
A New Approach to Timing Analysis using Event Propagation and Temporal
Logic

Arijit Mondal Partha. P. Chakrabarti C. R. Mandal

Dept. of CSE & Adv. VLSI Lab Dept. of CSE & School of IT
Indian Institute of Technology, Kharagpur, INDIA 721302

E-mail:
�
arijit,ppchak,chitta � @cse.iitkgp.ernet.in

Abstract

Present day designers require deep reasoning methods
to analyze circuit timing. This includes analysis of effects
of dynamic behavior (like glitches) on critical paths, si-
multaneous switching and identification of specific patterns
and their timings. This paper proposes a novel approach
that uses a combination of symbolic event propagation and
temporal reasoning to extract timing properties of gate-
level circuits. The formulation captures complex situations
like trigerring of traditional false paths and simultaneous
switching in a unified symbolic representation in addition
to identifying false paths, critical paths as well as condi-
tions for such situations. This information is then repre-
sented as an event-time graph. A simple temporal logic on
events is proposed that can be used to formulate a wide
class of useful queries for various input scenarios. These in-
clude maximum/minimum delays, transition times, duration
of patterns, etc. An algorithm is developed that retrieves an-
swers to such queries from the event-time graph. A complete
BDD based implementation of this system has been made.
Results on the ISCAS85 benchmarks indicate very interest-
ing properties of these circuits.

1. Introduction
The estimation of timing behavior quickly and accu-

rately is a challenging task due to the complexity of present
day circuits. Timing analysis of a circuit traditionally in-
volves estimating the critical delay of the circuit after elim-
inating false paths. In recent times static timing analysis
(STA) has gained in popularity over dynamic simulation be-
cause of its speed and capability to handle large designs.
However dynamic simulation can provide more detailed in-
formation about circuit behavior. This work presents a new
approach using a combination of symbolic event propaga-
tion and formal logic to reason about circuit timing using a
mixed approach that is capable of retrieving important de-
tails required in modern circuits while taking advantage of
both methods.

We briefly discuss related work. The main focus in [2]
lies in the determination of correct sensitization conditions
for timing verification. [5] is based on the representation
of conditional delay matrices (CDM) which combine mod-
ule delays with event propagation conditions. A systematic
analysis of delay computation based on a series of wave-
form models that capture signal behavior rigorously at dif-
ferent levels of detail is presented in [6]. The most general
model, called the exact or W0 model, specifies each event
occurring in a circuit signal. Algebraic Decision Diagram
[1] based methods can be used to perform delay computa-
tion in combinational circuits. A model is proposed by Chen
et. al. [3] to capture the delay phenomena associated with si-
multaneous to-controlling transitions.

a

y

1

1

5

3

5

0

5

3

5

4 6

5 6

p

q

r

t

Figure 1. Example circuit where multiple tran-
sitions activate a false path

This work is motivated by the fact that existing tools nor-
mally fail to produce accurate results in the deep submicron
region since they do not consider the impact of various sit-
uations relating to event propagation. For example, tempo-
ral proximity of two or more events (simultaneous switch-
ing) may have significant effect on the propagation time [3].
Most of the static timing analysis tools find out false paths
and ignore them in further calculations. We have observed
that multiple transitions at a node may activate a false path.
Glitches (transition to high/low value for a small period) oc-
cur very often in circuits. In Figure 1, a circuit is shown
where traditional methods report the path � a � r� y � to be a
false one (gate delays are shown inside the gate). However
as shown in Figure 1, the glitch at node t sensitizes the path.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

The effects of such situations need to be considered to ob-
tain more accurate results. Our approach here is to perform
a combination of static and dynamic analysis, to enable
deeper reasoning on timing behavior. Our method is capa-
ble of executing a combination of symbolic event/waveform
propagation and temporal logic analysis based on user re-
quirements. In order to provide a deeper insight on signal
propagation in the circuit we need to have a versatile mecha-
nism using which the designer can reason about waveforms
and timings. For this we have developed a query language
based on Temporal Logic in which one can express a tim-
ing query on the circuit under various scenarios. Algorithms
to store timing information and retrieve query results effi-
ciently are also proposed. Results on standard benchmarks
(ISCAS85) are promising as we are able to retrieve some in-
teresting information about these circuits not known earlier.

