
Techniques and Algorithms for the Design and
Development of a Virtual Laboratory to Support

Logic Design and Computer Organization

Gargi Roy

Techniques and Algorithms for the Design and
Development of a Virtual Laboratory to Support

Logic Design and Computer Organization

Thesis submitted to the Indian Institute of Technology, Kharagpur
for the award of the degree

of

Master of Science (by research)

by

Gargi Roy

Under the supervision of
Prof. Chittaranjan Mandal

School of Information Technology
Indian Institute of Technology, Kharagpur

West Bengal 721302, India

October, 2014

©2014 Gargi Roy, All rights reserved

Dedicated to my parents, for their endless support and patience

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Techniques and Algorithms for the Design and Devel-
opment of a Virtual Laboratory to Support Logic Design and Computer Organiza-
tion,” submitted by Gargi Roy to the Indian Institute of Technology, Kharagpur, for the
award of the degree of Master In Science (by research) has been accepted by the external
examiners and that the student has successfully defended the thesis in the viva-voce exam-
ination held today.

Prof. Dipankar Sarkar Prof. K. S. Rao

(Member of the DAC) (Member of the DAC)

Prof. Debashis Samanta Prof. Chittaranjan Mandal

(Member of the DAC) (Supervisor)

(External Examiner) (Chairman)

Date:

Indian Institute of Technology Kharagpur
Certificate by the Supervisor

Date: 10-10-2014

This is to certify that the thesis entitled,

“Techniques and Algorithms for the Design and Development of a Virtual Laboratory to Sup-
port Logic Design and Computer Organization ”
submitted by GARGI ROY (11IT71P02) to the Indian Institute of Technology Kharagpur, is a record
of bonafide research work carried under my supervision and is worthy of consideration for the award
of the Master of Science of the Institute.

Signature of the Supervisor(s):

Prof. CHITTARANJAN MANDAL DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
AND
SCHOOL OF INFORMATION TECHNOLOGY

Indian Institute of Technology Kharagpur
Declaration by the Student

Date: 10-10-2014

Title of the Thesis:

Techniques and Algorithms for the Design and Development of a Virtual Laboratory to Support
Logic Design and Computer Organization

I certify that

a. the work contained in the thesis is original and has been done by me under the guidance of
my Supervisor;

b. the work has not been submitted to any other Institute for any degree or diploma;

c. I have followed the guidelines provided by the Institute in preparing the thesis;

d. I have conformed to ethical norms and guidelines while writing the thesis and;

e. whenever I have used materials (data, models, figures, and text) from other sources, I have
given due credit to them by citing them in the text of the thesis, giving their details in the
references, and taking permission from the copyright owners of the sources, whenever neces-
sary.

Signature of the Student:

Name of the Student: GARGI ROY (11IT71P02)

Acknowledgement

I would like to convey my sincere gratitude to Prof. Chittaranjan Mandal for being my supervisor

and guiding me throughout my research work. Without his help and encouragement this work could

not be accomplished. I am really thankful to him for all I have learned from him. I am also thankful

Prof. Dipankar Sarkar and other professors of the Computer Science Department and School of

Information Technology Department, IIT Kharagpur, for their valuable and motivating teaching

during my entire course work. I would like to convey my acknowledgement to the technical staffs

of both the departments for their spontaneous help and also thanks to Dr. B. Hemalatha for being a

good source of inspiration.

I am grateful to be a part of the stimulating environment provided by the fellow research scholars

at IIT Kharagpur. Specially, I am thankful to Devleena for her help and motivating technical and

nontechnical discussions. Technical discussions with Tamal and Kunal were also very helpful. I

am also grateful to Srobona-di for her help regarding using the CUDD package. It was a great fun

to have energizing and supportive friends and seniors like Subhadip-da, Ranita, Tanwi, Partha-da,

Antara-di, Sudakshina-di, Aritra-da, Chandan-da, Tuhin and all other lab mates. I would also like to

convey my thanks to Sujeet for sharing his laboratory assignments accomplished using our tool.

Last but not the least, I am deeply thankful to my mom, dad and masi. Without their love, un-

derstanding, support and patience this thesis would not get a real shape. I also want to thank Roshni

for her valuable friendship. Finally, I would like to convey deep gratitude to Dr. Debashis Ghosh

and Shibendu Lahiri for their inspiring support.

Gargi Roy

Abstract

This work presents some techniques and algorithms to support teaching of logic design and

computer organization through developing a web based virtual laboratory (COLDVL) and a formal

verification method of bit-level equivalence checking for automatic evaluation of student designs.

At the heart of the virtual laboratory is the COLDVL tool equipped with a circuit drawing and ex-

perimentation interface as a front end, a logic simulator as the back end with features to provide real

laboratory like learning experience and a set of pre-designed guided experiments with the facility to

add new experiments.

In the front end of the tool, a repertoire of components and design functionalities for building

circuits are made available. Features to aid learning include the Huffman structure identification

in a circuit, detection of possible race around condition prior to simulation, automatic generation

of controller unit from a given control state chart to be used in a circuit in association with a data

path and a case based analysis for determining indeterminate signal values of some nets in gate level

memory elements after regular round of simulation. Creation and reuse of user-defined encapsulated

hierarchical modules, structural verilog netlist generation and saving user circuits with unique iden-

tification to check plagiarism are also supported. While circuit simulation is generally carried out in

an event driven manner, a more efficient simulation technique has been devised for circuits conform-

ing to the Huffman model. Laboratory experiments using COLDVL are conveniently conducted on

a regular desktop or laptop computer.

Automated checking of student assignments through application of formal verification is a novel

feature of this work. A new bit-level equivalence checking method has been developed for this

purpose to compare the designs submitted by students against a reference design provided by the

instructor. A submitted design may differ from the reference design in non-trivial ways but may

still be perfectly acceptable. The aim of the equivalence checker is to determine conformance to the

reference design despite the differences. Bit-level arithmetic, logical and shifting operations, con-

ditional branching, etc. are handled along with computer arithmetic algorithms (eg. multiplication

and division) that build the result through stages involving shifting.

The developed virtual laboratory has been successfully used in undergraduate and postgraduate

laboratory courses in IIT Kharagpur.

Keywords: Virtual Laboratory, logic simulation, logic design, computer organization, equiva-

lence checking, finite state machines with data path, bit-level equivalence checking

Contents

1 Introduction 1
1.1 Logic Simulation . 2
1.2 Formal Verification . 2
1.3 Literature survey . 3

1.3.1 Logic Simulators . 4
1.3.2 Bit-Level Equivalence Checking . 6

1.4 Motivation and objective of the present work . 8
1.5 Contributions of the present work . 9

1.5.1 Designing the virtual laboratory . 9
1.5.2 Development of front end features of COLDVL tool 9
1.5.3 Development of back end features and techniques of COLDVL tool 10
1.5.4 Development of automatic design evaluation technique 11

1.6 Organization of the thesis . 12

2 Design issues of COLDVL 14
2.1 Introduction . 14
2.2 Pedagogic considerations of COLDVL . 14
2.3 Assimilation of pedagogic considerations into COLDVL 15

2.3.1 Ordering of learning concepts . 15
2.3.2 Addressing cognitive issues for learning 20
2.3.3 Learning enhancement through sequence of learning activities 22

2.4 Web interface of COLDVL . 26
2.5 Gathering of user feedback . 28

2.5.1 Designing feedback questions . 28
2.5.2 Deployment of COLDVL . 30
2.5.3 Summary and analysis of user responses 31

2.6 Conclusion . 33

3 Front end of the COLDVL tool 36
3.1 Introduction . 36
3.2 Features of COLDVL tool . 36
3.3 User interface of COLDVL tool . 42
3.4 COLDVL tool architecture . 44
3.5 Case studies and usability of COLDVL tool . 45

3.5.1 Simple combinational and sequential circuits 45
3.5.2 A complex sequential circuit with controller and data path 46
3.5.3 Regular CPU design with multiple instructions 49

i

CONTENTS ii

3.5.4 Usability of COLDVL tool . 50
3.6 Conclusion . 53

4 Back end of the COLDVL tool 61
4.1 Introduction . 61
4.2 Some issues related to simulation of circuits . 61

4.2.1 Efficient simulation . 61
4.2.2 Resolving indeterminate values of structural memory elements 63

4.3 Simulation techniques and algorithms . 66
4.3.1 Simulation of circuits . 66
4.3.2 Resolving indeterminate values of structural memory elements 77

4.4 Comparison between event driven and the combined simulation 84
4.5 Implementation and results . 87
4.6 Conclusion . 88

5 Checking student designs for correctness 90
5.1 Introduction . 90
5.2 Finite State Machine with Datapaths . 91
5.3 Issues in determining equivalence over bit-level data 93
5.4 Methodologies and algorithms . 97

5.4.1 Overall equivalence checking method . 97
5.4.2 Value match between corresponding variables 99
5.4.3 Special analysis to check specific value of a symbol 101
5.4.4 Identifying data building pattern and inferring data range after completion

of loop (for special cases) . 102
5.5 Equivalence checking for shift and add multiplier 109

5.5.1 Reference and user designs . 109
5.5.2 Overview of the equivalence checking steps 112
5.5.3 Equivalence analysis for path P1 and P′

1 113
5.5.4 Equivalence analysis for path P2 and P′

2 113
5.5.5 Equivalence analysis for path P3 and P′

3 116
5.5.6 Inferencing data range after loop completion 118
5.5.7 Equivalence analysis for path P5 and P′

5 119
5.6 Implementation and results . 120

6 Conclusion 127
6.1 Summary of work done . 127
6.2 Future scope of this work . 129

A FSMDs of test bench designs 131
A.1 Equivalent designs . 131
A.2 Non-equivalent designs for test bench GCD . 134
A.3 Non-equivalent designs for test bench BOOTH 134
A.4 Non-equivalent designs for test bench TLC . 135
A.5 Non-equivalent designs for test bench FIBSUM 137
A.6 Non-equivalent designs for test bench BARCODE 138

CONTENTS iii

B Case studies of deployment 142
B.1 Deployment of COLDVL . 142

B.1.1 Semester laboratory course . 142
B.1.2 Workshops . 144
B.1.3 Independent participation . 145

B.2 Feedback questions for COLDVL . 145

List of Figures

2.1 Concept hierarchy. 17
2.2 Sequence of learning activities. 24
2.3 Schematic circuit diagram of the CPU experiment on the given working modules in

the basic stage of learning sequence. 25
2.4 User designed single instruction CPU circuit before simulation in the basic stage of

learning sequence. 26
2.5 Memory content of the user designed single instruction CPU after simulation in the

basic stage of the learning sequence. 27
2.6 Controller state transitions of the user designed single instruction CPU in the basic

stage of the learning sequence. 28
2.7 User designed regular CPU with four instructions in the advanced stage of the learn-

ing sequence. 29
2.8 Web interface of COLDVL. 30
2.9 Web interface of the objectives of the Direct mapped cache experiment in COLDVL. 31
2.10 Web interface of the test plan and assignments of the Direct mapped cache experi-

ment in COLDVL. 32
2.11 Web interface of the procedure of the Direct mapped cache experiment in COLDVL. 33
2.12 Web interface of the quizzes of the Direct mapped cache experiment in COLDVL. . 34
2.13 Basic components of COLDVL and interactions with end users. 34
2.14 User feedback of some questions asked. 35

3.1 Wire values within a circuit before and after simulation (I1, I2 denotes inputs and
D1 to D5 denotes display units) . 38

3.2 Design hierarchy supported by the COLDVL tool. 39
3.3 Graphical interface of the COLDVL tool. 42
3.4 Wave forms of input-output components of a JK flip flop. 45
3.5 Interface for specifying control state chart. 46
3.6 Interface to load working working memory. 47
3.7 Working memory content. 48
3.8 Structural verilog code generated for the circuit. 49
3.9 A circuit exported to the pdf format. 50
3.10 System architecture of the COLDVL tool. 51
3.11 4-bit carry-look-ahead adder designed in the COLDVL tool. 52
3.12 4-bit parallel load register designed in the COLDVL tool using D flip flop. 53
3.13 Flowchart for shift and add multiplication of two 8-bit data 54
3.14 Accumulator circuit designed for 8-bit shift and add multiplier. 55
3.15 ALU circuit designed for 8-bit shift and add multiplier. 55

iv

LIST OF FIGURES v

3.16 Control state chart for 8-bit shift and add multiplier. 56
3.17 Controller designed for 8-bit shift and add multiplier. 56
3.18 The data path designed for 8-bit shift and add multiplier. 57
3.19 8-bit shift and add multiplier having a controller and data path. 57
3.20 A regular CPU having four instruction with controller unit and working memory. . 58
3.21 Working memory of a regular CPU having four instruction is loaded with binary

program and data. 58
3.22 Working memory content and controller state diagram of a regular CPU having four

instruction after execution of the binary program loaded in the working memory. . 59

4.1 JK flip flop (NAND implementation) after simulation gives indeterminate result. . . 62
4.2 SR flip (NAND implementation) flop after simulation gives proper result. 63
4.3 D flip flop (from SR flip flop) after simulation gives proper result. 64
4.4 Edge triggered D flip flop after simulation gives proper result. 65
4.5 JK flip flop (NAND implementation) after case analysis gives proper output along

with the case analysis log. 66
4.6 (a) JK flip flop before simulation with all unknown value (maroon dashed line). (b)

The same unresolved JK flip flop after standard event driven simulation (blue solid
line and black dotted line denotes logic value 1 and 0 respectively). (c) The flip flop
after case analysis giving definite outputs. (d) Verilog code for the JK flip flop. . . . 67

4.7 Master-slave JK flip flop (NAND implementation) after case analysis failed. 69
4.8 Master-slave JK flip flop (NAND implementation) after ordered simulation with

gate-by-gate reconstruction gives proper result. 70
4.9 An order of building master-slave flip flop which causes malfunctioning circuit

where master gives wrong output (the order of connection is shown with the num-
bers in circle and the value (1 or 0) of a wire is shown). 72

4.10 (a) Malfunctioning master-slave JK flip flop (blue solid line and black dotted line
denotes logic value 1 and 0 respectively). (b) Breath-first levels of the elements of
the master-slave JK flip flop (shown within a brown dashed boundary) for simula-
tion while ordered reconstruction. (c) The same flip flop functions properly after
simulation while ordered reconstruction. 74

4.11 (a) Huffman model. (b) Single length latch, circle denotes gate. 75
4.12 Different sets of elements are shown in a simple schematic circuit conforming to the

Huffman model which are identified during simulation. 77
4.13 Actual circuit corresponding to the schematic presented in Figure 4.12. 79
4.14 (a) Elements within the boundary of the latch connected to clock including clock

element are shown within a dashed boundary and the dotted boundary shows the
gates within the boundary of the latch connected to clock including the clock and
the NOT gate connected to the clock. (b) Latch boundaries excluding the clock and
the NOT gate connected to the clock. (c) Master-slave JK flip flop (shown within
dot-dashed line) is identified from the latch boundaries. 80

4.15 Four latch boundaries with dotted boundaries identified within a shifting circuit. . . 81
4.16 Identifying master-slave pattern within latch boundaries (latch boundaries connected

to clock are shown with dashed boundary, latch boundaries connected to the clock
are sown with dotted boundary and the dot-dashed boundaries indicate the identified
master-slave pattern). 81

4.17 A sample schematic circuit conforming to Huffman model 86

LIST OF FIGURES vi

5.1 Shift-add multiplication (of two 4 bit data) flowchart with right shifting result (C,A,Q)
(reference design) . 111

5.2 Shift-add multiplication (of two 4 bit data) flowchart with right shifting only Q (user
design) . 112

List of Algorithms

1 MainSimulation(DispNetlist) . 68
2 GetLatches(eSet) . 71
3 Partition(Netlist, latches) . 71
4 GetPath(Netlist, n1, n2) . 71
5 PossibleRaceAround(Netlist, latchBoundarySet) 73
6 GetBoundaries(Netlist, latches) . 73
7 IsHuffman(Netlist, outputBounds, combSet) . 76
8 ClassifyCombinationalSet(Netlist, outputBounds, combSet) 76
9 ScheduledSimulation(RPI, seqSet, RSI) . 78
10 EventDriven(X, I) . 78
11 IdentifyFlipflops(Netlist, latchBoundarySet) . 82
12 CaseAnalysis(Netlist, FFset) . 82
13 AllCaseAnalysisFF(Netlist, FF, backEdgesFF) . 83
14 CaseSimulate(Netlist, stack, FF, backEdgesFF, edge) 83
15 CheckAllResolved(Netlist, FF) . 84
16 PopStack(Netlist, stack, FF, backEdgesFF) . 85
17 ReconstructAndResolve(Netlist, FFset) . 85
18 ReconstructFFinOrder(Netlist, FF) . 86

19 EquivalenceChecker(fsmdR, fsmdU) . 103
20 CheckPathEqv(PDi , P

D′
i , V

D
is , V

D′

is , V sp
D
i , V sp

D′

i) 104

21 MatchValue(PDi , P
D′
i , V

D
iE
, V

D′

iE
, CmpV arCorrSet,ObvSetD, ObvSetD

′
) 105

22 ForbidMismatchRange((u, v), (b[k:l], .., b[k′:l′]), Pi, ObvSetD, ObvSetD
′
) 106

23 CheckAllPossibleSpecVal (bT[x:y], P
T
i , val(b

T ′

[x:y])) 106

24 CheckSpecVal(P Tk , P
T
i , b

T
[x:y], b

T ′

[x:y], S
Pi
Rto) . 107

vii

Chapter 1

Introduction

Logic Design and Computer Organization are typically a core course among the electrical and com-
puting science disciplines. This subject requires strong laboratory support for a wide variety of
experiments necessary for developing essential concepts for this subject. An appropriate laboratory
would be well equipped with a variety of IC chips, experimental setups (having LED indicators,
DIP switches, clock and signal generators, regulated power supplier, digital oscilloscopes etc.). Ac-
cess to equipments in such a laboratory is typically regulated. The regulated access to the hardware
laboratory may get influenced by several factors such as, chips being expensive, chips and equip-
ment depreciating with usage, limited availability of timetable slots for the use of the laboratory and
inadequate availability of laboratory instructors throughout the year. Also, small colleges in devel-
oping countries may not even have adequately equipped laboratories. These circumstances throw
up challenges for satisfactory conduction of a laboratory to support logic Design and Computer or-
ganization. A virtual laboratory environment dependent on limited Internet access and a personal
computer to conduct relevant experiments in a way that is similar to a conventional laboratory but
without the associated encumbrances is an inherently attractive solution.

Apart from the conduction of experiments, their evaluation is another important aspect, to track
student learning. Manual evaluation, which is currently, the main mechanism is slow, manpower
intensive and limited in availability. Simulation based evaluations have limited ability to uncover
various problems. Small and simple circuits may be easily simulated for evaluations, but larger
circuits are harder to test. Generation of the test plan, is in itself, a challenge. Because of these
limitations of simulation based evaluations, an automatic evaluation technique would be desirable.

We now introduce some terms that are related to the work reported in this thesis. Thereafter,
a survey of related literature is presented, leading to motivation and objective of this work. This
chapter is then closed with a description of the contributions of the work done and an organization
of the rest of the thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Logic Simulation
As the term simulation implies to mimic a real word scenario, it is extremely important to understand
the functional behaviors of the entities which are being simulated. For logic simulation, which is
used to simulate the operational behaviors of digital circuits, it is necessary to correctly schedule
simulation in addition with modeling the behaviors of gates, nets, inputs and outputs. The logic
simulation technique can use different logic values for the signals in order to represent true, false,
unknown states, error conditions etc. Following are some of the widely used simulation techniques.

Event Driven Simulation: In event driven simulation [13], events are defined in terms of
change in signal value in a net. Whenever a change in net value is detected the simulation of
gates are scheduled and this scheduling is done dynamically that it can not be predicted before hand
while parsing the circuit. This simulation is being used in simulators for its elegance in selective
trace approach which simulates only the active components which are affected by the change in
the net value. Simulation of synchronous, asynchronous circuits and timing analysis are also being
handled in this simulation. However, in spite of its elegance of the approach, the approach has a
major drawback. As, not all the events produced by the evaluation of active components are neces-
sary to produce useful output this approach generates some unnecessary events thus degrading the
performance of the simulator.

Topologically Ordered Levelized Simulation: In literature it is also known as levelization
simulation. In levelized simulation [60], all the components are given levels to ensure that whenever
a component is simulated all of its inputs are available. This approach is very efficient as it does not
generate unnecessary events and does not employ event management. However, this approach has a
severe restriction because of its levelization process, it works correctly only for acyclic circuits i.e.
combinational circuits. Whenever a circuit contains loop, in case of sequential circuits with memory
elements, this simulation fails.

1.2 Formal Verification
In formal verification, a relationship is established between the specification and the implementa-
tion. The specifications, implementation and the relationship between them, all these three entities
are represented in a formal way so that formal analysis can be carried out. In the context of formal
verification of hardware designs, a hardware is modeled formally, often as a state transition system,
its behaviors are specified in terms of properties and finally, it is automatically checked whether
the model of the hardware satisfies all the specified properties or not. Formal verification ensures
that for a set of given specifications, its corresponding implementation satisfies the given specifica-
tions. The implementation is the actual hardware design for the given specifications i.e. intended
behaviors which the design should satisfy. The notion of satisfaction is defined in terms of holding
a formal relationship between the description of the desired specifications and its implementation.

CHAPTER 1. INTRODUCTION 3

To ensure that the satisfaction relationship between the specification and the implementation holds
good, various notions are used in the formal verification domain. Following are few types of formal
verification technique.

Theorem Proving: The relationship between a specification and an implementation is regarded
as a theorem in logic. Using a proof calculus, the theorem is to be proved. The axioms and assump-
tions which the proof procedure uses are obtained from the implementation. For most of the cases
the logic which is used for the theorem proving goes beyond propositional logic and due to their
undecidability, a completely automated theorem prover can not be used. More details can be found
in [30], [37].

Model Checking: In model checking [30], [9], the specification is defined in the terms of logic
formula. Validation of the logic formula is then determined with respect to a semantic model ob-
tained from the implementation. Although this is a widely used formal verification technique, the
automated circuit evaluation is more of establishing behavioral equivalence.

Equivalence Checking: The equivalence of a specification and an implementation is checked.
This is a restricted form of property checking between the models representing the specifications
and its corresponding implementation. Further details can be obtained from [9].

The model used to represent the expected behavioral specifications and its implementation has
a significant rol in the formal verification method. The present work developed for automatic de-
sign evaluation, uses FSMD (finite state machines with data paths) as the model to represent the
specifications and the implementation. The FSMD is a universal specification model [21] which can
represent all hardware designs. In FSMD, all the data storage and data transformations/status detec-
tion circuits resides in the data path and the sequential behavioral aspects of the circuit are taken care
of in the control path of the circuit. Starting from the initial state, the control path invokes signals
which set up paths for the register transfer operations in the data path as specified in the behavioral
specification. The results of these operations are available to the control path through certain status
outputs of the data path. depending upon the states of these lines, the control path determines the
next state. The entire data path state space is partitioned by some data predicates captured by the
status output lines.

1.3 Literature survey
Typically a virtual laboratory consists of a set of pre-designed experiments along with a simulation
platform to conduct the experiments. There are many virtual laboratories available for different
subjects, however, the available literature for the virtual laboratory in the domain of computer orga-
nization along with digital logic is limited. A virtual laboratory is presented in [49] for digital logic
course which is an animated environment with textual tutorial links, demonstration movies and in-
teractive modules for practice. The virtual lab can be run as a stand alone application or through a

CHAPTER 1. INTRODUCTION 4

Web browser having a simulator incorporated in it for conduction of designed lab sessions. As the
simulation platform is a key component of a virtual laboratory, a brief literature on the simulation
platform has been presented in the next few paragraphs.

Although there are many simulators are available these days, not all are appropriate for edu-
cational purpose. While designing a course, the teaching instructors have a set of pedagogic goals
which must be achieved through the course. This section includes a brief literature survey on logic
simulators suitable for educational purpose on logic design and computer organization. This sec-
tion also includes a brief background on formal verification techniques for automated evaluation of
student designs.

1.3.1 Logic Simulators

Literature includes a vast set of simulation tools in the domain of logic design and computer orga-
nization. [40] and [24] nicely presents a survey on the simulators in the above mentioned domains
including a list of simulators. The simulators can be classified into two broad groups. One group
of simulators allow users to build their own circuit, simulate and reuse their circuits. For example,
SLEEP [44] is a general purpose discrete event simulator where new components can be created
using graphical or textual editor. JHDL [2] is a “structurally based Hardware Description Language
(HDL) implemented with JAVA” that allows users to define circuit using high level language. It also
supports debug and test simulation of circuits using their set of FPGA CAD tools. HASE [1] allows
users to create hierarchical modules, configure and simulate them. Where as, another group of sim-
ulators give only the facility of simulating already built systems. Users can perform testing on those
built-in systems with different test configurations but they can not build their own system and sim-
ulate them or perform testing with different input configurations. Most of the available simulators
belong to this group.

Logisim [16] has simple interface that facilitates the design and experimentation process. The
tool interface uses colored wires for different logic value that are used in the simulator. Three differ-
ent colors are used to indicate three different logic values. Horizontal and vertical wires are drawn
and automatically connected to other components and to other wires. Design components includes
basic gates, tristate gates, flip-flops, input-output components etc and do not contain other complex
components. Although the tool facilitates the hierarchical design through the use subcircuits, the
subcircuits can not be saved as user designed modules which can be saved and reused in other de-
signs. Logisim does not include bus to support bus based design, circuit timings and moreover it
does not deal with simulation efficiency. Due to the design limitations, it is not suitable for bigger
circuits with 16-bit data or more. In Logisim, a circuit is simulated whenever a wire is connected or
any change in input propagates the value through the circuit instantly. This simulation approach has
been tested and found to be failed in case of building master-slave JK flipflop with NAND gates in
a specific order which has been discussed in the section 4.1 Although the case is rare but it can be
manifested during experimentation.

JLS [42] is another educational simulation tool suitable for digital logic designs along with

CHAPTER 1. INTRODUCTION 5

potability feature. The tool includes a graphical editor for creating and editing logic circuits and
then simulator simulates the circuits over a period of time. JLS contains basic gates, tristate gates,
decoder, multiplexer, adder, registers, SRAM, ROM and component connecting mechanism along
with designs with subcircuits. Truth table editor is used to specify an arbitrary number of single-bit
inputs and outputs. The truth table supports logic value true, false and don’t care. The simulator
then simulates the effect of the equivalent logic instead of generating actual gates and wiring to
realize the circuit. This tool also provides a state machine editor where user can specify Moore
type machines and can see the behavior of that machine. Event driven simulation is used in order
to simulate circuits. Although JLS has facility to generate signals from specified state chart, it can
not be used as a controller component along with a data path to build complex circuit designs. For
evaluation purpose, the tool provides a feature to simulate student circuits in batch mode where
simulation runs in back end without the GUI appearing and a final text-based output is generated.
However, the evaluation technique is based on simulation (for limited combinations of inputs) which
does not guarantee the design correctness with the given design specifications.

The SLEEP [44] is another simulation tool having a graphical interface and a list of compo-
nents using which users can build and simulate digital circuits. Parameterized components are also
provided where user can instantiate a component and configure its several parameters such as size,
capacity or other component specific parameters. For example, gates can be instantiated with user
given input pin numbers. The tool also supports the hierarchical design by allowing users to create
their own component and reuse them later. There are facilities to build the components either using
the graphical interface or a given textual editor. The textual editor allows user to build components in
a behavioral level by specifying the component behaviors through Java programming language. On
the other hand, in the graphical editor components can be created on a hierarchical structural level.
From the simulation technique aspect, SLEEP supports multiple simulation execution algorithms
including single thread, multi-thread and distributed. The simulation is carried out interactively ei-
ther event-by-event or multiple-events. However, it does not support wired AND operation as it uses
three levels of values, in order to support bus based design.

Apart from the simulators discussed above, there are some simulators which focus on some
specific topics. These tools provide parameterized components for testing the behavior of the com-
ponent or set of components with different configurations given by the users. Users can change the
parameters of the components and simulate the corresponding effect. However, users can not build
their own hierarchical designs with these kinds of tools. Following paragraphs describes some of
the tools of this category which can aid learning for specific topics from the curricula of logic design
and computer organization.

SpimVista [41] is a program-driven simulator which allows the students to visualize the working
interactions between two levels of cache memories on a graphical interface. The simulator allows
users to specify different parameters such as cache size, replacement algorithm, write-hit pol- icy,
write-miss policy for the hierarchical cache memories and simulates the cache behaviors accord-
ingly. It shows performance statistics for each cache level along with the cache control information
and block content for a given configuration. These features for testing cache memories with sev-

CHAPTER 1. INTRODUCTION 6

eral policies and cache sizes help students to analyze the best set of cache parameters for a given
workload.

[59] introduces a virtual CPU with user defined control unit which can be hard-wired or micro-
coded. Students are expected to define the control unit’s circuits as Boolean formulas or define
the memory array and then test the CPU by loading RAM with the machine code and data. It
is mandatory that student designs must support a machine language specification. After defining
the controller and loading the memory students can initiate the execution of their loaded program
through simulating the virtual CPU and can check how the microcode instructions interpret the
machine program.

[31] presents a visualization tool for Booth’s multiplication algorithm along with an online text-
book. Students can visualize the operational flow of the algorithm on different inputs. The inputs
can be in terms of value or register size. The input values can be either user defined or randomly
generated. Once the operations of the algorithm is started on the inputs, it can be paused and move
to previous or next steps for better understanding. This tool runs in an interactive manner with ran-
domly popping up questions for self-assessment. The tool also includes performance issues of the
Booth’s multiplication algorithm and justification for its correctness.

However, no simulator has been found in the literature to provide all the features supported
in our simulator which we believe to be important to aid learning. The features include support for
case analysis technique and simulation while reconstructing a circuit in an ordered manner, Huffman
structure identification in a circuit, possible race around condition detection in a circuit before simu-
lation, control signal generation tool from user-specified ASM chart and usage of the automatically
generated controller in bigger circuits, bus based design with wired AND operation, structural ver-
ilog netlist generation and saving circuits with user identification. Therefore, we have designed and
developed our own simulator supporting all the aforesaid features including the facility of creating
and reusing encapsulated user module along with providing an efficient simulation platform.

1.3.2 Bit-Level Equivalence Checking

In [50], an equivalence checking method for RTL descriptions that implement arithmetic compu-
tations (such as ADD , MULT) over bit-vectors with finite widths is presented. In this method the
bit-vector arithmetic is modeled as algebra over finite integer rings (where the bit-vector size (m)
dictates the cardinality of the ring (Z2m)) as a bit-vector having size m represents integer values from
0 to 2m − 1 and the corresponding integer values can be reduced to modulo 2m (%2m). Thus the
equivalence checking problem is reduced to checking equivalence between two polynomial func-
tions from Z2n1 × Z2n2 × · · · × Z2nd � Z2m . They formulate the equivalence problem f ≡ g
into proving whether f − g ≡ 0 % 2m. This formulation corresponds to that of testing for mem-
bership in the ideal of all vanishing polynomials over the given finite ring. Such vanishing ideals
have been analyzed and we have derived efficient algorithmic approaches to test whether or not a
polynomial is a member of this vanishing ideal. However, this approach can not handle right-shift
operations which occurs in circuit designs.

CHAPTER 1. INTRODUCTION 7

The equivalence checking method presented in [54] for arithmetic circuits at the arithmetic bit
level includes a boolean mapping algorithm that extracts the network of half adders from a gate
netlist of an addition circuit to get an arithmetic bit-level representation of the circuit. Equivalence
checking of the two circuits is performed on their arithmetic bit-level representation using simple
arithmetic operations. The extraction of half adder networks as the smallest arithmetic units from an
arithmetic circuit is possible in many circuits because arithmetic operations such as addition, sub-
traction, multiplication, division are achieved through the addition operation. However, they do not
identify word operations. They only deal with bit operations and among several bit operations they
identify only addition operation performed between single single bits. The equivalence checking is
performed on the arithmetic bit-level representation of the circuits using commutative and associa-
tive laws. Although their technique can also establish equivalence in multiplier circuits employing
carry-save-addition scheme, Wallace tree, the major limitation of their approach is that it is restricted
to the combinational circuits and thus it can not handle circuits with delay elements, shift operations
and control information.

The equivalence checking methods presented in [33], [32] can account both the data path and
control flow of a behavior. They model the behavior as FSMD (finite state machines with data
paths) which is a universal specification model [21] capable of representing all hardware designs.
In FSMD, all the data storage and data transformations/status detection circuits resides in the data
path and the sequential behavioral aspects of the behavior are taken care of in the control path of
the design. The proposed equivalence checking methods are mainly path cover based approaches
where each behavior is decomposed into a finite set of finite paths and equivalence of behaviors are
established by showing path level equivalence between the two behaviors. Changes in structures are
handled by extending the path segments in an FSMD. The methods can also establish the equiva-
lence between two behaviors with a change in control structures and capable of verifying different
code motion techniques. They use a normalization technique, adopted from [46], to find equivalence
between structurally dissimilar but equivalent arithmetic operations. The normalization process ac-
tually reduces many computationally equivalent formulas syntactically identical as it forces all the
formulas to follow a uniform structure. However, in case of handling code motions, as a path seg-
ment cannot be extended across a loop, the methods fail in the case of code motions across loops,
when some code segment before a loop body is placed after the loop body, or vice-versa. A value
propagation based equivalence checking method is proposed in [10], [11] can efficiently handles the
code motion across loops. They also model the behaviors as FSMDs adopts the path cover based ap-
proach including the normalization technique to determine equivalence among different arithmetic
operations and behaviors with different control structures. Code motions across loops is verified
through propagating the variable values through all the subsequent path segments if mismatch in
the values of some live variables is detected. Repeated propagation of values is performed until an
equivalent path or a final path segment ending in the starting state is reached and if the propagated
mismatched value is not resolved after all possible propagation then non-equivalence is detected be-
tween the behaviors. The variables whose values are propagated beyond a loop must be invariant to
that loop for valid code motions across loops. The loop invariance of such values can be ascertained

CHAPTER 1. INTRODUCTION 8

by comparing the propagated values that are obtained while entering the loop and after one traver-
sal of the loop. However, the normalization technique used in the equivalence checking methods
presented in [33], [32], [10], [11] is restricted to the arithmetic operations over the integer domain
and thus the methods are also restricted to the integer arithmetic operations and can not handle the
bit-level operations such as bit-level arithmetic operations, logical operations, shift operations and
some other operations such as concatenation, extraction in a design. Moreover, the use of infinite
precision of data, these methods fail to identify overflow/underflow of the arithmetic operations in
the bit-level.

1.4 Motivation and objective of the present work
As computer hardware is the fundamental to any types of computing, it is necessary for the students
to know the basic internal working principles of a computer. The important concepts regarding the
hierarchical functional units of a computer and how the units communicate with each other along
with their performance issues and their practical implications must be understood. Understanding
the basic low level system detail also helps writing efficient computer programs considering limited
scopes of hardware, memory issues etc. Digital logic is the fundamental theory on which hardware
is built independent of the implementing technology. It reveals different layers of abstraction when
complex and larger modules are obtained from smaller modules. It also gives theoretical support
how to implement logic functions in hardware in several ways including the optimal implementa-
tion. Digital logic also introduces the basics for the issues such as timing, spacing, performance,
consistency, stability, reusability, design trade-offs etc. which are more exposed to the students
while teaching computer organization. Therefore, learning computer organization is deeply associ-
ated with the learning of digital logic which involves applying the theory through laboratory exper-
imentation and then evaluation for design correctness. With the advancement of current simulation
technology, laboratory experiments can be virtually accomplished on software tools without employ-
ing overheads and limitations in experimentation in real hardware laboratories. Usage of simulation
tools for experimentation gives more ability to build and edit hierarchical designs, different behav-
ioral analysis. While industrial grade simulation tools are expensive having steep learning curves
and are generally used by experienced designers. On the other hand many of the free tools available
provides limited functionality. Therefore we have developed a virtual laboratory equipped with a
newly developed tool having a design editor at front end with a rich set of design functionalities and
a high performance back end logic simulator with features to aid learning and a set of guided experi-
ments. The motivation of developing a tool with graphical user interface over text-based tool was to
provide a easy circuit debugging feature. Because in a text-based circuit specification environment
finding missing and wrong connections, tracking value propagation through the circuit is quite hard
for students new to the area of study. Apart from providing a generic platform for the experimenta-
tion the evaluation of the performed experiments are also very important. Manual evaluation can be
accomplished for simple experiments, however, sometimes manual evaluation becomes impossible

CHAPTER 1. INTRODUCTION 9

for complex circuits. Simulation can be one way to check design correctness but only for restricted
set of inputs. Therefore, an automatic evaluation technique is required when design specifications
are needed to be verified without simulation which is a big challenge. As a result, formal verification
methods are required to validate a user design against a given set of design specifications. This work
also describes an automatic design evaluation technique for checking design correctness to address
the shortcomings so identified. Objectives of this work broadly outlined as follows along with the
summary of the work in the next subsection.

1. Designing the web interface, the front end of the simulation platform and the flow of learning
activities applying commonly accepted pedagogic principles and to analyze the effectiveness
of their application by gathering and analyzing feedback from prospective end users

2. Designing and developing an efficient simulator which will provide the student with nearly
the same experience of a conventional laboratory and aid his learning of the subject

3. Developing an automatic evaluation mechanism of user designed circuits

1.5 Contributions of the present work
Contributions of the current work are briefly outlined as follows.

1.5.1 Designing the virtual laboratory

• The design of Computer Organization and Logic Design Virtual Laboratory (COLDVL) is
based on some pedagogic considerations which are assimilated through designing the web
interface of the virtual laboratory, a set of pre-designed experiments based on a concept hi-
erarchy (derived from various text books), a sequence of learning activities based on some
commonly accepted pedagogic principles.

