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Abstract—This paper presents a systematic methodology for
construction of high-level performance models using least squares
support vector machine. The transistor sizes of the circuit-
level implementation of a component block along with a set of
geometry constraints applied over them define the sample space.
Optimal values of the model hyper parameters are computed
using genetic algorithm. The novelty of the methodology is that
the models constructed with this methodology are accurate, fast
to evaluate with good generalization ability and low construction
time. The present methodology has been compared with two
other standard methodologies and the novelties are clearly
demonstrated with experimental results.

I. INTRODUCTION

An important step of an analog design automation process

is analog high-level design. This is defined as the trans-

lation of analog system-level specifications into a proper

topology of component blocks, in which the specifications

of all the component blocks are completely determined so

that the overall system meets its desired specifications [1].

There are two broad types of design methodologies available

in literature [2] to address the problem of analog high-

level design: optimization-based methodology and library-

based methodology. An optimization-based analog high-level

design methodology has two primary components: a search

algorithm and a high-level performance estimator. A high-level

performance estimation model is a function that estimates the

performance of an analog component block when some high-

level design parameters of the block are given as inputs [3].

Analog performance models constructed with regression

technique are generally fast to evaluate and the accuracy with

respect to real circuit-level simulation results is also good.

This technique is therefore, often used for construction of

performance models [4], [5], [6]. There are two types of

regression-based technique – parametric regression technique

and non-parametric regression technique. In parametric regres-

sion technique, a parameterised model is first proposed by the

model developer and the values of the parameters are then

fitted by some least-square error optimisation so that the model

response matches closely the response of the real circuit.

In non-parametric regression technique, a training network

(e.g., support vector machine, artificial neural network) is

used that is being trained with SPICE simulation results of

the real circuit until the response of the network matches

closely enough the response of the real circuit. An important

advantage of a non-parametric regression technique over a

parametric technique is that it does not require any model

template. However, a major limitation of the non-parametric

technique is that, the generalization ability of the constructed

models is often not good. In addition, the model construction

time is generally high which increases the design overhead.

In this work, we have developed a methodology for genera-

tion of high-level performance models for analog system using

least squares support vector machine (LS-SVM) technique.

The novelty of the methodology is that the constructed models

are accurate, fast to evaluate with good generalization ability

and low construction time. This methodology can be used

in conjunction with an optimization procedure to develop a

procedure for high-level topology sizing/optimization.

The rest of the paper is arranged as follows. Section II

reviews some related works. Section III presents the necessary

preliminary concepts. The methodology is described in detail

in Section IV. Experimental results are provided in Section V

and finally conclusion is drawn in Section VI.

II. RELATED WORK

A fairly complete survey of related works is given in

[7]. An analog performance estimation (APE) tool for high-

level synthesis of analog integrated circuits is described in

[8]. It takes the design parameters of an analog circuit as

inputs and determines its performance parameters (e.g., power

consumption, thermal noise) along with anticipated sizes of

all the circuit elements. A power estimation model for ADC

using empirical formulae is described in [3]. The estimators

are fast to evaluate. However, the accuracy with respect to real

simulation results under all conditions is off by orders of mag-

nitude. The technique for generation of posynomial equation-

based performance estimation models for analog circuits like

opamps, multistage amplifiers, switch capacitor filters, etc., is

described in [9]. An automatic procedure for generation of

posynomial models using fitting technique is described in [4].

A neural network based tool for automated power and area

estimation is described in [6]. Circuit simulation results are

used to train a neural network model, which is subsequently

used as an estimator. Fairly recently, support vector machine

(SVM) has been used for modeling of performance parameters

for RF and analog circuits [10], [5].
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III. PRELIMINARIES

A. High-Level Performance Model

Let us consider an analog system defined by a set of specifi-

cation parameters X̄ (e.g., gain, bandwidth of the system) and

performance parameters ρ̄ (e.g., input referred noise, power
consumption). These two parameters are related as

ρ̄ = P̄(X̄) (1)

where P̄ is referred to as the set of high-level performance

models of the system. Note that, a high-level performance

model is different from circuit-level performance model in

the sense that for high-level model, the input parameters are

specification parameters of the component-blocks, whereas for

circuit-level performance models, the input parameters are

transistor sizes and/or biasing.

The important requirements for a good high-level perfor-

mance model are: (i) The model needs to be low dimensional.

Only those specification parameters are to be considered as

inputs which have dominant contributions on a performance

parameter to be estimated. (ii) The predicted results need to

be accurate. The model accuracy is measured as the deviation

of the model predicted value from the true function value.