2. Mathematical formulation
In our formulation we will consider a gate level specifi-

cation of the netlist. Gates have pin-to-pin delays. In build-
ing the mathematical model, we will assume the circuit is
purely combinational without any feedback loop, only a sin-
gle transition can occur in one of the primary inputs and all
the transitions are instantaneous. In addition we will assume
that the interconnect has no delay.

Given an input stimulus to the circuit, a change or transi-
tion in value at the circuit node is called an event. The time
at which the event occurs is called event time. The entire se-
quence of events occurring at a node x (say) over the time
period of interest is called the waveform of x � If an event ap-
pears on output line z of a gate in response to an event j on
input line x, then event j is said to propagate to z. The log-
ical condition under which this occurs is called the propa-
gation condition(PC). A path that cannot be sensitized un-
der any input transition is called an unsensitizable or a false
path. The delay of a circuit is defined as the difference in
time between an occurrence of an input transition and the
time at which the output stabilizes. Because circuit delays
are determined by events that propagate to the outputs, it
is important that event propagation be accurately character-
ized. The critical path in a circuit is the longest sensitizable
path. The circuit delay is the length of the critical path.

We will use a few notations in the following discussion
as described below. a � b � a1 � a2 � � � � � an are Boolean variables.

ab � a � b � a � b � a � b � a � b � a � b̄

n

i� 1

ai � a1 � a2 � � � � � an

n

i� 1

ai � a1 � a2 � � � � � an

2.1. Event propagation
We will first consider a 2-input AND gate to explain our

formulation. Later we will present the general formulation

x z

y
d

Figure 2. AND gate

for any gate. Consider an AND gate as shown in Figure 2.
Any event at node x will propagate to the output node z
if and only if the other input y is true, hence the PC = y,
i.e., the non-controlling value for AND gate is 1 	 (In case
of an OR gate the non-controlling value will be 0. For an
XOR gate any event in any input will propagate to the out-
put, thus the propagation condition for this gate is 1 	 A true
condition holds for the NOT and BUFFER gates.) If d be
the delay of the gate then the event will occur at the out-
put after d units of time. Similarly in Figure 2 the PC for
any event to propagate from node y to the node z is x. For
each event we will store some more information along with
the propagation condition. Let σ denote the set of all possi-
ble events that can occur at a node. σ at a node x
 denoted
by σx
 will be defined as follows

σx � � λi
x
 ti

x
 vi
x
 tagi

x
 Pi
x 0 � i � n1

where,
λi

x : propagation condition (Boolean) that needs to be
true for the event to occur

ti
x : time at which the event occurs

vi
x : value at node x after the ith event

tagi
x : primary input where the transition has occured

Pi
x : previous nodes from which the event has propagated

n1 : total number of possible events
The 0th event is a special one. It describes the initial sta-

tus of the node. For this event the tag and the previous node
fields will be null. For the time being we will assume that
no simultaneous switching takes place ie, mathematically
ti
x �� t j

y � i
 j. Let σz be the set of all possible events at node
z in Figure 2. The ith event at node x will propagate to the
output z with respect to the jth event at node y
 if no event
occurs at node y in the time interval between t j

y and ti
x and

the value at node y has to be logic high (ie., v j
y has to be

true) and both ith and jth events have propagated to node x
and y respectively for the same transition at the primary in-
put (ie., both the events have the same tag). Let the propa-
gated event at node z be the kth possible event, hence math-
ematically the propagation condition for it will be

λk
z � λi

x λ j
y � �

r� l

r� j� 1

λr
y v j

y

where l is such that tl
y � ti

x � tl � 1
y
 ti

x �� t j
y � i
 j For each

such compatible j � t
j
y � ti

x , there will be a k. The tag for
the kth event at node z will be the same as the tag associ-
ated with the ith event at node x 	 The previous node for the

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

kth event at node z will be x � it means that the kth event re-
sults from a single event at node x � The time at which the
kth event at node z will occur is � ti

x � d � �
Simultaneous switching: Using the previous notation, let
us assume that the ith event at node x happens simultane-
ously (in a very close interval of time - the length of this
interval(ε) for a gate will be based on pin-to-pin delay val-
ues [3].) with the jth event at node y. For an AND gate as
in Figure 2, such an event can only propagate to the output
if both the transitions are the same ie., both are either high
transitions or low transitions. If one of them is a rise transi-
tion and the other is a fall transition then no event will prop-
agate to the output. Hence mathematically

