More
specifically, the method constructs a path cover of M0 and also
finds its equivalent path set in M1 hand-in-hand. The following
definition is used in the algorithm.

Definition 3. Corresponding states: Let M0 = 〈Q0, q00, I,
V0, O, f0, h0〉 and M1 = 〈Q1, q10, I, V1, O, f1, h1〉 be the two
FSMDs having identical input and output sets, I and O, respec-
tively, and q0i, q0k ∈ Q0 and q1j , q1l ∈ Q1.

• The respective reset states q00, q10 are corresponding states.

• If q0i ∈ Q0 and q1j ∈ Q1 are corresponding states and
there exist q0k ∈ Q0 and q1l ∈ Q1 such that, for some path
α from q0i to q0k in M0, there exists a path β from q1j to q1l

in M1 such that α 	 β, then q0k and q1l are corresponding
states.

4.1.1 The Algorithm
Input: The FSMDs M0 and M1.
Output: P0: a path cover of M0,

E: ordered pairs 〈β, α〉 of paths of M0 and M1,
respectively, such that β ∈ P0 and β 	 α.

Steps:
1: Let η be the set of corresponding state pairs. Let

η ← 〈q00, q10〉. Insert cutpoints in M0 using the rule
stated in the previous section. Let P ′

0 be the set of all
the paths of M0 from a cutpoint to a cutpoint having no
intermediary cutpoint. Let P0 and E be empty.

2: If P ′
0 = empty, then return P0 as a path cover of M0

and E as the set of ordered pairs of equivalent paths of
M0 (from P0) and M1 and exit (success); else go to
step 3.

3: Find a path of the form 〈q0i ⇒ q0f 〉 from P ′
0 s.t. q0i has

a corresponding state q1j . If no path is obtained, then go
to step 4; else go to step 5.

4: Delete all the paths in P ′
0 which are covered by some

path in P0. If P ′
0 �= empty, then report “M0 may not be

equivalent to M1” and exit (failure); else return P0 as a
path cover of M0 and E as a set of ordered pairs of equiv-
alent paths of M0 (from P0) and M1 and exit (success).

5: Let the path obtained in step 2 be β = 〈q0i ⇒ q0f 〉. Let
〈q0i, q1j〉 be the corresponding states pair in η. If Rβ or rβ

is undefined then exit(failure) else find a path of M1 emanating

from q1j which is equivalent to the path β. If such a path is
found, then go to step 6; else go to step 7.

6: Let this path of M1 be α. η ← η
� {〈endState(β),

endState(α)〉}, E ← E
�{〈β, α〉}, P0 ← P0

�{β},
P ′

0 ← P ′
0 − {β}. go to step 2.

7: P ′
0 ← P ′

0 − {β}. Extend β (= 〈q0i ⇒ q0f 〉) in M0 by
moving through the cutpoint q0f till the next cutpoints
but without moving through the reset state or any cut-
point more than once. Let Bm be the set of all such ex-
tensions of the path β. P ′

0 ← P ′
0

�
Bm. go to step 8.

8: If Bm = empty, then report “β does not have any
equivalent in M1 and cannot be extended” and exit
(failure); else go to step 2.

4.2 Register Sharing Verification
Objectives:

The variables of the scheduled behaviour share registers in the
data-path. The number of registers in the data-path is less than
equal to the number of variables in the behaviour as most of the
high-level synthesis tools perform register optimization during reg-
ister allocation. The goal of this phase of verification is to ensure
the correctness of register sharing among the variables.

Additional informations:
In the allocation and binding phase, the scheduler output is mapped

to the hardware with specific intention of using minimum number
of registers, FU, muxes, demuxes, etc. Optimization, like reduc-
tion of total time to execute, is not considered in this phase. As a
result, the control structure of the scheduled FSMD does not get
modified in this phase. So, there exists a bijective function, namely
state mapping function, fsm : Q1 ↔ Q2 from the states of M1 to
the states of M2. The variable set V1 of M1 contains all the be-
havioural variables and the temporary variables introduced by the
scheduler and the variable set V2 of M2 consists of all the data-path
registers. A register binding function frb: Q2 × V2 → V1 can be
obtained from the life time informations of the variables. Clearly,
this function may not be bijective.

