
A Formal Verification Method of Scheduling in High-level Synthesis

C Karfa C Mandal D Sarkar S R Pentakota
Department of Computer Sc & Engg

Indian Institute of Technology, Kharagpur
WB 721302, INDIA

{ckarfa, chitta, ds}@iitkgp.ac.in, satya@ti.com

Chris Reade
Kingston Business School

Kingston University
England KT2 7LB, UK

Chris.Reade@king.ac.uk

Abstract

This paper describes a formal method for checking the
equivalence between the finite state machine with data path
(FSMD) model of the high-level behavioural specification
and the FSMD model of the behaviour transformed by the
scheduler. The method consists in introducing cutpoints in
one FSMD, visualizing its computations as concatenation
of paths from cutpoints to cutpoints and finally, identifying
equivalent finite path segments in the other FSMD; the pro-
cess is then repeated with the FSMDs interchanged. The
method is strong enough to accommodate merging of the
segments in the original behaviour by the typical scheduler
such as DLS, a feature very common in scheduling but not
captured by many works reported in the literature. It also
handles arithmetic transformations.

1 Introduction

High-level synthesis is the process of generating the reg-
ister transfer level (RTL) design from the behavioural de-
scription. The synthesis process consists of several in-
ter dependent sub-tasks such as, specification, compila-
tion, scheduling, allocation and binding. The operations in
the behavioural description are assigned time steps through
scheduling process. Input to the scheduling phase is control
data flow graph (CDFG)[4]. While a CDFG is better suited
for the scheduling algorithms, an FSMD is a more appro-
priate model for verification. In fact, we construct FSMD
automatically from a given input CDFG to the scheduler.
In the process of scheduling, operations are often moved
across basic block boundaries so that an optimization may
be incorporated. In general several transformations may be
made to improve the performance of the design. For ex-
ample, path based scheduling techniques [10] perform sev-
eral such non-trivial path based transformations. Hence,
it is important to ensure that the scheduling process pre-
serves the behaviour of the original specification, irrespec-

tive of the scheduling technique that is used. The objective
of this work is to check that the behaviours before and after
scheduling, as represented by FSMDs, are computationally
equivalent.

Methods to verify the high-level synthesis results against
the original behavioural description are still evolving [7]. A
formal synthesis system called FRESH was built and a new
technique for verification was proposed. In this method the
input behaviour is described by using equational specifica-
tion (ES) and a set of derivation rules is applied consecu-
tively on the ES. An automatic verification of scheduling
by using symbolic simulation of labeled segments of be-
havioural description has been proposed in [1]. The method
described in this paper transforms the original description
into one which is bisimilar with the scheduled description.
In the approach proposed in [7], break-points are introduced
in both the FSMDs followed by construction of the respec-
tive path sets. Each path of one set is then shown to be
equivalent to some path of the other set. This approach ne-
cessitates that the path structure of the input FSMD is not
disturbed by the scheduling algorithm in the sense that the
respective path sets obtained from the break points are as-
sumed to be bijective. These approaches are likely to fail
for the path based scheduling algorithms [10], [6] where
path structures get changed by the scheduler.

In this paper, we propose a scheduling verification
method which is strong enough to work even when the ba-
sic path structure is changed by the scheduler. This method
formally establishes equivalence between the FSMDs be-
fore and after scheduling. The method is so devised that
construction of the path set P0 of one FSMD M0 (say), so
that any computation of M0 can be captured by concatena-
tion of the members of P0, construction of the path set P1

of the other FSMD M1 equivalent to those of P0 proceed
hand-in-hand. The verification steps of our method are il-
lustrated using the MODN(A.B mod N) example. This is
a non-trivial example where the scheduler changes the path
structure of the the input FSMD significantly.

This paper is organized as follows. In section 2, the nec-

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

essary formalism is developed and the correctness problem
is encoded. The method is described in section 3. An ex-
ample has been treated in section 4 in detail to illustrate the
working of the algorithm. Some experimental results have
been given in section 5. The paper is concluded in section
6.

2 Problem Encoding

2.1 Finite State Machine with Data Path

An FSMD (finite state machine with data-path) is a uni-
versal specification model, proposed by Gajski in [3], that
can represent all hardware designs. The model is used in
the present work with the addition of a reset state, for en-
coding the specification and implementation of the circuit
to be verified. This reset state is also called the start state of
the FSMD. The FSMD is formally described below.

