
Equivalence Checking of Array-Intensive Programs

C. Karfa, K. Banerjee, D. Sarkar, C. Mandal
Department of Computer Science and Engineering,

Indian Institute of Technology, Kharagpur 721302, India.
Email: {ckarfa, kunalb, ds, chitta}@cse.iitkgp.ernet.in

Abstract—An equivalence checking method for ensuring
correctness of loop and arithmetic transformations in array
intensive programs is presented here. The array data de-
pendence graphs (ADDGs) are used to represent both the
input and the transformed behaviours and the correctness
of the transformations is ensured by proving equivalence of
two ADDGs. In contrast to the existing path based one, we
formalize a slice based equivalence of ADDGs. Moreover,
normalization of arithmetic expressions and some simplification
rules are incorporated to handle arithmetic transformations.
Experimental results on several test cases demonstrate the
effectiveness of our method.

Keywords-Array Data Dependence Graph; Equivalence
Checking; Slice; Embedded Systems.

I. INTRODUCTION

Application of loop transformations along with arithmetic
transformations targeting the best performance in terms
of energy and/or area on a given platform is a common
practice in the domain of multimedia and signal processing
applications. These transformations can be automatic, semi-
automatic or manual. The work reported in [1], for example,
applied loop fusion and tiling to several nested loops and to
parallelize the resulting code across different processors for
some multimedia applications. A method to minimize the
total energy while satisfying the performance requirements
for application with multi-dimensional nested loops was
proposed in [2]. Several loop transformation techniques and
their effects in embedded system design may be found in
[3], [4]. Applications of several arithmetic transformations
can be found in [5], [6]. Importantly, loop transformation
techniques and the arithmetic transformation techniques are
applied dynamically since application of one may create
scope of application of the other. In all cases, it is crucial to
know that the transformed program preserves the behaviour
of the original.

A translation validation approach capable of verifying
structure preserving and reordering loop transformations
has been introduced by Pnueli et al. [7]. A method called
fractal symbolic analysis has been proposed in [8]. The
power of these methods depends on the availability of the
transformation dependant rule set and the information of
the order in which the loop transformations are applied. An

This work was supported by Microsoft Corporation and Microsoft
Research India under Microsoft Research India Ph.D. Fellowship Award.

ADDG based equivalence checking method was proposed by
Shashidhar et al. [9] [10] for a restricted class of programs
which must have static control-flow, uniform recurrence,
affine indices and bounds and single assignment form. This
work is promising because they are capable of handling most
of the loop transformation techniques without taking any
information from the synthesis tools. The main limitations
of the ADDG based method are its inability to handle the
cases of (i) non-uniform recurrence, (ii) data-dependent as-
signments and accesses and (iii) arithmetic transformations.
The method proposed in [11] extends the ADDG models to
dependence graphs to handle non-uniform recurrences. This
method is further extended in [12] to verify data-dependent
assignments and accesses also. It has been discussed in [10]
how the basic ADDG based method can be extended to
handle associative and commutative transformations. All the
above methods, however, fail if the transformed behaviour
is obtained from the original behaviour by application of
arithmetic transformations such as, distributive transforma-
tions, arithmetic expression simplification, common sub-
expression elimination, constant unfolding, substitution of
multiplications with constants by addition, etc, along with
loop transformations. The definition of equivalence of AD-
DGs proposed by Shashidhar et al. [9] [10] cannot be
extended (unlike the cases of commutative and associative
transformations) to handle these arithmetic transformations.
It is because of the fact that the basic assumption in their
equivalence checking method is that the number of paths
must be the same in two equivalent slices. However, this
assumption may not hold in the cases of several arithmetic
transformations.

