2011 IEEE Computer Society Annual Symposium on VLSI

Verification of Register Transfer Level Low Power
Transformations

C. Karfa, C. Mandal, D. Sarkar
Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur 721302, India.
Email: {ckarfa, chitta, ds}@cse.iitkgp.ernet.in

Abstract—An automated framework for verification of low
power transformations in register transfer level (RTL) designs
is presented in this paper. Our verification method consists in
two steps. In the first step, the datapath interconnection and
the controller finite state machine of both the input RTL and
the transformed RTL are analyzed by a rewriting based method
to obtain the finite state machine with data paths (FSMDs). In
the second step, an FSMD based equivalence checking method
is deployed to establish equivalence between the RTLs. Our
method is is strong enough to handle most of the RTL low power
transformations.

Keywords-Verification; Low power transformations; Register
transfer level.

I. INTRODUCTION

The main obstacle of applying low power transformations
at RTL designs [1], [2], [3] is the difficulties involved in
their verification. In a typical industry scenario, an RTL or
architectural low power transformation implies a full cost
of dynamic validation, which can extend to many months
[4]. Therefore, an automated formal verification method for
low power transformations of RTL designs has tremendous
practical importance and is the objective of this work.

We present an automated verification method for low power
transformations in RTL designs. The inputs to our method are
two RTL designs — an input RTL design and the one obtained
from the input RTL by applying low power transformations.
The input RTL can be either manually generated or synthe-
sized from behavioural specification by high-level synthesis
tools. Our verification process consists in two steps. We first
construct the finite state machine with datapaths (FSMDs)
from both the input and the transformed RTLs using the
method given in [5]. In the next step, the equivalence between
two FSMDs are established by the method proposed in [6].
The key aspect of our method is that it is independent of the
low power transformations. In this paper, we analyze several
low power transformations applied on the RTL designs to show
that our method can handle most of them.

II. CONSTRUCTION OF FSMDS FROM RTL DESIGNS

Each RTL consists of a datapath and a controller. The con-
troller, represented as an finite state machine (FSM), invokes a
control assertion pattern (CAP), in each control step to execute

This work was supported by Microsoft Corporation and Microsoft Research
India under Microsoft Research India Ph.D. Fellowship Award.

978-0-7695-4447-2/11 $26.00 © 2011 IEEE
DOI 10.1109/ISVLSI.2011.73

313

all the required data-transfers and proper operations in the
FUs. The data path of the RTLs are captured by a function
Jme : M — o, where A is set of all possible micro-operations
in the datapath and <7 is the set of all possible control assertion
patterns. Let there be n control signals. A control signal
assertion pattern needed for any micro-operation is represented
as an ordered n-tuple of the form (u;, ua,..., u,), where each
uj, 1 <i<n,represents the value of the control signal ¢; from
the domain {0, 1, X}; u; = X implies that the control signal
¢; is not required (relevant) for a particular micro-operation.

The next task is to obtain the set of micro-operations .#
(C ') which are activated by a given control assertion pattern
A. The following definition is in order.

Definition 1 (Superposition of assertion patterns:).: Vi,

(41 0 42) (A1), if mi(41) = mi(42)
(A1), if m(41) # m(da) Ami(dy) =X

U(undef), if m;(4;) # mi(d2) Ami(41) #X

We define the set .#y as M= {u| u€ Aandfp.(u) 6 4=
Sme(u) }-

Construction of FSMD essentially consists in replacing the
CAP in each state of the controller FSM with the correspond-
ing RT-operations. A rewriting based method is used for this
purpose. The micro-operations in which a register occurs in the
left hand side (lhs) are found first. Such a micro-operation has
the form » <= r_in, where r is a register and r_in is its input
terminal. Next, the right hand side (rhs) expression “r_in” is
rewritten by looking for a micro-operation in .#, of the form
“r_in<s” or “r_in<s; {op) s2”. So, after rewriting “r_in”,
we have the rhs expression, either of the form “s” or of the
form “s; (op) s2”. In the next step, s (or s; and s, for the
latter case) are rewritten provided they are not registers. When
the expression in hand is of the form “s; (op) s2” (and s1, 52
are not registers), rewriting takes place from left to right in a
depth-first manner. The process terminates successfully when
all s;’s in the expression in hand are registers.

A. Low power RTL transformations

In this subsection, we introduce a set of commonly used low
power RTL transformations and then discuss how FSMDs can
be constructed by our method when they are applied.

The glitch propagation from control signals through a
multiplexer is minimized when its data inputs are highly

IEEE
computer
psoaety

co-related [1]. This observation can be used to reduce the
glitch propagation from control signals feeding a multiplexer
network by restructuring it. The datapath structure changes by
restructuring the multiplexer architecture. Therefore, the sets
of micro-operations are different in the datapaths. However,
the controller remains the same and it produces identical
CAP for both the datapath to execute certain RT-operations.
In this case the rewriting sequence differs for the datapaths.
For a given CAP, our rewriting method obtains the same RT-
operation(s) in both the datapaths.

