
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999 331

A Design Space Exploration Scheme
for Data-Path Synthesis

Chittaranjan A. Mandal, Partha Pratim Chakrabarti,Member, IEEE,and Sujoy Ghose,Member, IEEE

Abstract—In this paper, we examine the multicriteria opti-
mization involved in scheduling for data-path synthesis (DPS).
The criteria we examine are the area cost of the components
and schedule time. Scheduling for DPS is a well-known NP-
complete problem. We present a method to find nondominated
schedules using a combination of restricted search and heuristic
scheduling techniques. Our method supports design with archi-
tectural constraints such as the total number of functional units,
buses, etc. The schedules produced have been taken to completion
using GABIND as written by Mandal et al., and the results are
promising.

Index Terms—Data-path synthesis, design space exploration,
scheduling, VLSI.

I. INTRODUCTION

DATA-PATH synthesis (DPS) first involves scheduling of
operations and then allocation and binding of abstract

design entities to their physical counterparts. At the end
of DPS, we are required to find one or more “optimized”
implementations for a given behavioral specification. In gen-
eral, the objectives of optimization are multifold, making the
DPS a multicriteria optimization problem. In this paper, we
consider the scheduling problem along with the criteria of
area (estimated through the cost of individual components)
and performance of the final design measured as a function
of the length of the schedule. These two criteria are noncom-
mensurate and we represent the cost of a design as a tuple
of costs of the individual objectives, similar to the approach
taken in Stewartet al. [2]. One cost tuple is said to be better
than another distinct cost tuple if the cost of each criterion
of the first tuple is no worse than the corresponding costs
of the other tuple. A design whose cost tuple is better than
that of another design is said to dominate that design. The
global problem of optimization is to find the set of designs
that are not dominated by any other design. The set of feasible
designs satisfying the design parameters constitute the design
space. Each design point in the design space corresponds to an
estimate of hardware requirement and performance, computed
as a function of the schedule time. Thus, an algorithm for
DPS needs to consider techniques not only for scheduling and
allocation, but also for a systematic exploration of the design

Manuscript received September 12, 1996; revised October 14, 1998.
C. A. Mandal is with the Department of Computer Science and Engineering,

Jadavpur University, Calcutta 700032, India (e-mail: crmandal@hotmail.com).
P. P. Chakrabarti and S. Ghose are with the Department of Computer

Science and Engineering, Indian Institute of Technology, Kharagpur WB
721302, India (e-mail: ppchak@cse.iitkgp.ernet.in; sujoy@cse.iitkgp.ernet.in).

Publisher Item Identifier S 1063-8210(99)04563-1.

space to locate these nondominated designs. The starting point
of design space exploration (DSE) often revolves around
the basic scheduling problem. We perform DSE using a
combination of controlled search and heuristic scheduling
techniques.

Conventional scheduling algorithms require a time con-
straint or specification of the available hardware operators
or functional units (FU’s). In a practical DPS situation, nei-
ther the appropriate time constraint, nor the appropriate FU
requirement will be known in advance. Through DSE, we sys-
tematically explore several combinations of time constraints
and hardware resource configurations that are feasible. In
our scheme, we have a state space generation mechanism
coupled with an estimator for obtaining various (hardware cost,
performance) estimates. A controlled depth first branch and
bound is used to determine the hardware cost estimate and
produce a partial schedule for a given time constraint. The
search is controlled by a few design parameters.

At the heart of the DSE mechanism is the controlled-search-
based resource estimation and partial scheduling (REPS) al-
gorithm. The basic DSE technique makes use of the REPS
algorithm to estimate the hardware requirement, as tightly
as possible, so that the design parameters are also satisfied.
REPS also returns a partial or complete schedule depending
on the situation. Scheduling, however, is an NP-hard problem
[3] and, for large problem instances, it may be necessary to
settle for a restricted search. With restricted search, the design
points obtained are approximate [lower bounds (lb’s)] and
the schedules may be partial in the sense that the degree of
freedom of some operation may still be more than one. To
meet this situation, a local exploration mechanism has been
developed to explore the neighborhood of such a design point
to obtain one or more nondominated design points for which
feasible schedules will exist. The local exploration mechanism
also produces a feasible schedule for each design point that it
returns. Such schedules are obtained using existing scheduling
techniques, which perform scheduling using the precedence
constraints and sometimes the available hardware resources.