The objective of this work is to develop an equivalence
checking method which will be capable of verifying a wide
variety of loop transformations and also several arithmetic
transformations mentioned above applied together on array
and loop intensive applications. We consider the same class
of programs considered by Shashidhar et al. [9] and their
ADDG based modelling of programs. The contributions of
the present work are: (i) defining the characteristic formula
of a slice, (ii) redefining the equivalence of ADDGs based
on slice-level characterization rather than path based one,
alleviating in the process, a shortcoming of the latter in
handling equivalence of slices where the number of paths
is unequal, (iii) incorporating normalization of arithmetic

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.61

156

expressions [13] and some additional simplification rules
for normalized expressions for handling several arithmetic
transformations applied along with loop transformations, (iv)
providing an method for checking equivalence of ADDGs.

The rest of the paper is organized as follows. The ADDG
model is briefly introduced in section II. The notions of a
slice and its characteristic formula are defined in section III.
The formulation of equivalence checking and the verification
method are given in section IV. Some experimental results
are given in section V. Finally, the paper is concluded in
section VI.

II. REPRESENTATION OF BEHAVIOURS AS ADDGS

Definition 1 (Array Data Dependence Graph:): The
ADDG of a sequential behaviour is a directed graph
G = (V,E), where the vertex set V is the union of the set A
of array nodes and the set F of operator nodes and the edge
set E = {⟨a, f ⟩ | a ∈ A∧ f ∈ F}∪{⟨ f ,a⟩ | f ∈ F ∧a ∈ A}.
Edges of the form ⟨a, f ⟩ are write edges and the edges of
the form ⟨ f ,a⟩ are read edges. An assignment statement
S of the form l [⃗lk] = f (r1 [⃗i1], . . . , rk [⃗ik]) appears as a
subgraph GS of G = (A ∪ F,E), where GS = ⟨VS, ES⟩,
VS = AS ∪FS, AS = {l,r1, . . . , rk} ⊆ A, FS = { f} ⊆ F and
ES = {⟨l, f ⟩} ∪ {⟨ f ,ri⟩, 1 ≤ i ≤ k⟩} ⊆ E. The write edge
⟨l, f ⟩ is labelled with the statement designation S.

out1

r2

F4

F3F2

r1

F1

in2in1

S2

S1

S3

S4
(a)

(b)

f or(i = 1; i ≤ M; i = i+1)
f or(j = 4; j ≤ N; j = j+1)

S1 : r1[i+1][j−3] = F1(in1[i][j], in2[i][j]);

f or(l = 3; l ≤ M; l = l +1){
f or(m = 3;m ≤ N −1;m = m+1){

i f (l +m ≤ 7)

else
S3 : r2[l][m] = F3(r1[l][N −3]);

S2 : r2[l][m] = F2(r1[l −1][m−2]);

S4 : out1[l][m] = F4(r2[l][m]);
}}

Figure 1. (a) A nested-loop behaviour and (b) its corresponding ADDG

Figure 1 shows a sequential behaviour and its corre-
sponding ADDG. Certain information will be extracted from
each statement S of the behaviour and associated with
the write edge labelled with S in the ADDG. Let us first
consider, for this purpose, the generalized n-nested loop
structure in figure 2 in which S occurs. Each index ik
has a lower limit Lk and a higher limit Hk and a step
constant (increment/decrement) rk. The parameters Lk, Hk
and rk are all integers. The statement S executes under the
condition CD over the loop indices ik, 1 ≤ k ≤ n, within the

loop body. All the index expressions e1, . . . ,ek of the array
d and the expressions e′11, . . . ,e

′
1l1
, . . . ,e′m1, . . . ,e

′
mlm of the

corresponding arrays u1, . . . ,um in the statement S are affine
arithmetic expressions over the loop indices.

f or(i1 = L1; i1 ≤ H1; i1+= r1)
f or(i2 = L2; i2 ≤ H2; i2+= r2)

...
f or(in = Ln; in ≤ Hn; in+= rn)

i f (CD) then

S : d[e1] . . . [ek] = f (u1[e′11] . . . [e
′
1l1

], . . . , um[e′m1] . . . [e
′
mlm]);