The function value in this case is the performance parameter

obtained from transistor level simulation. (iii) The evaluation

time must be short. This is measured by the CPU time required

to evaluate a model. (iv) The time required to construct an

accurate model must be small, so that the design overhead

does not become high. This is relatively harder to quantify.

This process involves both applying design knowledge to setup

testbench circuit and design variable selection and computa-

tional time needed to use an algorithm to train a model. As a

rough estimate, the construction cost is measured as

Tconstruction = Tdata generation + Ttraining (2)

where the terms are self explanatory. There exists a trade-

off between these requirements since a model with lower

prediction error generally takes more time for construction

and evaluation.

B. Least Squares Support Vector Regression

In recent years, the support vector machine (SVM), as a

powerful new tool for data classification and function esti-

mation, has been developed [11]. Suykens and Vandewalle

[12] proposed a modified version of SVM called least squares

SVM. In this subsection, we briefly outline the theory behind

the LS-SVM as function regressor.

Consider a given set of training samples

{xk, yk}k=1,2,...,Ntr
where xk is the input value and yk

is the corresponding target value for the k th sample. With a

SVR, the relationship between the input vector and the target

vector is given as

ˆ̄y(x) = wT φ(x) + b (3)

where φ is the mapping of the vector x̄ to some (probably
high-dimensional) feature space, b is the bias and w is the

weight vector of the same dimension as the feature space. The

mapping φ(x̄) is generally non-linear which makes it possible
to approximate non-linear functions. The approximation error

for the kth sample is defined as

ek = yk − ŷk(xk) (4)

The minimization of the error together with the regression is

given as

min J (w, e) =
1

2
wT w + γ

1

2

Ntr
∑

k=1

e2

k (5)

with equality constraint

yk = wT φ(xk) + b + ek, k = 1, 2, ..., n (6)

where Ntr denotes the total number of training data sets and

the suffix k denotes the index of the training set, i.e., k th train-

ing data, γ is the regularization parameter. LS-SVM considers

the optimization problem to be a constrained optimization

problem and uses dual Lagrangian-based formulation

L = J (w, e) −

Ntr
∑

k=1

αk

(

wT φ(X̄k) + b + ek − ρk

)

(7)

and applying ‘kernel trick’, we arrive at the final model [12]

ˆ̄y(x̄) =

Ntr
∑

k=1

αkK(xk, x) + b (8)

where K(xk, x) is the kernel function. The elegance of using
the kernel function lies in the fact that one can deal with

feature spaces of arbitrary dimensionality without having to

compute the map φ(x̄) explicitly. The Gaussian kernel function
defined as

K(xk, x) = exp
(

− ||xk − x| |2/σ2
)

(9)

is used in the present work, where σ2 denotes the kernel

bandwidth.

IV. HIGH-LEVEL PERFORMANCE MODEL GENERATION

In this section, we describe the various steps of the con-

struction methodology in detail.

A. Sample Space and Design of Experiments

While choosing the set of inputs, only those specifica-

tion parameters forming a set X̄ ′ ⊆ X̄ which have dom-

inant contributions to specific performance parameters ρ̄ =
{ρ1, ρ2, ..., ρn} are considered as inputs. This choice of in-
puts relies on the designer’s knowledge depending upon the

application system and the topology considered. The dominant

specification parameters are referred to as the high-level design

parameters. For ease of notation, the prime indicating the

reduction is omitted in the rest of this paper. Both the inputs

and the output of the performance model P are taken to be

functions of a set of geometry parameters ᾱ (transistor sizes)
of a component block, expressed as

X̄ = R(ᾱ) (10)

ρ̄ = Q(ᾱ) (11)
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Fig. 1. 2D projection of a four dimensional sample space.

R and Q represents the mapping of the geometry parameters

to electrical parameters. The multidimensional space spanned

by the elements of the set ᾱ is defined as circuit-level design
space Dα.