In the following, we present details of our solution to
the problem of DSE to generate a set of schedules that
will represent nondominated designs. The inputs for DSE
are explained in Section II. The estimates used by REPS for
hardware cost and schedule time are discussed in Section III.
REPS itself is presented in Section IV. The overall DSE
mechanism (which uses REPS) is then explained in Section V.
Finally, the experimental results and conclusions are presented
in Sections VI and VII, respectively.

1063–8210/99$10.00 1999 IEEE



332 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

II. I NPUTS TO DSE

Operation precedences are the most important input to the
DSE algorithm. For practical design examples there will be a
number of basic blocks (bb’s) and for operations in each bb
there will be precedence constraints in the form of a partial
order. Each type of operation is also assigned an execution
time, which indicates the number of time steps over which the
operation will execute. The execution time of an operation is
determined by the speed of the hardware implementation of
that type of operation.

In order to explore the designs that are possible for a given
behavioral specification in reasonable time and structured
manner, it is desirable to guide the design process with some
simple user-specified parameters. Our DSE scheme uses the
following parameters:

1) NFUS;
2) NBUS;
3) NVREF.

NFUS indicates the number of sites where hardware operators
will be clustered. However, FU’s need not be formed during
scheduling. No two hardware operators at the same site may
receive inputs or deliver outputs in the same time step.
NFUS controls the maximum operation parallelism in the
implementation. NBUS is the maximum number of logically
distinct buses in the system and determines the maximum
number of concurrent data transfers. NVREF is the maximum
number of distinct variable references permitted in any time
step. Reading and writing to a variable are considered distinct
accesses. This parameter is used to have a check on the storage
bandwidth.

Though the above parameters are independent, they are well
corelated. It may be expected that and

.

III. M EASURES FORDSE

In general, we shall have to resort to scheduling to find
design points. Since exact scheduling is computationally in-
tensive, we rely on heuristic measures to aid scheduling and
compute the tuple costs. The measures we compute are as
follows.

A. Estimates of Hardware Requirement

We would, like to estimate the costs of the following:

1) hardware operators;
2) storage elements;
3) buses;
4) switching elements.

At this early stage of design, it is difficult to have reliable
estimates of these register transfer level (RTL) components
mentioned above. Among these, it is easiest to estimate the
requirement of hardware operators. It is also possible to
estimate the storage requirement before scheduling has been
done [5], but this estimate is relatively less reliable. It is most
difficult to estimate the switch requirement before scheduling
has been performed, and this cost has been excluded in this
paper. All the above estimates are more accurately computed

for a scheduled design. For a scheduled straight-line code,
the minimum storage cost can be obtained using theleft
edge algorithm[6]. For a bus-based interconnection scheme,
a reasonable estimate of switch requirement can be obtained
after transfers have been mapped to buses [7]. In Section III-
B, we indicate the computation of lb estimates for specific
hardware operators, total number of operations in any time
step, and the bus requirement.

B. Estimators for DSE

1) Estimation of Resources for Specific Operations:A
method similar to [8] and [9] is used to compute a lb estimate
of each hardware operator. We first introduce the notion of
a window, which we shall use to compute the estimates. A
contiguous sequences of time steps is referred to as a window.
Given a directed acyclic graph (DAG) to be scheduled in

time steps, there can be windows of size one,
windows of size two, etc., and one window of size. Thus,
there can be a total of windows with time steps.
For determining the estimate, it is necessary to determine the
earliest and latest times at which each operation in the DAG
(of a bb) may be scheduled. These are most conveniently
determined from the as soon as possible (ASAP) and as long
as possible (ALAP) schedules.