λk
z � λi

xλ j
y � vi

xv j
y � vi

x v j
y �

The tag for the new event will be the same as the tag of the
ith event at node x or the tag for the jth event at node y -
this is because the events at node x and y have the same tag.
The path for the kth event will be � x � y � . The time at which
this event will occur is the delay of the gate due to simulta-
neous switching plus � ti

x � t j
y � � 2 � We will assume the delay

value of a gate due to simultaneous switching is the aver-
age of pin-to-pin delays unless otherwise is specified.
Combining both: For a two input AND gate combining
both the situations (single and multiple switching) we get
the following PC

λk
z � � t j

y � ε ti
x � λi

x λ j
y � �

r	 l

r	 j
 1

λr
y � v j

y �

� ti
x � ε t j

y � λi
xλ j

y � vi
xv j

y � vi
x v j

y �

where l is such that tl
y � ti

x � tl
 1
y � � ε returns true if t j

y �
� ti

x � ε � holds and � ε returns the truth of the temporal prox-
imity of the ith and the jth events (ie., if � ti

x � ε � � t j
y �

� ti
x � ε � holds). The path will be either � x � or � x � y � de-

pending on whether a multiple switching occurs or not. The
event time will be determined accordingly.

2.2. General formulation

Let us consider an arbitrary gate having n inputs and a
single output. Let f be the functionality of the gate. Let
i1 � i2 � � in be the n inputs and y be the output ie., y �
f � i1 � i2 � � � � � in � � We want to find out the propagation con-
dition for the jth event at node ik with respect to the r th

m
event at node im where m � 1 � 2 � � � � � k � 1 � k � 1 � � � � � n � Let
all these events be propagated from the same primary in-
put x (say). Let the value of the kth node change from īk to
ik after the occurrence of the jth event. The two values at
the output, after and before the event, will be denoted by
fik and fīk , where fik � f � i1 � i2 � � � � � ik � 1 � ik � ik
 1 � � � � � in � and
fīk � f � i1 � i2 � � � � � ik � 1 � īk � ik
 1 � � � � � in � �

The condition for the said event to propagate to the out-
put will be determined by the propagation condition of the

said event and the other events at the other nodes after which
the said event occurs and by the values of the all the nodes.
We introduce a notation F which denotes the logical con-
dition that needs to be satisfied arising from the values of
different nodes. Fp1 denotes the changes in one input node,
Fp1 p2 � � � ps denotes the simultaneous changes in s input nodes
where pi � � i1 � i2 � � � � � in � � An event will propagate to the
output if the transition at the input causes a transition at the
output ie., the value of the output node will change after the
occurrence of the event. Hence

Fik � fik fīk � fik fīk

Similarly, for simultaneous changes in s inputs,
Fp1 p2 � � � ps � fp1 p2 � � � ps f̄ p̄1 p̄2 � � � p̄s � f̄ p1 p2 � � � ps f p̄1 p̄2 � � � p̄s

In case of two input � i1 � i2 � AND gate the condition for an
event in node i1 to propagate is

Fi1 � i1i2 ī1i2 � i1i2 ī1i2 � i1i2 � i1 � ī2 � � ī1i2 � ī1 � ī2 � � i2
ie, the other input has to be true. If two events occur simul-
taneously at the nodes i1 � i2, of an AND gate the event will
propagate to the output if the following condition holds:

Fi1i2 � fi1i2 f̄ī1 ī2 � f̄i1i2 fī1 ī2 � i1i2 � ī1 ī2
That is if both the transitions are the same only then will the
event propagate.

Since, the jth event in the kth node occurs exactly after
the r th

m event of the i th
m node where m � 1 � 2 � � � � � k � 1 � k �

1 � � � � � n � Let us assume that among the n events s number of
events (including the jth event at the kth node) occur simul-
taneously. Let the propagated event at the output y be the
hth possible event at that node. Hence the propagation con-
dition for the hth event at the output will be