A set of geometry constraints is applied on the transistor

sizes to enclose a region within Dα, from which samples

are extracted for training data generation. These geometry

constraints include equality constraints as well as inequality

constraints. The equality constraints, expressed as algebraic

equations directly correlate the transistor sizes. For example,

for matching purpose, the sizes of a differential pair transistors

are equal. The equality constraints eliminate elements of the

set ᾱ and therefore reduce the dimension of the circuit-level
design space Dα. The inequality constraints exclude additional

portion of the reduced design space Dα, (correct notation is

Dα′ , which we avoid for ease of notation) without further

reducing its dimension. The inequality constraints are usually

given as box constraints, i.e., in the form of lower bounds and

upper bounds. The lower bounds are determined by the feature

size of a technology. The upper bounds are selected such

that the transistors are not excessively large. With elementary

algebraic transformations, all the geometry constraints are

combined into a single non-linear vector inequality, which is

interpreted element wise as:

C̄g(ᾱ) ≥ 0 ⇔ ∀i∈{1...q}Cgi(ᾱ) ≥ 0 (12)

These constraints as functions of ᾱ define a space, which we
call as a sample space Dg, defined as

Dg = {ᾱ | C̄g(ᾱ) ≥ 0} (13)

Clearly Dg ⊂ Dα. A two dimensional projection of a four

dimensional sample space is illustrated in Fig. 1. Within

the sample space, the circuit performance behavior becomes

weakly non-linear [13]. Therefore, simple sampling strategies

are used to construct models with good generalization ability.

The transistor sizes for generating training data correspond-

ing to X̄ and ρ̄ are restricted to Dg(ᾱ). The data generation
process is generally an expensive process. Strategies from

design of experiments (DOE) provide a mathematical basis

to select a limited but optimal set of sample points from

the sample space for training data generation. In the present

work, these points are generated using a Halton sequence

.1

.2

!2

!1

X2

X1

Sample

space

Output

space

Input

space

� �DQ

� �DR

� �XP

Fig. 2. Non-linear relation between the sample space and the input, output
space.

Design of Experiments

SPICE Simulation

Data Generation

Feasibility Checking

Data Processing

Sample Space Dg (transistor sizes)

Fig. 3. An outline of the procedure for generation of training data.

generator. A Halton sequence generator is a quasi-random

number generator which generates a set of uniformly dis-

tributed random points in the sample space. This ensures a

uniform and unbiased representation of the sample space.

B. Training Data Generation

From (10) and (11), we see that the inputs (X̄) and output
(ρ̄) of a high-level performance model P are functions of

transistor-level parameters ᾱ. The inputs and the outputs
are electrical parameters, whereas ᾱ is a set of geometry

parameters. The functions (R,Q) for mapping the geometry
parameters to the electrical parameters are complex non-linear

functions, considering the deep submicron effects of MOS

transistors. In this work, these are achieved element-wise

through a circuit simulation process, which is accepted to be

the most accurate technique. The relationships are illustrated

in Fig. 2. R and Q are used for generating the training data

and P is the performance model to be constructed.

The training data generation process is outlined in Fig. 3.
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For each input sample (transistor sizes) extracted from the

sample space Dg, the chosen circuit topology of a component

block is simulated using SPICE through Cadence Spectre tool.

The BSIM3v3 model is used for simulation, ensuring that

the important deep submicron effects are considered while

generating the training set. Depending upon the selected input-

output parameters of an estimation function, it is necessary to

construct a set of test benches that would provide sufficient

data to facilitate automatic extraction of these parameters via

postprocessing of SPICE output files. The commonly used

SPICE analysis are ac analysis, transient analysis, dc sweep

etc. The voltages and currents at the various nodes of the

circuit are also measured. A set of constraints, referred to as

feasibility constraints is then considered to ensure that only

feasible data are taken for training.

The generated input-output data are considered to be feasi-

ble, if either they themselves satisfy a set of constraints or the

mapping procedures (R,Q) through which they are generated
satisfy a set of constraints. The constraints are as follows [13]:

1) Functionality constraints Cf : These constraints are
applied on the measured node voltages and currents.

They ensure correct functionality of the circuit and are

expressed as

Cf = {fk(v, i) ≥ 0 k = 1, 2, ..., nf} (14)

For example, the transistors of a differential pair must

work in saturation.

2) Performance constraints Cp : These are applied directly
on the input-output parameters, depending upon an ap-

plication system. These are expressed as

Cp = {fk(ρ̄) ≥ 0 fk(X̄) ≥ 0 k = 1, 2, ..., np} (15)

For example, the phase margin of an opamp must be

greater than 450.

The total set of constraints for feasibility checking is thus

C = {Cf ∪ Cp}.
Data scaling is an essential step to improve the learn-

ing/training process of SVMs. The present methodology em-

ploys both linear scaling as well as logarithmic scaling de-

pending upon the parameters chosen.