The glitches of control signal propagate through the data-
path, consequently, consuming a large portion of the glitch
power of the entire circuit. So, it is desired to restructure
the multiplexer network in such a way that as few of the
glitchy select signals as possible are used to reduce the
power consumption of the circuit. Since some of the control
signals are removed from the select lines of the multiplexer
network, the functionality of the control signals change for the
multiplexer network. So, the controller may have to generate
different CAPs for these two networks to execute the same
RT-operation in them. Also, the set of micro-operations of the
transformed network is different from the original one. So,
both the datapath and controller of the transformed RTL may
differ with that of in the input RTL in this case. Our method is
able to construct the same RT-operation from different CAPs
over different datapaths.

When multiplexer restructuring schemes do not work to
reduce the effect of glitches on control signals, clocking
control signals can be used to kill glitches on control signals
[1]. This modification does not make any changes in the
datapath as well as in the controller. Therefore, our method
works identically for both the behaviours.

Alternative datapath architectures (even with more resource)
of a given datapath may be available with low power con-
sumption. The controller’s functionality would be same even
though the datapath architecture is changed. Therefore, the
controller of this RTL shall generate the same control assertion
pattern (CAP) for both the datapaths to perform certain RT-
operation(s) in the datapaths. Since the datapath architecture
is changed, the micro-operations of the datapath are different.
Therefore, the rewriting sequence would be different. Our
rewriting method can find the same RT-operations in both the
datapath for a given CAP.

The data signals to a circuit block can also be glitchy. The
propagation of glitches from data signals can be minimized
by inserting delay elements in the select lines of that circuit
block. The delay elements are constructed using either a series
of buffers or inverters. Adding a delay element or a clock
to a control signal does not results in any structural changes
in datapath. Also, it does not affect the functionality of the
controller. Clearly, the our method works identically for both
the behaviours.

A large part of the register power consumption is due to
the transitions on the clock inputs to registers. Clock gating
is a scheme to avoid this. Clock gating works by taking the
enable conditions attached to registers, and uses them to gate

314

the clocks. In the source datapath, the micro-operation relating
to writing to registers does not depend on any control signal.
However, the same would be dependent on the control signal
when gated registers are used. The controller functionality
remains same in this case. Therefore, the rewriting method
works identically for both the datapaths.

III. EQUIVALENCE OF FSMDs

We incorporate the equivalence checking method of FSMDs
from [6] in our framework. This method decomposes the
FSMD by introducing cutpoints in one FSMD, visualizing
its computations as concatenation of paths from cutpoints
to cutpoints, and identifying equivalent finite path segments
in the other FSMD; the process is then repeated with the
FSMDs interchanged. We choose this method for following
two reasons: (i) We have seen above that the control structure
of the FSMD is not modified due to application of low power
transformations. In such a case, this FSMD decomposition
based method works efficiently. (ii) It may be noted that
the effects of some RTL low power transformations at the
behavioural level are nothing but some arithmetic transforma-
tions. A normalization technique of arithmetic expressions are
incorporated in [6] to handle several such arithmetic transfor-
mations. This normalization technique is particularly helpful
during equivalence checking of FSMDs in our problem. The
details of FSMD equivalence checking method are omitted
here and can be found in [6].

IV. EXPERIMENTAL RESULTS

The verication method described in this paper has been
implemented in C and tested on several benchmark circuits.
We take the output Verilog RTL codes of an existing high-
level synthesis tool SAST [7] and apply a combination of low
power transformations on these RTL designs. The number of
registers, FUs, switches, micro-operations, control states in the
FSM, control signals varies between 4 to 57, 2 to 4, 13 to
190, 26 to 292, 8 to 120, 19 to 198, respectively, for these
benchmarks circuits. Our method successfully established the
equivalence in less than three seconds in all the cases.

REFERENCES

[1] A. Raghunathan, S. Dey, and N. Jha, “Register transfer level power
optimization with emphasis on glitch analysis and reduction,” [EEE
Transactions on CAD of ICS, vol. 18, no. 8, pp. 1114 —1131, Aug. 1999.
S. Ahuja, W. Zhang, A. Lakshminarayana, and S. K. Shukla, “A
methodology for power aware high-level synthesis of co-processors from
software algorithms,” in Proc. of the VLSID 10, 2010, pp. 282-287.

A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital
design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473
—484, Apr. 1992.

V. Viswanath, S. Vasudevan, and J. Abraham, “Dedicated rewriting:
Automatic verification of low power transformations in rtl,” in 22nd
International Conference on VLSI Design, 2009, 2009, pp. 77 —82.

C. Karfa, D. Sarkar, and C. Mandal, “Verification of datapath and
controller generation phase in high-level synthesis of digital circuits,”
IEEE Transactions on CAD of ICS, vol. 29, pp. 479-492, 2010.

C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking
method for scheduling verification in high-level synthesis,” JEEE Trans-
actions on CAD of ICS, vol. 27, pp. 556-569, 2008.

C. Karfa, J. Reddy, C. R. Mandal, D. Sarkar, and S. Biswas, “Sast: An
interconnection aware high-level synthesis tool,” in Proc. 9th VLSI Design
and Test Symposium, Bangalore, Aug. 2005, pp. 285-292.

(2]

(3]

(4]

(6]

(71