Figure 2. A generalized nested loop structure

The iteration domain of the statement S is given as

IS = {[i1, i2, . . . , in] |
n∧

k=1

(Lk ≤ ik ≤Hk∧CD∧∃αk ∈Z(ik =αkrk+Lk))}

where ik,Lk,Hk,rk,1 ≤ k ≤ n, are integers.
The definition domain SDd of the left hand side (lhs) array

d is given by SDd ⊆ Zk = {[e1(⃗v), . . . , ek (⃗v)] | v⃗ ∈ IS}. The
definition mapping (SM(d)

d) is given by SM(d)
d = {IS → SDd |

∀⃗v ∈ IS, v⃗ 7→ [e1(⃗v), . . . , ek (⃗v)] ∈ SDd }. The operand
domain of the operand array un is given by SUun ⊆ Zln =
{[en1(⃗v), . . . , enln (⃗v)] | v⃗ ∈ IS}. The operand mapping
(SM(u)

un) is given by SM(u)
un = {IS → SUun | ∀⃗v ∈ IS, v⃗ 7→

[en1(⃗v), . . . , enln (⃗v)] ∈ SUun}. There are m operand do-
mains and m operand mappings, one for each operand array
u1, . . . , um.

Definition 2 (Dependence mapping (SMd,un)): SMd,un =
{[i1, . . . , ik]→ [j1, . . . , jln] | ([i1, . . . , ik] ∈ SDd ∧
[j1, . . . , jln] ∈ SUun ∧ ∃⃗v ∈ IS | ([i1, . . . , ik] = SM(d)

d (⃗v) ∧
[j1, . . . , jln] = SM(u)

un (⃗v)))}
The dependence mapping SMd,un can be obtained as

SMd,un = (SM(d)
d)−1 ⋄ SM(u)

un . The dependence mapping
between the array x and the array z, i.e., PQMx, z, can be
obtained from the mappings PMx, y and QMy, z by right com-
position (⋄) of PMx, y and QMy, z. The following definition
captures this computation.

Definition 3 (Transitive Dependence Mapping): For two
consecutive statements Q and P in the behaviour,
PQMx,z = PMx,y ⋄ QMy,z = {[i1, . . . , il1] → [k1, . . . ,kl3]
| ∃[j1, . . . , jl2] s.t. [i1, . . . , il1] → [j1, . . . , jl2] ∈ PMx,y ∧
[j1, . . . , jl2]→ [k1, . . . ,kl3] ∈ QMy,z}.

The transitive dependence can be extended to a sequence
of statements in a natural way.

Example 1: Let us consider the behaviour and its cor-
responding ADDG of figure 1. Let us now consider the
statements S4 and S2 of the behaviour. We have

IS4 = {[l, m] | 3 ≤ l ≤ M ∧ 3 ≤ m ≤ N − 1∧ (∃α1,α2 ∈
Z | l = α1 +3∧m = α2 +3)},

S4Dout1 = IS4, S4Ur2 = IS4

S4Mout1,r2 = {[l,m]→ [l,m] | [l,m] ∈ S4Dout1},
IS2 = {[l, m] | 3 ≤ l ≤ M ∧ 3 ≤ m ≤ N − 1∧ l +m ≤ 7∧

(∃α1,α2 ∈ Z | l = α1 +3∧m = α2 +3)},

157

S2Dr2 = IS2,
S2Ur1 = {[l −1, m−2] | [l,m] ∈ IS2} and
S2Mr2,r1 = {[l,m]→ [l −1,m−2] | [l,m] ∈ S2Dr2}.
The transitive dependence mapping S4S2Mout1,r1 can be

obtained from S4Mout1,r2 and S2Mr2,r1 by the composition
operator ⋄ as follows:

S4S2Mout1,r1 = S4Mout1,r2 ⋄ S2Mr2,r1
= {[l,m] → [l,m] | [l,m] ∈ S4Dout1}

⋄ {[l,m]→ [l −1,m−2] | [l,m] ∈ S2Dr2}
= [l,m]→ [l −1,m−2] | [l,m] ∈ S4Dout1}

2

III. SLICES

Definition 4 (Slice): A slice is a connected subgraph of
an ADDG which has an array node as its start node (having
no edge incident on it), only array nodes as its terminal nodes
(having no edge emanating from them), all the outgoing
edges (read edges) of its operator nodes and at most one
outgoing edge (write edge) of its array nodes except the
start node and terminal nodes.