C. LS-SVM Hyperparameter determination

To obtain good performances, some parameters in the SVM

models have to be chosen carefully. These parameters include:

(i) the regularization parameter γ, which determines the trade-
off between minimizing the training error and minimizing

the model complexity and (ii) parameter (σ 2) of the kernel

function that implicitly defines the non-linear mapping from

the input space to some high-dimensional feature space. These

higher level parameters are usually referred to as hyper param-

eters. In general, in any SVM problem, if the hyper parameters

of the model are not well selected, the predicted results will

not be good enough and the generalization ability will also

be poor. Tuning of these hyper parameters is usually done

by minimizing the estimated generalization error. The gener-

alization error is a function that measures the generalization

Initialization of

parameters

(chromosomes)

No

Yes

Stop ?

Calculate fitness of

each candidate

solution

Train LS-SVM

Obtain optimal parameters

Create offspring

(crossover, mutation)

Selection

Fig. 4. Outline of GA-based hyperparameter selection procedure

ability of the constructed models, i.e., the ability to predict cor-

rectly the performance of an unknown sample. In the present

methodology, hold-out technique is used for estimating the

generalization error. This is a simple technique for estimating

the generalization error. The data set is separated into two

sets, called the training set and the testing set. The SVM is

constructed using the training set only. Then it is tested using

the test data set. The test data are completely unknown to

the estimator. The errors it makes are accumulated to give the

mean test set error, which is used to evaluate the model.

The present methodology uses genetic algorithm (GA)-

based technique for determining optimal values of the model

hyperparameters. The task of selection of the hyper parameters

is same as an optima searching task, and each point in the

search space represents one feasible solution (specific hyper

parameters). An outline of the GA-based process is shown

in Fig. 4. The chromosomes consist of two parts, log
2
γ and

log
2
σ2. During the evolutionary process of GA, a model is

trained with the current hyper parameter values. The fitness of

the chromosomes depends on the average relative error (ARE)
calculated over the test samples. The fitness function is defined

as

fitness =
1

ARE(γ, σ2)
(16)

Thus, maximizing the fitness value corresponds to minimizing

the predicted error. The ARE function is defined as

ARE =
1

Nteρ′

Nte
∑

1

(ρ′ − ρ) (17)

Here Nte, ρ and ρ′ are the number of test data, the SVM es-

timator output and the corresponding SPICE simulated value,
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Fig. 5. PMOS OTA circuit

TABLE I

TRANSISTOR SIZES AND FEASIBILITY CONSTRAINTS FOR OTA

Parameters Ranges
W1 = W2 [280nm, 400µm]

Transistor Sizes W3 = W4 = W6 = W7 [1µm, 20µm]
Geometry W8 = W9 [280nm, 10µm]
Constraints W5 [1µm, 50µm]

CL [1pF, 10pF ]

Parameters Range
Functional Vgs − Vth ≥ 0.1V
Constraints Vop ≈ 0.9V

Voff ≤ 2mV

Slew rate [0.1V/µs, 20V/µs]
Performance Bandwidth ≥ 2MHz
Constraints DC Gain ≥ 70 dB

Phase margin
[

450, 600
]

respectively. The fitness of each chromosome is taken to be

the average of five repetitions. This reduces the stochastic

variability of the model training process in GA-based LS-

SVM.

D. Quality Measures

Statistical functions are generally used to assess the quality

of the generated estimator. The ARE function defined in (17)

is one such measure. Another commonly used measure is the

correlation coefficient. This is defined as follows:

R =
Nte

∑

ρρ′ −
∑

ρ
∑

ρ′
√

[

Nte

∑

ρ2 − (
∑

ρ)
2

] [

Nte

∑

ρ′2 − (
∑

ρ′)
2

]

(18)

The correlation coefficient is a measure of how closely the LS-

SVM outputs fit with the target values. It is a number between

0 and 1. The higher the correlation coefficient, the better it is.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results demonstrat-

ing the methodology described above. The entire methodology

has been implemented in Matlab environment and the training

of the LS-SVM has been done using Matlab toolbox [14].

A. Experiment 1

A two stage CMOS operational transconductance amplifier

(OTA) is shown in Fig. 5. The technology is 0.18µm CMOS

process, with a supply voltage of 1.8V . The transistor level
parameters along with the various feasibility constraints are

TABLE II

HYPER PARAMETER VALUES AND QUALITY MEASURES

Model σ2 γ ARE(%) R Ttr

Training Test Training Test (min)

ρ1 2.38 250.13 1.82 2.48 0.999 0.998 12.06

ρ2 5.62 480.19 2.12 3.82 0.994 0.961 10.83

ρ3 5.19 140.15 1.98 2.90 0.999 0.998 11.56
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0
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0.4

0.6
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Original Value

P
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d
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te
d
 V

a
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e

Test data
Correlation Coeff = 0.998

Fig. 6. Scatter plot of estimated and original values for the noise model with
normalized test data.

listed in Table I. We consider the problem of modeling input

referred thermal noise (ρ1), power consumption (ρ2) and out-
put impedance (ρ3) as functions of DC gain (X1), bandwidth
(X2) and slew rate (X3). From the sample space defined by
the transistor sizes, a set of 5000 samples is generated using

a Halton sequence generator. These are simulated through ac

analysis, operating point analysis, noise analysis and transient

analysis using SPICE program. Out of all samples, only 1027

samples are found to satisfy the functional and performance

constraints listed in Table I.