λh
y � Fp1 p2 � � � ps

m	 n

m	 1

λrm
im � �

lm

q	 rm
 1

λq
im �

where lm is such that tlm
im � t j

ik � tlm
 1
im � � m � 1 � 2 � � � � n

and the value will be f � vr1
i1

� vr2
i2

� � � � � vrn
in � and the event time

will be delay of the gate due to simultaneous switching at s
nodes plus � ∑i	 s

i	 1 trm
pi

� � s.
After performing the previous calculation we will get the

possible events at a node in the form of � λ � t � v� x � P � . In order
to express v in terms of x, the four mutually exclusive and
exhaustive situations are listed in Table 1. In the table vnew

denotes how the output follows the input. If the condition
xv � x̄v̄ holds then the output will follow � x � the input other-
wise the reverse transition � x̄ � will occur at the output. Now
the possible event will be broken into two possible events of
the form � λ � xv � x̄v̄ � � t � x � x � P � and � λ � x̄v � xv̄ � � t � x̄ � x � P � � Fi-
nally, in any node all those events will be clubbed together
which have the same value and time. The propagation con-
dition will be OR-ed and tag, previous node, values will be
remain unchanged.

It may be observed that we compute information for
all possible single input changes for various input con-
ditions symbolically using Binary Decision Diagrams

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

x v vnew

0 0 x
1 0 x̄
0 1 x̄
1 1 x

Table 1. Possible situations

b p

q

m

y
ca

r
n

2

3

1

12 2

Figure 3. Example circuit for simultaneous
switching

(BDDs) without having to run different computations for
different input changes and input conditions.

Two examples are presented here. The first example
shows how simultaneous switching behavior is captured in
the formulation and the second one describes how consid-
eration of glitches and subsequent activation of traditional
false paths can be detected. In the first example we will as-
sume the delay value for the gate in case of simultaneous
switching is 80% of the normal gate delay.

Example 2.1 Consider the example in Figure 3. We will
consider only the paths from primary input a to primary
output y� Now we will determine the σ at various nodes.
The possible events which have the propagation condition 0
(false) are not shown here.

σp � � 1 � 0 � āb � null � null � � � b � 2 � a � a � a �
σq � � 1 � 0 � ā � c � null � null � � � c̄ � 3 � a � a � a �
σm � � 1 � 0 � ac � āb̄ � null � null � � � abc̄ � 3 � a � a � p � �

� b � ā � ac̄ � � 3 � ā � a � p � � � c̄ � ā � b̄ � � 4 � a � a � q � �
� abc̄ � 4 � ā � a � q � �

σr � � 1 � 0 � ā � c � null � null � � � c̄ � 2 � a � a � a �
σn � � 1 � 0 � ā � c � null � null � � � c̄ � 4 � a � a � r �
σy � � 1 � 0 � āb̄ � ac � null � null � � � āb � 4 � ā � a � m � �

� c̄ � ā � b̄ � � 4 � 8 � a � a � � m � n � �

Now one can tell not only the critical delay but also the
conditions under which the critical path will be sensitized
using the propagation condition associated with that event.
The critical paths are highlighted in Figure 3. Well known
methods like [5] estimate the critical delay as 5 in this case.

Example 2.2 Consider the circuit in Figure 1. The possible
events at the output node will be

σy � � � 1 � 0 � 0 � null � null � � � a � 5 � a � a � t � � � a � 6 � ā � a � r � �

Thus the critical delay for this circuit is 6 and this event will
occur if there is a rise transition in the primary input as the

propagation condition associated with this is a � In this case
traditional methods report the critical delay as 5 � Reporting
lower critical delay is possibly more serious than overesti-
mating it.

3. Reasoning about timing behavior

After performing the previous analysis, the designer may
want to reason about the timing behavior of the circuit to
have a deeper insight into the circuit dynamics. A user query
may be related to the occurrence of an event or a series
of events, the best/worst case timing information about the
events, the duration between the events, etc. The user may
even want to know the timing behavior of the circuit like
- minimum delay, maximum delay, time at which the last
glitch occurs, the maximum duration of a glitch or the max-
imum gap between two similar transitions under various in-
put scenarios. For this we propose a query language based
on Temporal Logic [4] which can capture various queries.
We have developed a graph representation of the possible
events at a node as a data structure called event-time graph
and an algorithm to retrieve answers to the queries.