Each statement in the ADDG in figure 1 represents a
slice. Also, each of the statement sequences ⟨S2S1⟩, ⟨S3S1⟩,
⟨S4S2⟩, ⟨S4S3⟩, ⟨S4S2S1⟩ and ⟨S4S3S1⟩ represents a slice
in this ADDG. The start array node of a slice depends
on each of the terminal array nodes through a sequence
of statements. Therefore, the dependence mapping between
the start array node and each of the terminal array nodes
of a slice can be computed as the transitive dependence
mapping over the sequence of statements from the start node
to the terminal node, in question, using definition 3. The
dependence mappings capture the index mappings between
the start array node and the terminal array nodes in a slice.
In addition, it is required to store how the output array is
dependent functionally on the input arrays in a slice. We
denote this notion as the data transformation of a slice.

Definition 5 (Data transformation of a slice g (rg)): It is
an arithmetic expression e over the terminal arrays of the
slice such that e represents the value of the output array
elements of the slice after execution of the slice.

The data transformation rg in a slice g can be obtained
by using a backward substitution method [14] on the slice
from its output array node up to the input array nodes.
The backward substitution method of finding rg is based on
symbolic simulation. The steps of the backward substitution
method, for example, for computation of data transformation
for the slice represented by statement sequence ⟨S4S2S1⟩ in
the ADDG in figure 1(b) are as follows:

out1 ⇐ F4(r2) [at the node r2],
⇐ F4(F2(r1)) [at the node r1],
⇐ F4(F2(F1(in1, in2))) [at the nodes in1 and in2]

The slice g is characterized by its data transformation and
the list of dependence mappings between the source array
and the terminal arrays.

Definition 6 (Characteristic formula of a slice): The
characteristic formula of a slice g is given as the tuple
τg = ⟨rg,⟨gMa;v1 , . . . , gMa;vn⟩⟩, where a is the start node
of the slice, vi, 1 ≤ i ≤ n, are the terminal nodes, rg is an
arithmetic expression over v1, . . . , vn representing the data
transformation of g and gMa;vi , 1 ≤ i ≤ n, denotes the
dependence mapping between a and vi.

Definition 7 (IO-slice): A slice is said to be an IO-slice
iff its start node is an output array node and the terminal
nodes are input array nodes.

It is required to capture the dependence of each output
array on the input arrays. Therefore, IO-slices are of our
interest. It may be noted that the slices represented by the
statement sequences ⟨S4S2S1⟩ and ⟨S4S3S1⟩ are the only
two IO-slices in the ADDG in figure 1(b).

IV. EQUIVALENCE OF ADDGS

As discussed in the introduction, Shashidhar et al. [9] [10]
have proposed an equivalence checking method for ADDG
based verification of loop transformations and some data-
flow transformations. In characterizing the transformation
over a slice, the method proposed in [9] relies on the
signature of the individual paths 1 of the slice. The basic
assumption in their equivalence checking method is that the
number of paths from the output array to the input arrays
must be the same in two equivalent IO-slices. Since, paths
may be removed or the path signatures may be transformed
significantly due to application of arithmetic transforma-
tions, computationally equivalent slices may have paths
whose signatures are non-identical or have no correlation
among them. Following example illustrates this fact.