The construction of the lb is now explained. First consider
any window in the given DAG of , steps and starting
at time step . Consider any operation in the
DAG, let the earliest time step where it can be scheduled be

and the latest time step where it can be scheduled be.
If and then, in each and every possible
schedule of the DAG, must lie in the aforesaid window.
Let the operation be of type . Let there be a total of
operations of type restricted in the same manner to lie in
this window, then at least hardware operators
are required to realize the operations of typein the DAG.
Let .
Then, is also a lb on the number of hardware operators for
operations of type . Similarly, let be the maximum of
over all the DAG’s. This too is a lb. This is the principle that
has been used to derive the lb’s on the number of operation
units of type for the design. If is the cost per unit for
an operator of type then the estimate of the resource cost
is defined as .

2) Estimation on the Total Number of Operations per Time
Steps: This metric is required to ensure that the parameter
NFUS is not violated. It is computed in a manner similar to the
method explained above, for the previous metric. Therefore,
this estimate is also obtained as an lb. Only in this case, no
distinction is made between the different types of operations,
and all the operations occurring in a window are counted.

3) Estimation for Buses:The bus requirement is estimated
by examining the transfers that take place in various win-
dows. Each operand of an operation contributes to a transfer.
Transfers also arise due to variable assignments. We consider
the transfers that will be restricted within the window under
consideration and then compute the lb on the number of
concurrent transfers. Common variables that form inputs to



MANDAL et al.: DSE SCHEME FOR DPS 333

operations need to be handled carefully. For the purpose of
computing an lb, transfers arising from the same variable to
operations that are neither ancestors, nor descendents of one
another may be counted only once, otherwise they may be
considered distinct.

4) Estimation for Variable Accesses:The number of dis-
tinct variable accesses is determined by examining the variable
accesses that take place in various windows. Each input and
output operand of an operation contributes to a variable access.
As usual, we consider the accesses that will be restricted
within the window under consideration to compute the lb.
Input operands named by the same variable need careful
handling. Like the lb determination for buses, variable accesses
by operations that are neither ancestors or descendents are
counted only once, otherwise they may be considered distinct.

The above estimation methods are applicable to individual
DAG’s of bb’s. For multiple bb’s, these estimators need to be
applied to each of those bb’s. The global lb is obtained by
merging the individual lb’s.

5) Schedule Time:The schedule time is dependent on the
duration of the clock cycle and the number of time steps in
the schedule. We will, in general, only be concerned with
the number of time steps. However, when the intermediate
representation of the BS consists of multiple bb’s, the effective
schedule time of the design needs to be suitably defined, as a
function of the time steps for each bb.

IV. SEARCH ALGORITHM FOR REPS

The REPS algorithm uses the estimators described in the
previous section to determine the resource cost for a given
schedule time. It also returns a complete schedule if the
window size is set to one. If , then it returns
a partial schedule in the sense that the degrees of freedoms
(DOF) of all operations are suitably reduced. Some operations
may still have nonzero DOF, but no more than. We have
experimentally found that these estimators work better for
smaller DAG’s. Thus, the REPS algorithm partitions the DAG,
if necessary, into smaller DAG’s, applies the estimator to
these partitions, and combines the estimates for the different
partitions to arrive at the final estimate. The schedules of
partitions are combined to return the partial schedule of the
entire DAG. The REPS algorithm does a systematic search of
the problem space, using DAG partitioning as the state space
decomposition procedure.

A. DAG Partitioning

The partitioning scheme involves splitting thetime steps,
in which to schedule (a partition of) the DAG, if ,
into bands, each of at most time steps. Each
operation of the DAG is restricted to lie in only one of these
bands. For operations whose ASAP and ALAP timesand

lie within a band, nothing needs to be done. For other
operations, it is necessary to take a decision regarding the
band where it should be restricted to be scheduled. The process
of decomposition continues recursively until the size of none
of the partitions of the current DAG are more than. The
resource requirement of a particular type of resource in the

design is the maximum requirement of that resource over all
the partitions of a particular DAG.