3.1. The event-time graph

We explain the event-time graph through an example.
Let us consider the event-time graph as shown in Figure
4. The graph is generated using the σ (the set of all pos-
sible events) at a node by clubbing together those events
which have same value and time irrespective of their pre-
vious node field. The new value of σ (containing propaga-
tion condition, event time, value and tag) is shown in Figure
4. The event-time graph can be partitioned into three parts
namely a � ā and I0 and these denote the set of direct fol-
lower events and inverse follower events of the primary in-
put event and the initial state respectively. The node N1 in
the graph denotes the initial state of the node and rest of the
nodes in the graph denote the possible events. The nodes
are sorted in terms of their time of occurrence. In the graph,
we have shown all possible paths. Some of them may not
exist for a node in a circuit. The node Ni can have a di-
rect edge to node Nj if and only if the time of occurrence of
the ith event is earlier than the jth event and the two nodes
belong to the different partitions and λiλ j �

k� j 	 1
k� i
 1 λ̄k � �� 0 �

The activation of a path in the graph depends on the λ val-
ues. There is no link between node N2 and N4 as both the
nodes have same value a. This is because two similar tran-
sitions cannot occur at a circuit node consecutively unless
the node undergoes a reverse transition in between. (Note
that λ1λ3 � λ3λ5 � λ2λ4 � λ4λ6 � 0). For example to ac-
tivate the path N1 � N3 � N4 � N7 the condition λ2λ3λ6

should hold and to activate the path N1 � N4 � N7 the con-
dition λ3λ6λ̄2 should hold. So we have a tripartite graph.
We traverse this graph to extract answers to user queries.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

1λ

1λσ = { (1,0, v,null),

λ

λ

λ λ

λ

λ1 2

3 4

5 6

1
t

t

t

0

1

2

N1

N2 N3

N4 N5

N6 N7

3

t

a a
__

I0

Ν5 : (

Ν6 : (

Ν7 : (

Ν4 : (

Ν3 : (

Ν2 : (

_
, λ t

, λ t
_

, λ t6

5

4

, λ t3

_
, λ t2

, 1t

1

2

2

3

3

= 0

(, 1t , a,a) (,
_

, λ t2 1 , a,a) (, , λ t3 2 , a,a) (,
_

, λ t4 2 , a,a) (, , λ t5 3 , a,a) (,
_

, λ t6 3 , a,a)}

N1 : (1, 0, v,null)
, a,a)

, a,a)

, a,a)
, a,a)

, a,a)

, a,a)

Figure 4. Graph structure for all possible
waveforms at a node

3.2. Query language:

Let S be the scenarios under which the query will be eval-
uated, Q be the cost function over situation which can be
max or min � C � C� be the cost function over the event which
can be max, min or val � 0 � 1 denotes the logic value at a
node in the circuit. x represets some logic value at a cir-
cuit node i.e., 0 � 1 � A node in the circuit will be referred by
its name. U is the until operator [4] of Temporal Logic.

A scenario can be specified by the values at the differ-
ent inputs and the inputs line where a transition can oc-
cur. The value at an input line can be 0 � 1 or x, where x de-
notes that it can be either 0 or 1. Consider the circuit in Fig-
ure 5. To explain our query language in a simplistic manner
let us consider the following scenarios S1 � � a : 1;b : 1;c :
1;d : 0;e : 1; � � a; � � S2 � � a : 1;b : 1;c : 0;d : 1;e : 0; � � a; � and
S3 � � a : x;b : 1;c : 0;d : x;e : 0; � � a; � �

The scenario S1 denotes a high transition at node a and
the rest of the primary inputs � b � c � d � e � will be at 1 � 1 � 0 � 1
respectively. Similarly for S2. The scenarios captured by S3

is that any transition (high/low) can occur in the node a and
the primary input lines b � c � e will be at 1 � 0 � 1 respectively
and the node d will be at either 0 or 1 � The waveforms are
shown for scenarios S1 and S2 in Figure 5.
Now the syntax for our query � F � :

F : � S� Q 	 t
 C � t1 � � f � � � S� Q 	 t
 C� � t1 � t2 � � f �
f : � term U term � � � term U C � t1 � f �

� � term U C� � t1 � t2 � f �
term : node � value � � node � value
node : y � Y
value : 0 � 1 � x

3.3. Examples and informal semantics
Here we will provide an informal explanation of the se-

mantics of our query language using examples. All the ex-
amples will be evaluated under the scenarios S1 � S2 and S3.
The pin-to-pin delays are given in Figure 6. We will assume

that the average of pin-to-pin delays as the delay for simul-
taneous switching for the gate. Note that, for S2 simultane-
ous switching occurs at nodes w3 and w6 �
Example 3.1 Determine the time of occurrence of the first
event at node y (min delay)