• COLDVL is being deployed in several colleges and institutes and satisfactory feedback from
prospective end users are gathered and analyzed indicating the effective assimilation of the
pedagogic considerations. The COLDVL is also been used in IIT Kharagpur, to conduct the
undergraduate and postgraduate level laboratory course.

1.5.2 Development of front end features of COLDVL tool

• A design editor is developed containing repertoire of components (several building blocks
and reference designs, input-output components, different types of adders and combinational
components, sequential components) along with a rich set of design functionalities to enable
students to design their own hierarchical circuit modules.

CHAPTER 1. INTRODUCTION 10

• For complex experiments, such as CPU design, the tool provides an interface for specifying
the controller abstractly as an algorithmic state machine (ASM) and another interface to load
binary program to a working memory to check the behavior of the designed CPU.

• The features which are developed to aid learning and teaching includes creating and reusing
user-defined encapsulated modules, saving circuits with unique user design to check pla-
giarism, structural verilog netlist generation, reduction of design complexity of hardwired
control unit through automatic control signal generation from user-given ASM chart, detect-
ing the existence of possible race around conditions in the circuit prior to simulation to help
students learning a safe circuit design, ease of error analysis using different colored wires in
a circuit.

1.5.3 Development of back end features and techniques of COLDVL
tool

• A five valued logic is employed in the simulator to support tri-state logic, wired AND opera-
tion for a bus based design. Simulation dynamically changes the visual aspect of the circuit
and delivers the final result.

• The logic simulator of the COLDVL tool uses an efficient simulation algorithm which is
a combined approach of general event driven simulation [13] and levelized simulation [60]
to achieve better simulation performance for sequential circuits conforming to the Huffman
model [29].

• In order to apply the efficient simulation algorithm, the conformance of a circuit with the
Huffman model is checked by identifying the structural storage elements in a netlist to help
partition the netlist into a combinational cloud and the sequential storage components in a
gate level circuit.

• Use of structural master-slave flip flops is identified, as a way to warn for the possible pres-
ence of race around conditions (when non-master-slave storage elements are used).

• For simulation of pure combinational circuit, levelized simulation technique [60] is used and
sequential circuits not conforming to the Huffman model are simulated with regular event
driven approach.

• During simulation, some nets driven by flip-flops may assume the logic value unknown (in-
dicating either 0 or 1) as the default initial value. Under some circumstances, the output of
the overall flip-flop may assume a specific 0/1 logic value nevertheless. Standard event driven
simulators are found not to account for this possibility even though these circuits should pro-
duce definite outputs (for the given inputs) on bread board. This results in a discrepancy
between results observed in real circuits versus simulation output, creating a learning gap.

CHAPTER 1. INTRODUCTION 11

Our simulator does a more intelligent case based analysis and resolves the output to specific
logic values that would be actually assumed.

• When resolution by case analysis is not possible, specific desirable outputs are obtained by
simulating a sequence of netlists that would result if the flip-flop were to be reconstructed
gate by gate. In such a situation, our tool provides a better learning experience for novice
students.

1.5.4 Development of automatic design evaluation technique

For evaluation of student designs, a new path based bit-level equivalence checking method is devel-
oped having the following aspects.

• In the proposed bit-level equivalence checking method, the arithmetic, logical, bit-wise and
shift operations are handled at bit level. It is to be noted that the arithmetic operations over
integer domain are different from the arithmetic operations at bit level due to the possible
occurrence of overflow or underflow. In addition, two dissimilar bit-level operations may
actually be equivalent. The proposed equivalence checker also deals with that problem of
identifying equivalent operations from structurally different operations.

• The equivalence checking task is performed between two designs. Two designs are equivalent
if the corresponding variables (variables which present in both the designs) contain same
value in all possible cases. In some designs, output(s) of an operation is assigned in more
than one register, in such case, there will not be any one-to-one variable correspondence
. Instead, the composition of those variables should be considered to check value with the
corresponding single variable or the composed variable. The current method also handles this
situation.

• In some complex designs such as multipliers and dividers, output(s) may be iteratively built
bit by bit through different shift operations in a loop. The registers which hold the final results
(after loop iterations) may initially hold different values. Moreover, when this situation occurs
on composed variables then the equivalence checking task becomes more challenging. In
some of the such cases, the proposed equivalence checking method tries to identify the data
shifting characteristics in each path of a loop based on some design observations using some
predefined rules.

• The equivalence checking is accomplished without unrolling the loops of the designs which
may face problems when some operations after the loops uses the bits of some registers whose
value can only be obtained after full iteration of the loop. Before the full loop iteration, all of
the operand bits may not hold valid data and thus may lead to the failure of the equivalence
checking. In such cases, a mechanism is developed to infer the data range after the completion
of a loop.

CHAPTER 1. INTRODUCTION 12

• The equivalence checking method decomposes the designs into path segments and uses sym-
bolic execution of the paths in order to check equivalence. However, in some cases, the
equivalence checker does a special analysis to determine the specific value of a symbol in all
possible cases through extending the paths across a loop and symbolically execute them to
find equivalence.

• The proposed bit-level equivalence checking method also captures the similar operations per-
formed within a design path but in different clock cycles.

1.6 Organization of the thesis
Rest of the thesis is organized as follows.

Chapter 2 (Design Issues of the Virtual Laboratory to support Logic Design and Computer
Organisation) This chapter will contain the pedagogic Objectives of COLDVL, achieving of
the objectives of COLDVL defined so far, web interface of the COLDVL and the validation
of the achievement of the pedagogic objectives.

Chapter 3 (Front end of the COLDVL tool) This chapter will contain the description of the fea-
tures of the font end of the tool and the brief description of the usability of the tool in post-
graduation laboratory course at IIT Kharagpur.

Chapter 4 (Back end of the COLDVL tool) This chapter will contain the description of back
end features, techniques developed along with algorithms and results obtained for some test
benches run on the tool.

Chapter 5 (Checking Student Designs for Correctness) This chapter will contain challenges ad-
dressed, methodologies, algorithms along with illustrative example and finally the implemen-
tation and results.

Chapter 6 (Conclusion) A summary of work done and an overview of possible future extensions
are given in this chapter.

Chapter 2

Design Issues of the Virtual Laboratory
for Logic Design and Computer
Organization

2.1 Introduction
This chapter is concerned with the design issues of the virtual laboratory. As learning through the
online educational modules have significant dependency on the learners’ self-motivation, therefore
the design of the educational module should be done very carefully. The module should have a
predefined pedagogic considerations and the design of the module must be done in a way that it as-
similates the considerations. This chapter describes the pedagogic considerations, the design of the
virtual laboratory to assimilate those considerations using some commonly known pedagogic prin-
ciples. The web interface and the set of pre-designed guided experiments of the virtual laboratory
are described. Satisfactory user feedback have also been gathered and analyzed.

2.2 Pedagogic considerations of COLDVL
As a virtual laboratory attempts to assist in learning through technology, it should be designed in a
systematic manner so that it can fulfill its basic purpose of being a teaching system. Literature on e-
learning shows that effective learning can be achieved by such teaching systems through considering
several learning theories as learning theories help defining educational frameworks by considering
several parameters which affect the learning process [56]. An important aspect of designing such
teaching system is to determine the pedagogic considerations of that system [28]. Therefore, before
designing and developing the COLDVL, some pedagogic considerations have been defined which
are identified based on the studies on learning mechanisms and e-learning. The following paragraphs
describe the set of pedagogic considerations of the COLDVL.

14

CHAPTER 2. DESIGN ISSUES OF COLDVL 15

The IEEE/ACM Computing Curricula 2001 report [57] presents a set of curriculum activities
for undergraduate students of computer science. It says that all students of disciplines related to
computing must understand the basic internal working principles of a computer. They should have a
clear concept regarding the hierarchical functional units of a computer and how the units communi-
cate with each other along with their performance issues and their practical implications. In addition
with this, [55], [48] depicts that not only learning the major concepts but understanding the existing
relationships among those concepts of a subject contributes to an effective learning leading to better
overall understanding of the subject. These issues are collectively addressed as ordering of learning
concepts.

Learning is a process of acquisition of knowledge which involves several cognitive resources of
the brain. Literature includes a vast set of study on mechanisms of learning and several cognitive
parameters affecting the learning process [55], [23], [22], [43], [48], [62], [25] etc. Research works
show that learning is directly related with the attention paid by the learner to the topic [23], [22].
Existing knowledge of a learner has also been found to have significant impact on learning [55],
[18]. Apart from issues such as attention and existing knowledge, application of acquired knowledge
through practice has a prime role on the learning process itself [55], [47], [51]. Results of studies on
these aspects have been incorporated and evaluated collectively as cognitive issues for learning.

As one of the basic goals of a teaching system is to enhance learning [28], three important
concepts of learning from [14] have become another pedagogic consideration for COLDVL. The
concepts considered are as follows:

• Learning is enhanced when learners are actively involved in the learning activity.

• Learning can be promoted by a structured and sequential work flow of the learning activities.

• Recording designs of learning for sharing and reusing in future helps to promote learning.

Apart from these issues, achievement of learning objectives in a virtual learning environment are
greatly effected by personal motivation [28]. These studies are implemented in COLDVL to enhance
learning along with promoting motivation in learning enhancement through sequence of learning
activities.

2.3 Assimilation of pedagogic considerations into COLDVL
This section describes several design aspects of COLDVL for assimilations of the aforesaid peda-
gogic considerations using commonly accepted pedagogic principles.

2.3.1 Ordering of learning concepts

[55], [48] depict that understanding not only the major concepts but also the existing relationships
among those concepts of a subject contribute to an effective learning. Therefore, the order in which

CHAPTER 2. DESIGN ISSUES OF COLDVL 16

learners are introduced to the major concepts of a subject has a great importance. As a result, design-
ing experiments for logic design and computer organization virtual laboratory requires a systematic
approach. Because, each experiment focuses on some specific concepts and the whole set of experi-
ments builds the understanding of the subject gradually. Learning evolves through each experiment,
can follow either top down or bottom up approach. In any one of the approaches, some experiments
have prerequisite of some other set of concepts for the clarity of understanding. For example, de-
signing of a basic CPU requires the concepts of data processing, data storage, data transfer to be
known in advance. As a result, the experiment for basic CPU design, in either top down or bottom
up approach requires to cover the aforesaid concepts in prior, otherwise the design of experiments
will fail to achieve step wise learning which is very necessary to develop a good understanding of
the relationships among the concepts of a subject. For example, if a set of experiment is designed
in order such that the Booth’s multiplier is introduced before introducing the concepts of registers,
counters, adder/subtracter and as Booth’s multiplier multiplier requires registers, counter, adder/-
subtracter components, therefore this design of experiments does not yield step wise learning.

To ensure the step wise learning of concepts, a concept hierarchy has been derived from several
text books [38], [26], [52], [39] to guide the order of learning concepts, shown in Figure 2.1. This
hierarchy depicts which concept must be known before which set of concepts. Each of the nodes of
the hierarchy is a concept regarding digital logic and computer organization. The concepts which
are bounded with an ellipse are the epochs which essentially means the significant and matured con-
cepts of the subject. The concept hierarchy is directed and learning of any concept in the hierarchy
must be followed by learning its parent concepts. The parent concepts which are connected with a
dashed edge are not necessary to be known in prior, however, knowing this in advance is helpful.
Some abbreviations have been used for the clarity of the diagram, such as, FF and FSM denotes flip
flops and finite state machine respectively; HA, FA, RCA, CLA, WTA are for half adder, full adder,
ripple-carry adder, carry-look-ahead adder and Wallace tree adder respectively. However, CSA de-
notes carry-save-addition scheme; combX, BoothX abbreviate combinational multiplier and Booth’s
multiplier respectively; Add/Sub and ALU is for adder/subtracter unit and arithmetic logic unit re-
spectively. This concept hierarchy ensures the step wise learning of concepts, for example, it depicts
that before doing Booth’s multiplier a student must know the concepts of adder/subtracter unit, con-
troller design, registers and counters and so for the other experiments. Designing experiments by
following this concept hierarchy will also help reducing the creations of confusions associated with
a random design of experiments. The set of experiments of COLDVL has also been designed on
the basis of this concept hierarchy. The epochs bounded with blue lines are the concepts which is
assumed to be known to the students, therefore, no experiments have been designed focusing on
those concepts. The next paragraph describes the set of experiments of COLDVL developed using
the concept hierarchy which also covers some important topics mentioned by the IEEE/ACM Com-
puting Curricula 2001 report [57]. Although, the IEEE/ACM Computing Curricula 2001 report [57]
contains many important topics, this virtual laboratory includes the guided experiments on the topics
covered in the laboratory curriculum of Indian academics [3]. However, the one of the future work
would be including more experiments on some other topics.

CHAPTER 2. DESIGN ISSUES OF COLDVL 17

Basic CPU

Datapath
(with bus)

Register

FF

Tristate logic

RCA

Controller

BoothX

CLA

Add/Sub

Counter

Bus

Cache

Memory

WTA

CombX

ALU

FA

Logic gates

FSM

Mux/Decoder

Basic M/C level
programming

HA

CSA

Logic function
netlists

Figure 2.1: Concept hierarchy.

Set of experiments Currently COLDVL contains 12 experiments which covers the important
topics of digital logic and computer organization mentioned in the IEEE/ACM Computing Curricula
reports [57], [58] which includes logic system design, arithmetic unit design, memory design, data
caching, control unit design, bus operation, CPU organization. The order of the experiments pre-
serves the dependencies among the concepts depicted in the concept hierarchy shown in Figure 2.1.
As the ultimate goal of logic design and computer organization course is to teach the functionalities
of a CPU, the goal in the concept hierarchy is also to reach out the basic CPU concept from the bot-
tom level concepts. In the concept hierarchy, the pathways from bottom level concepts to the CPU
design concept consist of some moderate number of intermediate concepts and accordingly the in-
termediate concepts have been covered by the experiments. Therefore, the concepts from the bottom
level to the CPU design build through the sequence of experiments. Likewise, not only the CPU,
paths from the base to the other experiments, apart from the successors of the assumed concepts,
contain intermediate experiment/s. As a result, the experiments gradually reveal the interdepen-
dence of an experiment at higher level. All the experiments are necessary as an experiment develops
the base for another experiment at higher level except the Wallace Tree Adder experiment, because,
no experiment has any dependence on Wallace Tree Adder. Although cache concept does not hold
any dependence for any experiment, it is an important concept for operational performance issues in
any standard CPU. Booth’s Multiplier and Combinational Multiplier also do not have dependence
edges for CPU in the concept hierarchy. However, these are important concepts for the data paths of
a standard CPU. Moreover, Booth’s Multiplier highlights the design aspects of a system with con-
troller and data path. Therefore, these two experiments are categorized as necessary experiments.

CHAPTER 2. DESIGN ISSUES OF COLDVL 18

One important aspect of computer organization course is to provide the understanding of the internal
hierarchical nature of the subsystems of a computer system. The experiments of COLDVL evolves
in such a way that gradually reveals the inter-dependence of the subsystems of a system which itself
is hierarchical in nature up to a certain elementary level such as gates and flip-flops. The focus and
objective of the experiments are multifold. Where, some of the experiments focuses on a single con-
cept such as data processing, data storage, data caching, CPU organization, some other experiments
illustrate the inter-functionality of these individual concepts. Some subsets of the set of experiments
also address the performance issues of the alternate designs. The set of experiments includes.

1. Ripple Carry Adder, shows how the carry ripples through the adder. The concept hierarchy
shown in Figure 2.1 depicts that the concept of carry ripple has dependence on the concept
of full adder which in turn is dependent on half adder and finally knowledge of logic gates is
necessary to know what a half adder is. This is the first experiment of COLDVL and it has
been assumed that students have the basic knowledge of logic gates and full adder. This is
a necessary experiment as a significant data processing concept situating at a higher level in
the concept hierarchy goes through the ripple carry adder concept.

2. Carry-look-ahead Adder, focuses on how computing carries in parallel using carry generate
and propagate functions greatly speeds up the overall computation over Ripple Carry Adder
design technique. The concept of carry look ahead is built on top of the concept of carry
rippling in the concept hierarchy. Therefore, this experiment is designed after the experiment
of Ripple Carry Adder and it is necessary to do Ripple Carry Adder experiment in order to
accomplish this experiment. This experiment is also categorized as necessary.

3. Wallace Tree Adder, helps understanding the concept of reducing gate delay by using tree
of adders instead of using cascaded full adders. This experiment focuses on the design of
an adder with less height. According to the concept hierarchy, this experiment requires the
knowledge of carry look ahead adder, therefore, it is placed after Carry-look-ahead Adder
experiment. It is not a necessary experiment.

4. Synthesis of flip flops, highlights the basic concepts of flip flops as elementary storage units,
it also focuses on race around condition occurring in flip flops and the avoidance of race
around condition through the master-slave design. This experiment also focuses on some
deeper concepts such as inconsistent initialization problem in master-slave JK flip flop design
which may cause the flip flop to malfunction. This topic is further elaborated in the subse-
quent sections. and need for asynchronous preset-clear to resolve inconsistent initialization
in master-slave design. This is an independent experiment without having any dependency on
combinational adders, although it requires the basic knowledge of logic gates which has been
assumed here to be known to the students. However, COLDVL adopts a bottom-up approach
for introducing the concepts, as a result, sequential circuits are introduced after developing
some familiarity in combinational domain. This is a very important experiment and quite
necessary one.

CHAPTER 2. DESIGN ISSUES OF COLDVL 19

5. Registers and Counters, illustrates the sequential aspects of digital circuits such as registers,
counters along with their data storage and counting capabilities respectively. Design of reg-
isters and counters uses the concepts of flip flops and logic function net lists. Flip flops are
introduced in the previous experiment and logic function net lists are assumed to be known to
the students. This is also a necessary experiment because many complex sequential circuits
most frequently use registers and/or counters in their data paths.

6. Combinational Multiplier, shows how to design a multiplier from an array of AND gates,
half adders and full adders by unrolling the multiplier loop using the carry save addition
scheme. This experiment requires the knowledge of carry save addition scheme which in
turn, requires the prior knowledge of full adder. The experiment introduces the carry save
addition scheme in its theory and as mentioned before full adder is assumed to be known to
the students. Although this is a combinational circuit, however, it is placed after two basic
experiments on sequential circuit and before Booth’s Multiplier experiment because it is a
multiplier circuit and by performing two consecutive experiments on multiplier, students will
essentially be introduced to different design aspects and their performance issues. This is a
necessary experiment.

7. Booth’s Multiplier, focuses on the design of a multiplier to multiply any combination of
positive and negative numbers, which is a sequential circuit using Booth’s multiplication al-
gorithm where as the Combinational Multiplier is purely a combinational circuit. Booth’s
multiplier illustrates how the data processing unit including data storage units works accord-
ing to the control signals generated by the control unit to produce the final result. Successful
accomplishment of Booth’s Multiplier depends on the prior knowledge of adder/subtracter,
registers, counters and controller design. Therefore, it is placed after the experiments on
adders, registers and counters. This experiment is important because in addition with focus-
ing on the implementation of the multiplication algorithm, it also highlights the controller
design and data path design aspects for a sequential circuit.

8. Arithmetic Logic Unit, shows the design issues of data processing units. The concept hier-
archy depicts that a student must know the basic concepts of logic function net lists, mul-
tiplexer/decoder units which is assumed to be known in prior and the adder/subtracter units
including ripple carry adder which have been covered in the previous experiments. It also
shows that the prior knowledge of carry look ahead adder will be an extra benefit which is
also made familiar to the students earlier. This is also categorized as necessary experiment as
data processing unit is an important part for the CPU design.

9. Memory Design, focuses on the design of single bit and multiple bit random access mem-
ories. The concepts of flip flops and multiplexer/decoder must be known before designing
the memories. flip flops are introduced in the earlier experiments where as as mentioned be-
fore multiplexer/decoder units are assumed to be known to the students. Memory design is
necessary experiment.

CHAPTER 2. DESIGN ISSUES OF COLDVL 20

10. Associative Cache Design, shows how data caching with parallel search technique improves
performance. This experiment does not incorporate any replacement policy. It illustrates the
drawbacks of this design from hardware point of view. Cache memory design is dependent
on the concept of memory design which is covered earlier, logic functions net lists which is
assumed to be known and tristate logic which is supported by the COLDVL simulator. This
is also a necessary experiment.

11. Direct Mapped Cache Design, focuses on the another cache design which reduces the hard-
ware complexity over Associative cache Design with introducing some other limitation. This
experiment also does not incorporate any replacement policy. The concept hierarchy does
not further elaborates the cache concept. Even if for the direct memory cache, the dependen-
cies for cache concept hold. This experiment is included to focus on the performance issues
between two different designs of cache memory. It is also a necessary experiment.

12. CPU Design, focuses on the basic functionality, organization and architecture of a single
instruction CPU. This URISC (ultimate reduced instruction set computer) architecture can
give a good understanding of the working principles of a computer in a lucid way. A clear
understanding of the basic structure and functionality from this architecture will increase
insight into the system bottlenecks and alternative designs. Because different cases reveal
that changes in the system design have greater effect on the whole system performance rather
than changing the individual components of that system [53]. To design a basic CPU a student
must know the data transfer and data storage concepts for building data paths, data processing
aspects, controller design issues and basic machine level programming. It is assumed that
students are exposed to the basic machine level programming and the other concepts are
already introduced in the earlier experiments. Although, the design of a basic CPU does not
directly dependent on the knowledge of basic machine level programming, it is necessary
for checking the functionality of the CPU as the whole purpose of the CPU is to execute
programs. Naturally, this becomes a necessary and very important experiment. that increased
system capability and fail-safe characteristics are achieved by changing the system design
rather than changing the speed and reliability of individual components [53].

2.3.2 Addressing cognitive issues for learning

Attentional issues Literatures on cognitive science include a vast set of research work on atten-
tional mechanism revealing its several aspects including its relation with learning. Attention can be
defined as the mechanism of selecting perceptual inputs to be processed by our bounded cognitive
resources of the brain among the enormous external stimuli to prevent overloading [43]. [23], [22]
address how learning is achieved with the help of attentional procedure. However, lack of attention
to the intended topic of learning degrades learning. [61] shows that if the topic to be learned is
presented in a complex manner having focus on too many aspects at a time, learners will filter out
some aspects due to the limitations of the cognitive resources of the brain. As a result they learn only

CHAPTER 2. DESIGN ISSUES OF COLDVL 21

those aspects which they choose to be attentive to. This selectiveness severely degrades the learning.
Hence, a learning environment should be simplified and should have a very specific focus [62]. The-
ses issues are considered during the design of experiments of COLDVL and specifying the design
objectives for each experiment. Each experiment focuses on a particular topic. For example, some
of the experiments focus on the single concept such as data processing, data storage, data caching,
CPU organization, where as, some other experiments illustrate only the inter-functionality of these
individual concepts. Some subsets of the set of experiments address the performance issues of the
alternate design. However, no experiment is designed to focus on too many significant aspects. The
focus of an experiment is clearly mentioned in the objectives of the experiment. Moreover, every
experiment contains a guideline to check the key behavior of the design. This guideline has been
included in order to draw the attention of the students to the significant aspects of a particular topic.

Addressing misconceptions According to [12], [18], [55] prior knowledge of a learner has a
significant impact on learning. If the topic to be learned matches with the existing knowledge of a
learner then the learning is likely to be smooth and rapid. However, learners having unaddressed
misconceptions tend to memorize the new facts which they may soon forget and less likely to apply
them in relevant problem solving. [25] shows that directly addressing misconceptions significantly
improves learning. Using this research outcome, COLDVL introduces test plan for every experiment
to address some possible misconceptions. As, COLDVL is a virtual laboratory for teaching logic
design and computer organization, students are most likely to have a parallel theoretical course on
the subject. Therefore, during coursework, students may develop misconception or have inadequate
knowledge. Hence, test plans are designed in such a way that they highlight the important features
of the experiment topic which may, in turn, address the possible misconceptions about the topic.

Addressing learning mechanisms There are two learning mechanisms, which are acquisition
of schema or cognitive construct and transformations of learned procedures from controlled to au-
tomatic processing [55], [55], [35], [47], [51]. Schema is the organization of information units in a
way which depict how they will be dealt. These schemas provide basic unit of knowledge and these
have a significant contribution in how new information will be dealt. After the schema acquisition,
the acquired information can be processed either in a controlled way or in an automatic manner
in any cognitive activity. Controlled manner require considerable amount of thought or conscious
effort, where as, automatic processing occurs without conscious effort. A well learned aspect can
be handled in automatic manner. When a concept is first learned which is essentially the schema
acquisition and the learner tries to solve a problem using that newly learned concept, that problem
solving task requires significant amount of cognitive efforts which can yield slow or erroneous per-
formance. However, with time and practice, as the learner gets accustomed with the subject domain
more and more, the skill for using the acquired schemas will get better, which essentially means
that attention and other cognitive resources required for the process are reduced and the process be-
comes more automated. A teaching system for engineering students must focus on this automation
process as students in engineering paradigm are expected to solve problems which require ability to

CHAPTER 2. DESIGN ISSUES OF COLDVL 22

apply knowledge systematically and creatively [27]. Moreover, this automation procedure is very
important after the schema acquisition as it can affect the whole learning including the schemas.
These issues are addressed while designing the web interface of COLDVL. Each experiment inter-
face includes a brief theory along with circuit diagram and reading materials to help constructing the
schemas. Moreover, the focus of the experiments of COLDVL evolves from easier to complex topic
are designed in a way, using the concept hierarchy mentioned earlier, so that dependency among
the concepts are preserved and building of a new schema gets supported by the existing schemas.
The web interface of each experiment also includes test plans, guideline for checking behavior, as-
signments, rich set of quiz questions including multiple choice and subjective questions have been
included so that the learning can be practiced from different angle being more accustomed with the
subject domain leading to the aforesaid automation procedure. Assignments are designed in such a
way that by performing them, a student not only practice their learning but also become more famil-
iar with several design aspects of the experiment topic, which will in turn, improve their problem
solving skills while uncovering their innovation. As the simulator provided by the COLDVL gives
a generic simulation platform, students can also perform their own experiments apart from the de-
signed experiments and assignments in COLDVL, this gives them enormous scope to nourish their
learning at any time.

2.3.3 Learning enhancement through sequence of learning activities

The sequence of learning activities in COLDVL have been designed based on the concepts on learn-
ing enhancement presented in [14] which consists of a basic stage for all students and an advanced
stage for more curious student. Learning evolves with the learning activities performed in the sim-
ulator in each stage. After a successful completion of a stage, students can access their learning
through quizzes given for each stage in every experiment. The overall learning grows with the given
set of experiments. However, learning is not confined with the given set of experiments as COLDVL
simulator gives a generic platform for simulation. For the learners, COLDVL provides an enormous
possibility to exercise their understanding, test their innovation and clear their theoretical doubts by
practically simulating them. Following is the sequential description of the learning activities associ-
ated with every experiment through the stages of learning which in turn, helps students accumulating
knowledge and concepts, in addition with uncovering their potential and creativity. The sequence
of learning activities is shown in Figure 2.2 where the activities in blue rectangles are the major
activities of the stages.

Sequenced learning activities of the basic stage

1. Learners are first recommended to go through the theory, objective and procedure and then
perform the experiment on the working module provided in the simulator. As the work-
ing module is encapsulated and designed in the form of a chip, its internal circuit design is
abstracted from the user, as a result, when a student will successfully test the input-output be-
havior of the module with being guided by the given instructions for checking key behavior
and test plan, it will activate their inquiry arousal and thus attract the attention of the learner

CHAPTER 2. DESIGN ISSUES OF COLDVL 23

to the relevance of the topic. One of the major goal of any teaching system is to bring positive
changes in the motivation of the learner to promote learning. While designing COLDVL,
the ARCS motivational model [34], [6] are considered, where learners’ attention and topic
relevance form the basis of the model.

2. The successful performance of the experimentation on the working module along with the
enhanced understanding for the topic, will help learners to increase their self-confidence. Be-
cause “being successful in one learning situation can help to build confidence in subsequent
endeavors” [8]. And self-confidence is an important factor to increase motivation in ARCS
motivational model [34] which essentially signifies that learners will be driven towards the
sequential activities of learning to enhance their understanding by performing the same exper-
iment on his own designed modules, self-assessment using quizzes and going through further
reading materials.

3. To perform the experiment on their designed modules, students need to build their own circuit
with the available basic components in the simulator to perform the same experiment with
additional circuit analysis guided by the test plan, checking the value propagation through
out the circuit with different wire colors representing five different levels of values, error
analysis by seeing the intermediate values of different components irrespective of whether
the error is intentional or unintentional. These types of detailed analysis is not possible on the
working module. Performing different kinds of analysis on the circuit, students gain deeper
understanding on that topic. The success in this stage will again lead to the increase in self-
confidence which subsequently drive the learner who is curious, to do the assignments which
will lead to the advanced stage of the learning activity.

Sequenced learning activities of the advanced stage

1. More curious students are recommended to accomplish the assignments using their enhanced
knowledge on that topic. To complete the assignments they will again go through the steps
of building the circuit in the simulator and then testing and analyzing the circuit as stated in
the previous stage. The assignments are designed in such a manner that students need to use
their understanding of the topic along with their creativity in order to accomplish them.

2. Successful performance at this stage along with the self-assessment and further reading ma-
ture their concepts in the topic and encourage them, as stated in previous stages, to save and
reuse their work to build larger circuits and systems.

3. After completing the self-assessments, students are recommended not to stick to the topic of
the experiment but to consider the other experiments to build a larger system. For example,
for experiment ALU design, at the advanced stage of learning activity, students can think
of building a sophisticated ALU (arithmetic and logic unit) system which includes registers,
accumulator, multipliers, adder/subtracter with large number of data bits. This will help
students building their knowledge hierarchically.

CHAPTER 2. DESIGN ISSUES OF COLDVL 24

Assignments

Start experiment

 self confidence learning

 build larger circuit

Creative circuit design

Deeper understanding

Test plan

Theory, Objective, Procedure

 Reuse saved circuit to

Perform experiment on working
 module

Increase in Understanding/

 Save circuit

Simulator

Advanced stage

Basic stage

Guideline to check key

behavioral aspects of the design

Motivation

 Perform experiment, do circuit
 analysis, value propagation check,

 error analysis with given and own test plan

Build own circuit

reading

Quizzes, Further

Figure 2.2: Sequence of learning activities.

At any stage of the learning activities, the students can collaborate with their remote peers,
teachers through the Internet. Students can post their queries and can get answers from teachers or
other peers through the social networking. Teachers’ involvement to reply the queries through the
collaborative learning are insisted to make the learning more effective.

Brief description of learning sequence with an experiment
This paragraph briefly describes the recommended learning activities for the experiment of CPU
design. CPU designing is an important topic in the computer organization course. This experiment
focuses on the basic functionality, organization and architecture of a single instruction CPU. This
URISC (ultimate reduced instruction set computer) architecture can give a good understanding of
the working principles of a basic computer. As recommended, the student will go through the basic
stage of the experiment. He will first go through the theory, objective and procedure and then
perform the experiment on the given working modules. The working modules are encapsulated so
that student can not see the internal circuit detail of the modules. The CPU built up of the working
modules will consists of the single instruction processor module with built in controller. The module
have to be connected to the module provided as the working memory which has to be loaded with
binary program. The loaded binary program will be executed by the CPU module. Students can

CHAPTER 2. DESIGN ISSUES OF COLDVL 25

Figure 2.3: Schematic circuit diagram of the CPU experiment on the given working mod-
ules in the basic stage of learning sequence.

check the memory content after the program execution. The schematic circuit diagram of the CPU
experiment in the basic stage of learning sequence is shown in the Figure 2.3. The two modules
have to be connected as guided in the procedure section along with the pin configuration of the
modules. Using the guideline, the students will accomplish the experimentation in the basic stage.
In this stage, the student can only check the input-output behavior using the test plan given in the
web interface of the experiment.

A successful experimentation will increase the motivation level and the student will design his
own modules from the provided basic modules such as basic gates, input-output units, multiplexers,
tristate buffers, adders/subtracter, comparators, registers etc. in the tool to build his own CPU circuit.
A controller has to be designed in order to build the CPU. The circuit will also contain a working
memory to load with an input binary program. figure 2.4 shows such a circuit designed by the
students before simulation. After building the CPU circuit and loading the binary program, the
student instantiates the simulation and checks the memory content which is shown in Figure 2.5. In
this phase, the student gives several input binary program to see the behavior of the CPU. With the
circuit analysis and checking the value propagation through the circuit, the execution of the program
is observed which then provides a clear understanding of the working functionality of the CPU. State
transitions of the controller of the CPU is seen dynamically during the program execution for better
understanding which is shown in the Figure 2.6. In this stage students will accomplish the quizzes
for self evaluation and go through the recommended study material for further knowledge. After the
experimentations of the basic stage student will gain sufficient confidence, concept and motivation
to perform the advanced stage.

In the advanced stage, the interested student will accomplish harder assignments given in the
web interface. He will then design CPU with multiple instructions with increased design complexity.
Figure 2.7 shows such a CPU built by the students with four instructions with a more complex
controller state diagram and the memory content is also shown. Quizzes are provided for this stage

CHAPTER 2. DESIGN ISSUES OF COLDVL 26

Figure 2.4: User designed single instruction CPU circuit before simulation in the basic
stage of learning sequence.

equipped with harder questions so that students can track their knowledge levels and subsequent
progress by further going through the reading materials. In this stage, the student can apply his
innovations and design the data path and controller of the CPU so that it can function efficiently.

2.4 Web interface of COLDVL
The way pedagogic considerations of COLDVL are assimilated which is described in the previous
section, are reflected in the web interface of COLDVL. Figure 2.8 shows a snapshot of the web inter-
face of COLDVL where as Figure 2.13 shows the organization of the interfaces of the COLDVL. It
contains a set of guided experiments, a logic simulator to perform the experiments, a text manual for
the simulator and some other components such as target users, courses aligned with the COLDVL,
prerequisite software, frequently asked questions, overall objective, feedback etc.

Every experiment consists of the following tabbed sections.

• Theory section contains a brief description of the theoretical aspects about the topic which
the experiment focuses upon.

• Objectives section specifies the clear objective of the experiment. It highlights the special
characteristic of the theoretical aspect for which the experiment has been designed. It also
gives a guideline to examine the behavior of given working module for the experiment as
well as the module designed by the student for that experiment. Figure 2.9 shows the web
interface of the objectives of the Direct mapped cache experiment in COLDVL. It includes

CHAPTER 2. DESIGN ISSUES OF COLDVL 27

Figure 2.5: Memory content of the user designed single instruction CPU after simulation
in the basic stage of the learning sequence.

the following parts (web interface of the test plan and assignments of the Direct mapped
cache experiment in COLDVL in Figure 2.10).

– Test Plan includes several issues for design and analyzing different input-output behav-
iors of the system.

– Assignment Statements gives a set of assignments related to the experiment. Students
are recommended to accomplish these assignments by building their own circuit, simu-
late and examine the desired behavior. These assignments have been designed in such a
way that by performing them a student will be more familiar with the experiment topic
and several design aspects, in totality, these will help students to have a good design
experience and uncover their innovation along with enhanced understanding.

• Procedure section gives a detail step by step guidance to perform the experiment on the given
working module in the simulator. Also it lists the required components to design circuit for
that experiment. Web interface of the procedure of the Direct mapped cache experiment in
COLDVL is shown in Figure 2.11.

• Experiment section contains the logic simulator which simulates the experiments. The sim-
ulator is available in two forms, it can either be launched or downloaded. If the simulator is
launched, every time the user gets the updated version of the simulator automatically but if
the simulator is downloaded and used then user does not get the updated version automati-
cally. The user has to re-download the simulator to get the latest version. The simulator is
capable of simulating circuits other than the designed experiments as it provides a generic
simulation platform for both combinational circuits and synchronous sequential circuits. The

CHAPTER 2. DESIGN ISSUES OF COLDVL 28

Figure 2.6: Controller state transitions of the user designed single instruction CPU in the
basic stage of the learning sequence.

detail features of the simulator are described in the subsequent sections along with relevant
figures.

• Quizzes section includes a wide set of questions for self assessment. Students can asses their
knowledge level at any stage of their learning process. Web interface of the quizzes of the
Direct mapped cache experiment in COLDVL is shown in Figure 2.12.

• Further Reading section gives a set of references such as web lectures, video lectures, books,
URLs to increase their knowledge.

2.5 Gathering of user feedback
COLDVL has been deployed, used and evaluated by several students and faculty members of col-
leges all over India. It has also been used for academic curriculum in IIT Kharagpur to conduct
laboratory courses of undergraduate and postgraduate students. This section briefly presents the de-
signs of feedback questions, deployment of COLDVL for collecting user feedback and analysis of
the gathered feedback.

2.5.1 Designing feedback questions

The feedback questions are designed in such a way that can focus many aspects of of the COLDVL
and the assimilation of its associated pedagogic considerations. One of the questions, “Do you think

CHAPTER 2. DESIGN ISSUES OF COLDVL 29

Figure 2.7: User designed regular CPU with four instructions in the advanced stage of the
learning sequence.

that this kind of virtual lab with experiments and theory will really enhance student learning?” was
designed to focus on the learning enhancement pedagogic consideration and “Do you find this sim-
ulator and the associated experiments will motivate students for self-learning?” was designed to
analyze the implementation of the pedagogic principles for motivating learners. The usefulness of
addressing cognitive issue such as attentional issues, addressing misconceptions, learning mecha-
nisms were analyzed through the questions, “Do you have a clear understanding of the experiment
and related topics?”, “Was the procedure and manual found to be helpful?” and “Do you think doing
experiments through virtual lab gives scope for more innovative and creative work?”