Example 2: Let us consider two program fragments
given in figure 3. The program in figure 3(b) is obtained from
figure 3(a) by loop merging and simplification of arithmetic
expressions. These two programs are actually equivalent. Let
us now consider their corresponding ADDGs in figure 3(c)
and figure 3(d), respectively. It may be noted that both the
ADDGs contain a single IO-slice. These two IO-slices have
different number of paths from the output array to the input
arrays. Specifically, the IO-slice in figure 3(c) has two paths
from the output node out to the input node in3; however,
the slice in the ADDG in figure 3(d) has no such paths. 2

The above example underlines the fact that while ob-
taining the equivalence of a slice, one should compare the
slice as a whole rather than the individual path signatures
within the slice. In this work, we redefine the equivalence of

1 A path p from an array node a1 to an array node an in an ADDG
is of the form a1 → f1 −→

l1
a2 → f2 −→

l2
a3 → . . . −−→

ln−2
an−1 → fn−1 −−→

ln−1
an,

where the array nodes (ai’s) and the operator nodes (fi’s) alternate,
⟨ak, fk⟩, 1 ≤ k ≤ n−1, are the write edges, ⟨ fk, ak+1⟩, 1 ≤ k ≤ n−1, are
the read edges in the ADDG and li,1,≤ i ≤ n− 1, are the labels of the
read edges of the path. A label l of the read edge from an operator node
f to an array node a denotes that a is the lth argument of the operator f .
The signature of that path is a tuple
⟨a1, f1, l1, f2, l2, . . . , ln−2, fn−1, ln−1,an⟩.

158

for(k=0; k<64; k++) {
tmp2[k] = in1[2k] - tmp1[k];
tmp1[k] = f(in3[k+1]); }

for(k=5; k<69; k++) {
tmp3[k] = f(in3[k-4]);
tmp4[k-5] = tmp3[k] + in2[k-3]; }

for(k=0; k<64; k++)
out[k] = tmp2[k] + tmp4[k];

(a) Original program

for(k=0; k<64; k++)
out[k] = in1[2k] + in2[k+2];

(b) Transformed program

in3

tmp3

tmp4

out

+

- +

f f

in1 in2

tmp1

in2in1

out

+

in3

tmp2

2

1 2

11

21

1

1 2

(c) (d)

Figure 3. (a) Original programme (b) transformed programme (c) ADDG
of the original program (d) ADDG of the transformed program

ADDGs based on our definition of characteristic formulas of
slices. In addition, a normalization technique is incorporated
in our method to represent the data transformations of the
slices. Two simplification rules for normalized expressions
are proposed in this work. Slice level characterization, in-
clusion of the normalization technique and the simplification
rules enable us to handle several arithmetic transformations
applied along with loop transformations. Let us first intro-
duce the normalization procedure of data transformations
and the simplification rules. We then formulate the equiva-
lence problem of ADDGs.

A. Normalization of slice data transformations

The normalization process reduces many computationally
equivalent formulas syntactically identical as it forces all
the formulas to follow a uniform structure [13]. We use the
following normal form adapted from [13].

The data transformation of a slice can be represented
in the normalized sum form. A normalized sum is a sum
of terms with at least one constant term; each term is a
product of primaries with a non-zero constant primary; each
primary is a storage variable, an input variable or of the
form abs(s), mod(s1,s2), exp(s1,s2) or div(s1,s2), where
s,s1, and s2 are normalized sums. The dependence mapping
can be represented as three tuple – index expressions of
the lhs array, index expressions of the rhs array and the

quantified formula defining the domain of the mapping.
Each of them are also represented in normalized form.
In addition to the above structure, any normalized sum
is arranged by a lexicographic ordering of its constituent
subexpressions from the bottom-most level, i.e., from the
level of simple primaries. This will help us handle the
algebraic transformations efficiently.

Example 3: The expression 3yz − 4x2 + 2 will have
the normal form −4 ∗ x ∗ x + 3 ∗ y ∗ z + 2, where the
lexicographic order of the variables are x ≺ y ≺ z. The
expression c(b + a)(c + a) is represented as 1 ∗ a ∗ b ∗ c
+ 1 ∗ a ∗ b ∗ c + 1 ∗ a ∗ c ∗ c + 1 ∗ b ∗ c ∗ c + 0, where the
lexicographic order of the variables is a ≺ b ≺ c. 2

The dependence mapping can be represented as three tuple
– index expressions of the lhs array, index expressions of the
rhs array and the quantified formula defining the domain of
the mapping. The index expressions of lhs/rhs array is an
ordered tuple of normalized sums where the ith normalized
sum represents the index expression of the ith dimension of
the array. The quantified formula is a conjunction of atomic
formulas defined over the universally quantified variables.
The increment/decrement of universally quantified variables
is defined by existentially quantified variables.