Definition 1 The FSMD is defined as an ordered tuple
〈Q,q0, I,V,O, f ,h〉, where

1. Q = {q0,q1,q2, . . . qn} is the finite set of control states,

2. q0 ∈ Q is the reset state,

3. I is the set of primary input signals and ΣI is the input
alphabet,

4. V is the set of storage variables and Σ is the set of all
data storage states or simply, data states,

5. O is the set of primary output signals and ΣO is the
output alphabet,

6. f : Q×S → Q, is the state transition function and

7. h : Q×S →U, is the update function of the output and
the storage variables, where U and S are as defined
below.

(a) U = {x ⇐ e|x ∈ O ∪V and e ∈ E} represents
a set of storage or output assignments, where
E = {g(x,y,z, . . .) |x,y,z, . . . ∈ I ∪V} represents
a set of arithmetic expressions over the set I ∪V
of input and storage variables,

(b) S = {R(a,b)|a,b ∈ E and R is any arithmetic re-
lation} represents a set of status signals as arith-
metic relations between two expressions from the
set E.

Since, state transitions and updates have been represented
as functions, an FSMD model is inherently deterministic. It
may be noted that we have not introduced final states in the
FSMD model. This is because we assume that the systems
work in an infinite outer loop.

− / −

−/s ⇐ 0,a ⇐ A,b ⇐ B,n ⇐ N, i ⇐ 0

s ≥ n/s ⇐ s−n

!i ≤ 15/sout ⇐ s

i ⇐ i+1
−/a ⇐ a∗2,b ⇐ b/2

s ⇐ s+a

!s ≥ n/−

i ≤ 15 & !b % 2 = 1 i ≤ 15 & b % 2 = 1/

a ≥ n/a ⇐ a−n

!a ≥ n/−

q00

q01

q02

q03

q04q0e

Figure 1. FSMD of MODN before scheduling

A path α from qi to q j, where qi,q j ∈ Q, is a finite tran-
sition sequence of states of the form 〈qi = q1 −→c1

q2 −→c2
,

. . . , −→cn−1
qn = q j〉 such that ∀l,1 ≤ l ≤ n− 1,∃cl ∈ S such

that f (ql ,cl) = ql+1, and qk, 1 ≤ k ≤ n−1, are all distinct.
The state qn may be identical to q1.

The condition of execution of the path α =
〈ql0 −→c0

ql1 −→c1
ql2 . . . −→ck−1

qlk〉, Rα, is a logical ex-
pression over the variables in V such that Rα is satisfied by
the (initial) data state at ql0 iff the path α is traversed.

We assume that inputs and outputs occur through named
ports. The ith input from port P is a value represented as Pi.
Thus if some variable v stores input from port P (for the ith

time along a path), it is equivalent to the assignment v ⇐ Pi.
The output of an expression e to a port P is represented as
OUT(P,e) and put as a member of a list preserved for each
path. The data transformation of a path α over V , rα, is the
tuple 〈sα,Oα〉, where sα is an ordered tuple 〈ei〉 of algebraic
expressions over the variables in V and the inputs in I such
that the expression ei represents the value of the variable vi

after the execution of the path in terms of the initial data
state (i.e., the values of the variables at the initial control
state) of the path and the output list Oα = [OUT(Pi1 ,e1),
OUT(Pi2 ,e2), . . .]. For every expression e output to port P
along the path α, there is an OUT(P,e) in the list, in the
order in which the outputs occurred.

Computation of the condition of execution Rα can be by
backward substitution or by forward substitution. The for-
mer is more easily perceivable and is based on the following
rule: If a predicate c(y) is true after execution of y ← g(y),

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

then the predicate c(g(y)) must have been true before the
execution of the statement [9]. The transformation sα is
found indirectly using the same principle. The forward sub-
stitution method of finding Rα is based on symbolic execu-
tion.

Let α and β be two paths and Rα, rα be respectively the
condition of the execution and the data transformation over
α; let Rβ, rβ be similarly defined for the path β. Then
the condition of execution for the path αβ (“α concate-
nated with β”) is given by Rα(v)∧Rβ(sα(v)) and the data
transformation over αβ is 〈sβ(sα(v)), Oα (v)Oβ(sα(v))〉,
v represents a vector of values of the variables of I ∪V,
v f represents a vector of values of the variables of V .
Oα(v)Oβ(sα(v)) represents the concatenated output list of
Oα(v) and Oβ(sα(v)).