Other questions such as “How much do you like the way of analyzing results and the value
propagation in your circuit through different wire colors?” was designed to know the impact of
different wire colors for multiple logic values in the simulator for effective learning. Where as
“Rate the quality of graphics of the simulator” question was set to analyze whether the simulator
appears visually attracted to the users. However, the assimilation of the pedagogic considerations,
order of learning concepts, does not likely to be validated in a one-day workshop. Therefore, it is
planned to collect feedback from the students who have done a semester course lab with COLDVL.
The following subsections describe the deployment of COLDVL for gathering feedback and the
analysis of the feedback along with the summary of the collected feedback.

CHAPTER 2. DESIGN ISSUES OF COLDVL 30

Figure 2.8: Web interface of COLDVL.

2.5.2 Deployment of COLDVL

The following paragraphs describe where and how COLDVL has been deployed and used to gather
feedback from the prospective end users.

Semester laboratory course COLDVL has been used for conducting laboratory sessions in
the first year M.Tech course ‘Computing systems lab’ for laboratory experimentation in Autumn
session, 2012, 2013, and 2014. Students were given assignments on logic design and computer or-
ganization, after building their circuit and saving with their identification they uploaded the file to the
Web-Based Course Management system [36] of IIT Kharagpur over Internet, for manual evaluation.

In the workshops, COLDVL has been demonstrated very briefly to the participants, then they
used COLDVL, performed various experiments and returned their feedback.

Workshop for faculty members A workshop was conducted in association with a short term
teacher training course, 25-30 June, 2012, at IIT Kharagpur for the AICTE faculty members where
faculty members from different engineering colleges all over India had participated.

Workshops for students Workshops were also organized in engineering colleges of three dif-
ferent universities of West Bengal, India, which includes Jadavpur University, Bengal Engineer-
ing and Science University and West Bengal University of Technology. Students with computer
science, information technology, electronics background participated in the workshops organized
within February to March, 2013, as they all have digital logic and computer organization as their
core courses.

CHAPTER 2. DESIGN ISSUES OF COLDVL 31

Figure 2.9: Web interface of the objectives of the Direct mapped cache experiment in
COLDVL.

Independent participation The COLDVL was used and evaluated independently (without the
benefit of workshop conducted by us) at NIT Jalandhar, India, early in 2013. This participation is of
special significance as students are expected to be able to use the COLDVL to conduct experiments,
as it is available in the Internet without any special guidance from us.

2.5.3 Summary and analysis of user responses

COLDVL gained very positive and encouraging response from both the students and teachers. Feed-
back of students who have done the experiments seriously have been considered (18 excluded). Total
162 feedback sets are analyzed including 129 student and 33 teacher responses.

Upon asking if this virtual laboratory package including the set of experiments and theories will
really enhance student learning, in a scale of yes, to some extent, no, 93.9% participants said yes
and 6.1% said to some extent while none of them said no which strongly indicates the success of
achieving learning enhancement objective. And 86.9% users find the simulator and the associated
experiments will motivate students for self-learning. Figure 2.14 shows some of the significant
feedback along with the following. On asking whether participants have a clear understanding
of the experiment and related topics 82.6% answers were yes and 82.1% participants found the
procedure and manual associated with each experiment helpful. 83.3% participants suggested that
doing experiments through virtual lab gives scope for more innovative and creative work. These
indicate the success in addressing the cognitive issues in COLDVL.

Feedback sets are collected from the students who have done a semester course lab with COLDVL

CHAPTER 2. DESIGN ISSUES OF COLDVL 32

Figure 2.10: Web interface of the test plan and assignments of the Direct mapped cache
experiment in COLDVL.

package to focus the usefulness of the order of learning concepts incorporated. They found that the
order in which experiments evolve from easier to harder concepts help understanding and develop-
ing a structured overview of the subject. They also found the test plan and challenging assignments
associated with each experiment to get introduced with the practical aspects of theoretical concepts
along with fostering their skills to apply their learning.

Most of the faculty members found that COLDVL will be extremely helpful for students not
only in colleges where real laboratory facilities are inadequate but they found it helpful for students
as well as their teachings and worthy of recommending it to their students. Many of the faculty
member participants observed that several important features are integrated into the virtual labora-
tory package. Through the entire workshop session, COLDVL gained high appreciation from all the
participating faculty members.

Students who were not given demonstration, performed well and sent their feedback along with
their saved circuit designs within a short period of time since they started using the COLDVL pack-
age. They have done not only simple experiments successfully, but accomplished complex experi-
ments too. Their activities and feedback show that the web interface of COLDVL stands of its own
that they could easily learn COLDVL and use it to perform experiments.

In the two hours of workshops, after a 30 minutes of demonstration students performed exper-
iments successfully. Students found this virtual laboratory package including the COLDVL sim-
ulator very interesting and motivating. They also enjoyed doing experiments in COLDVL. While
a single student performed simple experiments, a group of 2-3 students performed more complex
experiments. The participating students and those remote students could not perform experiments

CHAPTER 2. DESIGN ISSUES OF COLDVL 33

Figure 2.11: Web interface of the procedure of the Direct mapped cache experiment in
COLDVL.

if they had not have clear understanding which implies that COLDVL is easy to learn. Many of the
students also found that COLDVL is very time and effort saving by reducing the ‘ clumsiness’ of
bread board and providing an easy way to implement their circuits. Students also liked the avail-
ability of COLDVL 24 hours over Internet without any setup overhead so that they can experiment
‘creatively’ and brush up their concepts with experiments any time.

2.6 Conclusion
The design issues of the virtual laboratory of the present work is discussed in this chapter. The
pedagogic considerations of the virtual laboratory is given. This chapter also describes the design
of the web interface, experiments design, design of the sequence of learning activities in the virtual
laboratory using, features of the COLDVL tool (using well known pedagogic principles) in order
to assimilate the pedagogic considerations. The deployment of the COLDVL tool, gathering of
satisfactory user feedback and its analysis have also been discussed in this chapter.

CHAPTER 2. DESIGN ISSUES OF COLDVL 34

Figure 2.12: Web interface of the quizzes of the Direct mapped cache experiment in
COLDVL.

Internet

Others Tool text manual

All experiments

Student

Student

Client side

All the simulations and visualizations are done at client side

Theory

Objective

Test plans Procedure Experiment
Quizzes

Further readings

Access COLDVL

COLDVL at server side

Acess COLDVL

Tool

Tool

Tool

Tool
 Simulation tool

Components and tools for circuit design

Assignments

Input/OutputOther featuresDesign functionalities

Working modules
��
��
��
��
��

�����
�
�
�

Figure 2.13: Basic components of COLDVL and interactions with end users.

CHAPTER 2. DESIGN ISSUES OF COLDVL 35

"Do you find this simulator and associated
experiments will motivate students
for self−learning?"

"Do you think doing experiments through

virtual lab gives scope for more innovative

and creative work?"

"How much do you like the way of analyzing

through dirrerent wire colors?"

results and value propagation in your circuit

(In scale of yes, no, partial)

"Do you have a clear understanding of the
experiment and related toipics?"

(In scale of yes, no, Improve)

"Was the procedure and manual found to be helpful?"

(In scale of yes, to some extent, no)

(In scale of excellent, very good, good, average, poor)

"Rate the quality of graphics of the simulator"

Figure 2.14: User feedback of some questions asked.

Chapter 3

Front end of the COLDVL tool

3.1 Introduction
This chapter focuses on the front end features of the COLDVL tool. The front end features include a
brief description of components, circuit design and editing functionalities, other significant features
developed, the overall user interface where circuits can be built along with the interface developed
for some specific features. The tool architecture is also described very briefly. Case studies are
provided to indicate the usability of the front end features along with the usability of COLDVL tool
including the features of COLDVL tool to aid learning and the use of COLDVL tool to conduct
laboratory courses at IIT Kharagpur is also included in this chapter.

3.2 Features of COLDVL tool
Components and circuit building facilities
The COLDVL tool contains a repertoire of building blocks and reference designs such as basic
gates, tri-state buffers, input-output components, combinational components, sequential compo-
nents. Input-output components contain toggle switch (which can provide both true and false input),
free running clock, bit display to show value of a single bit, digital display which will show the
digital value of multiple binary bits. Combinational components include different types of adders
such as, half adder, full adder, ripple-carry adder, carry-look-ahead adder, Wallace tree adder, sub-
tracter, decoders, multiplexers, comparator, combinational multiplier employing carry-save-addition
scheme, arithmetic logic units, etc. This tool provides several sequential components ranging from
basic to complex components such as flip flops (both behavioral and structural), different types of
registers, counters, RAMs with editable cells, cache memories (without replacement policy) such
as associative and direct mapped cache, a single instruction CPU with in-built controller. The tool
also contains reference designs related to the guided experiments provided in the virtual laboratory
to help novice students perform the experiments on a black box like component where they can only
check the input-output behavior. The internal details of the components given in the tool are hidden

36

CHAPTER 3. FRONT END OF THE COLDVL TOOL 37

from the user. This helps students to perform the recommended sequenced learning activities (first
step of the basic stage) of the virtual laboratory mentioned in the previous Chapter 2, Section 2.3.3.
To accomplish the learning activities of the other stages, students need to to build the circuit using
the components provided in the tool or they can build and reuse their own component. Building
circuits require the instantiation of the necessary components in the graphical interface provided for
circuit building, connecting those components, providing inputs, initiating simulation and finally
observing the results using display units. The tool has necessary facilities to connect components
including bus connector in order to support the bus-based design with wired AND operation, cloning
facility to avoid the overhead of repetitive designs in large circuits. functions.

Logic values The COLDVL tool uses five levels of logic values namely True (T), False (F), High
Impedance (Z), Unknown (X) and Invalid (I). The High Impedance is included to support tri-state
logic, the Unknown is used as the default initial value of any logic signal which essentially indicates
the value of the logic signal either 0 or 1 and the Invalid is used in order to support the bus-based
design with wired AND operation. The truth tables of the five valued logic used in this tool are
shown in the Table 3.1.

Logic values and wire colors
The 5 different logic values which may present in the nets of a circuit are indicated by five different
colors. Thus the connecting wires of a circuit may take five different colors. The colors of wires can
be used for circuit debugging, examining the value propagation through the circuit and it can also
be very useful for result analysis in the circuit. The logic values along with their corresponding wire
colors are listed in the Table 3.2.

Once a circuit is built and the user initiates simulation, the simulation algorithm then finally
delivers the results by dynamically changing the visual aspects of the circuit. Initially the wire values
are unknown prior to simulation and having colors as maroon. However, after simulation the wire
values may take any logic values among the supported five logic values indicated by appropriate
colors. The visual aspects of the wires in a circuit before and after simulation is schematically
depicted in the Figure 3.1

Design of hierarchical modules
The graphical interface restricts the size of the designed circuit due to its space limitation. Although
for smaller experiments the space limitation does not become an issue. However, for complex
circuits with bigger data paths such as circuits implementing multiplication, division, CPU, the
space limitation imposes a restriction. This limitation can be overcome through hierarchical designs
where a set of connected components are made as one module abstracting the visual aspects of the
internal connections and components, more like a black box providing only the input and output
ports. A module can also be used to create another module in a bottom up manner. COLDVL tool
provides facility to create such encapsulated modules designed by users which will be saved as the
user component library in local machine, and the user can reuse their previously built encapsulated

CHAPTER 3. FRONT END OF THE COLDVL TOOL 38

0 1 X Z I
0 0 0 0 0 0
1 0 1 X X X
X 0 X X X X
Z 0 X X X X
I 0 X X X X

AND gate

0 1 X Z I
0 0 1 X X X
1 1 1 1 1 1
X 1 X X X X
Z 1 X X X X
I 1 X X X X

OR gate

0 1 X Z I
0 1 1 1 1 1
1 1 0 X X X
X 1 X X X X
Z 1 X X X X
I 1 X X X X

NAND gate

0 1 X Z I
0 1 0 X X X
1 0 0 0 0 0
X X 0 X X X
Z X 0 X X X
I X 0 X X X

NOR gate

0 1 X Z I
0 0 1 X X X
1 1 0 1 1 1
X 1 X X X X
Z 1 X X X X
I 1 X X X X

XOR gate

0 1 X Z I
0 1 0 X X X
1 0 1 X X X
X X X X X X
Z X X X X X
I X X X X X

XNOR gate

0 1 X Z I
0 Z 0 X X X
1 Z 1 X X X
X Z X X X X
Z Z X X X X
I Z X X X X

Tri-state

In Out
0 1
1 0
X X
Z X
I X
NOT gate

Table 3.1: Truth tables of basic gates used in five valued COLDVL tool

Components

I1 I2

D1 D2 D3 D4 D5

Simulate Components

I1 I2

D1 D2 D3 D4 D5

Figure 3.1: Wire values within a circuit before and after simulation (I1, I2 denotes inputs
and D1 to D5 denotes display units)

CHAPTER 3. FRONT END OF THE COLDVL TOOL 39

Logic value Wire color
True (T) Blue
False(F) Black
High impedance(Z) Green
Unknown(X) Maroon
Invalid(I) Orange

Table 3.2: Logic values and their corresponding wire colors

Computer

Datapath

Controller CPU Memory

 Gate level design

ALU Register/counter

Combinational

circuits

Sequential

circuits

Figure 3.2: Design hierarchy supported by the COLDVL tool.

modules to build larger circuit modules. With this facility the tool provides support for a circuit
design hierarchy, shown in Figure 4.5 which allows users to design circuits from basic gate level
to large modules and larger modules using smaller modules. The components at the arrow head
implies that it is synthesized from the component at its arrow base. For example, combinational
circuits such as adder, subtracter, multiplexer, decoder etc. are built from gate level components.
Arithmetic logic units can be synthesized from combinational and/or sequential circuits. As the tool
contains components belonging to each level of the design hierarchy, students can start designing
at any level of the design hierarchy by using the components provided by the tool or their own
designed encapsulated modules. This feature is more clarified in a case study in the later section of
this chapter.

Automatic encapsulated control unit generation
The COLDVL tool has a facility to automatically generate an encapsulated control unit from a user
specified control chart of Moore type. Appropriate interfaces are provided for specifying the control
chart. After entering the state chart, the tool builds the corresponding encapsulated controller (whose

CHAPTER 3. FRONT END OF THE COLDVL TOOL 40

internal details are hidden from the user) which will act according to the specified state chart in the
back end and when the user instantiates the encapsulated controller component from the tool front
end, the internally built controller is delivered. After the instantiation of the controller component, it
can be connected to the components of the data path in order to build a circuit having a control flow
and data transformations where every data transformation is triggered by the control signals. There
are many computer arithmetic algorithms such as multiplication, division, complex designs such as
CPU with different types of instructions which are very important topics in computer organization
course and laboratory experimentation covers those topics so that students can understand how the
theories can be practically implemented and develop a clear concept regarding the theoretical aspects
along with the design issues of a topic. In practice, most of the implementations of such complex
topics require the data path to work in association with a controller. However, realization of a
hardwired control unit corresponding to a simple control state chart may not be a cumbersome
process, for large and complex state charts it introduces overheads in terms of time and effort.
Therefore, we have developed this feature of control signal generation from user specified state
chart to reduce the design complexity of hardwired control unit and thus giving students more scope
to concentrate upon learning issues regarding the circuit design for complex computer arithmetic
algorithms and CPU designs.

Visualization of controller state transition
After instantiating the controller component from a given control state chart, it is often needed to
test the controller behavior i.e. to test whether the state chart is designed correctly. Testing can be
done connecting input-output components to the controller unit. However, to make this testing easy,
the tool has options to visualize the state transitions of the controller both in a text field and as a
state model during simulation. In order to do that, the state model is extracted from the user given
state chart and during simulation the transitions are shown by dynamically changing the view in the
model.

Detection of possible race around condition before simulation
The COLDVL tool can detect the possible occurrence of the race around conditions prior to the
simulation that are generated due to the use of non-master-slave flip flops in a circuit. When the
possible race condition is detected, the user is warned and in that case the user may want to modify
the circuit and proceed or can proceed by ignoring the warning. This feature is developed to help
students learning safe sequential circuit design.

Regular and advanced simulation features
An efficient simulation technique is developed for the sequential circuits conforming to the Huff-
man model. Another case based analysis technique is developed where regular simulation can not
produce output. The detail description of the simulation related techniques are the content of the
next chapter.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 41

Working memory to support CPU experimentation
As CPU design is an important topic in the computer organization course, students are required to
design basic CPU with single or multiple instructions in laboratory experimentation. Once a CPU
is built, its behavior can be checked with the execution of a program. Students can build memory
having multiple address line from the basic single bit RAM cell included in the tool. However,
building memories for such purpose is time consuming and topic of an individual experiment related
to memory design. Therefore, in order to focus on particularly CPU design without associating the
overhead of memory design, an in-built working memory is provided in the tool which can be loaded
with binary program along with the data and connected with the CPU. Then the CPU will execute
the program loaded in the working memory reading and writing from and to the working memory.

Saving circuits with unique identification
This tool has a feature of saving user circuits with identification to prevent plagiarism to a great
extent. When students will save their circuits in order to submit their assignments for evaluation,
they are bound to provide their name, roll number, then only the circuit can be saved to a file.
Once a file is saved with an identification, the identification can not be further modified even after
re-opening and re-saving the file. Thus one can not copy files from one another.

Structural verilog code generation
A structural gate level verilog module for a circuit can also be generated in this tool. Behavioral
verilog module is realized for behavioral component of a circuit. As COLDVL tool supports hierar-
chical circuit design, verilog realization of a circuit containing several modules is also modular but
structural.

Other features
Apart from the above mentioned features, the COLDVL tool has several other features. Some of the
other features are as follows.

Connection related: The connection of components during circuit building has some restriction in
order to help students learning good design practice along with reducing design errors such as
two input terminals can not be connected directly, connection is allowed from output terminal
to input terminal, two non-tristated outputs can not be connected to the same input terminal.
Connection between terminals can also be dragged to another terminal. Two types of con-
nections are supported which are shortest path type and Manhattan type and the connection
type of a circuit can be changed anytime. This facility is provided for the ease of circuit
debugging.

Design editing functionalities: During building circuits undo, redo and deletion facilities are pro-
vided in the COLDVL tool. A component or a connection of a circuit can be deleted or a
part or the full circuit can be deleted. Before using the deletion operation, the parts to be

CHAPTER 3. FRONT END OF THE COLDVL TOOL 42

Tool bar

Graphical editor

Left pane

Palette

Figure 3.3: Graphical interface of the COLDVL tool.

deleted must be selected. The tool provides several selection facility for deletion of of only
components or only connections or both.

Graphical editor related: The editor view is gridded (grid view can also be turned off) and does an
automatic calculation of co-ordinates for the placements of the components. Circuits or part
of a circuit can be re-positioned by dragging to the desired position in the graphical editor. As
the tool does not provide multiple tabs, designs are restricted with the single graphical editor.
Once a circuit is done it can be either saved with identification of made as encapsulated
components to be used in other circuits or it can be discarded by clearing the whole graphical
editor so that new designs can be built. The view of the graphical editor can also be zoomed
in or zoomed out.

3.3 User interface of COLDVL tool
Basic user interface of the tool is presented in Figure 3.3 which consists of four parts as follows.

1. A graphical editor for building circuits.

2. A palette containing a list of design components such as logic gates, input/output units,
adders, flip flops, registers, counters, decoders, multiplexers, arithmetic logic units, tri-state
buffers, bus connector, RAM cells, cache memory and many other complex components in-
cluding control unit, single instruction CPU, a working memory to be loaded with binary

CHAPTER 3. FRONT END OF THE COLDVL TOOL 43

program to check CPU behavior and tools for creating connections between design compo-
nents, cloning operation. Several drawers of the pallete are shown in the Table 3.3.

3. A tool bar on the top of the graphical editor provides facilities for file operations, edit func-
tionalities, simulation related functions and other operations. The file operations include sav-
ing and reopening of circuits, saving circuits as encapsulated component modules and reusing
them. Delete, zoom in-out, undo-redo, clear editor are some of the operations which are pro-
vided for editing purpose. Simulation related functions consist of start simulation, turning
case analysis feature on or off, optional simulation of structural memory elements while re-
constructing the circuit, log generation after case analysis, start-stop of clock pulse generator.
Other operations include exporting user circuit to pdf format, plotting a graph to see the input-
output behavior, generating structural verilog netlist of the circuit, showing pin configuration
and individual component name, changing connection type from Manhattan to shortest path,
resetting controller, showing user identification for a saved circuit, grid enable-disable.

4. A left pane consists of functionalities such as setting input-output port for dynamic circuit,
setting label text and component name other than system generated name, loading and show-
ing working memory content, loading, editing and showing state model along with current
state of an ASM chart and panels to show system generated component name and user iden-
tification of a saved circuit.

Interface to visualize input-output behavior
The interface for visualizing the wave form is shown in the Figure 3.4. A JK flip flop is simulated
with an advanced case based analysis feature (elaborated in the next chapter) and the input-output
behavior can be observed. There is a facility to view the system generated names of the basic gate
components and the input-output components of a circuit, which is also shown in the figure in the
component name text field in the left pane of the tool. The names of the input-output components
must be known in order to see the wave forms corresponding to the signals present in any input or
output component with respect to time.

Interface for specifying control state chart
The tool accepts state charts those are of Moore type for the automatic generation of the encapsulated
control unit from the given state chart. Initially, when user initiates the specification of a controller,
the tool takes inputs about the number of states, inputs, outputs, names of the inputs and outputs.
The interfaces for these are not shown here. After getting those numbers of state, inputs and outputs,
the tool then generate the interface for specifying the state chart of Moore type by generating all
possible combinations of the inputs. Figure 3.5 shows an interface for state chart specification given
the number of states as five with three inputs and four outputs. Once a state chart is specified, it can
be edited and the editing functionalities are also provided in the interface.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 44

Table 3.3: Different drawers of the pallete containing different components

Interface related to load working memory
Figure 3.6 shows the interface to load the working memory with binary program and data. The
loading can be done either manually or it can read from a text file containing the binary program
and data. The content of the working memory can also be reset. Figure 3.6 shows the content of the
working memory after loading it with binary program and data.

The structural verilog code generation is shown in Figure 3.6 for a JK flip flop. The generated
verilog code is automatically shown through the text editor present in the local machine. As men-
tioned earlier, a circuit can be exported to the pdf format which is shown in Figure 3.9 for the JK
flip flop. The interfaces of some other features are given during explaining some case studies in the
later sections.

3.4 COLDVL tool architecture
Figure 3.10 shows the architecture of the COLDVL tool. The tool architecture consists of two
parts, one is the front end and another is the back end. The front end contains a repertoire of
components including basic gates, encapsulated components, encapsulated reference designs, design

CHAPTER 3. FRONT END OF THE COLDVL TOOL 45

Figure 3.4: Wave forms of input-output components of a JK flip flop.

functionalities and a graphical interface to build a circuit. Whenever simulation is initiated, the
circuit is delivered to the back end. The back end contains the all the simulation related algorithms
implemented on top of some system libraries. The simulation algorithms includes main simulation
along with some advanced techniques which are discussed in the next chapter. After simulation, the
output is delivered to the circuit in the front end by changing its visual aspects. Apart from this,
on demand of the user, some other interface is also updated after the simulation such as if user has
wants to see the wave form for the input-output, current controller state or working memory content,
etc.

3.5 Case studies and usability of COLDVL tool
This section includes three case studies which explain the usability of some important features of the
COLDVL tool and how the features can help building basic circuits and as well as complex circuits.
The practical use of COLDVL tool is also discussed.

3.5.1 Simple combinational and sequential circuits

A simple combinational circuit

Figure 3.11 shows a simple combinational circuit built in the graphical interface of the tool using
the basic gates provided in the tool. Bit switches are connected to provide both the inputs logic value
0 and 1 which is indicated through distinct colors. If the bit switch provides logic value 0 then it
takes cyan color and if it provides logic value 1 then it becomes yellow. With a double click the

CHAPTER 3. FRONT END OF THE COLDVL TOOL 46

Figure 3.5: Interface for specifying control state chart.

bit switch toggles its current value and as well as changes its visual aspect. Bit displays are also
connected to the output terminal of some gates in the circuit from which the output of the circuit
can be viewed as binary value. Along with the conventional shapes, different basic gates also have
different colors such as AND gates are red, OR gates are blue, etc. so that in large circuits with
many gates, the value propagation can be easily tracked for circuit debugging and circuit analysis.
Text labels are used in this circuit to denote which input-output component denotes which boolean
variable belonging to the boolean function realized in this circuit.

A simple sequential circuit
Figure 3.12 shows another circuit built and simulated using COLDVL tool which is a sequential
circuit. The user identification associated with the circuit is also shown in the left pane. The circuit
is a 4-bit parallel load registers and gate level structural D flip flop components are used as memory
elements. The D flip flops used in the circuit are instantiated from the pallete of the tool which are
the encapsulated components i.e. is its internal structural gate level design are hidden from the user,
provided by the tool. All the upper and lower terminals of an encapsulated component is the input
and output terminals respectively. The components are designed in such manner in order to maintain
a similarity with the conventional hardwire chip. Input-output components are also attached to the
circuit and labels shows which terminal is least significant bit and which is most significant bit.

3.5.2 A complex sequential circuit with controller and data path

Shift and add multiplication algorithm

CHAPTER 3. FRONT END OF THE COLDVL TOOL 47

Figure 3.6: Interface to load working working memory.

Figure 3.13 shows the flowchart for shift and add multiplication of two 8-bit data. The multi-
plication algorithm will produce 16 bits output. In the flowchart, A[7:0] is the accumulator, M[7:0],
Q[7:0] and prod[15:0] hold the multiplicand, multiplier and final product respectively. cnt[3:0] is
used for loop count and initialized to the binary value corresponding to the integer value 8. The loop
will iterate exactly for 8 times. It can be clearly observed that the flowchart contains some arithmetic
operations, logical shift operation performed on some registers and conditional branching. There-
fore implementation of this computer arithmetic algorithm in a digital circuit will certainly contain
a data path and a controller where all the data transformations will actuated through control signals
generated by the control unit.

Implementation of the shift and add multiplier
In order to perform the data transformations, the data path will have components such as accumu-
lator, registers, arithmetic logic unit (ALU), adder units, shift registers, counters, comparators. The
overall circuit is built through the hierarchical bottom up approach. All the significant components
(including the controller) of the circuit is built individually and so that they can be tested to ensure
that every component behaves correctly. Once every component is built correctly, the data path is
built using the previously built components and then the data path is checked if it is working prop-
erly or not by providing the control signals manually. Once the data path is built and tested for its
functional behaviors, it is then integrated with the controller and finally the behavior of the complete
multiplier circuit is tested.

Figure 3.14 shows the 8-bit accumulator designed for this multiplier data path. The shifting of
the data stored in the accumulator is employed in the accumulator circuit. The pin configurations
of the encapsulated tool components (components provided by the tool) used in the circuit such as

CHAPTER 3. FRONT END OF THE COLDVL TOOL 48

Figure 3.7: Working memory content.

bidirectional shift registers with 4-bit parallel load, multiplexers are also shown. The ALU for the
implemented multiplier is shown in Figure 3.15 which uses the tool components such as full adders,
multiplexers, basic gates.

In order to build the controller for the multiplier circuit, first a control chart is designed. Con-
ventionally, after designing the control chart, the controller circuit is derived from the chart using
classical method or one hot method which then is realized with the flip flops and basic gates. For
complex control chart, the derived control circuit is also complex with several components and hence
realization of such circuit becomes cumbersome. However, the time and effort of such controller
circuit realization from the state chart can be reduced using the automatic encapsulated control unit
generation (from user specified state chart) feature of the COLDVL tool as mentioned earlier in this
chapter. Figure 3.16 shows the control state chart designed for the multiplier circuit and specified in
the interface to build the controller unit by the tool. After entering the state chart, the encapsulated
controller component is instantiated in the graphical editor. The controller component is then tested
by giving the manual inputs and the state transitions are visualized using another feature provided in
the tool which extracts the state model from the state chart and dynamically shows the state transi-
tions during simulation. Figure 3.17 shows the individual controller component generated from the
state chart and the state transitions in its corresponding state model.

After building the major components of the data path and testing their correctness, the data path
has to be built using those components. However, the space limitation of any graphical imposes
limitation on the size of the circuit. As it it can be seen from the figures 3.14 and 3.15 that the
accumulator and ALU designed for the multiplier data path is itself large, and integrating both along
with other components will result much large circuit which may not fit within the space of the
graphical editor. This serious problem can be overcome by using the save as component feature

CHAPTER 3. FRONT END OF THE COLDVL TOOL 49

Figure 3.8: Structural verilog code generated for the circuit.

of the tool which creates an encapsulated module out of an user designed circuit which may in
turn contain other user created encapsulated components. With this feature, the user can build
hierarchical abstracted modules recursively and thus larger circuits can be designed within a limited
space. Using this feature of abstraction, the accumulator, ALU shown in Figures 3.14 and 3.15 are
abstracted into encapsulated modules and then the multiplier data path is built using them along
with the other tool components and the data path is shown in Figure 3.18. The components with
label New on them in the data path are the user created encapsulated modules. The data path circuit
is then provided manual inputs including to the control signal terminals and tested. When the data
path functionality is found to be correct then the final multiplier circuit is built using the data path
and the controller component which is shown in the Figure 3.19. In the multiplier circuit, again the
encapsulated module corresponding to the data path is used.

3.5.3 Regular CPU design with multiple instructions

Figure 3.20 shows a CPU circuit (before simulation) having four instructions such as ADD, JZ
(jump if zero), LOAD and NEG (negation) instructions along with its control unit. As the initial
default wire value is unknown which is denoted by maroon color, the wire colors in the circuit is
maroon before simulation. The CPU circuit also includes the working memory provided by the
tool. The designer has to load the working memory with a binary program and data before initiating
the simulation. A binary program along with data is loaded the screen shot is presented in the
Figure 3.21. When the simulation is initiated, the CPU fetches the instructions and data, execute
the instruction accordingly and write back the data in the memory. Figure 3.22 shows the memory

CHAPTER 3. FRONT END OF THE COLDVL TOOL 50

Figure 3.9: A circuit exported to the pdf format.

content and controller state model during the execution of the binary program present in the memory.

3.5.4 Usability of COLDVL tool

COLDVL tool as a teaching aid
The case analysis feature along with the feature of simulation while reconstructing the circuit in an
ordered manner is developed in the COLDVL tool for supporting the learning experience. These
features are needed in order to accomplish the experiment, Synthesis of flip flops which provides a
detail theory. The tool identifies whether a circuit designed by the user follows the Huffman struc-
ture or not. There is also a feature of detecting the possible occurrence of race around conditions in
the circuit before simulation which focuses on the fact that creating the sequential part of a data path
without master-slave flip flop may produce race around condition in the circuit (where non-master-
slave flip flop is used). These features help students learning a safe circuit design. Apart from
these features, some of the features mentioned in the front end of the tool, such as, control signal
generation from user-given ASM chart, which essentially helps teaching the controller specification
and synthesis, by reducing the design complexity of hardwired control unit and thus giving students
more scope to concentrate upon learning issues regarding control unit state chart design, structural
verilog netlist generation, creating and reusing user-defined encapsulated modules which help stu-
dents in their learning process and teachers for their teaching as they can add their own experiment
with this facility.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 51

main simulation

simulation while
reconstructing the circuit

case analysis

underlying frameworksystem libraries

undo redo

zoom out

zoom in

delete

clone

marquee

bus

others

other functions

tools

logic gates (2/3 ip)

complex components

adder modules

combinational modules

flip flops

design
functionality

clock

sequencial circuits

display

tri state buffer

circuits

memory modules

cache modules

computer design

labels

basic components

user circuit

modules for

control signal

inputs
outputs

toggle

(logic
high /
logic
low)

selection

connection

specification

circuit simulation

Front End

Back End output netlist
appropriate

outputs

Figure 3.10: System architecture of the COLDVL tool.

Use of COLDVL tool
This tool has been used to conduct undergraduate and postgraduate level laboratory course at IIT
Kharagpur. Students are given assignments, after designing and building their circuit and saving with
their identification (using name and roll number for unique identification) they have uploaded the
file to the Web-Based Course Management system [36] of IIT Kharagpur over Internet, for manual
evaluation. A few intern students have also used COLDVL tool to accomplish their assignments.
Following are the assignments which students have accomplished using the COLDVL tool.

1. Implementation, simulation and analysis of the restoring divider and non-restoring divider
where divisor is of five bits and the dividend is of ten bits along with the comparison of these
two types of dividers for cost and speed.

2. Implementation, simulation and analysis of the following along with the comparison of these
two types of adders for cost and speed.

(a) Ripple carry adder (RCA), for four bits

(b) Carry lookahead adder (CLA), for four bits, generating carry generate and carry prop-
agate functions

CHAPTER 3. FRONT END OF THE COLDVL TOOL 52

Figure 3.11: 4-bit carry-look-ahead adder designed in the COLDVL tool.

(c) Block carry lookahead adder (BCLA), to add two 16-bit numbers, using 4-bit CLAs
and 4-bit BCLA units

3. Implementation, simulation and analysis of shift and add multiplier, doing the multiplication
for two 8-bit 2’s complement number satisfying the following criteria.

(a) The sign necessary for arithmetic shifting is properly generated using a suitable sign
generation logic

(b) The design should be modular and should have two top-level components, viz samDP
and samCtrl ensuring that the modules are well labeled (pins should be labeled to indi-
cate their functionality)

(c) The data path should have all the data processing elements, appropriate data path con-
trol signal inputs and appropriate status signal outputs

(d) The controller should be designed as a finite state machine, using the status signals of
the data path as its inputs and generating outputs which are used to drive the data path
control signals

4. Implementation, simulation and analysis of a radix-4 Booth’s multiplier for two 8-bit numbers
with a comparison with the shift and add multiplier and also the radix-2 Booth’s multiplier
for cost and speed.

5. Designing a direct mapped cache with the following specifications.

(a) Four address lines

(b) Two data lines

CHAPTER 3. FRONT END OF THE COLDVL TOOL 53

Figure 3.12: 4-bit parallel load register designed in the COLDVL tool using D flip flop.

(c) Cache flush control lines

(d) Cache miss indication line

(e) Read/write control lines

(f) Four cache lines each of a single 2-bit word

6. Implementation, simulation of a single instruction CPU having SBN (subtract and branch if
negative) instruction along with its controller.

7. Implementation, simulation of a multiple instruction CPU having ADD, JZ (jump if zero),
LOAD and NEG (negation) instructions along with its controller.

3.6 Conclusion
In this chapter the features of the COLDVL tool are described along with the corresponding inter-
faces. The tool architecture is explained briefly. Few case studies have presented in order to explain
how the tool features developed are helpful in order to learn the computer organization and logic
design. The use of COLDVL tool in conducting undergraduate and postgraduate level laboratory
courses in IIT Kharagpur has also been mentioned along with the descriptions of the assignments
performed by the students.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 54

start

C[0]� 0, A[7:0]� 0
M[7:0]� multiplicand[3:0]
Q[7:0]�multiplier[3:0]
cnt[3:0]� 1000

Q[0] = 1

C[0], A[7:0]� A[7:0] + M[7:0]

Right shift C[0], A[7:0], Q[7:0]
cnt[3:0]� count[3:0] - 1

cnt[3:0]=0 prod[15:0]� (A[7:0], Q[7:0]) end

yes

yes

no

no

Figure 3.13: Flowchart for shift and add multiplication of two 8-bit data

CHAPTER 3. FRONT END OF THE COLDVL TOOL 55

Figure 3.14: Accumulator circuit designed for 8-bit shift and add multiplier.

Figure 3.15: ALU circuit designed for 8-bit shift and add multiplier.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 56

Figure 3.16: Control state chart for 8-bit shift and add multiplier.

Figure 3.17: Controller designed for 8-bit shift and add multiplier.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 57

Figure 3.18: The data path designed for 8-bit shift and add multiplier.

Figure 3.19: 8-bit shift and add multiplier having a controller and data path.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 58

Figure 3.20: A regular CPU having four instruction with controller unit and working mem-
ory.

Figure 3.21: Working memory of a regular CPU having four instruction is loaded with
binary program and data.

CHAPTER 3. FRONT END OF THE COLDVL TOOL 59

Figure 3.22: Working memory content and controller state diagram of a regular CPU having
four instruction after execution of the binary program loaded in the working memory.

Chapter 4

Back end of the COLDVL tool

4.1 Introduction
This chapter focuses on the back end simulation related methodologies along with the algorithms,
case studies and illustrative example. The efficient simulation for circuits conforming to Huffman
model has been discussed in detail along with newly developed partitioning technique in a gate level
circuit in order to identify the conformance of a circuit with the HUffman model. This chapter also
describes the newly developed techniques for handling unknown signal values of some nets which
remain indeterminate after regular round of simulation. The implementation of the COLDVL tool
along with its results and scope have also been included.