B. The Search Scheme

The memory requirement for storing the partial solutions is
high. Thus, we have chosen the depth first branch and bound
(DFBB) search, whose memory requirement is minimal. In
the search scheme, the partitioned DAG’s are treated like
separate DAG’s. If the number of time steps within which
the DAG needs to be scheduled does not exceed, then
no more repartitioning is done and the current estimates are
accepted. Otherwise, it is split into two smaller DAG’s. The
splitting is done near about the middle so that the two sub-
problems generated are of similar size. If there are one or more
operations crossing the boundary, then all the possibilities of
distributing these operations need to be tested out. This is
where the search comes in. We perform the search by explicit
backtracking. In order to keep track of the moves, a stack
(stack1) is used. For an operation that crosses the partition
boundary, there are three moves to be made, which are as
follows.

1) It has to be scheduled in the top half.
2) It has to be scheduled in the lower half.
3) Its original freedom has to be restored.

The first two moves are forward moves, while the third move
is there to perform backtracking. The first move is performed
right away, while the other two are put into the stack (stack1)
in that order. After making a move, the ASAP and ALAP
schedules are recomputed. When the move made is of the
forward type, the resource estimate is computed. This is an lb
estimate and may increase as the depth of the search increases.
If this estimate exceeds the estimate of the best design found
thus far, the current move is then rejected and backtracking is
initiated. Move rejection followed by backtracking also takes
place if the resource estimate after the move is found to be
infeasible with respect to the design parameters. Initially, there
is no solution and, thus, at the beginning, a dummy solution
of very high cost is assumed. This solution is replaced by the
first (partial) feasible solution that is found.

When partitioning is done, it becomes necessary to handle
multiple bb’s. A list is used to handle these bb’s. To start with,
the initial bb is entered in the list. The list is then passed to
REPS to estimate the resource requirement for a single bb. The
bb at the head of the list is examined. In case the bb is a small
one, then it is temporarily removed from the head and placed
in another stack (stack2). Otherwise, it is partitioned into two
smaller blocks and entered at the end of the list. By placing
the partitioned bb’s at the end of the list, it is ensured that the
sizes of the bb’s in the list are near about the same. Therefore,
the resource estimate obtained is, in some sense, a useful one.

When the list becomes empty, it is assured that the sizes
of all the (partitioned) bb’s is less than or equal to. When
this condition is satisfied, no more partitioning needs to be
done, and the set of stacked (stack2) bb’s constitute the partial
schedule. If , then this is also the complete schedule and
corresponds to a feasible design point. Otherwise, the design
point found is an approximate one. If this point corresponds to



334 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Fig. 1. DAG for example 1.

a design with a better (lower) resource estimate than that of the
best stored design, then it replaces that design, otherwise it is
rejected and backtracking is initiated. The algorithm terminates
with a failure if there exists a partition where the design
parameters cannot be possibly satisfied.

The requirement for each resource is generated in the form
of the tuple , where is the number of units of that
entity occurring in a window of size in the bb . Such tuples
are generated for the maximum number of operations per time
step, bus requirement, storage access point requirement, and
requirement for hardware operator for each type of operation.

is the lb on that resource. Tuples, instead of the
resource requirement, are generated because this information
is needed by the exploration heuristic used in the DSE tool
(Section V-A).

The search mechanism explained above has one anomaly.
The problem is that when REPS is being done with a relaxed
time constraint, then the search space turns out to be far larger
than when REPS is being done with a tighter time constraint.
This situation is addressed by running an approximate schedul-
ing algorithm on the current bb before going ahead to partition
it into smaller bb’s. Basically, a time- and resource-constrained
scheduling-type approximate scheduling algorithm is required.
If a time-constrained scheduling-type algorithm is used, then
the final resource requirement after scheduling should not
exceed the lb estimate of the resource requirement while
satisfying the design parameters. If a resource-constrained
(hardware operators) scheduling-type algorithm is used, then
the time steps required should not exceed the available number
of time steps. If the approximate scheduling algorithm termi-
nates successfully, then the current bb may be assumed to
satisfy the lb on the resource estimate and the remaining bb’s
may be examined.