B. Simplification rules for data transformation

We have proposed two simplification rules over a nor-
malized expression. Normalization along with these simpli-
fication rules enables us handle arithmetic transformations
efficiently. The simplification rules are as follows:

(1). (a) For a slice g, the dependence mappings in its
characteristic formula τg are ordered according to the occur-
rence of the array names in rg. (b) If an array name occurs
more than once (as primaries) in a term of rg, then their
dependence mappings are ordered according to the lexico-
graphic ordering of the dependence mappings. (c) If the data
transformation rg in τg contains common sub-expressions
(terms) with the same non-zero constant primary, then the
tuple of dependence mappings corresponding to those terms
are ordered according to the ordering of the corresponding
dependence mappings in the tuples of the terms.

(2). In the data transformation of a slice, the occurrences
of a common sub-expression are collected together if the
dependence mappings from the output array to each of
the (input) arrays involved in the occurrences of the sub-
expression are equal. If the collection of the sub-expressions
cancels out through symbolic computation, then remove
all the dependence mappings corresponding to those sub-
expressions.

Example 4: Let us consider, for example, that the data
transformation of a slice g(a, ⟨x,z⟩) is 3x + 5z − 3x, where
x and z be two input arrays. Let the dependence mapping
from the output array a of the slice to x corresponding to
the first sub-expression 3x be gM(1)

a;x and the same for x
corresponding to the second sub-expression 3x be gM(2)

a;x.

159

This formula is reduced to 5z if the dependence mapping
gM(1)

a;x = gM(2)
a;x. Similarly, the formula 3xy + 4z + 7xy

is reduced to 10xy+ 4z if the dependence mappings from
output array to x are the same for both x (in 3xy and 7xy)
and the dependence mappings from output array to y are the
same for both y (in 3xy and 7xy). 2

C. Equivalence Problem Formulation

Let GS be the ADDG corresponding to the sequential
behaviour and GT be the ADDG corresponding to the
transformed behaviour.

Definition 8 (Matching IO-slices): Two IO-slices g1 and
g2 are said to be matching, denoted as g1 ≈ g2, if the data
transformations of both the slices are equivalent.

Definition 9 (IO-slice class): A slice class in an ADDG
is the maximum set of matching IO-slices of the ADDG.

Let a slice class be Cg(a, ⟨v1, . . . ,vl⟩) = {g1, . . . ,gk}
where each slice involves l input arrays v1, . . . , vl and the
output array a. The data transformation of Cg is the same
as any of the member slices. Due to single assignment form
of the behaviour, the domains of the dependence mappings
between the output array a and the input array v j in the
slices of Cg must be non-overlapping. The domain of the
dependence mapping Cg Ma;vm from a to vm over the entire
class Cg is the union of the domains of gi Ma;vm , 1 ≤ i ≤ k.
The data transformation of Cg is the data transformation of
any of the slices in Cg.

Definition 10 (IO-slice class equivalence:): A slice class
C1 of an ADDG GS is said to be equivalent to a slice class
C2 of GT , denoted as C1 ≃C2, iff

(i) The data transformation of C1 and C2 are same.
(ii) Both C1 and C2 consist of the same number of

dependence mappings and the corresponding dependence
mappings in the two classes are same.

Definition 11 (Equivalence of ADDGs:): An ADDG GS
is said to be equivalent to an ADDG GT iff for each IO-slice
class CS in GS, there exists an IO-slice class CT in GT such
that CS ≃CT , and vice-versa.

The equivalence checking method is given as algorithm 1.
Given the undecidability of this equivalence problem [14],
completeness of the method is unattainable. Our method may
produce false-negative results for some cases. Therefore, the
method reports ”ADDGs may not be equivalent” when it
fails to show the equivalence of two ADDGs. Our method,
however, can be proved to be sound.