4.2 Some issues related to simulation of circuits

4.2.1 Efficient simulation

COLDVL tool uses an efficient algorithm which is a combined approach of standard event driven
[13] and topologically ordered levelized simulation [60] technique which is also known as lev-
elized simulation in the literature, to simulate sequential circuits restricted to Huffman model [29].
Standard event driven technique is used for the simulation of sequential circuits not conforming to
the Huffman model (detailed in subsequent sections) and levelized simulation technique is used to
simulate combinational circuits. Levelized approach is essentially an ordered simulation technique
where a component is simulated after all of its inputs are available. In order to do so, the circuit
must be acyclic so that the components of the circuit can be ordered topologically and simulated
according to that order. In contrast, a component, in event driven technique is simulated repeatedly
if any one of its input signals changes, until it reaches to its fixed point, thus allowing simulation of
both cyclic and acyclic circuits. However, event driven approach may encounter unnecessary events
for some kind of circuits, yielding bad performance. For example, event driven technique gener-
ates extra events for purely combinational circuit which is supposed to be simulated in levelized

61

CHAPTER 4. BACK END OF THE COLDVL TOOL 62

Figure 4.1: JK flip flop (NAND implementation) after simulation gives indeterminate result.

manner in order to achieve best performance. Similarly, if a circuit has a combination of both se-
quential and combinational domains, event driven simulation will yield non-optimized performance
too. Because, if the sequential domain and the combinational domain are identified within a circuit
and if the simulation of the circuit can be scheduled in a manner such that the event driven and
levelized approaches are applied to the sequential and combinational domain respectively, then the
simulation performance will be better than simulating the whole circuit in event driven manner. Ad-
dressing these issues, COLDVL tool achieves better simulation performance for sequential circuits
conforming to the Huffman model, shown in Figure 4.11(a), by simulating the combinational part
of the circuit in levelized manner and simulating the sequential part using event driven approach.
For this purpose, before simulation, first the circuit is partitioned into sequential and combinational
part. The sequential part contains all the structural flip flops and behavioral sequential components.
Then it is checked whether the circuit follows the Huffman structure or not. If the circuit con-
forms the Huffman model, combined simulation approach is used. The approach is restricted to
the Huffman model, because identification of sequential and combinational domain in a gate level
sequential circuit is possible if the circuit conforms the Huffman model and thereafter, simulation
can be scheduled between those two domains.

CHAPTER 4. BACK END OF THE COLDVL TOOL 63

Figure 4.2: SR flip (NAND implementation) flop after simulation gives proper result.

4.2.2 Resolving indeterminate values of structural memory elements

Case based analysis
As the tool uses unknown as the default initial value for all logic signals, for some specific gate level
flip flop circuits, standard event driven simulation technique can not produce definite output for the
given inputs when the circuit should give definite outputs corresponding to those inputs. For exam-
ple, the aforesaid situation occurs in the JK flip flop (shown in Figure 4.6) with the corresponding
circuit shown in Figure 4.1. Where as the simulation gives determinate value for SR flip flop, D
flip flop realized from SR flip flop, edge triggered D flip flop which is shown in Figures 4.2, 4.3
and 4.4 respectively. The JK flipflop circuit (shown in Figure 4.6(a)) has been tested in some of the
public domain and commercial simulators having unknown as one of its logic values which exhibits
unknown outputs with inputs such as J = 1, K = 0 at Clock = 1. Figure 4.6(a) shows the circuit dia-
gram of the JK flip flop before simulation (maroon colored dashed line denotes unknown value) and
Figure 4.6(d) shows the verilog code for the JK flip flop. Figure 4.6(b) shows the same flip flop after
standard event driven simulation whose output remains unknown (blue colored solid line and black
dotted line denotes logic value 1 and 0 respectively). Although this situation may not be confusing
for an expert CAD tool user, however, a student may get confused as the circuit in bread board gives
definite outputs for appropriate definite inputs while a simulator (using the standard event driven
simulation technique) gives unknown output for the same circuit with the same inputs. Hence, our

CHAPTER 4. BACK END OF THE COLDVL TOOL 64

Figure 4.3: D flip flop (from SR flip flop) after simulation gives proper result.

simulation technique performs case analysis of unknown signal values of some nets which are part
of the loops in structural memory elements which remain unknown after a regular round of standard
event driven simulation. As unknown value indicates either logic value 0 or 1, therefore, during case
analysis, unknown loops are resolved in all possible combinations of 0 and 1. For n unknown loops,
case analysis will check 2n combinations on the internal netlist representation of the original circuit.
As, whenever a circuit is switched on, all unknown loops may take value either 0 or 1 arbitrarily,
therefore, checking all possible combinations of 0 and 1 are necessary. To avoid state explosion, the
case analysis is performed on each structural flip flop identified so far keeping the number of loops
very small. The case analysis converges only when the values of the elements in the structural flip
flop remain same in all cases, then the result is reflected in the display netlist i.e., original circuit.
Convergence of case analysis essentially depicts that at the start up no matter how arbitrarily un-
known loops are set, however, they will eventually reach to the same state. Figure 4.6(c) shows the
resolved JK flip flop after case analysis converges.

Dealing with the failure of case analysis
The non-convergence of the case analysis may occur due to the legitimate initial uncertainty in the
circuit such as, the value of a flip flop before it has been loaded. These types of non-convergence are
eventually resolved as the circuit operates. However, the real problem of non-convergence occurs
due to the failure to resolve the initial unknown in course of normal operation of the circuit. For

CHAPTER 4. BACK END OF THE COLDVL TOOL 65

Figure 4.4: Edge triggered D flip flop after simulation gives proper result.

example, the master-slave JK flip flop (shown in Figure 4.10) remains non-convergent after case
analysis and the corresponding circuit is shown in Figure 4.7. In all the states, the circuit does not
give same output, for example, in one state the circuit may have the values shown in Figure 4.10(a),
where at J = 0, the Q output of the master gives 1 while it should give 0, which essentially means
that the whole flip flop malfunctions. This situation occurs because, before the value of the master
flip flop is set to a definite value, the slave flip flop is set to a value in such manner which causes the
master to malfunction.

For such non-converging circuits mentioned above, the circuit may be simulated with the ele-
ments’ values of the flip flop from any case, chosen at random, which may lead to a malfunctioning
circuit. This can also happen in real life, although the situation is rarely manifested. Therefore the
tool is not in a position to make the desirable choice to avoid malfunctioning state of the circuit which
is inconvenient for the user. Hence, as a solution the unknown circuits are resolved through the sim-
ulation while reconstructing the circuit. In this simulation approach, the circuit is reconstructed and
simulated after each connection is made and for unconnected input terminals of gates, simulation is
carried out with default input as 1 (logical value assumed when the terminal is floating). Even in this
approach, the circuit may enter the malfunctioning state depending on the order in which the circuit
is reconstructed and Figure 4.9 shows one such order of building the circuit. Figure 4.10(a) shows
this type of situation for master-slave JK flip flop which is occurred due to the construction of slave
before the master in a manner so that it can adversely affect the output of the master and the master
malfunctions. Therefore, COLDVL tool simulates the circuit while reconstructing it in an ordered
manner to prevent the circuit from entering such malfunctioning state. The order of reconstruction
is determined by the breath-first-search starting from the clock, a netlist is constructed in ascending

CHAPTER 4. BACK END OF THE COLDVL TOOL 66

Figure 4.5: JK flip flop (NAND implementation) after case analysis gives proper output
along with the case analysis log.

order of the labels which ensures that the master will be constructed before the slave. The ordering
is shown in Figure 4.10(b) for master-slave JK flip flop and Figure 4.10(c) shows the same circuit
behaving correctly after simulation while ordered reconstruction and the corresponding simulated
circuit is shown in Figure 4.8. The detail descriptions of the procedures mentioned in this section
are given in the next section.

4.3 Simulation techniques and algorithms
This section describes the simulation technique for simulating circuits and its associated techniques
to provide efficient simulation for a category of circuits, a partitioning technique in a gate level
circuit, an advanced case based analysis etc. An analysis is also been presented to show how the
simulation performs better in terms of generation of unnecessary events with respect to the standard
event driven simulation.

4.3.1 Simulation of circuits

As mentioned in the previous section (section 4.1), the tool uses levelized simulation technique for
simulating combinational circuits, standard event driven technique for simulation of sequential cir-
cuits which do not conform to the Huffman model and a combination of levelized and event driven
simulation technique for sequential circuits conforming Huffman model for better simulation perfor-
mance. Before simulating a sequential circuit, first, the circuit is partitioned into the combinational

CHAPTER 4. BACK END OF THE COLDVL TOOL 67

(b) (c)(a) (d)

Clock JK

Q’ Q

Clock JK

Q’ Q

= 1= 0 = 1 Clock JK

Q’ Q

= 1= 0 = 1

= 1= 0

Figure 4.6: (a) JK flip flop before simulation with all unknown value (maroon dashed line).
(b) The same unresolved JK flip flop after standard event driven simulation (blue solid line
and black dotted line denotes logic value 1 and 0 respectively). (c) The flip flop after case
analysis giving definite outputs. (d) Verilog code for the JK flip flop.

and the sequential part, only if the circuit has single clock domain and loop detected through depth-
first-search (DFS) back edges. Then, using those partitions, the circuit is verified if it conforms the
Huffman model or not, if it does, then the whole simulation is scheduled for better performance.
And if it does not, then standard event driven simulation is done. After simulation, if some nets of
the loops are left unknown within the structural storage elements of the circuit, the simulation tech-
nique performs case analysis of those unknown nets to determine whether or not a definite output
value is assumed irrespective of the cases considered. If the case analysis fails to resolve the initial
unknown signals in a structural flip flop, there is an option to resolve the unknown flip flops through
the simulation while reconstructing the circuit in an ordered manner. As the non-convergence of a
structural storage element may be caused due to the legitimate unknown uncertainty which resolves
eventually as the circuit operates, the feature of simulating that non-converged circuit while ordered
reconstruction is made optional for the user. The whole simulation is outlined in Algorithm 1. Major
computational tasks are done on internal netlist representing the original circuit and finally the result
is reflected on the original circuit i.e., the display netlist. The logic gates and the other basic compo-
nents of the circuit are represented by the nodes of the netlist. The internal netlist representation of
a display netlist is denoted here with IntlNetlist and the display netlist is denoted by the DispNetlist.
A detailed description is given in the subsequent paragraphs.

Partitioning a gate level circuit
The partitioning is based on a heuristic that all gate level flip flop circuits contain single length latch,
shown in Figure 4.11(b), at their output level. As single length latch exhibits data retaining behavior
in gate level memory elements and the rest of the elements contribute to synchronize the operations
with the clock, the set of single length latches are identified in a circuit, before partitioning. Single
length latches are identified from the set of back edges obtained from standard breath-first-search
(BFS) starting from the clock. If a circuit does not contain any such latch, partition fails. The
procedure for identification of latches is described in Algorithm 2.

After listing out latches, the shortest paths are computed from clock to the latches shown with

CHAPTER 4. BACK END OF THE COLDVL TOOL 68

ALGORITHM 1: MainSimulation(DispNetlist)
Input : A display netlist with all nets having unknown values
Output: Simulated DispNetlist

1 backEdgesDFS � DFS(DispNetlist, I); /* list DFS back edges (if any)
on the netlist, starting from primary inputs I */

2 if backEdgesDFS 6= ∅ and single clock domain then
3 backEdgesBFS � BFS(DispNetlist, clock); /* list back edges from

BFS starting from clock on the netlist */
4 latches� GetLatches(backEdgesBFS);
5 if latches 6= ∅ then
6 〈seqSet, combSet, latchBoundarySet〉� Partition(DispNetlist, latches);

/* partition the netlist into sequential set and
combinational set */

7 if PossibleRaceAround(DispNetlist, latchBoundarySet) then
8 Stop simulation if opted by user;
9 end

10 〈inputBounds, outputBounds, outsFromSeq〉
� GetBoundaries(DispNetlist, latches);

11 if IsHuffman(DispNetlist, seqSet, combSet, outputBounds, outsFromSeq)
then

12 〈RPI, RSI〉
� ClassifyCombSet(DispNetlist, seqSet, combSet, outsFromSeq);

13 ScheduledSimulation(RPI, seqSet, RSI); /* Huffman model */
14 else
15 EventDriven(DispNetlist, I); /* non-Huffman model */
16 end
17 else
18 EventDriven(DispNetlist, I); /* loop exists but no latch */
19 end
20 else if backEdgesDFS 6= ∅ then
21 EventDriven(DispNetlist, I); /* loop exists but no clock */
22 else
23 topoOrder� TopologicalSort(DispNetlist, I);
24 process all the nodes of topoOrder list in topological order;
25 end
26 if latches 6= ∅ and ∃ unknown edge (u, v) ∈ backEdgesDFS then
27 FFset� IdentifyFlipflops(DispNetlist, latchBoundarySet); /* compute the

set of structural flip flops */
28 CaseAnalysis(IntlNetlist, FFset); /* resolve flip flops through

case analysis */
29 ReconstructAndResolve(IntlNetlist, FFset); /* if user opts, resolve

non-converging flip flops through simulation while
ordered reconstruction */

30 end

CHAPTER 4. BACK END OF THE COLDVL TOOL 69

Figure 4.7: Master-slave JK flip flop (NAND implementation) after case analysis failed.

the thick solid brown colored line in Figure 4.12 which presents a schematic diagram corresponding
to a circuit shown in the Figure 4.13. All the elements residing in the shortest paths computed from
clock to all the latches along with the behavioral sequential components are called the sequential
domain of the circuit to be simulated. The rest of the circuit is considered as combinational part.
The elements on the shortest path from clock to the latches include the clock for the latch connected
to the clock (shown with the dashed boundary in Figure 4.14(a)), and include the NOT gate which
is connected to the clock for the latch connected to the clock (shown with the dotted boundary in
the same figure). The partition algorithm also computes the latch boundaries excluding the clock
for the latches connected to the clock and both clock and the NOT gate connected to the clock
for latches connected clock. Figure 4.14(b) shows two latch boundaries identified so far, one with
dashed and another with dotted boundary and the Figure 4.15 shows four latch boundaries with
dashed boundaries identified within a shifting circuit. Algorithm 3 describes the partition algorithm.

Detection of possible race around condition
After a successful partition, the existence of possible race around condition is checked through
checking the existence of non-master-slave flip flop (when non-master-slave storage elements are

CHAPTER 4. BACK END OF THE COLDVL TOOL 70

Figure 4.8: Master-slave JK flip flop (NAND implementation) after ordered simulation with
gate-by-gate reconstruction gives proper result.

used). This feature is not related to the simulation as such. This has been developed for the learning
purpose. If the possibility of race around is detected then the user is notified to be more careful
during the design. The master-slave pattern is detected from the set of latch boundaries. Among
the set of latch boundaries, they are classified into two sets, one containing all the latch boundaries
connected to clock and another contains all the latch boundaries connected to the clock. Then, if
for each latch boundary connected to the clock has outgoing connection to another latch boundary
connected to the clock, mark them as master-slave and they will not be checked further. After this,
if any latch boundary is left un-marked, there is a possibility of race around condition in the circuit
and the user is notified so that user can stop the simulation to modify the circuit and re-simulate the
circuit. Figure 4.16 shows an example where latch boundaries connected to clock are shown with the
boundary of dashed line, latch boundaries connected to the clock are bounded with the dotted line
and the boundaries with dot-dashed line indicate the identified master-slave pattern. The procedure
is described in Algorithm 5.

CHAPTER 4. BACK END OF THE COLDVL TOOL 71

ALGORITHM 2: GetLatches(eSet)
Input : eSet is set of edges where (u, v) is a directed edge from u to v
Output: Set of single length latches, comprise nodes whose levels in BFS,

levelBFS(node), is greater than 0
1 maxLatchLevel� 0;
2 foreach ((u, v), (v, u)) ∈ eSet do
3 maxLatchLevel� max (maxLatchLevel, levelBFS(u), levelBFS(v));
4 latches� latches

⋃
{(u, v)}; /* listing one edge per latch */

5 end
6 if maxLatchLevel > 0 then
7 return latches; /* if latch exists, return latch set */
8 else
9 return ∅;

10 end

ALGORITHM 3: Partition(Netlist, latches)
Input : netlist and latches is set of single length latches
Output: Partition the netlist into combinational part and sequential part, also

compute set of latch boundaries comprising only nodes of structural flip
flops

1 foreach (u, v) ∈ latches do
2 LB� {GetPath(Netlist, clock, u), GetPath(Netlist, clock, v)};
3 seqSet� seqSet

⋃
LB ; /* compute set of all structural flip

flops */

4 latchBoundarySet� latchBoundarySet
⋃
{LB − {clock, clock}};

5 end
6 seqSet� seqSet

⋃
{all behavioral sequential components};

7 combSet� Netlist \ seqSet; /* generate combinational part */

ALGORITHM 4: GetPath(Netlist, n1, n2)
Input : netlist and two nodes n1 and n2 within the netlist
Output: Returns the shortest path from n1 to n2

1 Π� BFS(n1, n2); /* compute predecessor list, Π, by doing BFS
on the netlist, start with n1 and stop at n2 */

2 back track the predecessor list from n2 to n1 and store each node in list path;
3 Return path;

CHAPTER 4. BACK END OF THE COLDVL TOOL 72

��

��

= 0J

12

K= 1 3
Clock = 1

4

6

7 8

910

11

12

13

14

15

Clock = 0
5

Clock = 0

16

17

18
Master

Slave

1 1

10

01

11

1 0

Q=1Q’=0

Q=0Q’=1

Figure 4.9: An order of building master-slave flip flop which causes malfunctioning circuit
where master gives wrong output (the order of connection is shown with the numbers in
circle and the value (1 or 0) of a wire is shown).

Identifying Huffman model
The circuit is verified whether it conforms the Huffman model after accepting the notification from
the user to proceed if there was possible race around notification. In a Huffman model, depicted in
Figure 4.11(a), all the secondary outputs of combinational part becomes the inputs of the memory
elements and all the secondary inputs of combinational part emerge from the outputs of the flip flips.
This property need not be checked for the behavioral components as they are encapsulated modules
having predefined input-output terminals. However, this property has to be verified for structural
flip flops as in the structural flip flop, output emerges from some particular elements. Therefore,
two boundaries have been defined, input and output bounds, for the structural flip flops within the
sequential domain to validate these properties. Set of the elements of the structural flip flops which
directly receive the clock or clock pulse is listed as input boundary. The list of elements of the
structural flip flops, comprises all the latches, is called output boundary (shown in Figure 4.12).
Before detecting whether a circuit is a Huffman model, the input-output boundaries of the structural
flip flops are identified. All the secondary inputs which emerge from both structural flip flops and
behavioral sequential components are also determined. Algorithm 6 gives procedure for identifying
them.

After getting the input-output boundaries of the structural flip flops, secondary inputs and sec-

CHAPTER 4. BACK END OF THE COLDVL TOOL 73

ALGORITHM 5: PossibleRaceAround(Netlist, latchBoundarySet)
Input : netlist and latchBoundarySet is set of latch boundaries
Output: Detect possible race around condition by detecting master-slave pattern

among the latch boundaries
1 LBfromClk� set of all latch boundaries connected to clock;
2 LBfromClk� set of all latch boundaries connected to clock;
3 foreach x ∈ LBfromClk do
4 if ∃ y ∈ LBfromClk, s.t. ∃ edge (u, v) in Netlist, u ∈ x, v ∈ y then
5 LBfromClk� LBfromClk− x;
6 LBfromClk� LBfromClk− y;
7 end
8 end
9 if LBfromClk 6= ∅ and LBfromClk 6= ∅ then

10 Possible race around exists;
11 end

ALGORITHM 6: GetBoundaries(Netlist, latches)
Input : netlist, and latches is set of single length latches
Output: Input and output boundaries of sequential set where inputBounds is a set of

nodes having direct input from clock or clock and outputBounds is a set of
nodes creating latches

Notations: outsFromBhv: all outgoing edges from sequential set to combina-
tional set emerging from behavioral sequential components

1 inputBounds� inputBounds
⋃
{children(clock), children(clock)};

2 foreach (u, v) ∈ latches do
3 outputBounds� outputBounds

⋃
{u, v};

4 end
5 outsFromBhv� outputBounds

⋃
outsFromBhv;

CHAPTER 4. BACK END OF THE COLDVL TOOL 74

Clock

K J = 0= 1

Q=1Q’=0

Slave

Master

Q=0Q’=1

(a)

Clock

Level 1

Level 4

Level 2

Level 3

QQ’

JK

(b)

Clock

K J = 0= 1

Slave

MasterQ=0

Q=0

Q’=1

Q’=1

(c)

Figure 4.10: (a) Malfunctioning master-slave JK flip flop (blue solid line and black dotted
line denotes logic value 1 and 0 respectively). (b) Breath-first levels of the elements of
the master-slave JK flip flop (shown within a brown dashed boundary) for simulation while
ordered reconstruction. (c) The same flip flop functions properly after simulation while
ordered reconstruction.

inputBounds: set of nodes having direct input from clock or clock
outputBounds: set of nodes creating latches of memory elements
outsFromSeq: all secondary inputs from sequential to combinational domain
latchBoundarySet: set of latch boundaries comprising only nodes of structural flip flops
RPI: list of nodes reachable from primary inputs in topological order
RSI: list of nodes reachable from secondary inputs

Table 4.1: Notations used in Algorithm 1

ondary outputs, associated with the structural flip flops, are identified from/to the structural flip
flops respectively. The secondary outputs are determined by considering the incoming edges from
the combinational cloud to the structural flip flops and checked whether they incident only on the
elements belonging to the input boundary. Thereafter, secondary inputs are determined by consid-
ering the outgoing connections from the structural flip flops to the combinational cloud and verified
whether the secondary inputs coming out from the structural flip flops, actually emerge from the
elements belonging to the output boundary. Thereafter, the combinational cloud, identified by the
partition algorithm, is checked whether it is purely combinational in nature or it contains any ran-
dom loop. Loops are identified by the back edges given by depth-first-search (DFS). However, if
DFS is executed with primary inputs as starting point within the combinational set, there may exist
some elements which will be left unvisited by DFS, as they are only reachable from the elements of
output boundaries of the structural flip flops, shown in Figure 4.12 or from the behavioral sequen-
tial components. Therefore, DFS is done starting from both the set of primary inputs and set of all

CHAPTER 4. BACK END OF THE COLDVL TOOL 75

Primary input

(a) (b)

Primary output

SecondarySecondary

input output

Combinational circuit

Sequential circuit

Figure 4.11: (a) Huffman model. (b) Single length latch, circle denotes gate.

secondary inputs emerging from the sequential domain. If all the conditions are satisfied, the circuit
is conformed as Huffman model. Algorithm 7 describes the Huffman detection procedure.

Scheduling of simulation
When a sequential circuit is recognized as Huffman model, it is simulated in a scheduled manner
as mentioned earlier in order to achieve better performance. Combinational part is simulated in
levelized manner and sequential part in event driven approach. All the elements of combinational
domain are required to be listed in topological order in order to simulate them in levelized manner
which ensures that an element will be processed only after all of its predecessors are processed. In
order to levelize combinational part, elements are classified in terms of reachability. Reachability of
an element is an important concern here, because levelization procedure must visit every element to
give it a level. In combinational set, there exist a set of elements which are reachable from primary
inputs is called RPI, some elements which are reachable from the outputs of structural flip flips and
behavioral sequential components or all the secondary inputs are named as RSI and some elements
which are reachable from both the primary and secondary inputs, will reside in both RPI and RSI
set, shown in Figure 4.12. This classification will further help in simulation scheduling. Because,
for the simulation of combinational part in levelized order, the elements which are reachable only
from primary inputs can be processed without depending on the results of flip flips, however, the
elements of RSI set which are reachable from the elements of the sequential domain have to wait
until those elements give their outputs. Therefore, the simulation is scheduled in such a way that the
aforesaid behavior is preserved. Two topologically ordered list corresponding to RPI and RSI set
are generated and the procedure is outlined in Algorithm 8.

RPI list is generated by using standard topological sort algorithm starting from primary inputs.
Similarly RSI list is generated but the topological sort algorithm starts from all the elements of the
sequential domain from which secondary inputs emerges. One example shows these lists in Figure
4.12. At first, the RPI list is simulated in levelized order generating the secondary outputs then
simulate the sequential set in event driven manner. After the flip flips reached their fixed point, the
RSI list is simulated in topological order. If race around condition occurs i.e., if any flip flip does

CHAPTER 4. BACK END OF THE COLDVL TOOL 76

ALGORITHM 7: IsHuffman(Netlist, outputBounds, combSet)
Input : netlist, outputBounds is output boundaries of sequential set and combSet is

combinational set
Output: Returns true if Netlist conforms the Huffman model

1 if ∀v ∈ inputBounds then
2 b1 � true, where (u, v) ∈ SO; /* checking whether all secondary

outputs incident within input boundaries of sequential
set, SO is set of incoming edges of sequential set
from combinational set */

3 if ∀u ∈ outputBounds then
4 b2 � true, where (u, v) ∈ SI; /* checking whether all secondary

inputs emerge from output boundaries of sequential
set, SI is set of incoming edges of combinational set
from sequential set */

5 end
6 p� DFS(combSet, I); /* checking loops within combinational
nodes */

/* reachable from primary inputs, I */
7 s� DFS(combSet, allOutEdgesFromSeq); /* checking loops within
combinational nodes reachable from outgoing edges of
sequential set */

8 if (b1 & b2 = true) and p = ∅ and s = ∅ then
9 isHuffman� true;

10 end
11 Return isHuffman;

ALGORITHM 8: ClassifyCombinationalSet(Netlist, outputBounds, combSet)
Input : netlist, outputBounds is output boundaries of sequential set and combSet is

combinational set
Output: Classified combinational nodes into two sets, RPI, nodes reachable from

primary inputs and RSI, nodes reachable from all the nodes of the sequential
domain from which secondary inputs emerges

1 RPI� TopologicalSort(combSet, I); /* standard topological sort */
2 RSI� TopologicalSort(combSet, outsFromSeq);

CHAPTER 4. BACK END OF THE COLDVL TOOL 77

Primary input

Bit display

Clock

Input boundary

Output boundary

Shortest path from
clock to latch

to output boundary
from nets belonging

from primary inputs
Elements reachable

Elements reachable

(RSI)

(RPI)

Figure 4.12: Different sets of elements are shown in a simple schematic circuit conforming
to the Huffman model which are identified during simulation.

not reach to its fixed point then the simulation does not proceed to the RSI list of the combinational
set. Algorithm 9 describes the scheduled simulation algorithm and Algorithm 10 briefly outlines the
regular event driven simulation technique. In event driven simulation all the behavioral sequential
components are updated only once.

4.3.2 Resolving indeterminate values of structural memory elements

As mentioned earlier, for some gate level flip flop circuits, due to the unknown initial value of all
the logic signals, standard event driven simulation can not produce definite output for the given
inputs, even though these circuits should produce definite outputs (for the given inputs). To handle
that situation, the simulation technique performs case analysis of unknown signal values of the nets
which are part of the loops in gate level memory elements to determine whether or not a definite
output value is assumed irrespective of the cases considered.

Identification of structural flip flops
This case analysis is required only for structural flip flops. Therefore, before case analysis, structural
flip flops are identified from the latch boundaries identified so far. each pair of latch boundaries

CHAPTER 4. BACK END OF THE COLDVL TOOL 78

ALGORITHM 9: ScheduledSimulation(RPI, seqSet, RSI)
Input : RPI is set of nodes reachable from primary inputs, seqSet is sequential set,

RSI is set of nodes reachable from all secondary inputs. These inputs
comprise the display netlist

Output: Simulated display netlist, more efficiently than event driven approach
1 process all the nodes of RPI list in topological order;
2 EventDrivn(seqSet); /* event driven simulation within
sequential part */

3 foreach n ∈ outputBounds do
4 if n does not reaches its fixed point after k number of updations then
5 raceAround� true; /* race around condition occurs

within sequential set, halt simulation */
6 end
7 end
8 if raceAround = false then
9 process all the nodes of RSI list in topological order;

10 end

ALGORITHM 10: EventDriven(X, I)
Input : X is a netlist or a part of netlist to be simulated and I is a set of nodes to

start simulation with
Output: Simulated input netlist in event driven manner

1 Enqueue(Q , I); /* insert start nodes into event queue, Q */
2 while Q 6= ∅ do
3 n� Dequeue(Q);
4 if n is a behavioral sequential component then
5 update(n) only for once;
6 else
7 update(n); /* compute output of n */
8 end
9 if visitCount(n) <= maxCount and n has not reached to its fixedpoint then

10 put all the output nodes of n within X in Q;
11 end
12 end

CHAPTER 4. BACK END OF THE COLDVL TOOL 79

Figure 4.13: Actual circuit corresponding to the schematic presented in Figure 4.12.

are checked if they have direct connections between them from one another. If they have such
connections, the two latch boundaries are merged and inserted into the set of flip flops, they will not
be considered for further checking of direct connections between two latch boundaries. Even if any
pair of latch boundaries does not have direct connections from one another, they are also inserted in
the set of flip flops. Then the set of flip flops is refined by checking if any two sets have common
elements between them, they are merged and the set of flip flops finally contains the identified flip
flop boundaries. One example is shown in the Figure 4.14(c), where master-slave JK flip flop is
identified by the procedure (shown with the boundary of dot-dashed line). Also in the Figure 4.15,
the latch boundaries identified so far, essentially becomes the flip flop boundaries. Algorithm 11
describes the procedure for identification of structural flip flops.

Case based analysis procedure
After identification of structural flip flops, case analysis is done on each unresolved structural flip
flop in the internal netlist representing the partially simulated display netlist. After the case analysis
is done for all unresolved structural flip flops, the definite values of the converged flip flops are set
in the display netlist. The case analysis procedure is depicted in Algorithm 12. Case analysis for
a structural flip flop, described in Algorithm 13, starts with computing the total number of loops
within the flip flop through the DFS back edges. If there are n back edges, there will be 2n cases to
be checked which is essentially the all possible combinations of 0 and 1 for n variables. A stack is

CHAPTER 4. BACK END OF THE COLDVL TOOL 80

Clock

JK

Q’ Q

(i)

Clock

JK

Q’ Q

(ii)

Clock

JK

Q’ Q

(iii)

Figure 4.14: (a) Elements within the boundary of the latch connected to clock including
clock element are shown within a dashed boundary and the dotted boundary shows the
gates within the boundary of the latch connected to clock including the clock and the NOT
gate connected to the clock. (b) Latch boundaries excluding the clock and the NOT gate
connected to the clock. (c) Master-slave JK flip flop (shown within dot-dashed line) is
identified from the latch boundaries.

used for checking all possible cases. Initially, all the back edges are unknown, then one of the back
edges is set to 0, pushed into the stack and the flip flop is simulated in event driven manner form the
target element of that back edge. After simulation if any back edge is left unknown, again the same
procedure is applied until all unknown back edges are resolved and this procedure is described in the
Algorithm 14. Then the output values of all the elements of that flip flop are stored in a vector which
will be checked with the output of those elements in other cases which is described in Algorithm 15.
This procedure essentially stores the output values of the elements of the flip flop in the first case
which essentially means that all the unknown loops are resolved with 0, Then it proceeds to check
the output value of the elements stored in the vector with the output values of the elements in another
case. If the stack is not empty, the stack is popped. If the popped back edge was pushed with its
value set to 0, it is set to 1 then again pushed into the stack and the back edges which are not in
the stack are set to unknown value. Then again simulation procedure described in Algorithm 14, is
performed whose execution signifies the completion of another case. After completion of a case,
current value of the elements of the flip flop is matched with the stored value of the corresponding
elements in the vector whose procedure is described in in Algorithm 15. If any one of the outputs
does not match, case analysis fails to converge and if all outputs match, case analysis proceeds to
check other cases. This procedure is described for the popped back edge from the stack with value
set to 0 during pushing in the stack, however, if the back edge was pushed with value set to 1, the

CHAPTER 4. BACK END OF THE COLDVL TOOL 81

Clock

QQ’Q
Q’

K J

Figure 4.15: Four latch boundaries with dotted boundaries identified within a shifting cir-
cuit.

Clock

QQ’Q
Q’

K J

Figure 4.16: Identifying master-slave pattern within latch boundaries (latch boundaries con-
nected to clock are shown with dashed boundary, latch boundaries connected to the clock are
sown with dotted boundary and the dot-dashed boundaries indicate the identified master-
slave pattern).

back edge is skipped and simply another back edge is popped from the stack. This whole recursive
process is described in the Algorithm 16.

Handling failure of case analysis
As discussed in the previous section (section 4.1), the non-convergence of case analysis which oc-
curs due to the failure of resolving the initial unknown signal values through the normal operation of
the circuit, is resolved through the simulation of the circuit while reconstructing it in an ascending
breath-first order from clock (mentioned in the section 4.1) which is briefly outlined in the Algo-
rithm 17 and shown in Figure 4.10.

CHAPTER 4. BACK END OF THE COLDVL TOOL 82

ALGORITHM 11: IdentifyFlipflops(Netlist, latchBoundarySet)
Input : netlist, latchBoundarySet is set of latch boundaries
Output: Returns set of flip flops, FFset

1 foreach pair (L1, L2), where L1, L2 ∈ latchBoundarySet and L1 6= L2 do
2 if ∃ edge (u1, v1) and (u2, v2) in Netlist, s.t. u1, v2 ∈ L1 and u2, v1 ∈ L2 then
3 L1 � L1

⋃
L2; /* merge L2 with L1 */

4 FFset � FFset
⋃
{L1};

5 latchBoundarySet � latchBoundarySet − {L1, L2};
6 else
7 FFset� FFset

⋃
{L1, L2};

8 end
9 end

10 foreach pair (F1, F2), where F1,F2 ∈ FFset and F1 6= F2 do
11 if F1

⋂
F2 6= ∅ then

12 F1 � F1
⋃

F2; /* merge F2 with F1 as both have common
nodes */

13 FFset� FFset − {F2};
14 end
15 end
16 Return FFset;

ALGORITHM 12: CaseAnalysis(Netlist, FFset)
Input : netlist of partially simulated display netlist and FFset is set of structural flip

flops
Output: Does case analysis of structural flip flops and completes the simulation of

partially simulated display netlist by setting the values of converged flip
flops

1 foreach FF ∈ FFset do
2 backEdgesFF � DFS(FF, clock/clock); /* list back edges from DFS

starting from clock or clock depending upon whether the
flip flop is connected to clock or clock, within the
flip flop */

3 if ∃ edge ∈ backEdgesFF s.t. value(edge) = unknown then
4 AllCaseAnalysisFF(Netlist, FF, backEdgesFF); /* do all possible

case analysis for the unresolved flip flop */
5 end
6 end
7 Set the value of nodes of all the converged flip flops in the original display netlist;

CHAPTER 4. BACK END OF THE COLDVL TOOL 83

ALGORITHM 13: AllCaseAnalysisFF(Netlist, FF, backEdgesFF)
Input : netlist, FF is the flip flop for analyzing all possible cases, backEdgesFF is set

of DFS back edges of the flip flop
Output: Does all possible case analysis for the flip flop and if it converges, stores the

values of the nodes of the flip flop
1 edge = ∅;
2 stack = ∅;
3 CaseSimulate(Netlist, stack, FF, backEdgesFF, edge);
4 CheckAllResolved(Netlist, FF);
5 PopStack(Netlist, stack, FF, backEdgesFF);
6 if if case analysis for FF converges then
7 Store the values of nodes of the converged flip flop, FF;
8 end

ALGORITHM 14: CaseSimulate(Netlist, stack, FF, backEdgesFF, edge)
Input : netlist, stack for performing all possible case analysis, FF is the flip flop for

analyzing all possible cases, backEdgesFF is set of DFS back edges of the
flip flop, edge is a connection between two nodes

Output: Simulate Netlist during case analysis
1 if edge 6= ∅ then
2 EventDriven(FF, target(e)); /* simulate the flip flop in event

driven manner starting from the incident node of the
edge */

3 end
4 foreach e ∈ backEdgesFF do
5 if value(e) = unknown then
6 value(e)� 0; /* set the unknown back edge value to 0 */
7 Push e into the stack;
8 EventDriven(FF, target(e))
9 end

10 end

CHAPTER 4. BACK END OF THE COLDVL TOOL 84

ALGORITHM 15: CheckAllResolved(Netlist, FF)
Input : netlist, FF is the flip flop for analyzing all possible cases
Output: Checks the values of nodes of the flip flop of one case with another, only if

the values matches in all the cases, case analysis converges
1 if valVector = ∅ then
2 foreach node ∈ FF do
3 valuevalVector(node) � valueNetlist(node); /* store the value of

the node obtained from the netlist, in a vector if
it is empty */

4 end
5 else
6 foreach node ∈ FF do
7 if valueNetlist(node) 6= valuevalVector(node) then
8 Return false; /* if the vector is not empty, and the

value of node from the netlist does not match
with the stored value in the vector, case
analysis for the flip flop does not converge */

9 end
10 end
11 end
12 Return true;

4.4 Comparison between event driven and the combined
simulation

In event driven simulation of a circuit, any change in the input to a component causes it to be simu-
lated. Many of these simulations are redundant as the outputs determined by those are subsumed by
later simulations. For a circuit with n gates, O(n2) simulation events may be generated. However, if
that circuit conforms to the Huffman model, we shall show that our combined simulation technique
offers a great improvement by simulating the circuit in only O(n) time. Let x, y are the number of
gates in combinational and sequential domain respectively and n = x+ y. In case of the combined
approach of circuit simulation, the combinational domain, where there are no cyclic dependencies
between components, is simulated by topologically sorting the components based on their signal in-
terdependencies; that way each component needs to be simulated only once enabling the simulation
of this part to be done in O(x) time. We next show that an event driven simulation of the sequential
domain (comprising storage elements) of such a circuit only generates O(y) events.