Required modifications:
We need to modify the definition of equivalence of paths as the

FSMDs M1 and M2 involve different variable sets with different
cardinalities. An expression e1 (arithmetic or status) over V1 ∪ I at
the state q2,i of M1 is said to be equivalent to an expression e2 over
V2∪I at state q2,j of M2 if fsm(q1,i) = q2,j and e1 = e2 when all
the registers r ∈ V2 occurring in e2 are replaced by v ∈ V1, where
v = frb(q2,j , r). Treating the expression e2 loosely as a function,
we denote the above phrase syntactically as e1 = e2 0 frb, where
‘o’ stands for function composition. A path α1 of M1 is equivalent
to a path α2 of M2 if Rα1 = Rα2 0 frb and rα1 = rα2 o frb,
provided both the paths start with the same initial data state, i.e., all
vk of V2 and frb(q2,0, vk) of V1 have the same data state initially.
The equivalence checking method stated in the subsection 3.2 is
directly applicable to this phase with this modified path equivalence
definition.

4.3 Data-path and Controller Verification
Objectives:

The final output of the high-level synthesis is a control-path and a
data-path (CP-DP) so that (i) all the register transfer operations and
the status conditions in M2 are indeed provided for the DP com-
ponents and theirs interconnections and (ii) the set of all control
signals generated and status signals sensed in the states of the con-
troller FSMD M3 do realize the corresponding register transfers
of FSMD M2. In other words, the verification task in this phase

432

is defined as follows: given the control signal assertion pattern in
each state of the controller FSM, it is required to identify the cor-
responding register transfer operation in the DP and construct the
FSMD M3. Next, check the whether FSMD M3 is equivalent to the
FSMD M2 or not.

4.3.1 Construction of FSMD M3

The following two informations have to be extracted from the
CP-DP description in order to accomplish the objectives.

1. The set of all possible micro-operations in the data-path. Let
this set be denoted as� . A data movement from a data-path
component y to another data-path component x is encoded
by the micro-operation x⇐ y.

2. The control signal assertion pattern for every micro-operation
in� . A control signal assertion pattern is represented as an
ordered n-tuple of the form 〈 u1, u2, . . . , un〉, where ui

represents the value of the control signal ci, n is the num-
ber of control signals; ui ∈ {0, 1, X}, 1 ≤ i ≤ n, is
the asserted value of ci. ui = X implies that the control
signal ci is not required for a particular micro-operation cor-
responding to the assertion pattern. Let � be the set of all
possible control assertion patterns. So, a function fmc can be
constructed from the set� of all micro-operations possible
in the given data-path to the set � of control signal asser-
tion patterns. Thus, the data-path structure, in its entirety, is
captured by the function fmc.

In each state of the FSM, the controller generates a control signal
assertion pattern to execute a set of micro-operations in the data-
path. So, the next task is to obtain the set of micro-operations�A

(⊆ �) for a given control assertion pattern A. It is, however, not
possible to obtain the set�A of micro-operations directly from the
control signal assertion pattern A by examining its individual con-
trol signals because a micro-operation may be accomplished by a
set of control signals rather than an individual control signal. There
is no information available in an assertion pattern to group the con-
trol signals so that each group defines a micro-operation around a
data-path component. The following definition is in order.

Definition 4. Superposition of Assertion patterns:
Let A1 and A2 be two arbitrary control signal assertion pat-

terns. Let πi(A) denote the i-th projection of an assertion pattern
A which is the asserted value ui of the control signal ci. The asser-
tion pattern, A1 θ A2 obtained by superposition θ of A1 and A2,
satisfies the following conditions. For all i,
πi(A1 θ A2) = X, if πi(A1) = X

= πi(A1), if πi(A1) �= X and πi(A2) �= X
and πi(A1) = πi(A2)

= undefined, if πi(A1) �= X and
πi(A2) �= X and πi(A1) �= πi(A2).