V. EXPERIMENTAL RESULTS

The method has been implemented in C language and
run on a 2.0 GHz Intel R⃝ CoreTM 2 Duo machine. For the
dependence mappings of the slices, our method relies on
the OMEGA calculator [15]. The method has been tested on
several instances of equivalence checking problems obtained
manually from the sobel edge detection (SOB), Debaucles
4-coefficient wavelet filter (WAVE) and Laplace algorithm

Algorithm 1 Equivalence Checking Between two ADDGs
1: /* Input: Two ADDGs GS and GT ;

Output: Whether GS and GT are equivalent or not; */
2: Find the set of IO-slices in each ADDG. Find the characteristic

formulae of the slices;
3: Use arithmetic simplification rule to the data transformation of

the slices of GS and GT ;
4: Obtain the slice classes and their characteristic formulas in

each ADDG; Let CGS and CGT be the respective sets of slice
classes in both the ADDGs;

5: for each slice class g1 in CGS do
6: gk = f indEquivalentSlices(g1, CGT); /* this function

returns the equivalent slice of g1 in CGT if found; otherwise
returns NULL; */

7: if gk = NULL then
8: Report “ADDGs may not be equivalent;” exit(failure);
9: end if

10: end for
11: Repeat the above loop by interchanging GS and GT ;
12: Report “ADDGs are equivalent;” exit(success);

to edge enhancement of northerly directional edges (LAP).
To create the test cases, we have considered variety of loop
transformations and arithmetic transformations as shown in
column two of table I. The maximum nesting of the loops,
number of loop bodies, arrays and slices in source and
transformed behaviours are shown in columns three to nine
in table I. The execution time of our tool for these test
cases are tabulated in column 10 of the table. In the last two
cases, the number of slices differs from the source ADDG to
the transformed ADDG, the method successfully formed the
slice classes and established the equivalence. In all of the
cases, our method was able to establish the equivalence in
less than twelve seconds. It may be noted that the method
reported in [9] fails in the cases of SOB1, SOB2, LAP2
because of application of distributive transformations. It is
difficult to compare running times with this method [9] since
the examples used there are not publicly available and also
their tool is not available to us.

In our second experiment, we take the source behaviour
and the transformed behaviours of the previous experiment.
We, however, intentionally change the index expressions
of some of the arrays or limits of some of the loops in
the transformed behaviours. As a result, some dependence
mappings (involving those arrays) do not match with the
original behaviour. Similarly, we change the rhs expressions
of some statements of the transformed behaviours to create
another set of erroneous test cases. As a result, the data
transformations of some of the slices do not match with the
corresponding slices of the original behaviour. The execution
time of our tool for these two cases are tabulated in columns
eleven and twelve, respectively. Our tool is able to find the
non-equivalence and locate the erroneous statement(s) in all
the cases in less than two seconds as shown in table I.

160

loops arrays slices Exec time (sec)
Cases transformations nests src trans src trans src trans equiv not-equiv1 not-equiv2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

SOB1 loop fusion, commutative and distributive 2 3 1 4 4 1 1 01.53 0.62 0.75
SOB2 loop reorder, commutative and distributive 2 3 3 4 4 1 1 11.21 0.72 0.46
WAVE loop un-switching and commutative 1 1 2 2 2 4 4 07.05 0.73 0.59
LAP1 expression splitting and loop fission 2 1 3 2 4 1 1 02.31 0.43 0.32
LAP2 loop unrolling, commutative and distributive 2 1 1 2 2 1 2 07.58 0.26 0.24
LAP3 loop spreading, commutative and renaming 2 1 4 2 4 1 2 02.12 1.14 1.13

Table I
RESULTS FOR SEVERAL BENCHMARKS

VI. CONCLUSIONS

The present work is concerned with verification of loop
transformations and arithmetic transformation techniques
applied on loop and array intensive applications (common in
the multimedia and signal processing domains). An ADDG
based equivalence checking method is proposed for this
purpose. The method relies on normalization of arithmetic
expressions and simplification rules to handle arithmetic
transformations applied along with loop transformations.
Unlike many other reported techniques, our method is strong
enough to handle based on transformations employing arith-
metic transformations associative, commutative, distribu-
tive, arithmetic expression simplifications, common sub-
expression elimination, constant unfolding, substitution of
multiplication with constant by addition, etc. Experimental
results have shown the efficiency of the method.