A computation of an FSMD is a finite walk from the re-
set state q0 back to itself without having any intermediary
occurrence of q0. Such a computational semantics of an
FSMD is based on the assumption that a revisit of the reset
state means the beginning of a new computation and each
computation terminates. In other words, the behavioural
representation has a non-terminating outermost loop from
the reset state and each inner loop has a state from which
there is a transition out of the loop.

Any computation c of an FSMD M can be looked upon as
a computation along some concatenated path [α1α2α3...αk]
of M such that the path α1 emanates from and the path
αk terminates in the reset state q0 of M and αi,1 ≤ i ≤ k,
may not all be distinct. If Rαi(vi), rαi(vi), 1 ≤ i ≤ k,
be the condition of execution and the data transformation
respectively of the path αi, then the condition of execu-
tion (Rc) and data transformation (rc) of c are given by
Rα1(v1) ∧ Rα2(sα1(v1)) ∧ . . . ∧ Rαk(sαk−1(· · ·(sα1(v1)) . . .))
and 〈 sαk(sαk−1(. . .(sα1(v1)) . . .)), Oα1(v1)Oα2(sα1(v1))
. . .Oαk(sαk−1(. . .(sα1(v1)) . . .) 〉, where vi represents the
vector of inputs and the data variables before the path
αi, 1 ≤ i ≤ k.

Definition 2 Two computations c1 and c2 of an FSMD are
said to be equivalent if Rc1 = Rc2 , rc1 = rc2 .

Computational equivalence of two paths can be defined
in a similar manner. The fact that a path p1 is computation-
ally equivalent to p2 is denoted as p1 � p2.

Equivalence checking of paths, therefore, consists in es-
tablishing the computational equivalence of the respective
conditions of execution and the respective data transfor-
mations. Since the condition of execution and the data
transformation of a path involve the whole of integer arith-
metic, checking of path equivalence reduces to the valid-
ity problem of first order logic; the latter is undecidable
because a canonical form does not exist for integer arith-
metic. Instead, in this work we use the following normal
form adapted from [8, 11].

Definition 3 A finite set of paths P = {p0, p1, p2, . . . , pk} is
said to cover an FSMD M if any computation c of M can be
looked upon as a concatenation of paths from P. P is said
to be a “finite path cover” of the FSMD M.

2.2 Correctness Problem

Let M0 be the FSMD representation of the CDFG given
as the input to the scheduler and M1 be the FSMD of the
scheduled bahaviour. Our main goal is to verify whether
M0 behaves exactly as M1. This means that for all possible
input sequences, M0 and M1 produce the same sequences
of output values and eventually, when the respective reset
states are re-visited, they are visited with the same storage
element values. In other words, for every computation from
the reset state back to itself of one FSMD, there exists an
equivalent computation from the reset state back to itself in
the other FSMD and vice-versa. The following definition
captures the notion of equivalence of FSMDs.

Definition 4 Two FSMDs M0 and M1 are said to be compu-
tationally equivalent if for any computation c0 of M0, there
exists a computation c1 of M1 such that c0 and c1 are com-
putationally equivalent and vice-versa.

From the above two definitions, following theorem can be
concluded.

Theorem 1 Two FSMDs M0 and M1 are computation-
ally equivalent if there exists a finite cover P0 =
{p00, p01, . . . , p0l} of M0 for which there exists a set P0

1 =
{p0

10, p0
11, . . . , p0

1l} of paths of M1 such that p0i � p0
1i,

0 ≤ i ≤ l and vice-versa.

The following definition is used in the proposed verifica-
tion method.

Definition 5 Corresponding states: Let M0 = 〈Q0, q00, I,
V0,O, f0,h0〉 and M1 = 〈Q1,q10, I,V1,O, f1,h1〉 be the two
FSMDs having identical input and output sets, I and O, re-
spectively, and q0i,q0k ∈ Q0 and q1 j,q1l ∈ Q1.

• The respective reset states q00,q10 are corresponding
states.

• If q0i ∈ Q0 and q1 j ∈ Q1 are corresponding states and
there exist q0k ∈ Q0 and q1l ∈ Q1 such that, for some
path α from q0i to q0k in M0, there exists a path β from
q1 j to q1l in M1 such that α � β, then q0k and q1l are
corresponding states.