Using the above definition and the function fmc, it is possible to
construct�A from the assertion pattern A by the following defini-
tion of�A. �A= {μi | fmc(μi) θ A = fmc(μi)}.

Now, it is required to find the set of register transfer (RT) opera-
tions that are performed by the micro-operations in�A. Each RT
operation that appears in the RTL behaviour is accomplished by a
set of concurrent micro-operations. For example, an RT-operation
r3 ⇐ r1 + r2 may be accomplished by the concurrent micro-
operations bus1⇐ r1, bus2⇐ r2, fuLeftIn⇐ bus1,
fuRightIn⇐ bus2, fuOut⇐ fuLeftIn + fuRightIn,
bus3 ⇐ fuOut, r3 ⇐ bus3. Finding an RT-operation from a
given set of micro-operations is also not trivial because of two rea-

sons. First, there may be more than one RT-operation in that par-
ticular state of the FSM. Secondly, there is a spatial sequence of
concurrent micro-operations needed to accomplish an RT-operation
but these are available in an unordered manner in�A.

The RT-operations accomplished by the set�A of micro-operations
are identified using a rewriting method. The method also reveals the
spatial sequence of data flow needed for an RT-operation in a re-
verse order. The basic rewriting method consists in rewriting terms
one after another in an expression. The micro-operations in which
a register occurs in the left hand side (lhs) are found first. Such a
micro-operation has the form r ⇐ r−in, where r is a register and
r−in is its input terminal. Next, the right hand side (rhs) expression
“r−in” is rewritten by looking for a replacement (micro-operation)
in �A of the form “r−in ⇐ s” or “r−in ⇐ s1 < op > s2”.
So, after rewriting “r−in” we have rhs expression, either of the
form “s” or of the form “s1 < op > s2”. In the next step, s (or
s1 and s2 for the latter case) are rewritten provided they are not
registers. The process terminates successfully when all si’s in the
expression in hand are registers.

The control structure of the FSMD M3 can be obtained from the
controller FSM and the RT-operations of each control state as con-
structed by the mechanism described above.

Verification of data-path and the controller:
Improper data-path interconnections and incorrect control signal

assertion patterns can be found out during construction of FSMD
M3. They can be detected as follows. In course of the rewriting
process two cases might arise. First, more than one replacement are
found for a non-register term si of an rhs expression. It suggests
that the control assertion pattern in this state is wrong. Secondly,
no replacement is found and some of the terms in the rhs expres-
sion are non-register data-path elements. It can happen if either
the data-path interconnections are not proper or control assertion
pattern in this state is wrong.

Finally, the correctness of the RT-operations constructed from
CP-DP informations and the controller FSM are ensured by the
equivalence checking of FSMDs M2 and M3. The methodology
described in subsection 3.2 is applicable to this phase without any
modification.

5. EXPERIMENTAL RESULTS
A high-level synthesis tool, SAST [10] is developed. The SAST

takes the behavioural description in VHDL and produces a synthe-
sizable RTL code in Verilog. The proposed verification methodol-
ogy is integrated with this HLS tool. This tool generates the input
and the output FSMDs of each phase of verification, the state map-
ping function fsm and the register binding function frb as byprod-
ucts with the synthesis results. The condition of execution and the
data transformation of a path involves the whole integer arithmetic
for which canonical form does not exist. Instead, we adapted a
normal form [12] to get a uniform representation of the arithmetic
expressions in SAST. Incorporation of the normalization technique
for arithmetic expression makes our equivalence checker more pow-
erful. The tool has been run on an Intel Pentium 4, 1.70 GHz,
256MB RAM machine on the outputs generated by SAST for sev-
eral HLS benchmarks as shown in table 1. The number of sates in
M0 and in M1, the CPU time and memory usage are tabulated for
each HLS benchmarks. The number of states in M2 and M3 are
the same as that of M1. It may be noted that the CPU time and
the memory usage for overall verification process are much lower
than those of the overall synthesis time. The bars in figure 3 repre-
sent the number of variables in the input behaviour (first bar) and
the number of registers in the data-path generated by SAST (sec-