Example 1: We consider the DAG, shown in Fig. 1, for
scheduling in ten time steps. We first note that DAG’s of this
type pose a difficulty for the hardware lb estimator described

earlier. If we compute the lb for scheduling in nine time steps,
then the estimator will report a requirement of two adders,
whereas three adders will be actually needed.

For illustrating the working of REPS, we consider a sched-
ule in ten time steps for the aforementioned DAG, with

. An inspection of Fig. 1 reveals that two adders will be
required. The estimator initially determines the correct lb in the
start step (state 0), but the approximate scheduling algorithm
fails to schedule using two adders in ten time steps. Hence,
partitioning of the DAG is required.

We choose the fourth time step for partitioning. The time
steps are assumed to increase in a direction opposite to the
direction of the dependencies. Thus, in Fig. 1, operation 1
would be scheduled before operation 2. The time frame of
the operation marked “1” in Fig. 1 spans across this time
step. We restrict it to be scheduled on or before time-step
4 (state 1). This decision does not complete the partitioning
of the DAG. Partitioning is completed after the operation
marked “2” in Fig. 1 is scheduled after time-step 4 (state 2).
The lb continues to be three and, this time, the approximate
scheduling algorithm succeeds in finding a schedule without
violating the lb This case is recorded as the current best
solution. Backtracking is initiated. Since the lb of the parent
state (state 1) matches with the current cost, the other child of
state 1 is not generated. Backtracking is continued to state 0.

The other option of scheduling the operation marked “1,”
above or at time-step 4 is exercised, leading to state 3. The
lb continues to be two and the partitioning is completed by
restricting the node marked 3 in Fig. 1 on or before time-step 4
(state 4). The approximate scheduling algorithm succeeds and
a new and better solution is recorded. Backtracking is initiated
and continues to the start state and the algorithm terminates.
After partitioning, in states 2 and 4, the two smaller DAG’s
are entered into the queue. The schedule of the approximate
algorithm that obtained the best solution (for this problem) is
accepted as the schedule. However, it must be noted that, in
some cases, partial schedules may be returned when
and lb’s and upper bounds (ub’s) from solutions obtained by
approximate algorithms do not match.

C. Multicycling and Pipelining

Special care has to be taken for operations whose execution
does not get completed within a single time step, as for
multicycle and pipelined operations. We consider only simple
arithmetic pipelined implementations because these are the
ones that are most commonly used in practice in DPS. When
multicycle or pipelined operations are present, they may
sometimes cross-partition boundaries. In such situations, the
computation of the lb is more involved.

REPS handles multicycle operations in the following man-
ner. Suppose that the time frame of a multicycle operation of

time steps crosses the partition boundary set at time. Up
to possibilities need to be examined. These are, initiating
the operation at times earlier than time step , initiating
the operation at times , and at times, later than
. Initiation of the operation at specific times is the additional

overhead for handling multicycle operations. When more than



MANDAL et al.: DSE SCHEME FOR DPS 335

a single operation crosses the partition boundary, partitioning
is initiated with the operation requiring the least number of
cycles for its execution. Handling of pipelined operations is
as follows. Consider a-stage pipelined implementation with
a stage delay of of an operation of type . The result of
such an operation will be obtained time steps after
initiation. Therefore, while scheduling, the number of time
steps to complete operations of typeshould be taken as.
The lb is obtained as for a multicycle operation, the stage
delay being used in place of the number of time stepsof
the multicycle operation.