Let there be p number of storage elements (flip flops) in the sequential domain of the circuit and
the number of gates in each flip flop be: z1, z2, . . . , zp. These values typically range from two to
eight. For a circuit conforming to the Huffman model, the clocking mechanism ensures that signals
are not directly propagated between these storage elements. As a result, each flipflop is simulated

CHAPTER 4. BACK END OF THE COLDVL TOOL 85

ALGORITHM 16: PopStack(Netlist, stack, FF, backEdgesFF)
Input : netlist, FF is the flip flop for analyzing all possible cases, backEdgesFF is set

of DFS back edges of the flip flop
Output: Pops a stack element which is a back edge and based on the value set to the

back edge before pushing into the stack, performs different operations to
generate all possible cases

1 if stack 6= ∅ then
2 edge� pop the stack;
3 if edge was set to 0 when pushed to stack then
4 value(edge)� 1; /* value of edge set to 1 */
5 Push edge into the stack;
6 foreach e ∈ backEdgesFF and e /∈ stack do
7 value(e)� unknown;
8 end
9 CaseSimulate(Netlist, stack, FF, backEdgesFF, edge);

10 if CheckAllResolved(Netlist, FF) then
11 if stack 6= ∅ then
12 PopStack(Netlist, stack, FF, backEdgesFF);
13 end
14 end
15 else

/* edge was set to 1 when pushed to stack */
16 if stack 6= ∅ then
17 PopStack(Netlist, stack, FF, backEdgesFF);
18 end
19 end
20 end

ALGORITHM 17: ReconstructAndResolve(Netlist, FFset)
Input : netlist of partially simulated display netlist and FFset is set of structural flip

flops
Output: Resolve non-converging flip flops through simulating them while

reconstructing them in an ordered manner and finally sets the values of
resolved nodes in the display netlist

1 foreach FF ∈ FFset do
2 if FF did not converge after case analysis then
3 ReconstructFFinOrder(Netlist, FF);
4 end
5 end
6 Set the value of nodes of all the resolved flip flops in the display netlist;

CHAPTER 4. BACK END OF THE COLDVL TOOL 86

ALGORITHM 18: ReconstructFFinOrder(Netlist, FF)
Input : netlist of partially simulated display netlist and FF is the flip flop to be

resolved by simulation using ordered reconstruction
Output: Simulate the flip flop while reconstructing it node by node in breath-first

manner (starting from clock) and stores the definite value of the nodes of the
flip flop

1 Construct empty netlist NetlistNew;
2 Label all the nodes of FF through breath-first-search starting from clock;
3 foreach node ∈ FF in ascending order do
4 Read input-output connections of node from Netlist;
5 Construct node and its input-output connections from/to other nodes in NetlistNew;

6 foreach nodeNetlistNew ∈ NetlistNew and having unconnected input terminals do
7 Set 1 to all unconnected input terminals;
8 end
9 EventDriven(NetlistNew, node);

10 end
11 Store the value of nodes of the resolved flip flop;

i1
i2

Clock
g1 g2

g3

g4 g5

g6 g7

g8
g9

g10

out

Figure 4.17: A sample schematic circuit conforming to Huffman model

CHAPTER 4. BACK END OF THE COLDVL TOOL 87

independently in the event driven framework. As none of the elements from the combinational
domain is simulated till the simulation of sequential domain is finished, the gates triggered while
simulating the sequential domain of the circuit will always be limited to the sequential domain only.
So the number of events generated will be O(

∑i=p
i=1 z

2
i) and zi is the number of gates in the ith flip

flop. As zi ∈ [2, 8], number of events raised for sequential domain can be written as O(p), which
is O(y). Therefore, the number of events generated in combined simulation approach for the whole
circuit conforming to the Huffman model is O(x) + O(y) which is O(n).

The circuit in Figure 4.17 conforms to the Huffman model as it can be clearly partitioned into
combinational and sequential domains. In this circuit, after partitioning, gates g1, g2, g3 (RPI set
as defined in this chapter), g8, g9, g10 (RSI set) are in combinational domain where the rest of the
gates are in sequential domain. Executing event driven simulation on the whole circuit, on input
i1 and i2, the gates g1, g2, g4 and g8 will be simulated and this will in turn raise events for gates
g2, g3, g6, g10. After simulating these gates, the successors of these gates will be triggered for
simulation and this process will be followed for each gate of the circuit. By this method, gates in
the combinational domain of the circuit may get simulated unnecessarily multiple times to get the
output of the circuit. In case of combined simulation technique, the gates in RPI set can be simulated
in the order g1 → g2 → g3 and the order in the RSI set can be as {g8, g9} → g10. To illustrate it
further, only gate g1 will be simulated after input i1 and i2 has given, as all the inputs are available
only for gate g1 and the simulation will continue for the gates g2, g3 after the inputs of these gates
become available. The sequential part of the circuit will be simulated by event driven simulation
technique. The gates g8, g9 and g10 will not be executed until the simulation of the sequential part
has completed. After the values of g6 and g7 has been determined, the gates g8, g9 and g10 will be
executed in levelized order. This method will ensure that every gate in the combinational domain of
a circuit will be executed for once and thus reducing the number of events raised.

4.5 Implementation and results
Implementation of COLDVL tool The COLDVL tool has been implemented on the Java
platform.The development of the tool is based on Eclipse GEF framework [5]. This GEF framework
was first provided by Eclipse as plug-in application. Then Architexa [4] with the collaboration of
IBM and Eclipse developer team has extended the framework as a stand alone Java SWT application
suitable for web based application. Dropping out their web based aspect of the application, we have
further extended the framework to develop the tool by adding more components, extending logic
value and implementing our simulation approach along with other significant features mentioned
earlier. Figure 2.13 shows the way COLDVL interacts with the clients. One of the prime goals
of COLDVL tool is to handle very large user base at a time which has been achieved here by its
minimal dependency on the server. All the experiments of COLDVL and the matters pertaining to
those experiments reside in the server side whereas the CPU intensive task of simulation to carry
out the experiment is performed on the client side. The COLDVL tool is available in two forms, it

CHAPTER 4. BACK END OF THE COLDVL TOOL 88

can either be launched or downloaded. If the tool is launched, every time the user gets the updated
version of the tool automatically but if the tool is downloaded and used then user does not get the
updated version automatically. The user has to re-download the tool to get the latest version. This
approach abolishes the network latency between the user and the tool and thus speeding the tool
response, as it does not rely on any interaction with the server [17].

Results: The tool is being used to conduct semester laboratory course at IIT Kharagpur since
2012. Table 4.2 shows some under graduate and post graduate student assignments accomplished
at the IIT Kharagpur using the tool and run on a machine with the following configuration. In-
tel® Core™ i3 CPU 550 @ 3.20GHz×4 processor, 32-bit ubuntu 12.04 LTS operating system and
3.6 GiB memory. The assignment statements are given in the subsection 3.5.4. The execution time
(CPU time measured in milliseconds) for the initial cycles is much more due the overhead of several
library loading, however, once they are leaded, later execution cycles takes much less time which is
shown in a range within the execution time varies. The circuit is built and simulated using several
features provided in the COLDVL tool which are explained using some case studies in the previous
chapter.

4.6 Conclusion
In this chapter the back end part of the COLDVL tool is covered which comprises of the efficient
simulation technique for circuits conforming to the Huffman model. A partitioning technique is
developed for a gate level circuit in order to check whether it conforms to the Huffman model or
not. For some signal values which remain indeterminate after regular round of simulation in struc-
tural memory elements, a case based analysis is developed so that no discrepancy arises for a novice
student between real laboratory experimentation and simulated experimentation in a virtual environ-
ment. The algorithms for the techniques along with the case studies and examples are presented in
this chapter. Implementation of the COLDVL tool along with the results indicating execution time
for some student assignments are presented.

CHAPTER 4. BACK END OF THE COLDVL TOOL 89

Experiment
Name Components CPU Time range (ms) Remarks

Logic
Gates

Behavioral
Comp.

Initial
Cycles Avg.

16-bit block
carry look

ahead adder
(BCLA)

298 basic gates 650-800 2-5
pure combinational

circuit

Single
instruction

CPU
806

basic gates,
controller,
working

memory to
load binary

program

970-1200 4-8

sequential circuit
having data path,

controller and
working memory.

Inst: SBN

Regular CPU
with 4

instructions
719

basic gates,
controller,
working

memory to
load binary

program

900-1100 4-10

sequential circuit
having data path,

controller and
working memory.

Inst: ADD, jz (jump
if zero), LOAD,
NEG (negate)

8-bit shift and
add multiplier

570
basic gates,
controller

900-1200 5-10
sequential circuit
having data path

and controller
Radix-4 8-bit

Booth’s
multiplier

660
basic gates,
controller

920-1300 5-12
sequential circuit
having data path

and controller

Table 4.2: Execution time of some student assignments performed in COLDVL tool.

Chapter 5

Checking student designs for correctness

5.1 Introduction
Evaluation of student designs is an important issue in addition with the laboratory experimentation.
Manual and simulated evaluations of the student designs against a given reference design provided
by the course instructor are some what restricted. Therefore an equivalence checking method would
be desirable to check the correctness of the student designs against a given reference design. This
work proposes an equivalence checking method which is performed on the formal models repre-
senting the student design as well as the reference design specifications. The design behaviors are
modeled as finite state machines with data paths (FSMD). The equivalence is checked between the
two FSMDs. In an FSMD, a path is a finite sequence of states where the first and the last state
may be same. A computation in a FSMD, can be viewed as a computation along some concatenated
paths in that FSMD. Path cover of an FSMD is a finite set of paths and any computation of that
FSMD can be looked upon as a concatenation of paths belonging to the set. An FSMD, M0 is said
to be contained in another FSMD M1 if M0 has a finite path cover and and for each path in that path
cover, M1 has an equivalent path. The equivalence between two FSMDs are established by proving
that one is contained in another. While finding the equivalent path for a path during equivalence
checking, it is required to check the equivalence of the respective conditions as well as the data
transformations of the paths. Moreover, as the actual student designs are the digital circuits where
data transformations are performed over finite data paths, the equivalence checker must be able to
handle the finite precision data in bit level.

This chapter describes the proposed bit-level equivalence checking method which has been de-
veloped for the purpose of automatic checking of student designs against the given assignment.
This chapter also includes the challenges addressed along with the algorithms for this method and
an illustrated example. A brief description of the FSMD model and the basic equivalence checking
method is also included. Finally, the results of the current implementation of the bit-level equiva-
lence checking method is given.

90

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 91

5.2 Finite State Machine with Datapaths
A brief formal description of the finite state machines with data paths (FSMD) model is given in this
section. A detailed description of FSMD models can be found in [33]. The FSMD model [20], used
in this work to model the initial behaviour and the transformed behaviour, is formally defined as an
ordered tuple 〈Q, q0, I, V,O, f : Q×2S → Q, h : Q×2S → U〉, whereQ is the finite set of control
states, q0 is the reset (initial) state, I is the set of input variables which are never changed in course
of a computation of the model, V is the set of storage variables, O is the set of output variables, f
is the state transition function, h is the update function of the output and the storage variables, U
represents a set of storage and output assignments and S represents a set of relations over arithmetic
expressions and Boolean literals.

Path in FSMD
A path α in an FSMD model is a finite sequence of states where at most the first and the last states
may be non-distinct and any two consecutive states in the sequence are in f . The initial (start) and
the final states of a path α are denoted as αs and αf , respectively.

Condition of execution of a path
The condition of execution Rα of the path α is a logical expression over the variables in V and the
inputs I such that Rα is satisfied by the (initial) data state of the path iff the path α is traversed.

Data transformation of a path
The data transformation rα of a path α over V is the tuple 〈sα, θα〉; the first member sα is an
ordered tuple 〈ei〉 of algebraic expressions over the variables in V and the inputs in I such that the
expression ei represents the value of the variable vi after the execution of the path in terms of the
initial data state of the path; the second member θα, which represents the output list along the path α,
is typically of the form [OUT (Pi1 , e1), OUT (Pi2 , e2), . . .]. More specifically, for every expression
e output to port P along the path α, there is a member OUT (P, e) in the list appearing in the order
in which the outputs occur in α. The condition of execution and the data transformation of a path
are computed using the method of symbolic execution.

Computation in FSMD
A computation of an FSMD is a finite walk from the reset state back to itself without having any
intermediary occurrence of the reset state.

Definition 1 (Equivalence between two computations). Two computations µ1 and µ2 having the
characteristic formulae τµ1 and τµ2 , respectively, are said to be equivalent if Rµ1 = Rµ2 and
rµ1 = rµ2 .

The computational equivalence of two computations µ1 and µ2 is denoted as µ1 ' µ2. The
computational equivalence of two paths p1 and p2 can be defined in a similar manner and is denoted

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 92

as p1 ' p2. Equivalence checking of paths, therefore, consists in establishing the computational
equivalence of the respective conditions of execution and the respective data transformations.

An FSMD may consist of an infinite number of computations. However, any computation µ of
an FSMD M can be looked upon as a computation along some concatenated path [α1α2α3...αk] of
M such that, for 1 ≤ i < k, αi terminates in the initial state of the path αi+1, the path α1 emanates
from the reset state q0 and the path αk terminates in q0 of M ; αi’s may not all be distinct. Hence,
we have the following definition.

Definition 2 (Path cover of an FSMD). A finite set of paths P = {p0, p1, p2, . . .,pk} is said to be
a path cover of an FSMD M if any computation µ of M can be looked upon as a concatenation of
paths from P .

In order to obtain a path cover for an FSMD each loop is to be cut in at least one cut-point. The
set of all paths from a cut-point to another cut-point without having any intermediary cut-point is a
path cover of the FSMD [19]. In this work, a path cover is obtained by setting the reset state and the
branching states (i.e., states with more than one outward transition) of the FSMD as cut-points.

Equivalence of two FSMDs
It is to be noted that if two behaviors are to be the same, then their outputs must match. So, when
some variable is output, its counterpart in the other FSMD must attain the same value. Then the fol-
lowing can be stated. Let the reference behavior be represented by the FSMDM0 = 〈Q0, q0,0, I, V0, O, f0, h0〉
and the user behavior be represented by the FSMDM1 = 〈Q1, q1,0, I, V1, O, f1, h1〉. An FSMDM0

is said to be contained in an FSMD M1, symbolically M0 v M1, if for any computation µ0 of M0,
there exists a computation µ1 of M1 such that µ0 ' µ1. Two FSMDs M0 and M1 are said to be
computationally equivalent, if M0 vM1 and M1 vM0.

An FSMD may contain an infinite number of computations. So, it is not feasible to enumerate
all possible computations in one FSMD and find their equivalent computations in the other FSMD.
To overcome this problem, the following theorem is deduced.

Theorem 1. For any two FSMDs M0 and M1, M0 v M1, if there exists a finite cover P0 =

{p00, p01, . . . , p0l} of M0 for which there exists a set P 0
1 = {p010, p011, . . . , p01l} of paths of M1 such

that p0i ' p01i, 0 ≤ i ≤ l.

Another important notion is as follows.

Definition 3 (Corresponding states). Let M0 = 〈Q0, q0,0, I, V0, O, f0, h0〉 and
M1 = 〈Q1, q1,0, I, V1, O, f1, h1〉 be two FSMDs having identical input and output sets, I and O,
respectively, and q0,i, q0,k ∈ Q0 and q1,j , q1,l ∈ Q1.

1) The respective reset states q0,0 and q1,0 are corresponding states.

2) If q0,i ∈ Q0 and q1,j ∈ Q1 are corresponding states and there exist q0,k ∈ Q0 and q1,l ∈ Q1

such that, for some path β from q0,i to q0,k in M0, there exists a path α from q1,j to q1,l in M1

such that β ' α, then q0,k and q1,l are corresponding states.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 93

The method of basic equivalence checking for integer domain data
The basic equivalence checking method is based on the above discussion which consists of the
following steps.

1. Construct the set P0 of paths of M0 so that P0 covers M0. Let P0 = {p00, p01, · · · , p0k}.

2. Show that ∀p0i ∈ P0, there exists a path p1j of M1 such that p0i ' p1j .

3. Repeat steps 1 and 2 with M0 and M1 interchanged.

It is important to note that the choice of cut-points is non-unique and it is not guaranteed that a
path cover of one FSMD obtained from any choice of cut-points in itself will have the corresponding
set of equivalent paths for the other FSMD.

In the second step above a crucial operation is to determine the equivalence of two paths which
in turn relies on determining the equivalence of arithmetic expressions. In [33], integer arithmetic
expressions have been considered and their equivalence is determined using the normalization mech-
anism [46], [45]. As a result the equivalence checking method of [33] is biased towards programs
that deal with integer arithmetic. While the integer domain offers an elegant representation for a
wide variety of problems, in the next section we shall examine issues in determining equivalence
over bit-level data and thereby adopt representation and normalization scheme that is better suited
to handle bit-level data.

5.3 Issues in determining equivalence over bit-level data
The designs extracted from the experiments conducted through the COLDVL virtual laboratory,
have finite data path with various bit-level operations such as arithmetic operations, logical opera-
tions, shift operations and some other operations such as concatenation, extraction performed in it.
[33], [10] can not handle the finite data path and the aforesaid bit-level operations due to its restric-
tion to the infinite domain. This section briefly describes the way this challenge along with some
other issues addressed in the newly developed bit-level equivalence checking method along with an
example (shift and add multiplier) presented in Figure 5.1 (reference design) and Figure 5.2 (user
or student design) to show the some example scenario where those issues occurs. The two figures
shows two versions of shift and add multiplier and some of the operations in them are shown in
different colors to indicate different issues in determining the equivalence between the designs.

Handling bit-level operations
Consider two variants of the shift and add multiplication scheme shown in the Figures 5.1 and 5.2. In
those designs, we can see some arithmetic operations such as A[3 : 0]+M [3 : 0], Q[3 : 0] �Q[3 :

0] � 1, count[3 : 0] − 1, A[3 : 0] + 0. These essentially implies that operands of the operations
are finite precision data, they have finite but multiple bits and bits are ordered from least significant
bits to most significant bits.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 94

On the other hand, other than those designs shown in the Figures 5.1 and 5.2, suppose, between
the another two designs, one design contain A[3 : 0] − M [3 : 0]) and another design contain
A[3 : 0] +M [3 : 0] + 1). These two operations are structurally dissimilar differing in number of
operators, type of operators, number and type of operands. however, manually applying the theory
of logic design, it is clear that the two operations are the same.

Consider another formula which is as follows.
(x− y > 0)⇔ (x > y)

This is a valid formula when interpreted over integer domain, however this equivalence does not hold
good over bit-vectors due to the existence of possible overflow in the subtraction operation. For ex-
ample, x[3:0]=111, y[3:0]=010, the unsigned & 2’s complement value of 111 is 7 & -1 respectively,
where as the unsigned & 2’s complement value of 010 is 2 for both of them.

From the above scenarios, it is clear that in order to develop an equivalence checker which can
establish equivalence between two designs having such operations, the equivalence checker needs to
be able to reason over bit-levels. it should also take account for the possible overflow and underflow
situations associated with the operations. Structurally dissimilar operations are also required to be
represented through a normalized from so that all the expressions are transformed into a standard
structure and the equivalence between two non-identical expressions can be established.

To achieve those, the proposed bit-level equivalence checking method models the data path as
finite-precision bit-vectors and bit-wise operations performed on them. This enables the equivalence
checking method to handle arithmetic, logical, bit-wise and shift operation in bit-level including
concatenation operation. The theory of the bit-vectors are equational theory over finite non-empty
strings over {0,1} and having a known fixed width. The formulas of this theory are boolean combi-
nations of the equalities over bit-vector expressions. For an n bit bit-vector, the leftmost bit is the
least significant bit (LSB) and the rightmost bit is called most significant bit (MSB). The bits are
indexed as LSB being 0 and MSB being n − 1 with an ordering from left to right. Binary decision
diagrams (BDD) [15] are used to represent and reason over the bit-vectors efficiently. Following is
the bit-vector logic syntax supported by our bit-level equivalence checking method.

formula : term | atom | ∼ formula
term : identifier | constant | term [constant : constant] | term [constant] |

∼ term | term op term | atom ? term : term

atom : term rel term | term
op : + | − | � | � | ≪ | ≫ | ◦ | AND | OR |

NAND | NOR | XOR | XNOR
rel : == | < | > | ≤ | ≥

Where,�,�,≪,≫, ◦ denotes bit-wise logical left shift, logical right shift, arithmetic left shift,
arithmetic right shift and concatenation operation respectively.

Results spanning over variable boundary
In integer domain, result of an operation is stored in a single variable. However, in bit-level opera-
tion, often the result is itself build of multiple bits which in turn may be assigned to the bits of other

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 95

variable with choice. Therefore, the result of a bit-level arithmetic can be distributed in multiple
variables.

For example, referring to the Figure 5.1, consider the operation {C,A[3 : 0]}�A[3 : 0]+M [3 :

0]). This operation essentially signifies that the result of the addition operation will be distributed
over the single variable C and four bits of variable A. It is to be noted that as the size of the variable
C is one, its size is not shown in a range which is shown for A as [3 : 0] denoting A[0] as the least
significant bit (LSB) and the A[3] as the most significant bit (MSB).

Consider another operation prod[7 : 0] � {A[3 : 0], A X[3 : 0]} whose interpretation is as
follows. the four data bits residing on A and A X are assigned to a single variable prod with size
equal to the sum of A and A X in an ordered manner. The right most bit is the LSB, therefore,
A X[0] will be assigned to the LSB of the result i.e. prod[0]. Note that, when a result is distributed
over multiple variables, we denote those variable as composed variable.

In such cases, it is necessary for the equivalence checker to track the results, the distribution of
the result bits, the boundary of the result and the order of the result bits. The ultimate aim of the
equivalence checking is to check whether the corresponding variables (which are present in both the
designs) of the two designs holds same output or not. The equivalence checking task performed over
integer domain involves only single variable correspondence i.e the correspondence is always be-
tween the single variables as the output of any operation is assigned to a single variable. However,
due to the variable composition, as mentioned above, the correspondence may range from single
variable to multiple variable. The bit-level equivalence checker handles these composed variables
along with the issues of tracking result associated with them. In order to identify the variable compo-
sition, currently a naming convention is adopted. According to the naming convention, the variable
A X[3 : 0] signifies that it is actually the variable X having composition with A.

Evolving size of result
The size of the result may not be fixed. It may be evolving through iterations. Consider the two
operations from the Figure 5.1 which is as follows. (i) {C,A[3 : 0], A X[3 : 0]} � {C,A[3 :

0], A X[3 : 0]} � 1 (ii) prod[7 : 0]� {A[3 : 0], A X[3 : 0]}Where prod[7 : 0] holds the output
of the multiplication which is assigned values from the composed variables {A[3 : 0], A X[3 : 0]}
(by naming convention the composition is identified). From the first operation it can be seen that a
right shift operation is performed and it is also very important to note that the shifting is performed
on these composed variable (along with another variable) iteratively. In this case, the result boundary
is growing by one bit with each iteration through shifting operations. There are other computer
arithmetic algorithms where data evolves through iteration and in each iteration one or more than
one result bits are appended to the boundary of the existing result causing the current boundary of
the result to be expanded. For example, in shift and add multiplication and Booth’s multiplication,
result evolves by one bit per iteration. However, in radix-4 Booths multiplication, the result evolves
by two new result bits to the existing result boundary per iteration.

Through several operations the result can grow such as different shifting operations, multiplied
by two, etc. Through the above example, it is stated that how a result can evolve through iteration

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 96

within a design. As the equivalence checking deals with the two design, cases may occur that in
both the designs the data is evolving through similar operations such as shifting operations, mul-
tiplied by two, etc. or data may grow through dissimilar operations such as mismatched shifting
operations, one design consisting of shifting operations and another design having multiplied by
two. However, the current scope of the work can handle evolving data through similar or dissimilar
shifting operations. dealing equivalence between the operations such as left shifting by one bit and
the multiplied by two is beyond the scope of this work. Figures 5.1 and 5.2 consists of both similar
and dissimilar shifting operations. The dissimilar operation is shown in magenta color and it depicts
that the shift operation {C,A[3 : 0], A X[3 : 0]} � {C,A[3 : 0], A X[3 : 0]} � 1 occurs only in
the reference design, not in the user design. However, the operations Q[3 : 0] � Q[3 : 0]� 1 and
A Q[3 : 0] � A Q[3 : 0]� 1 may appear dissimilar due to their variable name, it may be recalled
that due to the naming convention adopted in this work, A Q is actually the variable Q denoting its
association with the variable A. Therefore the two shift operations are similar.

To handle this phenomena of evolving data through iterations, the equivalence checker need
to track the boundary of the results and try to obtain the shift characteristic through which data
builds. This is accomplished with the help of some observations generated in terms of predicates at
different phases of the execution of the bit-level equivalence checking method including the design
observations. New observations are deduced from the existing predicates using some predefined
rules. Following are some examples of simple predicates used in this work and the other predicates
are given in the later sections.

Predicate-1: (SHR(v):n) [Logical right shift of variable v by n bits]

Predicate-2: (SHRA(v):n) [Arithmetic right shift of variable v by n bits]

Predicate-3: (SHL(v):n) [Logical left shift of variable v by n bits]

Again consider the operation, prod[7 : 0]� {A[3 : 0], A X[3 : 0]} in the Figure 5.1. It can be
seen that eight bits are assigned to the variable prod from the variables {A[3 : 0] and A X . It has
already been noted from the design that {A[3 : 0] and A X are composed variables in which result
bit is inserted iteratively implying that after full iteration the all the bits of the composed variables
will hold valid data bits before that some bits of the variables. However, with the symbolic execution
approach adopted in this bit-level equivalence checking method which does not unroll a loop, can
not infer anything about the data bits after a full iteration. To handle the situation, the equivalence
checker utilize the shifting characteristic deduced earlier for each path belonging to a loop. From
the shifting characteristic of each path of a loop, it is checked whether a loop invariant shifting
characteristic can be obtained using the set of predicates (observations) and predefined rules. Once
the equivalence checker successfully identifies the loop invariant data shift characteristic, using
that characteristic and the loop count (it is assumed that the loop count is finite and known), the
equivalence checker then infer the data range after the full iteration through interpolation.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 97

5.4 Methodologies and algorithms
The proposed bit-level equivalence checking method is a path cover based method which decom-
poses a design into several path segments and can handle bit-level arithmetic, logical, bit-wise, shift
operations, conditional branching. For some cases where the result evolves through iteration, the
method also does some special analysis to capture the pattern through which the result evolves.
A successful extraction of pattern may cause the equivalence checker to perform some other extra
analysis to infer the data range after completion of an iteration. The equivalence checker can also
determine the equivalence in the presence of operations scheduled in different clock cycles as the
related operations may not happen in lock step. The following subsections contain the detail method
along with the algorithms for the bit-level equivalence checking method.

5.4.1 Overall equivalence checking method

The overall equivalence checking method is outlined in the Algorithm 19 along with the illustration
of terms used in the algorithm in the Table 5.3. Initially the loops are found in the two input designs
i.e FSMDs. Then the cut-points are introduced through marking the reset states (start and end states)
and the states having branches in the input FSMDs to compute the path cover. The path cover of an
FSMD consists of the paths between the cut-points of that FSMD. The equivalence checker starts
from the start cut-point in breath-first-search (BFS) manner in both the designs. In this work it is
assumed that between the two input FSMDs, a one-to-one correspondence between cut-points exists.
Following is the notion of corresponding cut-points.

Definition 4 (Corresponding cut-points). Let fsmdR = 〈Q0, q0,0, I, V0, O, f0, h0〉 and
fsmdU = 〈Q1, q1,0, I, V1, O, f1, h1〉 be two FSMDs having identical input and output sets, I and
O, respectively, and q0,i, q0,k ∈ Q0 and q1,j , q1,l ∈ Q1. Where fsmdR is the FSMD corresponding
to the reference design and fsmdU is the FSMD corresponding to the user design.

1) The respective reset states q0,0 and q1,0 are corresponding cut-points.

2) If q0,i ∈ Q0 and q1,j ∈ Q1 are corresponding cut-points and there exist q0,k ∈ Q0 and
q1,l ∈ Q1 such that, q0,k and q1,l are cut-points and for some path β from q0,i to q0,k in
fsmdR, there exists a path α from q1,j to q1,l in fsmdU such that β ' α, then q0,k and q1,l
are corresponding cut-points.

In Figure 5.1 and Figure 5.2, the corresponding cut-points are (CP1, CP
′
1), (CP2, CP

′
2), (CP3, CP

′
3),

(CP4, CP
′
4).

For every path between any two pair of cut-points in one FSMD, the equivalence checker will
try to find its equivalent path between the corresponding cut-point (Definition 4) pairs in the another
FSMD. In an FSMD, a path contains a condition of execution and a set of data transformation
operations and the execution of a path depends upon satisfaction of its condition of execution. Two
paths are only considered for checking equivalence if they have same condition of execution. Two

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 98

designs are declared as equivalent if every path between the cut-points in a design has its equivalent
path between the corresponding cut-points in the other design i.e. every path of the path cover of a
design must has its equivalent path in the other design.

Path computation
To check equivalence between two paths, the equivalence checker does path computation for both
the paths. Before executing a path, all the input variables which are not assigned with specific values
are assigned with symbols. The common input variables (which are common in both the FSMDs)
are assigned with same symbols.For the path computation we need the following notions.

Definition 5 (Symbolic value vector (SVV)). Let fsmd = 〈Q, q, I, V,O, f, h〉 is an FSMD and the
finite sized variables are denoted by this ordered form 〈v1[m1 : n1], v2[m2 : n2] . . . , vk[mk : nk]〉
where mk is the most significant and nk is the least significant bit of the variable vk and k ∈ V then
SV V = 〈v1 : 〈b[m1] . . . , b[n1]〉, v2 : 〈b[m2] . . . , b[n2]〉 . . . vk : 〈b[mk] . . . b[nk]〉〉 where b[i] is the
ith bit of the variable v ∈ v1, v2, . . . , vk and nj 6 i 6 mj , 1 6 j 6 k. Every cut-point will hold an
SV V .

Definition 6 (Start symbolic value vector (StartSVV)). Let fsmd = 〈Q, q, I, V,O, f, h〉 is an FSMD
and {p1, p2, . . . , pk} is the set of paths from the cut-point CPx to CPy where CPx and CPy ∈ Q,
then for pi ∈ {p1, p2, . . . , pk}, StartSV Vpi � SV VCPx . StartSV Vpi is the start value vector
used for the symbolic execution of the path pi and SV VCPx is the start value vector stored at the
cut-point CPx.

In Figure 5.1, for path p2, StartSV V = 〈C : 〈c〉, A : 〈a3a2a1a0〉, A X : 〈x3x2x1x0〉,M :

〈m3m2m1m0〉, Q : 〈q3q2q1q0〉, count : 〈t2t1t0〉, prod : 〈-〉〉

Definition 7 (Exit symbolic value vector (ExitSVV)). ExitSV V is the symbolic value vector gen-
erated after the symbolic execution of a path p through forward substitution using the values of the
variables at bit level.

For the path p2 in Figure 5.1, after its symbolic execution,ExitSV V = 〈C : 〈0〉, A : 〈s4s3s2s1〉, A X :

〈s0x2x1x0〉,M : 〈m3m2m1m0〉, Q : 〈0q3q2q1〉, count : 〈t′2t′1t′0〉, prod : 〈-〉〉
Computation of a path is accomplished through symbolic execution of the path using the StartSV V

for that path and ExitSV V of the path is obtained. The algorithm for finding equivalence between
two paths is described in Algorithm 20 with terms defined in Table 5.1. Another useful notion is as
follows.

Definition 8 (SVV at cut-point). Let fsmd = 〈Q, q, I, V,O, f, h〉 is an FSMD and
{p1, p2, . . . , pk} is the set of paths from the cut-point CPx to CPy where CPx and CPy ∈ Q, then
for pi ∈ {p1, p2, . . . , pk}, if the corresponding equivalent path is found between the corresponding
cut-point pair in the another FSMD then, SV V CPy�ExitSV Vpi replacing any previous symbolic
value vector stored (if any),

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 99

In Figure 5.1, at cut-pointCP3, the final SVV will be stored depending on the order of execution
of the paths p2 and p3. If p2 is executed at the last then SV V at cut − point = 〈C : 〈0〉, A :

〈s4s3s2s1〉, A X : 〈s0x2x1x0〉,M : 〈m3m2m1m0〉, Q : 〈0q3q2q1〉, count : 〈t′2t′1t′0〉, prod : 〈-〉〉
If p3 is executed at the last then SV V at cut − point = 〈A : 〈s4s3s2s1〉, A Q : 〈s0q3q2q1〉,M :

〈m3m2m1m0〉, count〈t′2t′1t′0〉, prod : 〈-〉〉

5.4.2 Value match between corresponding variables

After the symbolic execution of the two paths the values of the corresponding bits of the corre-
sponding variables of the two exit symbolic value vectors (one from reference design and another
from user design) are then matched. For the corresponding variables having specific values, if the
value is matched then the specific value of the variable is replaced with the same symbols in both
the designs and the specific values are stored for future analysis (if required). The basic equivalence
checker method over integer data presented in the previous section 5.2 terminates if the values of
the corresponding variables do not match (from Definition 1). The paths are declared as equivalent
if the values of the common variables match. The current bit-level equivalence checker also ter-
minates if the value of the each bit of a corresponding variable does not match with the value of
the corresponding bit of the corresponding variable with exception for some special cases. In some
complex computer arithmetic algorithms such as multiplication, division, output is iteratively built
bit by bit through a loop. In addition with this, the output may reside in more than one variable
i.e composed variables (discussed in the previous section) having different initial values, then the
equivalence checking task becomes harder. In such case, before the completion of the loop, the
variable (single or composed) holding the output may contain data in some bits which is not part
of the output yielding some matching bits and some mismatching bits with its corresponding vari-
able during value match. However, the bits having non-output data will eventually be filled up with
output or result data after complete iteration. We now introduce some notions related to this.

Definition 9 (Full bit match(mismatch)). Let fsmdR = 〈QR, q0,R, I, V R, O, fR, hR〉 and
fsmdU = 〈QU , q1,U , I, V U , O, fU , hU 〉 be two FSMDs having identical input and output sets, I
and O, respectively. Let
ExitSV V R = 〈vR1 : 〈b[m1] . . . , b[n1]〉, vR2 : 〈b[m2] . . . , b[n2]〉 . . . vRk : 〈b[mk] . . . b[nk]〉〉 and
ExitSV V U = 〈vU1 : 〈b[m1] . . . , b[n1]〉, vU2 : 〈b[m2] . . . , b[n2]〉 . . . vUk : 〈b[mk] . . . b[nk]〉〉
are the exit symbolic value vector belonging to fsmdR and fsmdU respectively, whose values are
needed to be matched equivalence checking.

• Full bit match for the corresponding variable vRi and vUi where vRi ∈ V R and vUi ∈ V U is
the matching of all of the corresponding bits of those variables.

• Full bit mismatch for the corresponding variable vRi and vUi where vRi ∈ V R and vUi ∈ V U

is the mismatching of all of the corresponding bits of those variables.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 100

Definition 10 (Partial bits match(mismatch)). Let fsmdR = 〈QR, q0,R, I, V R, O, fR, hR〉 and
fsmdU = 〈QU , q1,U , I, V U , O, fU , hU 〉 be two FSMDs representing reference design and user de-
sign respectively have identical input and output sets, I and O. Let
ExitSV V R = 〈vR1 : 〈b[m1] . . . , b[n1]〉, vR2 : 〈b[m2] . . . , b[n2]〉 . . . vRk : 〈b[mk] . . . b[nk]〉〉 and
ExitSV V U = 〈vU1 : 〈b[m1] . . . , b[n1]〉, vU2 : 〈b[m2] . . . , b[n2]〉 . . . vUk : 〈b[mk] . . . b[nk]〉〉
are the exit symbolic value vector belonging to fsmdR and fsmdU respectively, whose values are
needed to be matched equivalence checking.

• Partial bits match for a corresponding variable vRi and vUi where vRi ∈ V R and vUi ∈ V U is
when the value of the bits within the bit ranges 〈b[k : l], . . . , b[k′ : l′]〉 of the corresponding
variables matches.

• Partial bits mismatch for a corresponding variable vRi and vUi where vRi ∈ V R and vUi ∈ V U

is when the value of the bits within the bit ranges 〈b[k : l], . . . , b[k′ : l′]〉 of the corresponding
variables does not match.

In Figure 5.1 and Figure 5.2, during the value match for paths p2 and p′2, the corresponding exit
value vectors are generated as follows after the symbolic execution of the paths respectively.
ExitSVV (of p2): 〈C : 〈0〉, A : 〈s4s3s2s1〉, A X : 〈s0x2x1x0〉,M : 〈m3m2m1m0〉, Q : 〈0q3q2q1〉, count :
〈t′2t′1t′0〉, prod : 〈-〉〉
ExitSVV (of p′2): 〈A : 〈s4s3s2s1〉, A Q : 〈s0q3q2q1〉,M : 〈m3m2m1m0〉, count〈t′2t′1t′0〉, prod : 〈-
〉〉

It is to be noted that according to the naming convention used in this work, A X denotes that
the variables A and X are composed variables and together they will hold some ordered data bits
in Figure 5.1. Similarly A and A Q are composed variables containing some ordered data bits in
Figure 5.2. Those two composed variables from the two designs are also corresponding variables,
therefore, their value will be matched in a manner that A and A X of ExitSVV (of p2) will be
matched with A and A Q of ExitSVV (of p′2) respectively. In order to match values between them,
we get a partial match and partial mismatch. The composed variables are of total 8 bits among
which A[3 : 0] matches, A X[3] and A Q[3] bit matches. However, A X[2 : 0] and A Q[2 : 0]

mismatches. The other variables are not mentioned here to keep this example simple.
The value match of the corresponding variables may yield the following situations. (i) full bit match

(ii) full bit mismatch (iii) partial bits match and partial bits mismatch For full bit match, the
equivalence checker proceeds, for full bit mismatch the equivalence checker terminates, the equiv-
alence checking task is not terminated immediately for partial bitsmatch and partial bitsmismatch
if the following conditions hold along with an assumption upon satisfaction of those conditions.