3 Verification Method

The above theorem, therefore, suggests a verification
method which consists of the following steps:

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

1. Construct the set P0 of paths of M0 so that P0 covers
M0. Let P0 = {p00, p01, · · · , p0k}.

2. Show that ∀p0i ∈P0, there exists a path p1 j of M1 such
that p0i � p1 j.

3. Repeat steps 1 and 2 with M0 and M1 interchanged.

Because of loops it is difficult to find a path cover of
the whole computation comprising only finite paths. So any
computation is split into paths by putting cutpoints at vari-
ous places in the FSMD so that each loop is cut in at least
one cutpoint. The set of all paths from a cutpoint to an-
other cutpoint without having any intermediary cutpoint is
a path cover of the FSMD. The method of decomposing an
FSMD by putting cutpoints is identical to the Floyd-Hoare’s
method of program verification [2, 5, 8]. We choose the cut-
points in any FSMD as follows.

1. The reset state.

2. Any state with more than one outward transitions.

Obviously, cutpoints chosen by the above rules cut each
loop of the FSMD in at least one cutpoint, because each
internal loop has an exit point (ensured by our notion of
computation in §2).

In the following we propose one method which combines
the first two steps listed above into one. More specifically,
the method constructs a path cover of M0 and also finds its
equivalent path set in M1 hand-in-hand.

3.1 Verification Algorithm

Step 1: Insert cutpoints in M0 by the following rules.

• the start state is a cutpoint,

• any state with more than one outward transition is a
cutpoint.

Step 2:

/*Main data stores:
η: Set of corresponding nodes
P0: path cover of M0

P01: paths in M1 with matching paths in P0
Working data stores:

F: list of paths of M0 starting with nodes having
corresponding nodes but ending with nodes whose
corresponding nodes have not yet been found
P: Working list of corresponding nodes from which
paths will be examined */

F := [] ; P0 := [] ; P10 := [] ;
η := {〈q00,q10〉} ;
P := {〈q00,q10〉} ;

while (P is not empty ‖ F is not empty)
{ // main loop continues till termination

if (F is empty)
// new paths starting from entries in P to be examined
{
〈q0i,q1 j〉 := deQ P ;
put in F all the paths from q0i to its successor
cutpoints (in M0) ;

} else
{ // now work on the un-matched path frontier

β := deQ F ; // endPtNd (β) is un-matched!
if ((α = findEquivalentPath (β , q1 j)) != NULL)
{

if (! 〈 endPtNd(β), endPtNd(α)〉 ∈ η)
enQ (P, 〈 endPtNd(β), endPtNd(α) 〉);
// new paths will start from here

η := η∪{〈 endPtNd(β), endPtNd(α) 〉 ;
P0 := P0∪{β} ; P10 := P1∪{α} ;

} else // no match
{ // so continue along all paths through successors

if (the path is marked NOT EXTENDIBLE) fail ;
tF := all the paths obtained by concatenating to β
all the paths from endPtNd (β) to all the successor
cutpoints of endPtNd (β) ;
if (endPtNd of any member of tF is a node of the

same path other than its start node)
fail;

if (endPtNd of any member of tF is same
as its start node ‖ the reset state)
mark the path as NOT EXTENDIBLE ;

F := append (tF, F) ;
} // else-if

} // else-if
} // end while

Step 3: Identify the cutpoints in M1

Step 4: Repeat the same procedure as described in Step 2
with the roles of M0 and M1 interchanged.

Step 5: If it succeeds for both Step 2 and Step 4 then re-
port M0 and M1 are computationally equivalent. Otherwise
report a failure.

The functions used are specified as follows.

• findEquivalentPath(β,q1 j) : It tries to find a path α
in M1 so that Rα = Rβ and rα = rβ. If such an α exist
then this function returns α, otherwise a NULL path.

• endPtNd(β) : returns the state where the path β termi-
nates.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