� S� min 	 t
 min � t1 � � � y� x U � y� x � �

In the query � � y� x U � y� x � � means at node y, x will be true
until � x holds which means a transition (high/low) at the
node. The function min � t1 � denotes the minimum value of
all possible t1’s and t1 represents the time of transition as-
sociated with the U operator. The function min � t � associ-
ated with the scenario denotes that we will take the mini-
mum value of min � t1 � over all the situations specified by S �
For S1 the min delay is 4 � 66 � for S2 the answer is 4 � 72 and
for S3 the value will be 4 � 66 �

Example 3.2 Find out the time of occurrence of the last
event at node y (max delay)

� S� max 	 t
 max � t1 � � � y� x U � y� x � �

This is similar to the previous one except for the functions.
Here we are interested in the last event at node y over some
situations. The max delay for S1 � S2 and S3 will be 4.98, 4.72
and 4.82 respectively.

Logic 1

Logic 0

(S1) (b) Situation − II(a) Situation − I

0

a

b

y

w2 w3

w5

w6
w4

w1

1

1

d
0

e1

c
a

b

y

w2 w3

w5

w6
w4

w1

1

d

e

c
0

0

10

1.43

3.06

1.50

3.24

4.66 4.98

1.43

3.06 3.22

3.03

1.43
4.72

1.60

(S)2

Figure 5. Example circuit for query

Example 3.3 Determine the time of occurrence of the last
glitch

� S� max 	 t
 max � t1 � � � y� x U val � t1 � � � y� x U y� x � � �

In this case, we express the occurrence of two events con-
secutively at node y. The node y undergoes a series of tran-
sitions of the form x x̄ x ie., either 1 0 1 or 0 1 0.
The val � t1 � function returns the value at which the event
(event represented by the subformula) has occurred and
max � t1 � returns the maximum value of the start time for the
series of transitions (the argument t1 in max function is as-
sociated with the first U operator of the query formula). For
S1 the time at which last glitch occurs is 4 � 66 � For S2, no
such glitch occurs and we return null. For S3 the value will
be 4 � 66 �

Example 3.4 Determine the maximum timing gap between
two successive changes at node y

� S� max 	 t
 max � t2 t1 � � � y� x U val � t1 � � � y� x U y� x � � �

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Here we are interested in the duration of the glitch. In the
function max � t2 � t1 � , the argument t2 is related with the
value returned by the subformula � � y� xU y� x � and t1 is re-
lated with the U operator in the top level of the formula. For
S1 the value of this query is 0 � 23 and for S2 the value will
be null and for S3 the answer is 0 � 16 �
Example 3.5 Find out the maximum timing gap between
two successive similar transitions at node y�

S� max � t � max � t2 � t1 � � � y� x U val � t2 � � � y� x U val � t1 �
� y� x U � y� x � � �

This query represents a series of transition of the form
1 � 0 � 1 � 0 or 0 � 1 � 0 � 1 � In this case the function
val � t2 � returns the value returned by the inner most val � t1 �
function since the argument t2 is associated the subformula.
The function max � t2 � t1 � returns the maximum value for
such situations. Finally, over all the situations the maximum
value is taken. For all the situations the value will be null
since at the output there are no two similar transitions.

AND4
Y A 1.56
Y B 1.53
Y C 1.48
Y D 1.42

AND2
Y A 1.50
Y B 1.43

AND3
Y A 1.53
Y B 1.59
Y C 1.42

AND5
Y A 1.64
Y B 1.63
Y C 1.69
Y D 1.55
Y E 1.59

AND6
Y A 1.68
Y B 1.67
Y C 1.65
Y D 1.62
Y E 1.58
Y F 1.53

NAND6
Y A 1.34
Y B 1.37
Y C 1.49
Y D 1.42
Y E 1.44
Y F 1.46

NAND5
Y A 1.36
Y B 1.38
Y C 1.41
Y D 1.43
Y E 1.45

NAND4
Y A 1.43
Y B 1.45
Y C 1.47
Y D 1.59

NAND3
Y A 1.52
Y B 1.54
Y C 1.56

NAND2
Y A 1.64
Y B 1.65

OR3
Y A 1.79
Y B 1.54
Y C 1.80

NOR4
Y A 1.65
Y B 1.61
Y C 1.55
Y D 1.48NOR2

BUF

Y A 1.71
Y B 1.54

Y A 1.59

NOR3
Y A 1.70
Y B 1.61
Y C 1.59

OR2
Y A 1.60
Y B 1.74

OR4
Y A 1.56
Y B 1.72
Y C 1.84
Y D 1.93

XOR2
Y A 1.55
Y B 1.61

INV
Y A 1.81

Figure 6. Delay table (values in ns)