Condition-1: The path (let p) for which the situation occurs is a part of loop

Condition-2: The path p contains shift operations performed on the variables yielding partial bits match
and partial bits mismatch.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 101

Assumption: If Condition-1 and Condition-2 satisfies then the output may be building iteratively
in a pattern in the designs and eventually the mismatch will be resolved after full iteration of
the loop.

With this assumption, the equivalence checker further determines if a mismatch will be dealt
with a special analysis or the equivalence checker can not decide further and need to terminate.
This procedure is outlined in Algorithm 22. As, the equivalence checker does not unroll any loop
during its execution. it relies on several design observations generated during the execution of
the equivalence checking in the form of predicates and applying some predefined rules on those
observations in order to deduce more observations and to make some decisions and also to extract a
pattern through which the output builds. The successful pattern extraction may help the equivalence
checker to infer data ranges after completion of a loop without unrolling the loop. The procedure of
matching values of the corresponding variables (single or composed) are described in Algorithm 21
with the terms illustrated in the Table 5.2.

5.4.3 Special analysis to check specific value of a symbol

When the mismatch bits of corresponding variables are marked for the special analysis it is then
checked if one of the bit contains a symbol and the other one contains a specific value. If both
the mismatched bits hold mismatched symbols then this implies that in general case the bits will
mismatch i.e. they will always mismatch, therefore there is no need for special analysis and the
equivalence checker will terminate. However, if one of the value is a symbol and the other one is
a specific value then it is checked whether the bit having a symbol actually takes the same specific
value in all possible cases that of the other corresponding bit from the other design. In order to do
that, reachability definitions of the path (where the mismatch has occurred, say pi) are computed.
The notion of path composition (in terms of path characteristic) and reachability is as follows.

Definition 11 (Characteristics of a path). The characteristic formula τα(v, vf , O) of a path α is
Rα(v) ∧ (vf = sα(v)) ∧ (O = Oα(v)), where sα is the data transformation and Oα is the output
list in the path α, v represents a vector of values of the variables of I ∪ V, vf represents a vector of
values of the variables of V . The formula captures the following: if the condition of execution Rα of
the path α is satisfied by the (initial) vector v at the beginning of the path, then the path is executed
and after execution, the final vector vf of variable values becomes sα(vf) and the output Oα(v) is
produced.

Let τα(v, vf , O) : Rα(v) ∧ (vf = sα(v)) ∧ (O = Oα(v)) be the characteristic formula of
the path α and τβ(v, vf , O) : Rβ(v) ∧ (vf = sβ(v)) ∧ (O = Oβ(v)) be the characteristic for-
mula of the path β. The characteristic formula for the concatenated path αβ is ταβ(v, vf , O) =

∃vα∃O1∃O2(τα(v, vα, O1) ∧ τβ(vα, vf , O2)) = Rα(v) ∧ Rβ(sα(v)) ∧ (vf = sβ(sα(v)))∧ (O =

Oα(v)Oβ(sα(v))). O is the concatenated output list of Oα(v) and Oβ(sα(v)).

Definition 12 (A path reachable from a set of paths (Sp
fsmd
i
Rto)). fsmd = 〈Q, q, I, V,O, f, h〉 is an

FSMD and

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 102

P = {p1, p2, . . . , pk} is its path cover. For any path pi ∈ P , Sp
fsmd
i
Rto is the set of paths containing

the paths or the concatenation of the paths from the path cover P from which pi can be reached in
the fsmd

In the Figure 5.1, for the path p3, Sp
fsmd
i
Rto = {P1, P2P4, P3P4}.

Definition 13 (A set of paths emerging from a path (Sp
fsmd
i
Rfrom)). fsmd = 〈Q, q, I, V,O, f, h〉 is an

FSMD and
P = {p1, p2, . . . , pk} is its path cover. For any path pi ∈ P , Sp

fsmd
i
Rfrom is the set of paths containing

the paths or the concatenation of the paths from the path cover P which emerges from pi in the fsmd

In the Figure 5.1, for the path p3, Sp
fsmd
i
Rfrom = {P4P2, P4P3, P5}

The value of the symbol is determined from each path belongs to the reachable definitions of

the path pi i.e. Sp
fsmd
i
Rto , and substituted in the corresponding bit of the appropriate variable in the

current path (pi). After substitution, the path, pi is symbolically executed and the value is matched
with the corresponding variable in the other FSMD. If we get a new symbol after the symbolic
execution instead of getting a specific value to resolve the mismatch occurred earlier, another check
is performed recursively on all the paths which do emerges from the path pi and as well as belongs

to the reachable definitions of pi, i.e. S
pfsmd
i
Rfrom until a fixed point is reached. The procedure is

described in the Algorithm 24 and Algorithm 23 along with the description of the terms used in it in
the Table 5.4.

5.4.4 Identifying data building pattern and inferring data range after
completion of loop (for special cases)

After the value match is performed for the corresponding variables of the two FSMDs for a pair
of paths, the equivalence checker tries to find the shifting pattern through which data builds if it
has made the assumptions based on the satisfaction of the conditions mentioned earlier.The shift
characteristic is deduced from the design observations generated in the form of predicates at the
several phases of the execution using some predefined rules. Some of the predicates are as follows.

Predicate-1: (SHR(v):n) [Logical right shift of v by n bits]

Predicate-2: (SHRA(v):n) [Arithmetic right shift of v by n bits]

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 103

ALGORITHM 19: EquivalenceChecker(fsmdR, fsmdU)
Input : Reference FSMD (fsmdR) and the user FSMD (fsmdU)
Output: Decision whether the two input FSMDs are equivalent

1 Find loops through DFS back edges and introduce cut-points;
2 CmpV arSet� Find variable composition and their ranges (through concatenation);
3 {ObvSetR, ObvSetU , CmpV arCorrSet}� Do live variable analysis and compute

correspondence;
4 Traverse cut-points in BFS order starting from the start state ;
5 foreach corresponding cut-points CPR

j and CPU
j (being j as BFS level) do

6 EmPathListR � FindEmergingPathsToNextCP(CPR
j , CPR

nextOFj);
7 EmPathListU � FindEmergingPathsToNextCP(CPU

j , CPU
nextOFj);

8 SameCondPathList� FindPathPairWithSameCondition(EmPathListR,
EmPathListU);

9 foreach path pair (PR
i , P

U
i) ∈ SameCondPathList do

10 {SCsetRLi
, SCsetULi

}� CheckPathEqv(PR
i , P

U
i , V

R

is , V
U

is , V sp
R

i , V sp
U

i);
11 Store ExitValueVector at cut-points CPR

nextOFj and CPU
nextOFj;

12 if (Pi ∈ loop Li && all paths ∈ Li is computed && path contains live shift
var) then

13 {LIS(LDi), LIS(LD
′

i)}
� DeduceLoopInvariantShifts({SCsetRLi

, SCsetULi
});

14 if loop invariant shifts matches then
15 DoInterpolate(loopCount, LIS(LDi), LIS(LD

′
i));

16 Update ExitValueVector at cut-points CPR
nextOFj and CPU

nextOFj;
17 else
18 Terminate; /* two designs are not equivalent */
19 end
20 end
21 end
22 end
23 Output successful equivalence decision;

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 104

ALGORITHM 20: CheckPathEqv(PD
i , PD′

i , V
D

is , V
D′

is , V sp
D

i , V sp
D′

i)
Input : Two path segments of the two FSMDs along with their symbolic start value

vectors and specific value vector
Output: Decision if the two paths are equivalent, exit symbolic value vector and the

data shifting pattern in that path
1 {{ObvDi }, V

D

iE
}� ComputePath(PD

i , V
D

is);
2 ObvSetD � ObvSetD ∪ {ObvDi };
3 {{ObvD

′
i }, V

D′

iE
}� ComputePath(PD′

i , V
D′

is);
4 ObvSetD

′
� ObvSetD

′ ∪ {ObvDi };
5 {ObvSetD, ObvSetD

′
, decision}

�MatchValue(PD
i , PD′

i , V
D

iE
, V

D′

iE
, CmpV arCorrSet, ObvSetD, ObvSetD

′);
6 {SC(PD

i), SC(PD′
i)}� DeduceShiftChateristics({ObvSetD, ObvSetD

′}); /* for
live variables */

7 foreach PD
i ∈ loopLi do

8 SCsetDLi
� SCsetDLi

∪ SC(PD
i);

9 SCsetD
′

Li
� SCsetD

′
Li
∪ SC(PD′

i);
10 end

PD
i : ith path in design D (if D = R(reference) then D′ = U(user))

V
D

is : start symbolic value vector in the ith path in design D

V sp
D

i : exit specific value vector in the ith path in design D
ObvDi : set of observations during computing path Pi in design D
SC(PD

i): deduced shift characteristics of path PD
i

SCsetDLi
: set of shift characteristics of paths ∈ loop Li

Table 5.1: Illustration of terms for Algorithm 20

Predicate-3: (SHL(v):n) [Logical left shift of v by n bits]

Predicate-4: NotUsedWithinLoop(v):(CPx, CPy)) [Value of v is not used in a loop within cut-
point CPx and CPy]

Predicate-5: ValueMatch(vR[m : n], vU [m : n]) [Value matched for the bits in the range [m : n]

of the two corresponding variables from the reference and user design respectively]

Predicate-6: IgnoredMismatches(vRi [m : n], vUi [m : n]) [mismatches occurred for the bits in
the range [m : n] of the two corresponding variables from the reference and user design
respectively do not cause termination of the equivalence checker]

Predicate-7: FullBit(v:size) [All of the bits of v will be considered]

Predicate-8: IncrementFromMsb(v:n) [Bits of v will be considered incrementally from the most
significant bit by n bits]

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 105

ALGORITHM 21: MatchValue(PD
i , PD′

i , V
D

iE
, V

D′

iE
, CmpV arCorrSet, ObvSetD, ObvSetD

′)
Input : Two path segments of the two FSMDs along with their symbolic exit value

vectors, set of corresponding variables and set of observations
Output: Matches symbolic values of the corresponding variables and allow(or

forbid) mismatch
1 foreach corresponding single variable svD and svD

′ do
2 if (∀ bits bi ∈ svD and svD

′
and val(bDi) = val(bD

′
i)) then

3 proceed;
4 else
5 terminate;
6 end
7 end
8 foreach pair (u, v) ∈ CmpV arCorrSet s.t. Pi ∈ Range(u, v) do
9 if (∀ bits bi ∈ u, v and val(bDi) = val(bD

′
i)) then

10 Return true;
11 else if ∃ bit ranges { b[k:l], .., b[k′:l′]} s.t. val(bD[k:l], .., b

D
[k′:l′]) 6= val(bD

′

[k:l], .., b
D′

[k′:l′])

then
12 {b[i:j]..b[i′:j′]}

� ForbidMismatchRange((u, v), (b[k:l]..b[k′:l′]), Pi, ObvSetD, ObvSetD
′);

13 foreach b[x:y] ∈ {b[i:j], .., b[i′:j′]} do
14 if (val(bD[x:y]) = specific and val(bD

′

[x:y]) = symbolic) then
15 CheckAllPossibleSpecVal (bD′[x:y], P

D′
i , val(bD[x:y]));

16 UpdateObv(ObvSetD, ObvSetD
′);

17 else if (val(bD
′

[x:y]) = specific and val(bD[x:y]) = symbolic) then
18 CheckAllPossibleSpecVal (bD[x:y], P

D
i , val(bD

′

[x:y]));
19 UpdateObv(ObvSetD, ObvSetD

′);
20 else
21 UpdateObv(ObvSetD, ObvSetD

′) and terminate;
22 end
23 end
24 else
25 UpdateObv(ObvSetD, ObvSetD

′) and return true;
26 end
27 end

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 106

ALGORITHM 22: ForbidMismatchRange((u, v), (b[k:l], .., b[k′:l′]), Pi, ObvSetD, ObvSetD
′)

Input : A path, set of mismatch ranges of bits occurred in the path and set of
observations of both the input FSMDs

Output: Decision for each mismatch range to allow or forbid
1 if initially u = v then
2 For single mismatched bit� do not allow;
3 else if initially u 6= v and ∃ matched bits then
4 foreach mismatched variable w ∈ u or v do
5 if w is not live in all the paths originating from Pi then
6 allow mismatch;
7 else if w is live but the original value of w is overwritten then
8 allow mismatch;
9 else if w is live in any path originating from PD

i then
10 if mismatched bits (of the corresponding composed variable) of w

matches with another corresponding single variable and as single
variable, the mismatched bits of wD and wD′ have no future use then

11 allow mismatch;
12 end
13 end
14 end
15 end

ALGORITHM 23: CheckAllPossibleSpecVal (bT[x:y], P
T
i , val(b

T ′

[x:y]))

Input : Mismatched bit ranges and the path in which the specific value of the
mismatched symbols are to checked in all possible cases

Output: Decision whether the forbidden mismatches resolved in all possible cases
1 S

PT
i

Rto� ReachableTo(P T
i); /* returns set of paths from where

P T
i is reachable */

2 foreach path P T
k ∈ S

PT
i

Rto do
3 if (CheckSpecVal(P T

k , P
T
i , b

T
[x:y], b

T ′

[x:y], S
PT
i

Rto)) then
4 Return true;
5 else
6 return false;
7 end
8 end

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 107

ALGORITHM 24: CheckSpecVal(P T
k , P

T
i , b

T
[x:y], b

T ′

[x:y], S
Pi
Rto)

Input : A path P T
i where mismatched bits occurred, one of the path P T

k belongs to
set of paths from where P T

i is reachable, mismatched bits and the set of all
paths from where P T

i is reachable
Output: Decision whether the forbidden mismatches resolved in each cases

1 if (V
T

kE
is not computed) then

2 {{ObvTk }, V
T

kE
}� ComputePath(P T

k , V
T

kS
);

3 end
4 foreach bit bi ∈ bT[x:y] do
5 V arsymbolicV al(bi)V T

iS

� V al(V arsymbolicV al(bi)V T
kE

);

6 {{ObvTi }, V
T

iE
}� ComputePath(P T

i , V
T

iS
);

7 MatchValue(P T
i , P

T ′
i , V

T

iE
, V

T ′

iE
, CmpV arCorrSet, ObvSetT , ObvSetT

′);
8 if (value matched) then
9 if (V al(V arsymbolicV al(bi)V T

iE

) 6= V al(V arsymbolicV al(bi)V T
kE

)) then

10 S
PT
i

Rfrom� ReachableFrom(P T
i); /* returns set of paths

reachable from P T
i */

11 foreach path P T
l ∈ {S

PT
i

Rto

⋂
S
PT
i

Rfrom} do
12 CheckSpecVal(P T

i , P
T
l , b

T
[x:y], b

T ′

[x:y], S
PT
i

Rto); /* checking only

within loops */
13 end
14 else
15 return true;
16 end
17 else
18 terminate;
19 end
20 end

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 108

svD: single variable of design D
(u,v): correspondence between composed variables
(in the example, u = A,X and v = A,Q)
ForbidMismatchRange(): given a set of mismatch ranges of corresponding
composed variables and set of observations, it deduces which mismatch range
can be ignored during value match and returns the set of ranges which can
not be ignored
val(bD[x:y]): value of bits b[x:y] in design D

Table 5.2: Illustration of terms for Algorithm 21

CmpV arSet: set of composed variables
ObvSetR: set of observations in design R
CmpV arCorrSet: set of corresponding composed variables
SCsetDLi

: set of shift characteristics of paths ∈ loop Li
LIS(LDi): loop invariant shifts of loop Li in design D

Table 5.3: Illustration of terms for Algorithm 19

Apart from these basic predicates, more predicates can be generated using AND operations
on these basic predicates which may capture extra observations. Some predefined rules can also
be applied on the predicates in order to obtain new predicates. Finally, when the data shifting
characteristics of all the paths of a loop are generated in terms of predicates. After a successful
generation of data building pattern from each path belonging to a loop, the equivalence checker
then checks if their exists any loop invariant data building pattern again using the observations and
predefined rules. The set of observations are always kept updated by the equivalence checker. If a
loop invariant data building pattern is identified, it is then further used to infer data range after the
completion of the loop using interpolation. Following is a form of data building pattern composed
of the basic predicates which is identified in the designs presented Figure 5.1 in the path belonging
to the loop present in the design.

Data building pattern
ValueMatch((FullBit(ARef :4) ∧
IncrementFromMsb(A XRef :1)), (FullBit(AUser:4) ∧ IncrementFromMsb(A QUser:1)))

This implies the following.
In corresponding composed variables ({ARef , A XRef} , {AUser, A QUser}), output is incremen-
tally building by adding one bit from MSB of A XRef or A QUser along with the four bits of ARef

or AUser respectively.

Using this pattern and the loop count which is four in this example, the equivalence checker now
infer the data range residing in the composed variables ({ARef , A XRef},

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 109

V
T

kE
: exit symbolic value vector during the computation of path Pk in design T

ObvTk : set of observations noted during the computation of path Pk in design T
V arsymbolicV al(bi)V T

iS

: corresponding variable of the symbolic value present

in the bit bi in the vector V
T

iS
V al(V arsymbolicV al(bi)V T

iS

): value of the corresponding variable of the symbolic

value present in the bit bi in the vector V
T

iS

Table 5.4: Illustration of terms for Algorithm 24

{AUser, A QUser}) after the completion of the loop iterations.

Inferencing data range after n iterations
ValueMatch((FullBit(ARef :4) ∧MatchRange(A XRef [msb : msb− n+ 1])), (FullBit(AUser:4) ∧
MatchRange(A QUser[msb : msb− n+ 1])))

This implies the following.
After n iterations of the loop,the variables A[3 : 0] and A X[msb : msb − n + 1] in the reference
design will match with the variablesA[3 : 0] andA Q[msb : msb−n+1] in the user design. Where
msb is the most significant bit of the variables.

This bit-level equivalence checker assumes that all the corresponding variables (single or com-
posed) must be of same size and the loop counts are fixed and known. The bit-level equivalence
checking method along with the generation of predicates, identifying data building pattern, interpo-
lation are explained in detail using a suitable example in the next section.

5.5 Equivalence checking for shift and add multiplier
This section includes an example and a detail analysis that would be performed by the bit-level
equivalence checker. The example consists of a reference design and a user design. At first, the de-
signs described along with their design observation and complexities. Then the equivalence check-
ing is shown in each significant path of the designs along with the final equivalence decision.

5.5.1 Reference and user designs

The two designs (Figure 5.1 and Figure 5.2) are very good example to explore the capabilities of the
proposed bit-level equivalence checking method. Figure 5.1 is the reference design which consists
of a shift and add multiplication (of two 4 bit data) flowchart where result and the multiplier are
right shifted by 1 bit at each step. Figure 5.2 is the user design which is a variation of shift and add
multiplication of two 4 bit data where the multiplier is right shifted by 1 bit. The size of the variables
in the designs having multiple bits are shown in a range such as [msb : lsb] where msb denotes the

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 110

most significant bit (MSB) and the lsb denotes the least significant bit (LSB). For a variable with
single bit, the size is not shown in the range format. The cut-points are shown in yellow colored
nodes in the designs. The path cover i.e. the paths between cut-points are shown in dashed and
bent arrow line. Each path is assigned a name such as p1, p2, p3 etc. for the ease of explaining the
methodologies and the name is shown next to the dashed and bent arrow line.

Design observations
Some of the operations are shown in different colors. The different color signifies different issues in
determining the equivalence between the designs.

Mismatched variables and operations: Blue coloring is used to denote the mismatched vari-
ables and operations. Concatenated variables are denoted within curly braces {} and with comma
between two variables for example, {C,A[3 : 0]} is the concatenation of the variable C and A.
For example, the variables C, A X are present in only reference design and the result of the same
addition operation A[3 : 0] + M [3 : 0] is assigned to {C,A[3 : 0]} in the reference design and
to {A[3 : 0], A Q[3]} in the user design. It is to be noted that, for the operation {C,A[3 : 0]}
� A[3 : 0] +M [3 : 0], the carry of the addition operation is assigned to C and the sum resides in
A[3 : 0] having the LSB and MSB of the sum at A[0] and A[3] respectively. On the other hand, for
the operation {A[3 : 0], A Q[3]}� A[3 : 0] +M [3 : 0], the carry is assigned to A[3] sum resides
in {A[2 : 0], A Q[3]} having the LSB at A Q[3] and MSB at A[2].

Different variable composition: Different variable composition is shown in red color. It is
to be noted that in both the designs, the path p5 contains an 8-bit variable prod[7 : 0] which hold
the multiplication result which actually resides in the composed variables {A[3 : 0], A X[3 : 0]} in
the reference design and in {A[3 : 0], A Q[3 : 0]} in the user design. Due the naming convention
followed in this work (mentioned earlier in this chapter), the association of the variable X with A is
denoted by A X and the same holds for variable Q. Although there exist correspondence between
the composed variable ({A[3 : 0], A X[3]}-{A[3 : 0], A Q[3]}), initially they contain different
value. The variable A Q holds the multiplier in the user design and multiplicand is stored in the
variable M in both the designs.

Mismatched shifting: The mismatched shift operation is shown in magenta color and which
depicts that the shift operation {C,A[3 : 0], A X[3 : 0]} � {C,A[3 : 0], A X[3 : 0]} � 1 occurs
only in the reference design, not in the user design. For the operations Q[3 : 0] � Q[3 : 0] � 1

and A Q[3 : 0] � A Q[3 : 0]� 1 appears dissimilar due to the variable name, however it is to be
noted that A Q is actually the variable Q denoting its association with the variable A according to
the naming convention used in this work. Therefore the two shift operations are same.

Need for interpolation and extraction of loop invariant shift pattern: In the path p5,
in both the designs, eight bits are assigned to the prod variable from the variables including two

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 111

start
CP1

C� 0, A[3:0]� 0, A X[3:0]� 0
M[3:0]� multiplicand[3:0]
Q[3:0]�multiplier[3:0]
count[2:0]� 100

Q[0] = 1

CP2

{C, A[3:0]}� A[3:0] + M[3:0]

Q[3:0]� Q[3:0]� 1
{C, A[3:0], A X[3:0]}� {C, A[3:0], A X[3:0]} � 1
count[2:0]� count[2:0] - 1

count = 0

CP3

prod[7:0]� {A[3:0], A X[3:0]} end

CP4

yes

yes

no

no

P1

P2

P3

P4

P5

Figure 5.1: Shift-add multiplication (of two 4 bit data) flowchart with right shifting result
(C,A,Q) (reference design)

variables which contain different value initially such as A X and A Q. In these examples, an
incremental bit-by-bit data building is performed through the loop. As the equivalence checking
method does not unroll the loop, therefore, it will try to interpolate the data range after the loop
from single symbolic execution. In order to do that, it will try to extract the loop invariant shift
pattern using some observations and predefined rules and if it is successful to extract such pattern, it
will then interpolate the bigger data range using the pattern, some predefined rules and the known,
finite loop count.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 112

start
CP ′

1

A[3:0]� 0
M[3:0]� multiplicand[3:0]
A Q[3:0]�multiplier[3:0]
count[2:0]� 100

A Q[0] = 1

CP ′
2

A Q[3:0]� A Q[3:0]� 1
{A[3:0], A Q[3]}� A[3:0] + 0

A Q[3:0]� A Q[3:0]� 1
{A[3:0], A Q[3]}� A[3:0] + M[3:0]

count[2:0]� count[2:0] - 1

count = 0

CP ′
3

prod[7:0]� {A[3:0], A Q[3:0]} end

CP ′
4

no yes

yesno

P ′
1

P ′
2

P ′
3

P ′
4

P ′
5

Figure 5.2: Shift-add multiplication (of two 4 bit data) flowchart with right shifting only Q
(user design)

5.5.2 Overview of the equivalence checking steps

At first the equivalence checker introduces the cut-points (shown in yellow colored nodes) and then
computes the path cover in both the designs. {CP1, CP2, CP3, CP4, } and
{CP ′

1, CP
′
2, CP

′
3, CP

′
4} are the set of cut-points are as shown in the reference and user design re-

spectively. The path cover consists of the paths between the cut-points. The path covers computed
for the reference design is {P1, P2, P3, P4, P5} and {P ′

1, P
′
2, P

′
3, P

′
4, P

′
5} for user design. The equiv-

alence checker will start from the start cut-point in breath-first-search (BFS) manner in both the
designs. For every path from the path cover between any two pair of cut-points in one design, the
equivalence checker will try to find its equivalent path between the corresponding cut-point pairs
in the another design. The corresponding cut-points are those having same conditional branching
except the start and end cut-point. In this example the corresponding cut-points are (CP1, CP

′
1),

(CP2, CP
′
2), (CP3, CP

′
3), (CP4, CP

′
4). It is noted that the condition of the cut-point (CP2, CP ′

2)

is same as A Q is actually the variable Q denoting its association with the variable A according to

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 113

the naming convention. The paths (belonging to the path cover of both the designs) will be checked
for equivalence who have same conditions. Therefore, in this example, the equivalence checking
will be between (P1, P

′
1), (P2, P

′
2), (P3, P

′
3), (P4, P

′
4) and (P5, P

′
5). The following subsections de-

scribe the detail equivalence analysis for these paths. As the path pair (P4, P
′
4) does not contain any

data transformation, its trivial analysis is not discussed here. The paths in both of the designs are
symbolically executed using the values (symbolic) of the variables from the start vectors stored at
the starting cut-point of the path yielding the exit vectors which will be stored at the end cut-point
of that path. For example, path P2 in the reference design with be symbolically executed with the
start vector stored at cut-point CP2 Then the values of the corresponding bits of the corresponding
variables in the exit vector for the paths in the two designs are matched and the equivalence deci-
sion is made for the two paths. After checking all the paths of the path cover, the final equivalence
decision is made.

5.5.3 Equivalence analysis for path P1 and P′1

The start cut-point will contain the null start vector. The paths P1 and P ′
1 in both of the designs

are symbolically executed. The exit vectors generated from the symbolic execution of the two paths
are then matched for the values of the corresponding variables. For the corresponding variables
having specific values, if the value is matched then the specific value of the variable is replaced
with the same symbols in both the designs and the specific values are stored for future analysis (if
required). Table 5.5 shows the path segments along with its exit symbolic value vector (ExitSVV)
for the reference and the user design. The symbolic execution is performed with the symbolic values
in the variables M , Q, A Q and specific values of the variables C, A, A X , count. The values of
the common variables A, A X , count matched in the corresponding exit vectors, therefore, they are
are replaced with same symbols. The matched bits are shown in purple color. For this path, all the
common variables’ value matched, therefore, the paths P1 and P ′

1 are found to be equivalent.

5.5.4 Equivalence analysis for path P2 and P′2

Table 5.5 shows the exit vectors after the symbolic execution of the paths P2 and P ′
2 using the start

vector stored at CP1 and CP ′
1 in the reference and the user design respectively. In the exit vector

some bits have red color in order to denote the correspondence between the composed variables in
the two designs.

Matching values
From the exit vectors of the reference and the user designs, it is seen that the values of the common
single variables such asM , countmatches. All the bits of the variableA are also matched. However,
the MSB bit of the variablesA X andA Q i.e. A X[3] andA Q[3] matches and there is a mismatch
between the bits A X[2 : 0] and A Q[2 : 0]. As these paths are the part of loop and having shift

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 114

Reference Design User Design
StartSVV: 〈C,A[3 : 0], A X[3 :
0],M [3 : 0], Q[3 : 0], count[2 :
0], prod[7 : 0]〉

StartSVV: 〈A[3 : 0], A Q[3 : 0],M [3 :
0], count[2 : 0], prod[7 : 0〉

start

C , A[3:0],A X[3:0]� 0
M[3:0]� multiplicand[3:0]
Q[3:0]�multiplier[3:0]
count[2:0]� 100

Q[0] = 1

start

A[3:0]� 0
M[3:0]� multiplicand[3:0]
A Q[3:0]�multiplier[3:0]
count[2:0]� 100

A Q[0] = 1

ExitSVV: 〈C : 〈c〉, A :
〈a3a2a1a0〉, A X : 〈x3x2x1x0〉M :
〈m3m2m1m0〉, Q : 〈q3q2q1q0〉, count :
〈t2t1t0〉prd : 〈-〉〉

ExitSVV: 〈A :
〈a3a2a1a0〉, A Q : 〈q3q2q1q0〉,M :
〈m3m2m1m0〉, count : 〈t2t1t0〉, prod :
〈-〉〉

SpecVV: 〈C : 〈0〉, A : 〈0000〉, A X :
〈0000〉,M : 〈−〉, Q : 〈−〉, count :
〈100〉, prod : 〈-〉〉

SpecVV: 〈A : 〈0000〉, A Q : 〈−〉,M :
〈−〉, count : 〈100〉, prod : 〈-〉〉

Table 5.5: Equivalence checking of path P1 and P ′
1 (StartSVV: start symbolic value vector,

ExitSVV: exit symbolic value vector, SpecVV: specific value vector)

operations performed on these composed variables with partial math along with partial mismatch,
there is a possibility that some useful data is built incrementally through the shift operation with a
pattern. Therefore, the mismatch does not cause the equivalence checking to be failed immediately,
instead it perform some extra analysis using some design observations generated in course of the
execution of the equivalence checking method and some predefined rules in order to find equivalence
between the paths and a data building pattern in the paths.

Design observations
The observations are generated in the form of predicates. Observations those are needed for the
analysis to check whether the aforesaid mismatches can be ignored or not, are as follows.

Ob-1: Least significant bits of XRef are discarded by 1 bit and the original bits of X are never
used within the loop between CP2 and CP3

(NOTE: XRef is the variable A X of the reference design, its association is not shown here
for the ease of explanation))

Ob-2: Least significant bits of QRef are discarded in every loop iteration by 1 bit

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 115

(NOTE: QRef is the variable Q of the reference design)

Ob-3: Least significant bits of QUer are discarded in every loop iteration by 1 bit
(NOTE: QUser is the variable Q of the user design and its association is not shown here for
the ease of explanation)

Ob-4: QRef [2 : 0] and QUser[2 : 0] have a value match and new value entered in MSB of both the
variables are never used with loop

The predicates corresponding to the observations are shown bellow.

Ob-1: (SHR(XRef):1 ∧ NotUsedWithinLoop(XRef):(CP2, CP3))

Ob-2: (SHR(QRef):1)

Ob-3: (SHR(QUer):1)

Ob-4: (ValueMatch(QRef [2 : 0], QUser[2 : 0]) ∧ NotUsedWithinLoop(QRef [3]):(CP2, CP3) ∧
NotUsedWithinLoop(QUser[3]):(CP ′

2, CP ′
3))

With the help of these observations, the equivalence checker performs the analysis for the mis-
matches of A X[2 : 0] and A Q[2 : 0] and using Ob-1 the mismatches of A X[2 : 0] is ignored.
Application of Ob-2, Ob-3, Ob-4 yields that the bits [2 : 0] of the variable A Q i.e QUser matches
with the bits [2 : 0] of the variable QRef . The bit A Q[3] i.e. QUser[3] matches with the bit A X[3]

i.e. XRef [3]. Although there exist a mismatch betweenA Q[3] and theQ[3], they are never used in
the loop. Therefore, A X[2 : 0] and A Q[2 : 0] mismatches are ignored by the equivalence checker
and it then finds value match for all common variables including all the corresponding single and
the composed variables. Finally, the two paths are marked as equivalent.

Finding data building pattern
After the paths are found to be equivalent, the equivalence checker tries to find the data building
pattern using the design observations along with the observations generated during the equivalence
establishment of the paths. For these paths a pattern can be identified using the following obser-
vations and it is to be noted that a variable with superscript Ref or User denotes that the variable
belongs to the reference or user design respectively.

Ob-5: Least significant bits of XRef are discarded by 1 bit and a new value from another variable
is entered in the MSB of XRef

Ob-6: Least significant bits of QUser are discarded in every loop iteration by 1 bit and New value
is assigned in the MSB of QUser

Ob-7: MSB of XRef and MSB of QUser matches (after value match)

Ob-8: Mismatches of XRef and QUser are ignored (after value match)

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 116

Ob-9: ARef and AUser value matches for all bits (after value match)

The predicates corresponding to these observations generated in due course of the equivalence
checking are as follows.

Ob-5: (SHR(XRef):1 ∧ NewVal(MSB(XRef)))

Ob-6: (SHR(QUser):1 ∧ NewVal(MSB(QUser)))

Ob-7: ValueMatch(MSB(XRef), MSB(QUser))

Ob-8: IgnoredMismatches(XRef , QUser)

Ob-9: ValueMatch(ARef [3 : 0], AUser[3 : 0])

From these observations the following shift characteristic is recognized.

Shift characteristic: In corresponding composed variables ({ARef , A XRef},
{AUser, A QUser}), output is incrementally building by adding one bit from MSB of A XRef or
A QUser along with the four bits of ARef or AUser respectively

Shift characteristic in the form of predicates: ValueMatch((FullBit(ARef :4) ∧
IncrementFromMsb(A XRef :1)), (FullBit(AUser:4) ∧ IncrementFromMsb(A QUser:1)))

5.5.5 Equivalence analysis for path P3 and P′3

The paths P3 and P ′
3 along with their start vector and exit vector after symbolically executing those

paths are shown in the Table 5.7.

Matching values
From the exit vectors of the reference and the user designs, it is observed that the values of the
common single variables such as M , count matches. The corresponding bits A X[3] and A Q[3]

matches and there is a mismatch between the bits A X[2 : 0] and A Q[2 : 0] which is ignored
through the analysis given in the previous subsection (5.5.4) for equivalence checking of the paths
P2 and P ′

2. For the corresponding variable ARef and AUser, bits ARef [2 : 0] and AUser[2 : 0]

match, however, ARef [3] and AUser[3] does not match. As A[3] affects determining values in A
in both the designs and among the mismatched values, one of the bit contains a symbol and the
other one contain a specific value, then the mismatch is handled with a special analysis. If both
the mismatched bits would hold mismatched symbols then this would imply that in general case the
bits mismatched, therefore there is no need for special analysis and that would cause failure for the
equivalence checking. However, in this example, the special analysis checks whether the bit having

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 117

Reference Design User Design
StartSVV: 〈C : 〈c〉, A : 〈a3a2a1a0〉, A X :
〈x3x2x1x0〉,M : 〈m3m2m1m0〉, Q :
〈q3q2q1q0〉, count : 〈t2t1t0〉, prod : 〈-〉〉

StartSVV: 〈A : 〈a3a2a1a0〉, A Q :
〈q3q2q1q0〉,M : 〈m3m2m1m0〉, count :
〈t2t1t0〉, prod : 〈-〉〉

Q[0] = 1

C, A[3:0]�
A[3:0] + M[3:0]

Q[3:0]� Q[3:0]� 1
(C, A[3:0], A X[3:0])�
(C, A[3:0], A X[3:0])� 1
count[2:0]� count[2:0] - 1

count = 0

yes Q[0] = 1

A Q[3:0]� A Q[3:0]� 1
(A[3:0], A Q[3])�
A[3:0] + M[3:0]

count[2:0]� count[2:0] - 1

count = 0

yes

ExitSVV: 〈C : 〈0〉, A : 〈s4s3s2s1〉, A X :
〈s0x2x1x0〉,M : 〈m3m2m1m0〉, Q :
〈0q3q2q1〉, count : 〈t′2t′1t′0〉, prod : 〈-〉〉

ExitSVV: 〈A : 〈s4s3s2s1〉, A Q :
〈s0q3q2q1〉, M : 〈m3m2m1m0〉,
count〈t′2t′1t′0〉, prod : 〈-〉〉

Table 5.6: Equivalence checking of path P2 and P ′
2 (StartSVV: start symbolic value vector,

ExitSVV: exit symbolic value vector)

a symbol actually takes the same specific value in all possible cases that of the other corresponding
bit. In the exit vector of path P3, ARef [3] contains a symbol c, on the other hand, AUser[3] has
specific value 0 in the exit vector of the path P ′

3. Therefore, it is checked whether c takes value 0
in all possible cases. For that, first the set of paths are computed from where path P3 is reachable
(SP3
Rto), which is {P1, P2P4, P3P4}. Now, it is found that for each of the paths in the set SP3

Rto, the
symbol c takes the specific value 0 after symbolic execution. Therefore, substituting the value of
the symbol c in path P3 for each case, A X[3] yields the specific value 0 which is the same as
A Q[3] which resolves the mismatch. With this resolved mismatch the equivalence checker decides
the paths P3 and P ′

3 to be equivalent.