 − / −

b ⇐ b/2,
i ⇐ i+1

i ⇐ i+1
b ⇐ b/2,
a ⇐ a∗2,

b ⇐ b/2, i ⇐ i+1

a ⇐ a−n

i ⇐ i+1

b ⇐ b/2,

a ⇐ a∗2,
s ⇐ s−n,

i ⇐ i+1
a ⇐ a∗2,b ⇐ b/2,

s ⇐ s+a

q11

!i ≤ 15/sout ⇐ s

i ≤ 15 & !b % 2 = 1/

b % 2 = 1/

!b % 2 = 1

s ≥ n/a ⇐ a∗2,
s ≥ n/

!a ≥ n & i ≤ 15 &

!a ≥ n & i ≤ 15 &

!a ≥ n & !i ≤ 15/sout ⇐ s

a ≥ n & i ≤ 15 & b % 2 = 1/

a ≥ n & i ≤ 15 & !b % 2 = 1/a ⇐ a−n,

−/s ⇐ s+a

−/a ⇐ a∗2,

a ≥ n & !i ≤ 15/a ⇐ a−n,sout ⇐ s

q10

q12

q13q1e

q15
q14

−/s ⇐ 0,a ⇐ A,b ⇐ B,n ⇐ N, i ⇐ 0

i ≤ 15 & b % 2 = 1/s ⇐ s+a

Figure 2. FSMD of MODN after DLS scheduling

4 An example

This method is explained below with MODN example.

Step 1: Cutpoints in M0 (Fig. 1), FSMD of MODN before
scheduling, are {q00,q01,q02,q04}.

Step 2: Initially, F = [],P0 = [],P0
1 = [],η =

{〈q00,q10〉},P = {〈q00,q10〉}
Iterations:

1. F = {〈q00, q01〉}
2. β = 〈q00, q01〉. Corresponding equivalent path in

M1 is α = 〈q10, q11〉. Put 〈q01, q11〉 in η and P.
Put β in P0. Put α in P0

1 .

3. F = {〈q01, q0e, q00〉,〈q01, q02〉,〈q01, q03, q04〉}
4. β = 〈q01, q0e, q00〉. Corresponding equivalent

path in M1 is α = 〈q11, q1e, q10〉. Put β in P0 and
put α in P0

1 .

5. β = 〈q01, q02〉. Its equivalent path in M1 is α =
〈q11, q12〉. Put 〈q02, q12〉 in η and P. Put β in P0

and put α in P0
1 .

6. β = 〈q01, q03, q04〉. In M1, α = 〈q11, q13〉 such
that, β � α. Put 〈q04, q13〉 in η and in P. Put β in
P0 and put α in P0

1 .

7. F = {〈q02, q03, q04〉,〈q02, q03, q04〉.

8. β = 〈q02, q03, q04〉. In M1, α = 〈q12, q13〉 such
that β � α. Put β in P0 and put α in P0

1 .

9. β = 〈q02, q03, q04〉. Corresponding equivalent
path in M1 is α = 〈q12, q13〉. Put β in P0 and put
α in P0

1 .

10. F = {〈q04, q01〉,〈q04, q01〉}.

11. β7 = 〈q04, q01〉. Function findEquivalentPath
returns NULL.
Thus, tF = {〈q04, q01, q0e, q00〉,
〈q04, q01, q02〉, 〈q04, q01, q03, q04〉}. Put tF in
F .

12. β = 〈q04, q01, q0e, q00〉. In M1, α =
〈q13, q1e, q10〉 such that β � α. Put β in P0 and
put α in P0

1 .

13. β = 〈q04, q01, q02〉. Rβ = {a ≥ n & i ≤ 15 &
b % 2 = 1} and rβ = {a ⇐ a−n,s ⇐ s+a−n}.
Corresponding equivalent path in M1 is α =
〈q13, q14, q12〉. Put β in P0 and put α in P0

1 .

14. β = 〈q04, q01, q03, q04〉. Rβ = {a ≥ n & i ≤ 15
& !(b % 2) = 1} and rβ = {a ⇐ a − n,a ⇐
(a− n) ∗ 2, b ⇐ b/2, i ⇐ i + 1}. In M1, α =
〈q13, q15, q13〉 such that β � α. Put β in P0 and
put α in P0

1 .

15. β = 〈q04, q01〉. Function findEquivalentPath
returns NULL. Thus, tF = {〈q04, q01, q0e, q00〉,
〈q04, q01, q02〉, 〈q04, q01, q03, q04〉}. Put tF in
F .

Each of these 3 extended paths has an equivalent path
in M1. They will be explored in the following itera-
tions.

So, step 2 terminates successfully generating a path
cover P0 of M0. Every path of P0 has an equivalent
path in P0

1 corresponding to M1. In iterations 11 and 15
paths had to be extended before their equivalent paths
could be found.

Step 3: The cutpoints in M1 are {q10,q11,q12,q13}.

Step 4: Iterations of steps 4 can be shown fashion that of
step 2 and are not shown here for brevity.

Step 5: So M0 and M1 are computationally equivalent.