V. SCHEME FOR DSE

We now describe the overall scheme for DSE. At the heart of
the DSE technique is the REPS algorithm, which is repeatedly
invoked with varying time constraints. The time constraints
with which REPS is invoked is determined by the exploration
heuristic in Section V-A. With each invocation REPS either
indicates that the time constraint is not feasible or it returns a
design point and a schedule. The design points thus obtained
are used to obtain the design space. When a new design point
is obtained, one of the three conditions will be true.The point
is dominated by existing design points.In this case, this design
point has to be discarded.The point dominates a set of the
existing design points.All the dominated points have to be
discarded and the new point has to be incorporated in the
design space.It neither dominates, nor is it dominated by other
design points.The point is simply incorporated in the design
space. With , then REPS will generally return a partial
schedule and an approximate hardware requirement. In this
case, it is desirable to obtain the complete feasible schedules,
which will be needed for performing subsequent allocation
and binding. These schedules will have to be obtained using
approximate scheduling algorithms. The detailed scheme of
obtaining complete schedules from approximate design points
is explained in Sections V-B and V-C.

A. Exploration Heuristic

The resource cost estimation scheme described above re-
quires the number of time steps for each bb to be specified.
To start with, the number of time steps for each DAG is
set to its critical length, and then REPS is invoked. The
resulting resource requirements are computed from the tu-
ples, as explained above, and examined. It was mentioned in
Section IV-B that the requirement for each hardware resource
or the requirement of FU’s, buses, etc., are generated in the
form of the tuple , where is the number of units of
that entity occurring in a window of size in the bb . In case
any of the design parameters is violated, a corrective action is
taken as follows. Suppose that a design parameterhaving
the value is violated, i.e., . Consider the
effect of adding time steps to the DAG of the bb

. Now, the earliest time of each operation, remains
unaltered, but goes up by . Therefore, each operation
previously restricted to lie in a window of size will now lie
in a window of size . A minimal number of time steps

is added to so that, i.e., .
REPS is invoked after making the correction.

The DSE retains the set of mutually nondominating design
points that have been found. When a design point, character-
ized by the time constraints and the resource cost estimate,
is found to be feasible, it is compared with the stored design
points. If it is dominated by any point, then it is not included
in the set. If it dominates any point of the set, then it replaces
that point. Exploration continues with a new set of constraints,
generated as follows. For each operationwhose requirement
exceeds unity, we identify the DAG’s where it is required
maximally. In each of these DAG’s, we determine the time
by which the time constraint of that DAG should be relaxed
so that the new requirement of the operator will be one less,
i.e., . Let be the maximum
of all the times computed above. Let be the DAG where
this relaxation may be effected. Let be the operation for
which has the minimum (nonzero) value of all the’s.
Let be the corresponding DAG.

We now relax the time constraint on the bb for by
so that . This is the
heuristic use to conduct the exploration of the design space.
Exploration is terminated when the resource requirements of
all the operations becomes unity.

B. Scheduling Schemes for Use with DSE

We have noted that the REPS generates (hardware cost,
performance) estimates and corresponding schedules for a
given design input. When the grain of partitioning is a single
time step, the schedule obtained is necessarily complete. For
a larger grain of partitioning the schedules obtained may be
partial. For subsequent allocation and binding complete sched-
ules are needed. Most of the existing scheduling algorithms,
like force-directed list scheduling (FDLS) [10], can be adapted
to work with the partially scheduled DAG’s generated by
REPS. However, the performance of such modified heuristic
algorithms may not match the performance of the original
algorithm. The solutions obtained from this completion gives
us ub estimates. If these match with the lb estimates obtained
through DSE, we can terminate with accurate design points
and schedules.

The ub’s obtained for the partial schedules may differ from
the lb estimates found by REPS. It is quite possible that
for a time constraint and a set of hardware operators, as
indicated by a design point, a feasible solution might not exist.
Even if such a solution does exist, it might be missed out
by the approximate scheduling algorithm. However, feasible
solutions will be present in the neighborhood of a design
point. We, therefore, resort to a systematic generation of
nondominated (performance, FU requirement) design points
and corresponding feasible schedules in the neighborhood of
a design point reported by REPS and retained by the DSE
mechanism. We refer to this as local exploration. We rely
on existing scheduling algorithms, such as FDLS [10] or the
scheduling method proposed in [9], and use them in an appro-
priate framework. Such a local exploration scheme should be
capable of examining the neighborhood of a design point for



336 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

feasible nondominated solutions using approximate scheduling
algorithms. The choice of polynomial time techniques here is
emphasized because an exact method could be used otherwise
to obtain the schedule in the first place.