Design observations and data building pattern
The design observations and the data building pattern identified for these paths are same as the paths
P2 and P ′

2 which is described in the previous subsection 5.5.4.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 118

Reference Design User Design
StartSVV: 〈C : 〈c〉, A : 〈a3a2a1a0〉, A X :
〈x3x2x1x0〉,M : 〈m3m2m1m0〉, Q :
〈q3q2q1q0〉, count : 〈t2t1t0〉, prod : 〈-〉〉

StartSVV: 〈A : 〈a3a2a1a0〉, A Q :
〈q3q2q1q0〉,M : 〈m3m2m1m0〉, count :
〈t2t1t0〉, prod : 〈-〉〉

Q[0] = 1

Q[3:0]� Q[3:0]� 1
(C, A[3:0], A X[3:0])�
(C, A[3:0], A X[3:0])� 1
count[2:0]� count[2:0] - 1

count = 0

no Q[0] = 1

A Q[3:0]� A Q[3:0]� 1
(A[3:0],A Q[3])�
A[3:0] + 0

count[2:0]� count[2:0] - 1

count = 0

no

ExitSVV: 〈C : 〈0〉, A : 〈ca3a2a1〉, A X :
〈a0x2x1x0〉,M : 〈m3m2m1m0〉, Q :
〈0q3q2q1〉, count : 〈t′2t′1t′0〉, prod : 〈-〉〉

ExitSVV: 〈A : 〈0a3a2a1〉, A Q :
〈a0q3q2q1〉,M : 〈m3m2m1m0〉, count :
〈t′2t′1t′0〉prod : 〈-〉〉

Table 5.7: Equivalence checking of path P3 and P ′
3 (StartSVV: start symbolic value vector,

ExitSVV: exit symbolic value vector)

5.5.6 Inferencing data range after loop completion

After the equivalence decision is made for all the paths from CP2 and CP3, the equivalence checker
yields data building pattern for each path. Now, it is checked whether the identified pattern is same
for all the paths.For this example an identical pattern is recognized which is as follows.

Shift characteristic
In corresponding composed variables ({ARef , A XRef} , {AUser, A QUser}), output is incremen-
tally building by adding one bit from MSB of A XRef or A QUser along with the four bits of ARef

or AUser respectively

Shift characteristic in the form of predicates
ValueMatch((FullBit(ARef :4) ∧
IncrementFromMsb(A XRef :1)), (FullBit(AUser:4) ∧ IncrementFromMsb(A QUser:1)))

Using this pattern and the loop count which is four in this example, the equivalence checker now
interpolate the data range residing in the composed variables ({ARef , A XRef},
{AUser, A QUser}) after all the loop iterations.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 119

Inferencing data range after n iterations
ValueMatch((FullBit(ARef :4) ∧MatchRange(A XRef [msb : msb− n+ 1])), (FullBit(AUser:4) ∧
MatchRange(A QUser[msb : msb− n+ 1])))

Where msb denotes the most significant bit and lsb is the least significant bit of the variable.

Inferencing data range after four iterations
ValueMatch((FullBit(ARef :4) ∧MatchRange(A XRef [3 : 0])), (FullBit(AUser:4) ∧
MatchRange(A QUser[3 : 0])))

This implies that after four iterations of the loop,the variables A[3 : 0] and A X[3 : 0] in the
reference design will match with the variables A[3 : 0] and A Q[3 : 0] in the user design.

Updated exit vector at cut-point CP3 and CP′
3

After a successful interpolation, the exit vector is updated at the cut-point CP3 and CP ′
3 in the

reference design and the user design respectively. Because as of now, those cut-points contain exit
vectors where A X[3] of the reference design and A Q[3] of the user design matched and the rest
of the bits mismatched. However, the interpolation indicates thats all of the will be matched after
complete execution of the loop in any order. Therefore, all the bits of those variables in the exit
vectors are replaced with the same symbols in both the designs. As the values for the two variables
have been interpreted, values of the other values can not be determined after four iterations, there-
fore other variables contain null in the exit vectors. The updated exit vector at the cut-point CP3 in
the reference design as follows.

〈C : 〈−〉, A : 〈u7u6u5u4〉, A X : 〈u3u2u1u0〉,M : 〈−〉, Q : 〈−〉, count : 〈−〉, prod : 〈-〉〉

The updated exit vector at the cut-point CP ′
3 in the user design as follows.

〈A : 〈u7u6u5u4〉, A Q : 〈u3u2u1u0〉,M : 〈−〉, count : 〈−〉, prod : 〈-〉〉

5.5.7 Equivalence analysis for path P5 and P′5

Table 5.8 shows the paths P5 and P ′
5 and the associated vectors. The updated exit vectors at the

cut-points CP3 and CP ′
3 will be used as start vectors for the symbolic execution of the paths P5 and

P ′
5 respectively yielding their corresponding exit vectors. The equivalence checker finds matching

values between the common variables in the exit vectors of the two two paths and two paths are
marked as equivalent.

Finally the reference design and the user design are found to be equivalent as all the paths of the
path cover belonging to one design has its corresponding equivalent path in the another design.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 120

Reference Design User Design
StartSVV: 〈C : 〈−〉, A :
〈u7u6u5u4〉, A X : 〈u3u2u1u0〉,M :
〈−〉, Q : 〈−〉, count : 〈−〉, prod : 〈-〉〉

StartSVV: 〈A : 〈u7u6u5u4〉, A Q :
〈u3u2u1u0〉,M : 〈−〉, count : 〈−〉, prod :
〈-〉〉

count = 0
prod[7:0]�
(A[3:0], A X[3:0])

end

yes
count = 0

prod[7:0]�
(A[3:0], A Q[3:0])

end

yes

ExitSVV: 〈C : 〈−〉, A :
〈u7u6u5u4〉, A X : 〈u3u2u1u0〉,M :
〈−〉, Q : 〈−〉, count : 〈−〉, prod :
〈u7u6u5u4u3u2u1u0〉〉

ExitSVV: 〈A : 〈u7u6u5u4〉, A Q :
〈u3u2u1u0〉,M : 〈−〉, count : 〈−〉, prod :
〈u7u6u5u4u3u2u1u0〉〉

Table 5.8: Equivalence checking of path P5 and P ′
5 (StartSVV: start symbolic value vector,

ExitSVV: exit symbolic value vector)

5.6 Implementation and results
The basic version of the bit-level equivalence checking is implemented in C which does not in-
clude the features of the method to handle special cases such as data interpolation currently. As
the equivalence checking mechanism requires extensive symbolic analysis, bit-blasting technique is
adopted using the canonical representation of expressions through the efficient BDD data structure.
Colorado University Decision Diagram Package (CUDD) [7] is used to implement the bit-blasting
through representing each bit as a BDD. One of the drawbacks of bit-blasting is that due to the
representation of each bit as individual variable, a register or a bit-vector of size more than one
losses its word-level abstraction. This situation is handled in this equivalence checker so that the
word-level abstraction preserves and can be used by the equivalence checker when needed. One
major limitation of the BDD based approach is its size with the increasing size of the data path.
Several optimization can improve the efficiency so that larger data paths can be handled. One such
optimization is adopted in this equivalence checker. Although the data transformations of a path are
ultimately expressed in BDD form, the conditions of the path are not handled in the same manner
but in a similar way it is handled in [10] where the variables are of infinite precision and restricted
to the integer domain. Control flow behaviors are not expressed in BDDs instead they are stored as
parse trees and in order to math the conditions the parse trees are matched. Few operations are also
performed on those parse trees in order to find equivalence between them. The other optimizations
can be a good future scope of this work.

The input FSMDs are given input in the form of a text file which is parsed by the lex yacc parser
generators. The grammar rules are developed in such a way so that the equivalence checker can

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 121

Experiment
name FSMD states CPU Time (sec.) Datapath operations

Ref. User User Real Sys
GCD

Processor
4-bit (GCD)

5 5 0.004 0.096 0.016
Const. assignment, reg
to reg assignment, add,

sub, compliment
Traffic Light
Controller

4-bit (TLC)
13 13 0.016 0.449 0.060

Const. assignment, reg
to reg assignment

BARCODE
Reader 4-bit
(BARCODE)

32 32 0.048 2.001 0.292
Const. assignment, reg
to reg assignment, add

Sum of N
Fibonacci

Numbers 4-bit
(FIBSUM)

5 5 0.008 0.118 0.024
Const. assignment, reg
to reg assignment, add

Radix-4
Booth’s

Multiplier
4-bit

(BOOTH)

5 5 0.004 0.171 0.024
Const. assignment, reg
to reg assignment, add,
sub, compliment, shift

Table 5.9: Verification results of equivalent test benches on the current implementation.

handle the following operations.
(i) Addition with constant, (ii) addition of variables, (iii) subtraction with constant operand

and variable operand, (iv) complement, (v) concatenation, (vi) logical shift right, (vii) logical shift
left, (viii) arithmetic shift right, (ix) arithmetic shift left, (x) different types of assignment including
variable assignment, (xi) constant assignment,

Table 5.9 shows the CPU time during the execution of the equivalent test benches. The execution
time is measured with the time command where user gives total CPU time in second that the process
spent in user mode, real gives the elapsed real time between invocation and termination of the pro-
cess and sys gives total CPU time in second that the process spent in kernel mode. The test benches
correspond to the common experiments given in the laboratory course as assignments executed on
the current implementation on a machine with the following configuration. Intel® Core™ i5-3210M
CPU @ 2.50GHz×4 processor, 64-bit ubuntu 12.04 LTS operating system and 3.5 GiB memory.
The test benches are BB-based i.e. the reference design and the user design behavior differs in basic
block operations. Among the test benches, GCD, FIBSUM, BOOTH are arithmetic operation, logi-
cal operation intensive including shift operation. ON the other hand, the TLC, BARCODE they are
control intensive with the heavy use of assignment operations. The operations which are handled
are listed in the short form where reg. denotes register which is a variable, const. denotes constant
value, add and sub denotes addition and subtraction operations respectively.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 122

The Table 5.9 shows the verification results the test benches whose reference design and the
corresponding user design are actually equivalent in spite of having structurally different but actu-
ally equivalent operations. However, the equivalence checker can also detect errors due to which
equivalence checker fails and produce the result showing where the error is detected. In such case,
before terminating, the equivalence checker shows the bit blasted registers i.e. variables so that it
can be identified which corresponding bit(s) of the variable(s) mismatched.

The Tables 5.10, 5.11, 5.12, 5.13, 5.14 show the CPU time for the execution of the equivalence
checker run with the test benches GCD, BOOTH, TLC, FIBSUM and BARCODE respectively with
the user designs having non identical data transformations which causes the equivalence checker to
fail. The execution time is measured with the time command where user gives total CPU time in
second that the process spent in user mode, real gives the elapsed real time between invocation and
termination of the process and sys gives total CPU time in second that the process spent in kernel
mode. Four different user designs are generated through inducing different types of errors in the
initial basic version of the user design which is being used in Table 5.9. Then each modified version
of the user design with error introduced in them are checked for equivalence with their corresponding
reference design. The machine configuration is same as mentioned aforesaid in this section. The
errors mentioned in the table are self descriptive. Following are the brief description of some of the
errors.

The initialization error is introduced in the common variable(s)
The initialization error is introduced in the common variable(s) (which is present in both the refer-
ence design and the user design) where the variable(s) in the paths emerging from the reset state or
the start state are assigned with specific binary values.
Example: A[3 : 0] = {1, 0, 1, 1} and A[3 : 0] = {0, 0, 1, 1}

Wrong variable assignment operation
The content of a mismatched variable is assigned to a common variable. This error may occur in
any path.
Example: A[3 : 0] = X[3 : 0] and A[3 : 0] = Y [3 : 0]

Arithmetic operation with wrong operator
The operands of an arithmetic operation remain similar including the variable to which the result is
assigned, however, the operations become different. Note that in the Example2, due to the missing
complement operator associated with Y [3 : 0], the two operations become non-equivalent.
Example1: A[3 : 0] = X[3 : 0] + Y [3 : 0] and A[3 : 0] = X[3 : 0]− Y [3 : 0]

Example2: A[3 : 0] = X[3 : 0]− Y [3 : 0] and A[3 : 0] = X[3 : 0] + (Y [3 : 0] + 1)

Arithmetic operation with wrong operand
The arithmetic operator remains same, however, the operands are different although they are being

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 123

Sl no. FSMD states CPU Time (sec.) Data transformation
errors

Ref. User User Real Sys

1. 5 5 0.004 0.070 0.012
Initialization error in

common variable

2. 5 5 0.000 0.045 0.012
Wrong variable

assignment operation

3. 5 5 0.000 0.068 0.016
Arithmetic operation
with wrong operator

4. 5 5 0.004 0.043 0.012
Arithmetic operation
with wrong operand

Table 5.10: Failure of equivalence checker due to errors in GCD test bench.

assigned to the same common variable.
Example: A[3 : 0] = X[3 : 0] + Y [3 : 0] and A[3 : 0] = X[3 : 0] + Z[3 : 0]

Wrong concatenation operation
The concatenation operation is used create composed variable. In this error the single variable which
is used to create the composed variable differs in both the designs.
Example: P [7 : 0]� {A[3 : 0], X[3 : 0]} and P [7 : 0]� {A[3 : 0], Q[3 : 0]}

Wrong shift operation
Different types of shift operations sometimes may introduce serious design error such as use of log-
ical shift vs. arithmetic shift, right shift vs. left shift, etc.
Example1: A[7 : 0]� A[7 : 0] � 1 and A[7 : 0]� A[7 : 0] ≫ 1

Example2: A[7 : 0]� A[7 : 0] � 1 and A[7 : 0]� A[7 : 0] � 1

Some other errors include a path PRef in the reference design without any data transformation
where as the user design contains data transformations in the path PUser with same condition. In
such case, the path PRef of the reference design does not have any equivalent path in the user design.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 124

Sl no. FSMD states CPU Time (sec.) Data transformation
errors

Ref. User User Real Sys

1. 5 5 0.000 0.101 0.020
Initialization error in

common variable

2. 5 5 0.004 0.133 0.024
Wrong concatenation

operation

3. 5 5 0.008 0.131 0.020
Absence of

complement operator
and wrong assignment

4. 5 5 0.004 0.141 0.024 Wrong shift operation

Table 5.11: Failure of equivalence checker due to errors in BOOTH test bench.

Sl no. FSMD states CPU Time (sec.) Data transformation
errors

Ref. User User Real Sys

1. 13 13 0.016 0.377 0.052
Initialization error in

multiple common
variable

2. 13 13 0.000 0.410 0.060
Wrong constant

assignment operation

3. 13 13 0.004 0.358 0.044
Wrong constant and
variable assignment

operation

4. 13 13 0.012 0.413 0.052

Introduction of
non-equivalent

uncommon arithmetic
operation

Table 5.12: Failure of equivalence checker due to errors in TLC test bench.

Sl no. FSMD states CPU Time (sec.) Data transformation
errors

Ref. User User Real Sys

1. 5 5 0.004 0.082 0.024
Initialization error in

common variable

2. 5 5 0.004 0.117 0.024
Wrong variable

assignment operation

3. 5 5 0.004 0.134 0.028
Arithmetic operation
with wrong operator

4. 5 5 0.008 0.111 0.016
Arithmetic operation
with wrong operand

Table 5.13: Failure of equivalence checker due to errors in FIBSUM test bench.

CHAPTER 5. CHECKING STUDENT DESIGNS FOR CORRECTNESS 125

Sl no. FSMD states CPU Time (sec.) Data transformation
errors

Ref. User User Real Sys

1. 32 32 0.012 0.692 0.076
Initialization error in

multiple common
variables

2. 32 32 0.012 0.713 0.084

Wrong constant
assignment and

uncommon variable
initialization

3. 32 32 0.020 0.886 0.100
Introduction of

non-equivalent shift
operation

4. 32 32 0.036 0.908 0.120
Introduction of

non-equivalent data
transformation

Table 5.14: Failure of equivalence checker due to errors in BARCODE test bench.

Chapter 6

Conclusion

In this work a virtual laboratory has been developed to support teaching of logic design and computer
organization along with a newly developed tool which has a graphical interface at its front end to
supports designing of experiments and an efficient logic simulator to simulate the experiments built
so far. A bit-level equivalence checker has also been developed for automatic evaluation of design
correctness.

6.1 Summary of work done
This work presents some techniques and algorithms to support teaching of logic design and com-
puter organization through developing a web based virtual laboratory (COLDVL) and a formal ver-
ification method of bit-level equivalence checking for automatic evaluation of student designs. The
virtual laboratory contains a newly developed the COLDVL tool equipped with a circuit drawing
and experimentation interface as a front end, a logic simulator as the back end with features to
provide real laboratory like learning experience and a set of pre-designed guided experiments with
the facility to add new experiments. The COLDVL tool provides a generic simulation platform for
performing experimentation pertaining to logic design and computer organization. Some pedagogic
considerations are assimilated in the design of the COLDVL through designing the web interface
of the virtual laboratory, a set of pre-designed experiments based on a concept hierarchy (derived
from various text books), a sequence of learning activities based on some commonly accepted ped-
agogic principles. Satisfactory user feedback has been gathered and analyzed through deploying the
COLDVL in several colleges and institutes. COLDVL, having much more useful features and facil-
ities than the virtual lab presented in the literature survey of this thesis, is also been used to conduct
laboratory courses in undergraduate and postgraduate level laboratory course at IIT Kharagpur. In
addition with the experimentation in a laboratory course, the evaluation of student designs is also an
important aspect to track the effective learning of the students. The manual evaluation is man power
intensive and its availability is limited through out the year. On the other hand, simulation based
evaluations are some what restricted in uncovering various cases. These limitations of the manual

127

CHAPTER 6. CONCLUSION 128

and simulation based evaluation leads to an automatic evaluation technique using formal methods.

Front end of the COLDVL tool
The COLDVL tool is capable of simulating both combinational and sequential circuits. The front
end of the tool contains several building blocks and reference designs for each experiment (with
opaque internal details), input-output components, several combinational components (various gates,
multiplexers, adders, etc), sequential components including major types of flip flops (both behav-
ioral and structural) and other components such as RAMs with editable cells and an controller chart
based control unit generator. The generated control unit can be used in association of a data path to
build circuits to implement simple and as well as complex computer arithmetic algorithms such as
multiplication, division etc. The tool also has facilities for generating the structural verilog netlist of
user designed circuits which can be independently used with other electronic CAD tools, creating
and reusing encapsulated user modules and saving circuits with user identification. A five valued
logic is employed in the tool to support tri-state logic, wired AND operation for a bus based design
and to set unknown value as default initial value for all logic signals indicating an unknown logic
value of either 0 or 1.

Back end of the COLDVL tool
For better simulation performance, the back end of the tool, the logic simulator uses an efficient
simulation technique for the sequence circuits conforming to the Huffman model which is a combi-
nation of topologically ordered levelized simulation (which is also known as levelized simulation in
the literature) and event driven simulation. Levelized simulation is used for combinational circuits
and the standard event driven simulation is used for sequential circuits which do not conform to the
Huffman model. In order to use the combined simulation technique, a partition technique (in a gate
level circuit) along with a Huffman structure detection technique has been developed. The simu-
lator detects the existence of possible race around condition in a circuit prior to simulation. These
features of the simulator help students learning a safe circuit design. Due to the use of unknown
initial value for a logic signal, the standard event driven simulation technique may not produce de-
sirable definite output for a given determinate input in some structural gate level storage elements
which would give determinate output when performed in bread boards. For a novice student this
discrepancy is circuit outputs may appear as confusing, therefore, to handle the situation, the sim-
ulation technique performs a case based analysis of unknown values of some nets of the loops in
the gate level memory elements to determine whether or not a definite output value is assumed irre-
spective of the cases considered. The simulator also incorporates an optional feature of obtaining a
workable initialization by way of simulation while reconstructing a circuit in an ordered manner for
the structural memory elements where the case analysis mechanism fails to resolve initial unknown
uncertainty.

Bit-level equivalence checking method
For evaluation of student designs, the design correctness is checked between the reference designs

CHAPTER 6. CONCLUSION 129

provided by the course instructor and the implemented student design i.e. user design. The pro-
posed path based bit-level equivalence checking is performed on the two designs whose behaviors
are modeled as finite state machines with data path (FSMD). An FSMD models the condition of
execution and the data transformations of a circuit. As the data path of a circuit is finite, the data
path elements are modeled as bit-vectors and a reasoning over the bit-vectors are used in order to
handle the arithmetic, logical, bit wise and shift operations performed on them. The reasoning over
bit-vectors are accomplished with the help of bit-blasting technique where each bit of a bit-vector
is represented as a variable. In this work we represent each bit as binary decision diagram (BDD)
which transforms all the expressions in their canonical form. Apart from handling the several types
of data transformation operations, the proposed method can also handle a special situation where
different shift patterns produces identical outputs after a finite iteration and the output may reside
in multiple bit-vectors. Several approaches has been introduced in the current bit-level equivalence
checking method in order to handle the situation such as generation of design observations in the
form of predicates, determination of loop invariant shift pattern using the design observations and
some predefined rules, interpolation of the bigger data ranges using loop invariant data building
pattern.

6.2 Future scope of this work
The overall design and development of the COLDVL package along with the design of the front end
and the back end of its simulator have been carried out in order to support the learning experience
achieved in a real laboratory like virtual environment. This work can be further extended as follows.

• A new feature can be added in the COLDVL tool which will extract the FSMD model from a
user circuit.

• Integration of the COLDVL tool with the bit-level equivalence checker where the course
guide will feed the FSMD corresponding to the reference design and the COLDVL tool will
input the extracted FSMD from the user design i.e. the designs built by the students. Finally
the equivalence checker will deliver the evaluation results for the design correctness.

• The simulation can be made interactive which will allow users to pause simulation and resume
later.

• An optimized approach can be adopted to build user defined encapsulated modules to support
larger hierarchical designs instead of the current approach.

• Currently the feature for bundle connection, rotation of a component, the graphical editor with
multiple tab are not supported in the front end of the COLDVL tool which may be included
in future.

CHAPTER 6. CONCLUSION 130

• A technique can also be integrated with the COLDVL to run the COLDVL tool on the server
side for better accessibility through ubiquitous but relatively less capable mobile computing
platforms

The current path based bit-level equivalence checker uses BDD based approach. The data trans-
formations of a path are expressed as BDDs. The BDD based approach has some limitations for
larger data paths with size more than 16 bits. Following are some future scope of the current bit-
level equivalence checker.

• Currently all the data transformations of a computational path are represented as BDDs prior
to the execution of the equivalence checker. This approach can be further optimized by build-
ing BDDs for the data transformations which are effectively required for the computation of
the path in order to handle larger data paths efficiently.

• A naming convention is used to identify the variable composition which may be determined
automatically through a backward analysis.

Appendix A

FSMDs of test bench designs

A.1 Equivalent designs
Following are the FSMDs of the test benches presented in the Table 5.9.

GCD reference FSMD

” GcdBasicRef . o rg ”
q00 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 2 X[3:0]>0 | − q02 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q0e ;
q02 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q03 X[3:0]>Y[3 : 0] | − q03 ;
q03 1 − | X[3 : 0] =X[3:0]−Y[3 : 0] q01 ;
q0e 0;\\

GCD user FSMD

” GcdBas icUser . o rg ”
q10 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} q11 ;
q11 2 X[3:0]>0 | − q12 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q1e ;
q12 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q13 X[3:0]>Y[3 : 0] | − q13 ;
q13 1 − | X[3 : 0] = (˜Y[2 : 0] + 1) +X[2 : 0] q11 ;
q1e 0 ;

TLC reference FSMD

” T r a f f i c L i g h t C o n t r o l l e r R e f . o rg ”
q000 2 c u r r e n t S t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q001 c u r r e n t S t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t S t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t S t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t S t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t S t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t S t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t S t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t S t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t S t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

131

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 132

TLC user FSMD

” T r a f f i c L i g h t C o n t r o l l e r U s e r . o rg ”
q000 2 c u r r e n t S t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q001 c u r r e n t S t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t S t a t e [3 : 0] = = 4 | newHL [3 : 0] = 2 , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t S t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t S t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t S t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t S t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t S t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t S t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t S t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

BARCODE reference FSMD

”BARCODEref . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={0 , 0 , 0 , 0} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] + 1 q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] + 1 ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] + 1 q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] + 1 ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

BARCODE user FSMD

”BARCODEuser . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={0 , 0 , 0 , 0} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 133

q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] + 1 q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] + 1 ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] , f l a g [3 : 0] = wh [3 : 0] q013 eop [3 : 0] ! = 0 | f l a g [3 : 0] = wh [3 : 0] q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | − q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | b l a c k [3 : 0] = b l a c k [3 : 0] + 1 , actnum [3 : 0] = actnum [3 : 0] + 1 ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh

[3 : 0] | b l a c k [3 : 0] = b l a c k [3 : 0] + 1 ,memw[3 : 0] ={0 , 0 , 0 , 1} q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

FIBSUM reference FSMD

” F i b B a s i c R e f . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q01 ;
q0e 0 ;

FIBSUM user FSMD

” F i b B a s i c U s e r 1 . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] q04 ;
q04 1 − | Y[3 : 0] = Z [3 : 0] q01 ;
q0e 0 ;

BOOTH reference FSMD

” Boo thBas icRef1 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] =A[3:0]−M[3 : 0] q03 Q[0]==1&& Qprev

[0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev [0:0]}>>1, Cnt [2 : 0] = Cnt [2:0]−1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,X[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

BOOTH user FSMD

” Boo thBas i cUse r1 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] = (˜M[2 : 0] + 1) +A[2 : 0] q03 Q[0]==1&&

Qprev [0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev [0:0]}>>1, Cnt [2 : 0] = Cnt [2:0]−1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,X[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 134

A.2 Non-equivalent designs for test bench GCD

Following are the FSMDs of the test benches presented in the Table 5.10 related to test
bench GCD. As the correctness of the user design is to be matched with the reference
design, different types of errors are introduced in the user design and the reference design
remains same.

GCD reference FSMD (Sl no. 1), (Sl no. 2), (Sl no. 3) and (Sl no. 4)

” GcdBasicRef . o rg ”
q00 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 2 X[3:0]>0 | − q02 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q0e ;
q02 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q03 X[3:0]>Y[3 : 0] | − q03 ;
q03 1 − | X[3 : 0] =X[3:0]−Y[3 : 0] q01 ;
q0e 0 ;

GCD user FSMD (Sl no. 1)

” GcdBasicUserC1 . o rg ”
q10 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 1} q11 ;
q11 2 X[3:0]>0 | − q12 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q1e ;
q12 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q13 X[3:0]>Y[3 : 0] | − q13 ;
q13 1 − | X[3 : 0] = (˜Y[2 : 0] + 1) +X[2 : 0] q11 ;
q1e 0 ;

GCD user FSMD (Sl no. 2)

” GcdBasicUserC4 . o rg ”
q10 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 1} q11 ;
q11 2 X[3:0]>0 | − q12 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q1e ;
q12 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q13 X[3:0]>Y[3 : 0] | − q13 ;
q13 1 − | X[3 : 0] = (˜Y[2 : 0] + 1) +Y[2 : 0] q11 ;
q1e 0 ;

GCD user FSMD (Sl no. 3)

” GcdBasicUserC3 . o rg ”
q10 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 1} q11 ;
q11 2 X[3:0]>0 | − q12 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q1e ;
q12 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q13 X[3:0]>Y[3 : 0] | − q13 ;
q13 1 − | X[3 : 0] = (Y[2 : 0] + 1) +X[2 : 0] q11 ;
q1e 0 ;

GCD user FSMD (Sl no. 4)

” GcdBasicUserC4 . o rg ”
q10 1 − | X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 1} q11 ;
q11 2 X[3:0]>0 | − q12 X[3:0]<=0 | Z [3 : 0] =Y[3 : 0] q1e ;
q12 2 X[3:0]<=Y[3 : 0] | tmp [3 : 0] =Y[3 : 0] ,Y[3 : 0] =X[3 : 0] ,X[3 : 0] = tmp [3 : 0] q13 X[3:0]>Y[3 : 0] | − q13 ;
q13 1 − | X[3 : 0] = (˜Y[2 : 0] + 1) +Y[2 : 0] q11 ;
q1e 0 ;

A.3 Non-equivalent designs for test bench BOOTH

Following are the FSMDs of the test benches presented in the Table 5.11 related to test
bench BOOTH. As the correctness of the user design is to be matched with the reference

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 135

design, different types of errors are introduced in the user design and the reference design
remains same.

BOOTH reference FSMD (Sl no. 1), (Sl no. 2), (Sl no. 3) and (Sl no. 4)

” Boo thBas icRef . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] =A[3:0]−M[3 : 0] q03 Q[0]==1&& Qprev

[0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev [0:0]}>>1, Cnt [2 : 0] = Cnt [2:0]−1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,X[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

BOOTH user FSMD (Sl no. 1)

” BoothBas icUserC1 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 1 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] = (˜M[2 : 0] + 1) +A[2 : 0] q03 Q[0]==1&&

Qprev [0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev[0:0]}>>1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,X[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

BOOTH user FSMD (Sl no. 2)

” BoothBas icUserC2 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] = (˜M[2 : 0] + 1) +A[2 : 0] q03 Q[0]==1&&

Qprev [0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev[0:0]}>>1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,Q[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

BOOTH user FSMD (Sl no. 3)

” BoothBas icUserC3 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] = (M[2 : 0] + 1) +A[2 : 0] q03 Q[0]==1&& Qprev

[0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev[0:0]}>>1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,Q[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

BOOTH user FSMD (Sl no. 4)

” BoothBas icUserC5 . o rg ”
q00 1 − | Qprev [0 :0]={0} ,A[3 : 0] ={0 , 0 , 0 , 0} , c n t [2 : 0] ={1 , 0 , 0} ,M[3 : 0] ={0 , 0 , 0 , 0} ,Q[3 : 0] ={0 , 0 , 0 , 0} q01 ;
q01 4 Q[0]==0&& Qprev [0]==1 | A[3 : 0] =A[3 : 0] +M[3 : 0] q03 Q[0]==1&& Qprev [0]==0 | A[3 : 0] = (˜M[2 : 0] + 1) +A[2 : 0] q03 Q[0]==1&&

Qprev [0]==1 | − q03 Q[0]==0&& Qprev [0]==0 | − q03 ;
q03 1 − | {A[3 : 0] ,X[3 :0]}={A[3 : 0] ,X[3:0]}>>>1,{Q[3 : 0] , Qprev [0 :0]}={Q[3 : 0] , Qprev[0:0]}>>>1 q04 ;
q04 2 Cnt [2 : 0] = = 0 | prod [7 : 0] ={A[3 : 0] ,X[3 : 0]} q0e Cnt [2 : 0] ! = 0 | − q01 ;
q0e 0 ;

A.4 Non-equivalent designs for test bench TLC

Following are the FSMDs of the test benches presented in the Table 5.12 related to test
bench TLC. As the correctness of the user design is to be matched with the reference design,
different types of errors are introduced in the user design and the reference design remains
same.

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 136

TLC reference FSMD (Sl no. 1), (Sl no. 2), (Sl no. 3) and (Sl no. 4)

” T r a f f i c L i g h t C o n t r o l l e r R e f . o rg ”
q000 2 c u r r e n t s t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q001 c u r r e n t s t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t s t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t s t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t s t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t s t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t s t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t s t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t s t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t s t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

TLC user FSMD (Sl no. 1)

” T r a f f i c L i g h t C o n t r o l l e r U s e r C 1 . o rg ”
q000 2 c u r r e n t s t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 1 , 1} , newFL [3 : 0] ={1 , 1 , 1 , 0} q001 c u r r e n t s t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t s t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t s t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t s t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t s t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t s t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t s t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t s t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t s t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

TLC user FSMD (Sl no. 2)

” T r a f f i c L i g h t C o n t r o l l e r U s e r C 2 . o rg ”
q000 2 c u r r e n t s t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q001 c u r r e n t s t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t s t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t s t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t s t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t s t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 1 , 1 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t s t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t s t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t s t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t s t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

TLC user FSMD (Sl no. 3)

” T r a f f i c L i g h t C o n t r o l l e r U s e r C 3 . o rg ”
q000 2 c u r r e n t s t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 1} , newFL [3 : 0] = newHL [3 : 0] q001 c u r r e n t s t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 137

q002 2 c u r r e n t s t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q003 c u r r e n t s t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t s t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t s t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 1 , 1 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t s t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] = n e w s t a t e [3 : 0] q009 c u r r e n t s t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t s t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t s t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

TLC user FSMD (Sl no. 4)

” T r a f f i c L i g h t C o n t r o l l e r U s e r C 4 . o rg ”
q000 2 c u r r e n t s t a t e [3 : 0] = = 0 | newHL [3 : 0] ={0 , 1 , 0 , 0} , newFL [3 : 0] ={0 , 1 , 1 , 0} q001 c u r r e n t s t a t e [3 : 0] ! = 0 | − q002 ;
q001 2 t i m eo u t L [3:0]==1&& c a r s [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q002 t i m eo u t L [3:0]!=1&& c a r s [3 : 0] = = 1

| n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q002 ;
q002 2 c u r r e n t s t a t e [3 : 0] = = 4 | newHL [3 : 0] ={0 , 0 , 1 , 0} , newFL [3 : 0] = newHL [3 : 0] + 1 q003 c u r r e n t s t a t e [3 : 0] ! = 4 | − q004 ;
q003 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q004 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 c u r r e n t s t a t e [3 : 0] = = 2 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 1 , 0 , 0} q005 c u r r e n t s t a t e [3 : 0] ! = 2 | − q008 ;
q005 4 t i m eo u t L [3 : 0] = = 1 | − q006 c a r s [3 : 0] = = 0 | − q006 t i m e ou t L [3 : 0] ! = 1 | − q007 c a r s [3 : 0] ! = 0 | − q007 ;
q006 1 − | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q008 ;
q007 1 − | n e w s t a t e [3 : 0] ={0 , 0 , 1 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0} q008 ;
q008 2 c u r r e n t s t a t e [3 : 0] = = 6 | newHL [3 : 0] ={0 , 1 , 1 , 0} , newFL [3 : 0] ={0 , 0 , 1 , 0} q009 c u r r e n t s t a t e [3 : 0] ! = 6 | − q010 ;
q009 2 t i m e o u t S [3 : 0] = = 1 | n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 1} q010 t i m e o u t S [3 : 0] ! = 1 | n e w s t a t e [3 : 0] ={0 , 1 , 1 , 0} ,

newST [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 c u r r e n t s t a t e [3 : 0] = = 7 | newHL [3 : 0] ={0 , 0 , 0 , 0} , newFL [3 : 0] ={0 , 0 , 0 , 0} , n e w s t a t e [3 : 0] ={0 , 0 , 0 , 0} , newST [3 : 0] ={0 , 0 , 0 , 0}

q011 c u r r e n t s t a t e [3 : 0] ! = 7 | − q011 ;
q011 1 − | s t a t e [3 : 0] = n e w s t a t e [3 : 0] , Hiway [3 : 0] = newHL [3 : 0] , FarmL [3 : 0] = newST [3 : 0] , s t a r t T i m e r [3 : 0] = newST [3 : 0] q0e ;
q0e 0 ;

A.5 Non-equivalent designs for test bench FIBSUM

Following are the FSMDs of the test benches presented in the Table 5.13 related to test
bench FIBSUM. As the correctness of the user design is to be matched with the reference
design, different types of errors are introduced in the user design and the reference design
remains same.

FIBSUM reference FSMD (Sl no. 1), (Sl no. 2), (Sl no. 3) and (Sl no. 4)

” F i b B a s i c R e f . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q01 ;
q0e 0 ;

FIBSUM user FSMD (Sl no. 1)

” F ibBas icUse rC1 . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={1 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q0e ;
q0e 0 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 138

FIBSUM user FSMD (Sl no. 2)

” F ibBas icUse rC2 . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] =X[3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q0e ;
q0e 0 ;

FIBSUM user FSMD (Sl no. 3)

” F ibBas icUse rC3 . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum[3:0]−X[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q0e ;
q0e 0 ;

FIBSUM user FSMD (Sl no. 4)

” F ibBas icUse rC4 . o rg ”
q00 1 − | num [3 : 0] ={0 , 1 , 1 , 0} ,X[3 : 0] ={0 , 0 , 0 , 0} ,Y[3 : 0] ={0 , 0 , 0 , 0} , sum [3 : 0] ={0 , 0 , 0 , 1} q01 ;
q01 2 num[3:0]>=X[3 : 0] | Z [3 : 0] =X[3 : 0] +Y[3 : 0] q02 num[3:0]<X[3 : 0] | o u t [3 : 0] = sum [3 : 0] q0e ;
q02 1 − | sum [3 : 0] = sum [3 : 0] +Y[3 : 0] q03 ;
q03 1 − | X[3 : 0] =Y[3 : 0] ,Y[3 : 0] = Z [3 : 0] q0e ;
q0e 0 ;

A.6 Non-equivalent designs for test bench BARCODE

Following are the FSMDs of the test benches presented in the Table 5.14 related to test
bench BARCODE. As the correctness of the user design is to be matched with the reference
design, different types of errors are introduced in the user design and the reference design
remains same.