5 Experimental Results

The proposed algorithm has been implemented in ‘C’
and has been run for some standard high-level synthesis
benchmarks as shown in table 1. These have been run on
an Intel Pentium 4, 1.70 MHz, 256MB RAM machine. The
number of states, number of paths explored in each FSMD
M0 and M1, number of consecutive path segments merged

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

ex
ec

ut
io

n
ti

m
e

number of paths

Plot : #paths explore vs execution time in step 2

Figure 3. No. of paths explored in M0 Vs execu-
tions time of step 2

by the scheduler and the CPU time are tabulated for each
benchmark example. The number of paths explored vs ex-
ecution time have been plotted in Fig. 3. It is clear from
this figure that execution time is sensitive to the number of
paths explored. In contrast, it also may be noted from the
table that run time of this algorithm is less sensitive on the
number of states in the FSMDs. For example, in table 1, the
run times of EWF and DCT are small compared to GCD and
MODN even though EWF and DCT have greater number of
states.

6 Conclusions

Advances in VLSI technology have enabled its deploy-
ment into complex circuits. Synthesis flow of such circuits
comprises various phases where each phase performs the
task algorithmically providing for ingenious interventions
of experts. The gap between the original behaviour and the
finally synthesized circuits is too wide to be analyzed by any
reasoning mechanism. The validation tasks, therefore, must
be planned to go hand in hand with each phase of synthe-
sis. The present work concerns itself with the validation of
the scheduling phase. Both the behaviours prior to and after
scheduling have been modeled as FSMDs. The validation
task has been treated as an equivalence problem of FSMDs.

The method is strong enough to accommodate merg-
ing of the segments in the original behaviour by the typ-
ical scheduler such as, DLS [10]. It is also able to han-
dle arithmetic transformations and expected to handle sim-
ple code motion. Similar methods reported in the literature
have been found to fail under such situations. The initial
experiments show that the algorithm is usable for practical
equivalence checking cases of scheduling.

Name #state in
FSMD

#path in
cover

#path
extn

CPU
time

M0 M1 M0 M1 in ms

DIFFEQ 4 12 3 3 0 2.442
EWF 4 35 1 1 0 1.820
GCD 7 4 11 7 3 3.976
DCT 3 29 1 1 0 1.754
TLC 7 8 13 14 2 4.196

MODN 6 7 8 12 2 4.324
PERFECT 9 6 7 5 2 4.028

Table 1. Results for different high-level synthesis
benchmarks

References

[1] H. Eveking, H. Hinrichsen, and G. Ritter. Automatic verifi-
cation of scheduling results in high-level synthesis. In Proc.
Conf. Design, Automation and Test in Europe 1999, pages
59–64, March 1998.

[2] R. W. Floyd. Assigning meaning to programs. In J. T.
Schwartz, editor, Proceedings the 19th Symposium on Ap-
plied Mathematics, pages 19–32, Providence, R.I., 1967.
American Mathematical Society. Mathematical Aspects of
Computer Science.

[3] D. Gajski and L. Ramachandran. Introduction to high-level
synthesis. IEEE transactions on Design and Test of Com-
puters, pages 44–54, 1994.

[4] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. High-
Level Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, 1992.

[5] C. A. R. Hoare. An axiomatic basis of computer program-
ming. Commun. ACM, pages 576–580, 1969.

[6] R. Jain, A. Majumdar, A. Sharma, and H. Wang. Empirical
evalution of some high-level synthesis scheduling heuristics.
In Procs. of 28th DAC, pages 210–215, 1991.

[7] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal
verification of scheduling process using finite state machine
with datapath (FSMD). In 5th International Symposium
on Quality Electronic Design (ISQED’04), pages 110–115,
Carlifornia, March 2004.

[8] J. C. King. Program correctness: On inductive asser-
tion methods. IEEE Trans. on Software Engineering, SE-
6(5):465–479, 1980.

[9] Z. Manna. Mathematical Theory of Computation. McGraw-
Hill Kogakusha, Tokyo, 1974.

[10] M. Rahmouni and A. A. Jerraya. Formulation and evalu-
ation of scheduling techniques for control flow graphs. In
Proceedings of EuroDAC’95, pages 386–391, Brighton, 18-
22 September 1995.

[11] D. Sarkar and S. C. De Sarkar. Some inference rules for
integer arithmetic for verification of flowchart programs on
integers. IEEE Trans. Softw. Eng., 15(1):1–9, 1989.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