Thus, after the first phase of DSE, we have a set of design
points. With each design point, we also have the set of parti-
tioned DAG’s, which had led to its FU estimate component. At
this juncture, we complete the schedules of these partitioned
DAG’s using standard algorithms like FDLS [10] or the
scheduling method proposed in [9]. The solutions obtained
from this completion gives us ub estimates. If these match
with the lb estimates obtained through DSE, we can terminate
with accurate design points and schedules. On the other hand,
if the ub’s and the lb’s differ, we explore around the estimated
design point for feasible schedules leading to nondominated
performance, FU requirementdesign points. That is, we

make limited search (in polynomial time) around the estimated
design points obtained earlier. Our study of some list schedul-
ing algorithms shows that these algorithms usually terminated
with optimal solutions for small DAG’s. Therefore, in our state
space generation, we performed decomposition in a balanced
manner to ensure that the subproblems generated after DSE are
small and more suitable for existing scheduling algorithms. In
Section V-C, we examine the local exploration scheme.

C. Local Exploration

Given a design point for which only a partial schedule is
available, we first try to schedule using the available time
and resource constraints to check for the existence of a
solution. If such a schedule is found, then we are done. If
case scheduling fails for the time and resource constraint,
as indicated by the design point, then the time constraint as
well as the resource constraint can be relaxed. The relaxation
of these constraints also constitutes a search space. We have
adopted a heuristic relaxation scheme. The algorithm works in
polynomial time. This relaxation scheme effects both resource
and time constraint relaxation. Otherwise, it initiates time
relaxation on a copy of the design point, keeping the original
one for resource relaxation. The time is relaxed in steps and
for each new constraint, a schedule is found. The actual
schedule found may not satisfy the constraint; anyway, the
schedule along with the actual design point corresponding
to the schedule is incorporated in the set of nondominated
designs. It is necessary to incorporate a schedule, even if
it does not satisfy the design constraint, to accommodate
the inadequacy of the approximate scheduling algorithm, and
ensure a proper termination of the approximate scheduling
scheme. The time constraint is relaxed until the new design
point is dominated by one of the designs in the set of
nondominated designs. This marks the end of a run of time
constraint relaxations.

Now, the resource constraint on the original design is
relaxed and the entire process is repeated until the new
resource constraint turns out to be dominated by one of the
designs in the set of nondominated designs.

The approximate scheduling algorithm that has been used
here is the force directed list scheduling algorithm [10].

Fig. 2. Illustration of basic DSE scheme.

However, any other approximate scheduling algorithm can
also be used. The quality of the design space actually will
be governed by the quality of the approximate scheduling
algorithm.

We summarize the working of the overall DSE technique
as follows, referring to Fig. 2. In this figure, the filled circles

indicate the actual nondominated design points that we
would like to uncover through DSE. For small problems where
REPS can be run with window size , these points
are directly obtained. We consider a scenario where REPS is
invoked with . The design points returned by REPS are
indicated by and . These are approximate design points.
We do not consider the points indicated bybecause these
are dominated by the points marked. The feasible schedules
in the neighborhood of these points (indicated by the large
circles) are now found by local exploration. These points are
marked by empty circles It may be noted that some of these
points coincide with the design points found by REPS (marked

). These are optimal schedules because the lb and the ub costs
are identical. In other cases, these are distinct.

VI. EXPERIMENTATION

The techniques proposed in this paper have been imple-
mented and tested. The implementation has been done in C
in a UNIX environment. We have performed DSE on some
common examples, such as Facet [11], differential equation
solver [5], and elliptic wave filter [12]. We now describe our
experimentation.