4. Results
We have implemented a tool using our proposed method.

This tool is capable of performing timing analysis of circuits
and can answer various queries. We have taken results us-
ing the ISCAS85 benchmarks using the five queries in Ex-
amples 3.1 to 3.5. In order to have realistic values for gate
delays of modern circuits, we have used the table in Fig-
ure 6. We have assumed a fixed delay for rise and fall tran-
sitions and both the delays are same. Since the delay values
for simultaneous switching are not available, the average of
pin-to-pin delays are taken as the delay for the simultane-
ous switching. Each query was evaluated for fifty different
randomly generated scenarios and in each scenario twenty
of the input lines were randomly kept at x while others were
made 0 or 1 and finally over all the scenarios an appropri-
ate min or max value is taken depending on the cases. (For
the query in example 3.1 we take the minimum over all the
scenarios and for rest of the queries we take the maximum
over all the scenarios.) We generated the event-time graph
based on the symbolic timing analysis approach of Section
2 and then executed the queries on that graph. The results
are listed in Table 2. The memory requirement for evalua-
tion of a query is significantly dominated by the memory
usage of the BDD package. The results show that the occur-
rence of more than one event is very common ie., the node

undergoes various transitions before the stabilization even
if there is only a single transition in the primary input. In-
terestingly these are not known to occur for unit delay mod-
els.

Ex-3.1 Ex-3.2 Ex-3.3 Ex-3.4 Ex-3.5

C17 (q) 3.28 4.95 3.29 1.65 NULL

(t) 0 0 0 0 0

C432 (q) 6.11 31.40 29.96 19.96 19.92

(t) 79.65 79.83 79.37 79.24 79.43

C499 (q) 1.63 18.04 17.98 11.39 13.17

(t) 14.31 14.37 14.87 14.87 15.22

C880 (q) 3.01 34.08 26.96 7.66 NULL

(t) 4.33 4.35 4.56 4.53 4.68

C1355 (q) 4.87 37.76 34.52 27.83 26.13

(t) 18.85 18.71 19.59 19.48 20.23

C1908 (q) 4.88 61.30 59.33 46.92 45.56

(t) 20.18 19.81 20.63 20.61 21.21

C3540 (q) 9.29 67.36 65.56 33.16 35.06

(t) 12.83 12.91 13.17 13.11 13.29

C5315 (q) 3.18 6.41 NULL NULL NULL

(t) 0.24 0.23 0.24 0.25 0.26

(q) - query output (in nano-seconds)

(t) - average execution time per query (in seconds)

Table 2. Results on ISCAS85 benchmark cir-
cuit

Acknowledgements
Dr. P.P. Chakrabarti acknowledges Dept. of Science &

Technology, Govt. of India for partial support of this work.

References

[1] R. I. Bahar, H. Cho, G. D. Hatchel, E. Macii, and F. Somensi.
Timing analysis of combinational circuits using add’s. IEEE
European Conference on Design Automation, pages 625–629,
1994.

[2] H. C. Chen and D. H. C. Du. Path sensitization in critical path
problem. International Conference for Computer-Aided De-
sign of VLSI Circuit, pages 208–211, 1991.

[3] L. C. Chen, S. K. Gupta, and M. A. Breuer. A new gate delay
model for simultaneous switching and its application. Pro-
ceedings of Design Automation Conference, pages 289–294,
2001.

[4] E. M. Clarke, J. O. Grumberg, and A. P. Doron. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, London,
England, 2001.

[5] H. Yalcin and J. P. Hayes. Hierarchical timing analysis using
conditional delays. ICCAD, Digest of Technical Papers, San
Jose, California, pages 371–377, 1995.

[6] H. Yalcin and J. P. Hayes. Event propagation condition in
circuit delay computation. ACM Transactions on Design Au-
tomation of Electronic Systems, 2(3):249–280, July 1997.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