Future scope of the work includes identification of sim-
plification rules to handle more sophisticated arithmetic
transformations, such as, operator strength reduction, etc.
Our current implementation supports only uniform recur-
rence permitting the use of OMEGA calculator to compute
the dependence mappings. Our next objective is to find
the scope of application of our normalization techniques
to widening based approach [11] which can handle non-
uniform recurrence.

REFERENCES

[1] Y. Bouchebaba, B. Girodias, G. Nicolescu, E. M. Aboul-
hamid, B. Lavigueur, and P. Paulin, “Mpsoc memory opti-
mization using program transformation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 12, no. 4, pp. 43:1–43:39, 2007.

[2] M. Karakoy, “Optimizing array-intensive applications for on-
chip multiprocessors,” IEEE Trans. Parallel Distrib. Syst.,
vol. 16, no. 5, pp. 396–411, 2005.

[3] M. Qiu, E. H. M. Sha, M. Liu, M. Lin, S. Hua, and L. T. Yang,
“Energy minimization with loop fusion and multi-functional-
unit scheduling for multidimensional dsp,” J. Parallel Distrib.
Comput., vol. 68, no. 4, pp. 443–455, 2008.

[4] M. Palkovic, F. Catthoor, and H. Corporaal, “Trade-offs in
loop transformations,” ACM Trans. Des. Autom. Electron.
Syst., vol. 14, pp. 22:1–22:30, April 2009.

[5] B. Landwehr and P. Marwedel, “A new optimization tech-
nique for improving resource exploitation and critical path
minimization,” in ISSS, pp. 65–72, 1997.

[6] M. Potkonjak, S. Dey, Z. Iqbal, and A. Parker, “High per-
formance embedded system optimization using algebraic and
generalized retiming techniques,” in Proc. of ICCD, pp. 498
–504, Oct. 1993.

[7] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and
Y. Hu, “Translation and run-time validation of loop transfor-
mations,” Form. Methods Syst. Des., vol. 27, no. 3, pp. 335–
360, 2005.

[8] V. Menon, K. Pingali, and N. Mateev, “Fractal symbolic
analysis,” ACM Trans. Program. Lang. Syst., vol. 25, no. 6,
pp. 776–813, 2003.

[9] K. C. Shashidhar, Efficient Automatic Verification of Loop
and Data-flow Transformations by Functional Equivalence
Checking. PhD thesis, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, 2008.

[10] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and
G. Janssens, “Functional equivalence checking for verification
of algebraic transformations on array-intensive source code,”
in Proc. of DATE’05, pp. 1310–1315, 2005.

[11] S. Verdoolaege, G. Janssens, and M. Bruynooghe, “Equiv-
alence checking of static affine programs using widening to
handle recurrences,” in Proceedings of CAV ’09, pp. 599–613,
2009.

[12] S. Verdoolaege, M. Palkovič, M. Bruynooghe, G. Janssens,
and F. Catthoor, “Experience with widening based equiva-
lence checking in realistic multimedia systems,” J. Electron.
Test., vol. 26, no. 2, pp. 279–292, 2010.

[13] D. Sarkar and S. De Sarkar, “A theorem prover for verify-
ing iterative programs over integers,” IEEE Trans Software.
Engg., vol. 15, no. 12, pp. 1550–1566, 1989.

[14] Z. Manna, Mathematical Theory of Computation. Tokyo:
McGraw-Hill Kogakusha, 1974.

[15] W. Kelly, E. Rosser, B. Pugh, D. Wonnacott, T. Shpeisman,
and V. Maslov, “The omega calculator and library.” available
at http://www.cs.umd.edu/projects/omega/ .

161