BARCODE reference FSMD (Sl no. 1), (Sl no. 2), (Sl no. 3) and (Sl no. 4)

” BarcodeReaderRef . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={0 , 0 , 0 , 0} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 139

q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

BARCODE user FSMD (Sl no. 1)

” BarcodeReaderUserC1 . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={1 , 1 , 0 , 1} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

BARCODE user FSMD (Sl no. 2)

” BarcodeReaderUserC2 . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={1 , 1 , 0 , 1} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} , uncommon1 [3 : 0] ={1 , 1 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 140

q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc
[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;

q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026
w h i t e [3 : 0] ! = 2 5 5 | − q026 ;

q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 1 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

BARCODE user FSMD (Sl no. 3)

” BarcodeReaderUserC3 . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={0 , 0 , 0 , 0} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} , uncommon1 [3 : 0] ={1 , 1 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;
q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3:0]>>1 q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | − q027 ;
q031 0 ;

BARCODE user FSMD (Sl no. 4)

” BarcodeReaderUserC4 . o rg ”
q000 1 − | wh [3 : 0] ={0 , 0 , 0 , 0} , b l [3 : 0] ={0 , 0 , 0 , 1} , eoc [3 : 0] ={0 , 0 , 0 , 0} ,memw[3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] ={0 , 0 , 0 , 0} , add r

[3 : 0] ={0 , 0 , 0 , 0} , eop [3 : 0] ={0 , 0 , 0 , 0} q001 ;
q001 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q002 eop [3 : 0] ! = 0 | − q031 ;

APPENDIX A. FSMDS OF TEST BENCH DESIGNS 141

q002 2 b r e a k f l a g [3 : 0] ! = 1 | − q003 b r e a k f l a g [3 : 0] = = 1 | − q006 ;
q003 2 c l k [3 : 0] ! = 1 | − q003 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q004 ;
q004 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q005 r e s e t [3 : 0] ! = 1 | − q005 ;
q005 2 s t a r t [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q002 s t a r t [3 : 0] ! = 1 | − q002 ;
q006 2 eop [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q007 eop [3 : 0] ! = 0 | − q001 ;
q007 2 actnum [3 : 0] ! = num[3:0]&& w h i t e [3 : 0] ! = 2 5 5 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q008 actnum [3 : 0] = = num[3:0]&& w h i t e [3 : 0] = = 2 5 5 | −

q001 ;
q008 2 b r e a k f l a g [3 : 0] ! = 1 | − q009 b r e a k f l a g [3 : 0] ! = 1 | − q012 ;
q009 2 c l k [3 : 0] ! = 1 | − q009 c l k [3 : 0] ! = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q010 ;
q010 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q011 r e s e t [3 : 0] ! = 1 | − q011 ;
q011 2 scan [3 : 0] = = 1 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q008 scan [3 : 0] ! = 1 | − q008 ;
q012 2 eop [3 : 0] = = 0 | f l a g [3 : 0] = wh [3 : 0] , actnum [3 : 0] ={0 , 0 , 0 , 0} , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , b l a c k [3 : 0] ={0 , 0 , 0 , 0} , eoc

[3 : 0] ={0 , 0 , 0 , 0} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q013 eop [3 : 0] ! = 0 | − q007 ;
q013 4 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q014 w h i t e [3 : 0] ! = 2 5 5 | − q014 b l a c k [3:0]!=255&& b r e a k f l a g [3 : 0] = = 0 | − q026

w h i t e [3 : 0] ! = 2 5 5 | − q026 ;
q014 2 v i d e o [3 : 0] = = wh [3 : 0] | − q015 v i d e o [3 : 0] ! = wh [3 : 0] | − q021 ;
q015 2 c l k [3 : 0] ! = 1 | − q015 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q016 ;
q016 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] = 1 , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q017 r e s e t [3 : 0] ! = 1 | − q017 ;
q017 1 − | w h i t e [3 : 0] = w h i t e [3 : 0] q018 ;
q018 2 f l a g [3 : 0] = = b l [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q019 f l a g [3 : 0] ! = b l [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q019 ;
q019 1 − | b l a c k [3 : 0] ={0 , 0 , 0 , 0} , f l a g [3 : 0] = wh [3 : 0] , d a t a [3 : 0] = w h i t e [3 : 0] q020 ;
q020 2 eop [3 : 0] = = 0 | add r [3 : 0] = actnum [3 : 0] q013 eop [3 : 0] ! = 0 | − q013 ;
q021 2 c l k [3 : 0] ! = 1 | − q021 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q022 ;
q022 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q023 r e s e t [3 : 0] ! = 1 | − q023 ;
q023 1 − | b l a c k [3 : 0] = b l a c k [3 : 0] q024 ;
q024 2 f l a g [3 : 0] = = wh [3 : 0] | actnum [3 : 0] = actnum [3 : 0] ,memw[3 : 0] ={0 , 0 , 0 , 0} q025 f l a g [3 : 0] ! = wh [3 : 0] | memw[3 : 0] ={0 , 0 , 0 , 1}

q025 ;
q025 1 − | f l a g [3 : 0] = b l [3 : 0] , w h i t e [3 : 0] ={0 , 0 , 0 , 0} , d a t a [3 : 0] = b l a c k [3 : 0] q020 ;
q026 2 eop [3 : 0] = = 0 | memw[3 : 0] ={0 , 0 , 0 , 0} , eoc [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 0} q027 eop [3 : 0] ! = 0 | − q007 ;
q027 2 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q028 s t a r t [3:0]!=0&& b r e a k f l a g [3 : 0] = = 0 | − q007 ;
q028 2 c l k [3 : 0] ! = 1 | − q028 c l k [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 0} q029 ;
q029 2 r e s e t [3 : 0] = = 1 | eop [3 : 0] ={0 , 0 , 0 , 1} , b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q030 r e s e t [3 : 0] ! = 1 | − q030 ;
q030 2 s t a r t [3 : 0] = = 0 | b r e a k f l a g [3 : 0] ={0 , 0 , 0 , 1} q027 s t a r t [3 : 0] ! = 0 | b r e a k f l a g [3 : 0] ={1 , 1 , 1 , 1} q027 ;
q031 0 ;

Appendix B

Case studies of deployment

B.1 Deployment of COLDVL
B.1.1 Semester laboratory course
COLDVL has been used for conducting laboratory sessions in the first year M.Tech course ‘Computing systems lab (IT69101)’ for laboratory experimentation in Autumn session,
2012, 2013, and 2014. Students were given assignments on logic design and computer organization, after building their circuit and saving with their identification they uploaded the
file to the Web-Based Course Management system [36] of IIT Kharagpur over Internet, for manual evaluation. Following are some assignments statements which were accomplished
by the students.

1. Implementation, simulation and analysis of adders

You a r e r e q u i r e d t o implement , s i m u l a t e and a n a l y s e t h e f o l l o w i n g two t y p e s o f a d d e r s .

1 . R i p p l e c a r r y a d d e r (RCA) , f o r f o u r b i t s
2 . Car ry l o o k a h e a d a d d e r (CLA) , f o r f o u r b i t s , g e n e r a t i n g c a r r y g e n e r a t e and c a r r y p r o p a g a t e f u n c t i o n s .
3 . Block c a r r y l o o k a h e a d a d d e r (BCLA) , t o add two 16− b i t numbers , u s i n g 4−b i t CLAs and 4−b i t BCLA u n i t s

You s h o u l d do a compar i son of t h e s e two t y p e s o f a d d e r s f o r c o s t and speed .

You a r e a d v i s e d t o use t h e COA v i r t u a l l a b f a c i l t y a t t h e SIT web s i t e f o r do ing t h i s e x p e r i m e n t .

A f t e r c o m p l e t i n g t h e expe r im en t , you s h o u l d save t h e d e s i g n i n a ” l o g i c ” f i l e f o r s u b s e q u e n t s u b m i s s i o n . You w i l l a l s o
have t o c r e a t e a r e p o r t i n p l a i n t e x t .

The d e s i g n of t h e 16− b i t BCLA i s t o be done h i e r a r c h i c a l l y . The CLA and BCLA u n i t s (and p o s s i b l e t h e f u l l a d d e r u n i t)
a r e t o be d e s i g n e d as components and a l s o saved as ” l o g i c ” f i l e s .

S u b m i s s i b l e i t e m s

1 . Logic f i l e f o r 4−b i t RCA
2 . Logic f i l e f o r 4−b i t CLA
3 . Logic f i l e f o r 4−b i t BCLA u n i t
4 . O v e r a l l 16− b i t BCLA

Marking g u i d e l i n e s

Ass ignment marking i s t o be done on ly a f t e r t h e d e a d l i n e e x p i r e s , a s s u b m i s s i o n s g e t s b l o c k e d a f t e r t h e a s s i g n m e n t i s
marked .

C o r r e c t working o f RCA b u i l d i n g b l o c k s 5
O v e r a l l c o r r e c t o p e r a t i o n o f RCA, i n c l u d i n g g e n e r a t i o n o f c a r r y o u t and o v e r f l o w i n d i c a t i o n 5
C o r r e c t working o f CLA, wi th c a r r y g e n e r a t e and c a r r y p r o p a g a t e f u n c t i o n s 5
C o r r e c t working o f BCLA u n i t , w i th c a r r y b i t g e n e r a t i o n , c a r r y g e n e r a t e and c a r r y p r o p a g a t e f u n c t i o n s 5
O v e r a l l c o r r e c t o p e r a t i o n o f BCLA, i n c l u d i n g g e n e r a t i o n o f c a r r y o u t and o v e r f l o w i n d i c a t i o n 5
Cos t and speed a n a l y s i s o f t h e two a d d e r s 5
D e t e r m i n a t i o n o f c o s t and speed of RCA 5
D e t e r m i n a t i o n o f c o s t and speed of CLA 5
D e t e r m i n a t i o n o f c o s t and speed of BCLA u n i t 5
D e t e r m i n a t i o n o f o v e r a l l c o s t and speed of BCLA 5
T o t a l Marks 50
Ass ignment s u b m i s s i o n

142

APPENDIX B. CASE STUDIES OF DEPLOYMENT 143

Use e l e c t r o n i c s u b m i s s i o n v i a t h e WBCM l i n k

You s h o u l d keep s u b m i t t i n g your i n c o m p l e t e a s s i g n m e n t from t ime t o t ime a f t e r making some p r o g r e s s , a s you can s ubm i t
any number o f t i m e s b e f o r e t h e d e a d l i n e e x p i r e s .

2. Implementation, simulation and analysis of multipliers

You a r e r e q u i r e d t o implement , s i m u l a t e and a n a l y s e t h e s h i f t and add m u l t i p l i e r , do ing t h e i m p l e m e n t a t i o n f o r e i g h t
b i t s 2 ’ s complement numbers . Ensure t h a t t h e s i g n n e c e s s a r y f o r a r i t h m e t i c s h i f t i n g i s p r o p e r l y g e n e r a t e d u s i n g a
s u i t a b l e s i g n g e n e r a t i o n l o g i c .

You a r e p e r m i t t e d t o use t h e ALU, m u l t i p l e x e r s , r e g i s t e r s and o t h e r d i s c r e t e components .

Your d e s i g n s h o u l d be modular and s h o u l d have two top−l e v e l components , v i z samDP and s a m C t r l . Ensure t h a t your modules
a r e w e l l l a b e l l e d (p i n s s h o u l d be l a b e l l e d t o i n d i c a t e t h e i r f u n c t i o n a l i t y) .

The d a t a p a t h s h o u l d have a l l t h e d a t a p r o c e s s i n g e l emen t s , a p p r o p r i a t e d a t a p a t h c o n t r o l s i g n a l i n p u t s and a p p r o p r i a t e
s t a t u s s i g n a l o u t p u t s .

The c o n t r o l l e r s h o u l d be d e s i g n e d as a f i n i t e s t a t e machine , u s i n g t h e s t a t u s s i g n a l s o f t h e d a t a p a t h as i t s i n p u t s and
g e n e r a t i n g o u t p u t s which a r e used t o d r i v e t h e d a t a p a t h c o n t r o l s i g n a l s .

You a r e r e q u i r e d t o document t h e o p e r a t i o n o f t h e m u l t i p l i e r .

You a r e a d v i s e d t o use t h e COA v i r t u a l l a b f a c i l t y a t t h e SIT web s i t e f o r do ing t h i s e x p e r i m e n t . Make s u r e you e n t e r
your name and r o l l number i n t h e d e s i g n you c r e a t e .

A f t e r c o m p l e t i n g t h e expe r im en t , you s h o u l d save t h e d e s i g n i n a ” l o g i c ” f i l e f o r s u b s e q u e n t s u b m i s s i o n . You w i l l a l s o
have t o c r e a t e a r e p o r t i n p l a i n t e x t .

Marking g u i d e l i n e s

Ass ignment marking i s t o be done on ly a f t e r t h e d e a d l i n e e x p i r e s , a s s u b m i s s i o n s g e t s b l o c k e d a f t e r t h e a s s i g n m e n t i s
marked .

P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f SAM d a t a p a t h modules 10
P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f SAM c o n t r o l l e r 10
P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f SAM d a t a p a t h s 10
D i s c u s s i o n on t h e m u l t i p l i c a t i o n o f n e g a t i v e numbers u s i n g SAM 5
O v e r a l l d o c u m e n t a t i o n and d e s c r i p t i o n o f t h e d e s i g n 5
T o t a l Marks 40
Ass ignment s u b m i s s i o n

Use e l e c t r o n i c s u b m i s s i o n v i a t h e WBCM l i n k

D e f i n i t e l y up l oa d t h e top−l e v e l d e s i g n and t h e d e t a i l e d r e p o r t (i n p l a i n t e x t) . Upload as many of t h e o t h e r components
a s p o s s i b l e . Ask you TA t o c o n d u c t an e v a l u a t i o n i n t h e lab , a p a r t from t h e u s u a l o n l i n e e v a l u a t i o n .

You s h o u l d keep s u b m i t t i n g your i n c o m p l e t e a s s i g n m e n t from t ime t o t ime a f t e r making some p r o g r e s s , a s you can s ubm i t
any number o f t i m e s b e f o r e t h e d e a d l i n e e x p i r e s .

3. Restoring and non-restoring division

You a r e r e q u i r e d t o implement , s i m u l a t e and a n a l y s e t h e f o l l o w i n g two t y p e s o f d i v i d e r s , do ing t h e i m p l e m e n t a t i o n f o r
f i v e b i t s o f d i v i s o r and t e n b i t s o f d i v i d e n d .

R e s t o r i n g d i v i d e r (RDiv)
Non−r e s t o r i n g d i v i d e r (NRDiv)

You s h o u l d do a compar i son of t h e s e two t y p e s o f d i v i d e r s f o r c o s t and speed . You s h o u l d a l s o d i s c u s s d i v i s i o n methods
f o r s i g n e d o p e r a n d s .

You a r e a d v i s e d t o use t h e COA v i r t u a l l a b f a c i l t y a t t h e SIT web s i t e f o r do ing t h i s e x p e r i m e n t . Make s u r e you e n t e r
your name and r o l l number i n t h e d e s i g n you c r e a t e .

A f t e r c o m p l e t i n g t h e expe r im en t , you s h o u l d save t h e d e s i g n i n a ” l o g i c ” f i l e f o r s u b s e q u e n t s u b m i s s i o n . You w i l l a l s o
have t o c r e a t e a r e p o r t i n p l a i n t e x t .

Marking g u i d e l i n e s

Ass ignment marking i s t o be done on ly a f t e r t h e d e a d l i n e e x p i r e s , a s s u b m i s s i o n s g e t s b l o c k e d a f t e r t h e a s s i g n m e n t i s
marked .

P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f RDiv d a t a p a t h s 10

APPENDIX B. CASE STUDIES OF DEPLOYMENT 144

P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f RDiv c o n t r o l l e r 10
P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f NRDiv d a t a p a t h s 10
P r o p e r o p e r a t i o n and d o c u m e n t a t i o n o f NRDiv c o n t r o l l e r 10
D i s c u s s i o n on t h e d i v i s i o n o f n e g a t i v e numbers u s i n g 10
T o t a l Marks 50
Ass ignment s u b m i s s i o n

S u b m i s s i b l e i t e m s :

1 . Logic f i l e o f r e s t o r i n g d i v i s i o n d i v i d e r (l o g i c . gz)
2 . Logic f i l e o f non−r e s t o r i n g d i v i s i o n d i v i d e r (l o g i c . gz)
3 . R ep o r t on t h e d i v i d e r s c o v e r i n g i t e m s of d i s c u s s i o n

Use e l e c t r o n i c s u b m i s s i o n v i a t h e WBCM l i n k

You s h o u l d keep s u b m i t t i n g your i n c o m p l e t e a s s i g n m e n t from t ime t o t ime a f t e r making some p r o g r e s s , a s you can s ubm i t
any number o f t i m e s b e f o r e t h e d e a d l i n e e x p i r e s .

4. Simulation of Caches

The p r o p o r t i o n o f a c c e s s e s t h a t r e s u l t i n a cache h i t i s known as t h e h i t r a t e , and can be a measure o f t h e
e f f e c t i v e n e s s o f t h e cache f o r a g i v e n program or a l g o r i t h m .

Memory a c c e s s o f your program i s mode l l ed assuming t h a t your program has :

a s e t o f 16 v a r i a b l e s which a r e l o c a t e d a t c o n s e c u t i v e l o c a t i o n s and a c c e s s e d a t random .
an a r r a y o f 256 e l e m e n t s which a r e a c c e s s e d i n an a r i t h m e t i c p r o g r e s s i n g o f t h e i n d e x v a l u e s wi th t h e s t e p v a r y i n g

between 1 t o 4 .

When non−t r i v i a l r e p l a c e m e n t o f a cache i t em i s needed , assumed t h a t t h e l e a s t r e c e n t l y a c c e s s e d e n t r y i s r e p l a c e d .

You a r e r e q u i r e d t o model memory a c c e s s e s and s i m u l a t e t h e p e r f o r m a n c e o f t h e f o l l o w i n g c a c h e s where a cache l i n e has l
words .

1 . D i r e c t mapped cache wi th N l i n e s
2 . F u l l y a s s o c i a t i v e cache wi th N l i n e s
3 . K−way s e t a s s o c i a t i v e cache wi th M s e t s , so t h a t KM=N

I t i s common f o r t h e p a r a m e t e r s used above t o be powers o f 2 .

You s h o u l d s i m u l a t e t h e h i t r a t e f o r v a r i o u s chosen v a l u e s o f t h e cache p a r a m e t e r s and i d e n t i f y o p t i m a l v a l u e s o f t h o s e
p a r a m e t e r s f o r t h e g i v e n program model . These r e s u l t s s h o u l d be s u i t a b l y d e p i c t e d u s i n g s i m p l e g r a p h s (a v o i d
c r e a t i n g l a r g e f i l e s) . In your r e p o r t , you s h o u l d do a c o s t / p e r f o r m a n c e compar i son o f t h e s e c a c h e s .

Th i s e x p e r i m e n t has t o be done by way of w r i t i n g a program t o c a r r y o u t t h e s i m u l a t i o n o f t h e cache .

You need t o sub mi t your program f i l e , t h e g r a p h s and a r e p o r t , a s a t e x t f i l e .
Marking g u i d e l i n e s

Ass ignment marking i s t o be done on ly a f t e r t h e d e a d l i n e e x p i r e s , a s s u b m i s s i o n s g e t s b l o c k e d a f t e r t h e a s s i g n m e n t i s
marked .

P r o p e r m o d e l l i n g o f memory a c c e s s o f t h e program 10
P r o p e r m o d e l l i n g o f a d i r e c t mapped cache 5
P r o p e r m o d e l l i n g o f a f u l l y a s s o c i a t i v e cache 10
P r o p e r m o d e l l i n g o f a K−way a s s o c i a t i v e cache 10
P r o p e r m o d e l l i n g o f t h e r e p l a c e m e n t p o l i c y and i d e n i t f i c a t i o n o f i t s a p p l i c a b i l i t y 10
I d e n t i f y i n g o p t i m a l v a l u e s o f t h e cache p a r a m e t e r s f o r t h e d i r e c t mapped cache 5
I d e n t i f y i n g o p t i m a l v a l u e s o f t h e cache p a r a m e t e r s f o r t h e f u l l y a s s o c i a t i v e cache 5
I d e n t i f y i n g o p t i m a l v a l u e s o f t h e cache p a r a m e t e r s f o r t h e K−way a s s o c i a t i v e cache 5
D i s c u s s i o n on t h e c o s t / p e r f o r m a n c e a n a l y s i s 5
T o t a l Marks 65
Ass ignment s u b m i s s i o n

Use e l e c t r o n i c s u b m i s s i o n v i a t h e WBCM l i n k

You s h o u l d keep s u b m i t t i n g your i n c o m p l e t e a s s i g n m e n t from t ime t o t ime a f t e r making some p r o g r e s s , a s you can s ubm i t
any number o f t i m e s b e f o r e t h e d e a d l i n e e x p i r e s .

B.1.2 Workshops
Workshops having duration of three hours were organized in engineering colleges of three different universities of West Bengal, India, which includes Jadavpur University, Bengal
Engineering and Science University and West Bengal University of Technology. In the workshops, a brief demonstration of the virtual laboratory (COLDVL) was given. After that
participants were asked to perform experiments followed by a feedback session. Workshops were organized for both faculties and students.

APPENDIX B. CASE STUDIES OF DEPLOYMENT 145

Workshop at IIT Kharagpur
A workshop was conducted in association with a short term teacher training course, 25-30 June, 2012, at IIT Kharagpur for the AICTE faculty members where 33 faculty members
from different engineering colleges all over India had participated.

Workshop at colleges under West Bengal University of Technology (WBUT)
CIT and MCKV are the two AICTE approved engineering colleges under WBUT. A workshop had been organized in CIT and MCKV on 25th February and 27th February of 2013
respectively for the students from Information Technology, Computer Science, Electronics, Electrical branch as all of them have digital logic and computer organization as there
core courses. In CIT,there were total 38 participants and among them 26 submitted their feedback in hard copy and rest of them submitted online. From the feedback, 8 feedback
were canceled for those who had not paid sufficient attention during the workshop. In the workshop of the MCKV college, the number of participants was 34 among which 25 valid
feedback were obtained.

Workshop at Jadavpur University
On 1st April, 2013 a workshop was conducted in the Jadavpur University. 26 students from the computer science department participated and 23 valid feedback were collected.

Workshop at Bengal Engineering and Science University
On 12th April, 2013 a workshop was conducted in the Bengal Engineering and Science University. 12 students from the computer science department participated and no invalid
feedback were gathered.

B.1.3 Independent participation
COLDVL virtual laboratory was used and evaluated independently (without the benefit of workshop with live demonstration) at NIT Jalandhar, early in 2013. This participation is of
special significance as students are expected to be able to use the COLDVL to conduct experiments, as it is available in the Internet without any special guidance from the developers.
The major motivation was to know the feedback of students who were not given practical demonstration through workshops. In a span of few days, 46 feedback were submitted online
along with the saved circuits performed by the students.

B.2 Feedback questions for COLDVL
Following is the feedback questions used to evaluate COLDVL through workshops and independent participation.

1 . Name of t h e Expe r imen t :

R i p p l e Car ry Adder
Carry−look−ahead a d d e r
S y n t h e s i s o f f l i p−f l o p s
R e g i s t e r s and C o u n t e r s
Wal lace Tree Adder
C o m b i n a t i o n a l M u l t i p l i e r s
A r i t h m a t i c Logic Un i t
Memory Design
D i r e c t Mapped cache Design
A s s o c i a t i v e cache
CPU d e s i g n
Othe r :

2 . How do you r a t e t h e o n l i n e p e r f o r m a n c e o f t h e e x p e r i m e n t ?
E x c e l l e n t
Very Good
Good
Average
Poor

3 . Was t h e p r o c e d u r e and manual found t o be h e l p f u l ?
Yes
No
Improvement R e q u i r e d

4 . To what d e g r e e was t h e a c t u a l l a b e n v i r o n m e n t s i m u l a t e d ?
Complete
P a r t i a l
Improvement R e q u i r e d

5 . To what e x t e n t d i d you have c o n t r o l ove r t h e i n t e r a c t i o n s ?
E x c e l l e n t
Very Good
Good
Average
Poor

6 . Rate t h e q u a l i t y o f g r a p h i c s o f t h e s i m u l a t o r
E x c e l l e n t
Very Good
Good
Average
Poor

7 . Do you have a c l e a r u n d e r s t a n d i n g of t h e e x p e r i m e n t and r e l a t e d t o p i c s ?
Yes

APPENDIX B. CASE STUDIES OF DEPLOYMENT 146

No
P a r t i a l

8 . Did you e x p e r i e n c e any prob lems ? (Yes / No) I f ” Yes ” g i v e t h e r e a s o n s

9 . How much do you l i k e t h e way of a n a l y z i n g r e s u l t s and t h e v a l u e p r o p a g a t i o n i n your c i r c u i t
t h r o u g h d i f f e r e n t w i r e c o l o r s ?
E x c e l l e n t
Very Good
Good
Average
Poor

1 0 . Ra te t h e u s a b i l i t y o f t h e i n t e r f a c e o f t h e s i m u l a t o r
E x c e l e n t
Very Good
Good
Average
Poor

1 1 . I s t h e r e a n y t h i n g (s p e c i f i c / g e n e r i c) f e e d b a c k wi th r e s p e c t t o t h e e x p e r i m e n t s t h a t you would
l i k e t o s h a r e ?

1 2 . Do you t h i n k do ing e x p e r i m e n t s t h r o u g h v i r t u a l l a b g i v e s scope f o r more i n n o v a t i v e and
c r e a t i v e work ?
Yes
No
To some e x t e n c t

1 3 . P l e a s e s u g g e s t some p o i n t s t o improve t h e v i r t u a l l a b (i f any)

1 4 . Do you f i n d t h i s s i m u l a t o r and t h e a s s o c i a t e d e x p e r i m e n t s w i l l m o t i v a t e s t u d e n t s f o r
s e l f−l e a r n i n g ?
Yes
To Some E x t e n t
No

1 5 . Do you t h i n k t h a t t h i s k ind of v i r t u a l l a b wi th e x p e r i m e n t s and t h e o r y w i l l r e a l l y enhance
s t u d e n t l e a r n i n g ?

1 6 . From a t e a c h e r ’ s p e r s p e c t i v e do you f e e l t h a t t h i s k ind of e−l e a r n i n g a l o n g wi th t e a c h i n g and
r e a l l a b e x p e r i m e n t s w i l l i n s p i r e s t u d e n t s f o r f u t u r e r e s e a r c h ?

Bibliography

[1] Hase, hierarchical computer architecture design and simulation environment, school of infor-
matics, university of edinburgh,. http://www.icsa.inf.ed.ac.uk/research/groups/hase/.

[2] Jhdl overview brigham young univ. http://www.jhdl.org/overview.html.

[3] Syllabus for all courses at CSE, IIT Kharagpur. http://cse.iitkgp.ac.in/.

[4] Architexa, 2010. http://www.architexa.com/labs/.

[5] Eclipse gef framework, 2010. http://www.eclipse.org/gef/.

[6] Ims-ld learning design specifications, 2010. http://www.imsglobal.org.

[7] Cudd: Cu decision diagram package, 2012. http://vlsi.colorado.edu/ fabio/CUDD/.

[8] Aura Poulsen, Khoa Lam, Sarah Cisneros, and Torrey Trust. Arcs model of motivational
design. EDTEC 544.

[9] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

[10] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. A value propagation based equivalence
checking method for verification of code motion techniques. In Electronic System Design
(ISED), 2012 International Symposium on, pages 67–71, 2012.

[11] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. Verification of code motion techniques
using value propagation. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 33(8):1180–1193, Aug 2014.

[12] J. Bransford, National Research Council (U.S.). Committee on Developments in the Science of
Learning, National Research Council (U.S.). Committee on Learning Research, and Educa-
tional Practice. How people learn: brain, mind, experience, and school. National Academy
Press, 2000.

[13] M. Breuer and A. Friedman. Diagnosis and reliable design of digital systems. Digital system
design series. Computer Science Press, 1976.

[14] S. Britain. A review of learning design: Concepts, specifications and tools, May. A Report for
JISC E-Learning Pedagogy Programme.

[15] R. Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on, C-35(8):677–691, Aug 1986.

147

BIBLIOGRAPHY 148

[16] C. Burch. Logisim: A graphical system for logic circuit design and simulation. J. Educ.
Resour. Comput., 2(1):5–16, Mar. 2002.

[17] J. Byrne, C. Heavey, and P. Byrne. A review of web-based simulation and supporting tools.
Simulation Modelling Practice and Theory, 18(3):253 – 276, 2010.

[18] Duschl, R.A., H. Schweingruber, A. Shouse, K. t. E. G. Committee on Science Learning, Na-
tional Research Council (U.S.). Board on Science Education, and National Research Council
(U.S.). Taking Science to School: Learning and Teaching Science in Grades K-8. National
Academies Press, 2007.

[19] R. W. Floyd. Assigning meaning to programs. In Proceedings the 19th Symposium on Applied
Mathematics, pages 19–32, 1967.

[20] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. High-Level Synthesis: Introduction to Chip
and System Design. Kluwer Academic, 1992.

[21] D. D. Gajski and L. Ramachandran. Introduction to high-level synthesis. IEEE Des. Test,
11(4):44–54, Oct. 1994.

[22] S. Grossberg. The link between brain learning, attention, and consciousness. Consciousness
and Cognition, 8(1):1 – 44, 1999.

[23] S. Grossberg. Chapter 107 - linking attention to learning, expectation, competition, and con-
sciousness. In L. Itti, G. Rees, and J. K. Tsotsos, editors, Neurobiology of Attention, pages 652
– 662. Academic Press, Burlington, 2005.

[24] M. H. Gunes, M. A. Thornton, F. Kocan, and S. A. Szygenda. A survey and comparison of
digital logic simulators. In 48th Midwest Symposium on Circuits and Systems, pages 744–749
Vol. 1, 2005.

[25] D. Hammer and A. Elby. Tapping Epistemological Resources for Learning Physics. The
Journal of the Learning Sciences, 12(1), 2003.

[26] J. P. Hayes. Computer Architecture and Organization; (2Nd Ed.). McGraw-Hill, Inc., New
York, NY, USA, 1988.

[27] W. Houghton. Engineering Subject Centre Guide : learning and teaching theory for engi-
neering academics. Higher Education Academy Engineering Subject Centre, Loughborough
University, 2004.

[28] C. Huandong, W. Shulei, S. Chunhui, and C. Mingrui. Research on the learning theory of
e-learning. In INC, IMS and IDC, 2009. NCM ’09. Fifth International Joint Conference on,
pages 1185–1187, 2009.

[29] D. A. Huffman. The Design and Use of Hazard-[f]ree Switching Networks. J. ACM, 4(1):47–
62, Jan. 1957.

[30] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, New York, NY, USA, 2004.

[31] C. M. Jenkins, A. D. Voss, and D. Furcy. An effective educational module for booth’s multi-
plication algorithm. J. Comput. Sci. Coll., 27(4):54–62, Apr. 2012.

BIBLIOGRAPHY 149

[32] C. Karfa, C. Mandal, and D. Sarkar. Formal verification of code motion techniques using
data-flow-driven equivalence checking. ACM Trans. Design Autom. Electr. Syst., 17(3):30,
2012.

[33] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An equivalence-checking method for scheduling
verification in high-level synthesis. IEEE Trans. on CAD of Integrated Circuits and Systems,
27(3):556–569, 2008.

[34] J. M. Keller. Development and use of the arcs model of motivational design. Journal of
Instructional Development, 10(3), 1987.

[35] K. Kotovsky, J. Hayes, and H. Simon. Why are some problems hard? evidence from tower of
hanoi. Cognitive Psychology, 17(2):248 – 294, 1985.

[36] C. Mandal, V. L. Sinha, and C. M. P. Reade. Web-based course management and web services.
Electronic Journal on e-Learning, 2(1):135–144, Feb. 2004.

[37] Z. Manna. Introduction to Mathematical Theory of Computation. McGraw-Hill, Inc., New
York, NY, USA, 1974.

[38] M. M. Mano. Digital Logic and Computer Design. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 1979.

[39] M. M. Mano. Computer System Architecture (3rd Ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[40] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic. A survey and evaluation of
simulators suitable for teaching courses in computer architecture and organization. Education,
IEEE Transactions on, 52(4):449 –458, nov. 2009.

[41] L. Pascual, A. Torrentı́, J. Sahuquillo, and J. Flich. Understanding cache hierarchy interac-
tions with a program-driven simulator. In Proceedings of the 2007 workshop on Computer
architecture education, WCAE ’07, pages 30–35, New York, NY, USA, 2007. ACM.

[42] D. A. Poplawski. A pedagogically targeted logic design and simulation tool. In Proceedings of
the 2007 Workshop on Computer Architecture Education, WCAE ’07, pages 1–7, New York,
NY, USA, 2007. ACM.

[43] M. I. Posner. Cumulative development of attentional theory. American Psychologist, 37:168–
179, 1982.

[44] Z. Radivojevic, M. Cvetanovic, and J. Dordevic. Design of the simulator for teaching computer
architecture and organization. In Engineering of Computer Based Systems (ECBS-EERC),
2011 2nd Eastern European Regional Conference on the, pages 124 –130, sept. 2011.

[45] D. Sarkar and S. C. De Sarkar. A set of inference rules for quantified formula handling and ar-
ray handling in verification of programs over integers. IEEE Trans. Softw. Eng., 15(11):1368–
1381, Nov. 1989.

[46] D. Sarkar and S. C. De Sarkar. Some inference rules for integer arithmetic for verification of
flowchart programs on integers. IEEE Trans. Softw. Eng., 15(1):1–9, Jan. 1989.

BIBLIOGRAPHY 150

[47] W. Schneider and R. M. Shiffrin. Controlled and automatic human information processing: I.
detection, search, and attention. Psychological Review, 84(1):1–66, 1977.

[48] C. Schunn and E. Silk. Learning theories for engineering and technology education. In
M. Barak and M. Hacker, editors, Fostering Human Development Through Engineering and
Technology Education, volume 6 of International Technology Education Studies, pages 3–18.
SensePublishers, 2011.

[49] M. Serra, E. Wang, and J. Muzio. A multimedia virtual lab for digital logic design. In Mi-
croelectronic Systems Education, 1999. MSE’99. IEEE International Conference on, pages
39–40, 1999.

[50] N. Shekhar, P. Kalla, and F. Enescu. Equivalence verification of polynomial datapaths using
ideal membership testing. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 26(7):1320–1330, July 2007.

[51] R. M. Shiffrin and W. Schneider. Controlled and automatic human information process-
ing: Ii. perceptual learning, automatic attending and a general theory. Psychological Review,
84(2):127–190, 1977.

[52] W. Stallings. Computer Organization and Architecture: Designing for Performance (7th Edi-
tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005.

[53] W. Stallings. Computer Organization and Architecture - Designing for Performance (7. ed.).
Prentice Hall, 2006.

[54] D. Stoffel and W. Kunz. Equivalence checking of arithmetic circuits on the arithmetic bit level.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23(5):586–
597, May 2004.

[55] J. Sweller. Cognitive load theory, learning difficulty, and instructional design. Learning and
Instruction, 4(4):295 – 312, 1994.

[56] B. Talon, M. Sagar, and C. Kolski. Developing competence in interactive systems: The grasp
tool for the design or redesign of pedagogical ict devices. Trans. Comput. Educ., 12(3):9:1–
9:43, 2012.

[57] The Joint Task Force on Computing Curricula, I. Computer Society, and Association for Com-
puting Machinery. Computing curricula 2001, computer science. Final Report.

[58] The Joint Task Force on Computing Curricula, I. Computer Society, and Association for Com-
puting Machinery. Curriculum guidelines for undergraduate degree programs in computer
engineering. A Report in the Computing Curricula Series.

[59] P. A. von Kaenel. Designing and testing a control unit. J. Comput. Sci. Coll., 19(5):228–237,
May 2004.

[60] L.-T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio. SSIM: a software levelized compiled-
code simulator. In Proceedings of the 24th ACM/IEEE Design Automation Conference, DAC
’87, pages 2–8, New York, NY, USA, 1987. ACM.

[61] C. Wickens and J. McCarley. Applied Attention Theory. CRC Press, 2008.

BIBLIOGRAPHY 151

[62] C. D. Wickens. Multiple resources and mental workload. Human Factors, 50(3):449–455,
2008.

	Introduction
	Logic Simulation
	Formal Verification
	Literature survey
	Logic Simulators
	Bit-Level Equivalence Checking

	Motivation and objective of the present work
	Contributions of the present work
	Designing the virtual laboratory
	Development of front end features of COLDVL tool
	Development of back end features and techniques of COLDVL tool
	Development of automatic design evaluation technique

	Organization of the thesis

	Design issues of COLDVL
	Introduction
	Pedagogic considerations of COLDVL
	Assimilation of pedagogic considerations into COLDVL
	Ordering of learning concepts
	Addressing cognitive issues for learning
	Learning enhancement through sequence of learning activities

	Web interface of COLDVL
	Gathering of user feedback
	Designing feedback questions
	Deployment of COLDVL
	Summary and analysis of user responses

	Conclusion

	Front end of the COLDVL tool
	Introduction
	Features of COLDVL tool
	User interface of COLDVL tool
	COLDVL tool architecture
	Case studies and usability of COLDVL tool
	Simple combinational and sequential circuits
	A complex sequential circuit with controller and data path
	Regular CPU design with multiple instructions
	Usability of COLDVL tool

	Conclusion

	Back end of the COLDVL tool
	Introduction
	Some issues related to simulation of circuits
	Efficient simulation
	Resolving indeterminate values of structural memory elements

	Simulation techniques and algorithms
	Simulation of circuits
	Resolving indeterminate values of structural memory elements

	Comparison between event driven and the combined simulation
	Implementation and results
	Conclusion

	Checking student designs for correctness
	Introduction
	Finite State Machine with Datapaths
	Issues in determining equivalence over bit-level data
	Methodologies and algorithms
	Overall equivalence checking method
	Value match between corresponding variables
	Special analysis to check specific value of a symbol
	Identifying data building pattern and inferring data range after completion of loop (for special cases)

	Equivalence checking for shift and add multiplier
	Reference and user designs
	Overview of the equivalence checking steps
	Equivalence analysis for path P1 and P1'
	Equivalence analysis for path P2 and P2'
	Equivalence analysis for path P3 and P3'
	Inferencing data range after loop completion
	Equivalence analysis for path P5 and P5'

	Implementation and results

	Conclusion
	Summary of work done
	Future scope of this work

	FSMDs of test bench designs
	Equivalent designs
	Non-equivalent designs for test bench GCD
	Non-equivalent designs for test bench BOOTH
	Non-equivalent designs for test bench TLC
	Non-equivalent designs for test bench FIBSUM
	Non-equivalent designs for test bench BARCODE

	Case studies of deployment
	Deployment of COLDVL
	Semester laboratory course
	Workshops
	Independent participation

	Feedback questions for COLDVL