The estimation functions are generated using LS-SVM

technique. The generalization errors are estimated through the

hold-out method. The hyper parameters are computed through

the GA-based technique. The population size is taken to be

ten times the number of optimization variables. The crossover

probability and the mutation probability are taken as 0.8 and

0.05 respectively. These are determined through a trial and

error process. The hyper parameter values and the quality

measures of the constructed models are reported in Table II.

We find that the constructed models are quite accurate with

average relative generalization ability error less than 4%.

The scatter plot of SPICE-simulated and LS-SVM estimated

values for normalized test data of the noise model is shown in

Fig. 6. The scatter plot illustrates the correlation between the

SPICE simulated and the LS-SVM estimated test data. The

correlation coefficient is very close to unity. Perfect accuracy

would result in the data points forming a straight line along

the diagonal axis.
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TABLE III

COMPARISON BETWEEN OUR METHOD AND [5]

Model Method ARE(%) R
Training Test Training Test

ρ1 Our 1.82 2.48 0.999 0.998
[5] 2.86 6.48 0.999 0.875

ρ2 Our 2.12 3.82 0.994 0.961
[5] 3.32 7.18 0.980 0.800

ρ3 Our 1.98 2.90 0.999 0.998
[5] 2.02 5.14 0.999 0.937

B. Experiment 2

In this experiment, we provide a comparison between our

methodology of developing a performance model and that

presented in [5]. The model hyper parameters are determined

in [5] through heuristic technique. The same performance

models are used for comparison purpose. The comparison

results with respect to average relative generalization error

(ARE), correlation coefficient (R) are reported in Table III.
We observe from the comparison results that the generalization

ability of the model constructed with our methodology is better

than that constructed through [5] technique. This is because

of the optimal choice of LS-SVM hyper parameters in our

methodology through an optimization process.

C. Experiment 3

Here we present a comparison between our methodology

and the EsteMate technique [6]. The power consumption

model is reconstructed using the EsteMate technique. A set

of 5000 samples is considered. For each selected sample, an

optimal sizing is performed with a simulated annealing-based

optimization procedure and standard analytical equations. The

performances of each configuration is measured within the

optimization process and are checked for feasibility. Out of

all samples, only 3205 samples are accepted and the rest are

rejected. The determination of the training set took 10 hours

of CPU time. The training is done through an artificial neural

network structure with two hidden layers. The comparative

results are shown in Table IV. The generalization ability of our

methodology is better than that of [6]. This is becuase of the

use of SVM in our methodology. The generalization ability

of SVM is found to be better than that of neural network

[12]. In EsteMate, for each sample, a complete circuit sizing

task using a global optimization algorithm is required for

generation of the training data. This is usually prohibitively

time consuming. On the other hand in our method, simple

circuit simulations using the sampled transistor sizes are

required for data generation. Feasibility checking are done

afterwards Therefore, the cost of training data generation in

our method is much less compared to that in the EsteMate

methodology. This is evident from the experimental results

also.

VI. CONCLUSION

This paper presents a systematic methodology for genera-

tion of analog high-level performance model using LS-SVM.

TABLE IV

COMPARISON BETWEEN OUR METHODOLOGY AND ESTEMATE [6]

Method # Samples ARE(%) Generation
time

Training
time

Training Test Training Test

Our 821 206 2.12 3.82 14 min 10.83 min

[6] 2564 641 2.88 6.53 10 hour 21 min

The transistor sizes along with a set of feasibility constraints

applied over them define the sample space. The SVM hyper

parameters are determined through GA-based optimization

technique. The quality of the constructed models is estimated

by comparing the predicted performances with actual circuit-

level simulation results. The novelty of present methodology

is that the models constructed with this methodology are

accurate, fast to evaluate with good generalization ability and

low construction time. The methodology has been compared

with other standard methodologies and the advantages of

our methodology have been demonstrated with experimental

results. The current methodology can be used in conjunction

with an optimization procedure to develop a procedure for

high-level topology sizing/optimization.
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