433

Name #state CPU time in
ms

memory used in kb

M0 M1 verifi- synth- verifi- synt-
tion esis tion hesis

DIFFEQ 9 12 6.372 54 x103 32.3 4910

EWF 17 35 4.740 127 x103 56.5 4436

GCD 7 4 9.340 21 x103 23.5 6318

DCT 10 29 3.546 163 x103 52.1 4631

TLC 7 8 10.660 101 x103 31.5 7375

MODN 6 7 12.128 90 x103 26.5 9654

PERFECT 9 6 11.128 53 x103 23.5 9987

Table 1: Results for different high-level synthesis benchmarks

ond bar) for each HLS benchmarks. It is evident from this figure
that SAST optimizes the number of registers and our verification
works well in this case. The bars in figure 4 represent the num-
ber of micro-operations possible in the data-path (first bar) and the
number of control signals involved in this micro-operations.

Figure 3: The number of variables and the number of registers
required for different HLS benchmarks

Figure 4: The number of micro-operations in the data-path and
the number of control signals involved for different HLS bench-
marks

6. CONCLUSION
Advances in VLSI technology have enabled its deployment into

complex circuits. Synthesis flow of such circuits comprises various
phases where each phase performs the task algorithmically provid-
ing for ingenious interventions of experts. The gap between the
original behaviour and the finally synthesized circuits is too wide
to be analyzed by any reasoning mechanism. The validation tasks,
therefore, must be planned to go hand-in-hand with each phase of
synthesis. The present work concerns itself with the hand-in-hand
verification of high-level synthesis process. The validation task has
been treated as an equivalence problem of FSMDs. In this work,
we proposed an equivalence checking method which is applicable

to the all three phases of HLS verification. This method is strong
enough to handle several difficulties of each synthesis phase. The
method has been implemented and also incorporated with an exist-
ing HLS tool. The experimental results suggests that the method is
quite useful.

7. REFERENCES
[1] P. Ashar, S. Bhattacharya, A. Raghunathan, and

A. Mukaiyama. Verification of rtl generated from scheduled
behavior in a high-level synthesis flow. In Proceedings of the
IEEE/ACM ICCAD, pages 517–524, 1998.

[2] R. Camposano. Path-based scheduling for synthesis. IEEE
transactions on computer-Aided Design of Integrated
Circuits and Systems, Vol 10 No 1:85–93, Jan. 1991.

[3] H. Eveking, H. Hinrichsen, and G. Ritter. Automatic
verification of scheduling results in high-level synthesis. In
Proc. Conf. DATE, pages 59–64, March 1999.

[4] R. W. Floyd. Assigning meaning to programs. In
Proceedings the 19th Symposium on Applied Mathematics,
pages 19–32. American Mathematical Society, 1967.
Mathematical Aspects of Computer Science.

[5] D. Gajski and L. Ramachandran. Introduction to high-level
synthesis. IEEE transactions on Design and Test of
Computers, pages 44–54, 1994.

[6] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Using global
code motions to improve the quality of results for high-level
synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23(2):302–312, Feb 2004.

[7] C. A. R. Hoare. An axiomatic basis of computer
programming. Commun. ACM, pages 576–580, 1969.

[8] C. Karfa, C. Mandal, D. Sarkar, S. Pentakota, and C. Reade.
A formal verification method of scheduling in high-level
synthesis. In In Proc. ISQED ’06, pages 71–78, March 2006.

[9] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal
verification of scheduling process using finite state machine
with datapath (FSMD). In Proc. Conf.ISQED 2004), pages
110–115, March 2004.

[10] C. Mandal and R. M. Zimmer. A genetic algorithm for the
synthesis of structured data paths. In 13th International
Conference on VLSI Design, pages 206–211, 2000.

[11] N. Mansouri and R. Vemuri. A methodology for automated
verification of synthesized rtl designs and its integration with
a high-level synthesis tool. In In Proceedings of FMCAD,
pages 204–221, 1998.

[12] D. Sarkar and S. De Sarkar. Some inference rules for integer
arithmetic for verification of flowchart programs on integers.
IEEE Trans Software. Engg., 15(1):1–9, 1989.

434