Table I indicates the design points obtained after DSE
of facet, diffeq., and elliptic wave filter, respectively. All
these designs are for single-cycle implementations of the
operations. The first two columns indicate design parameters.
The design points obtained after DSE for anexampleare
indicated in the block entitled “DSE results forexample,”
while the actual results obtained after allocation and binding
are indicated alongside, within round brackets, if they happen
to be different from the corresponding DSE results. While
computing the costs of the FU’s, the cost of each hardware
operator is taken as follows:



MANDAL et al.: DSE SCHEME FOR DPS 337

TABLE I
DSE RESULTS

Fig. 3. Diffeq. data paths for two FU’s and seven time steps.

, and . The allocation and binding has been
done by the allocation and binding tool GABIND [1]. Each
block of rows in the table, under the name of the particular
design, indicates the design points obtained for a particular
set of parameters for that design. For facet, the design points
obtained by DSE match the actual designs obtained after
allocation and binding. This is also true for the elliptic wave
filter example. For diffeq., the actual implementations of the
design points indicated in the last three rows in the blocks
under “DSE results for diffeq.” of Table I, require an additional
adder in each case. For two FU’s and seven time steps for
diffeq., the operations scheduled in three time steps were as
follows: , , and . Therefore, although at most
one “ ” and one “ ” are scheduled in any time step, it is not
possible to have an FU configuration using two FU’s where
at least a “ ” or “ ” is not repeated. For the case with three
FU’s and seven time steps, however, such a problem did not
exist. Yet an additional “ ” was used to keep the switch
cost low. The implementation of diffeq. by GABIND using
two FU’s in seven time steps is especially nice, requiring
only three interconnection switches (filled circles in Fig. 3).
The design point indicated in the second row of Table I for
the diffeq. example is for designing with only two FU’s,
whereas there are four types of operations distributed over

seven time steps. For the design point indicated in the third
row for diffeq. in Table I, the number of time steps is four,
exactly equal to the length of the critical path in the data flow
graph.

VII. CONCLUSION

A given behavioral specification can have a large number
of RTL implementations. We can partially characterize RTL
implementations by means of design parameters like the
number of FU’s and the number of buses, when we consider a
bus-based data path. Even for a given set of design parameters,
a number of designs are possible that differ in their hard-
ware requirement and performance. These designs constitute
a design space that needs to be systematically explored to
find the nondominated designs. The early part of this DSE
problem revolves around the basic scheduling problem, which
is NP-hard.

We have proposed a scheme for performing this exploration
using a combination of controlled search and approximate
scheduling techniques. The search is based on DFBB. DFBB
has the advantage of requiring minimum storage space to run.
It is necessary to conserve space because the storage for a
single (partial) solution is, itself, considerable. We have used
a balanced problem decomposition scheme for the DFBB.
This has the advantage of partitioning the original problem
into smaller subproblems of nearly equal sizes. We have
applied our DSE techniques to some common examples, e.g.,
facet, differential equation solver, and elliptic wave filter, and
constructed data paths from the schedules obtained. We have
noted close conformity with the estimates obtained with DSE
and the actual hardware used in the data paths.

REFERENCES

[1] C. A. Mandal, P. P. Chakrabarti, and S. Ghose, “Allocation and binding
for data path synthesis using a genetic approach,” inProc. VLSI
Design’96,pp. 122–125.

[2] B. S. Stewart and C. C. White, “Multiobjective A�,” J. Assoc. Comput.
Mach., vol. 88, no. 4, pp. 775–814, 1991.

[3] C. A. Mandal, P. P. Chakrabarti, and S. Ghose, “Complexity of
scheduling in high level synthesis,”VLSI Syst. Des.,vol. 7, no. 4, pp.
337–346, 1998.

[4] A. V. Aho, R. Sethi, and J. D. Ullman,COMPILERS Principles,
Techniques and Tools.Reading, MA: Addison-Wesley, 1987.

[5] P. G. Paulin, “High level synthesis of digital circuits using global
scheduling and binding algorithms,” Ph.D. dissertation, Dept. Electron.,
Carleton Univ., Ottawa, Ont., Canada, 1988.

[6] F. J. Kurdahi and A. C. Parker, “Real: A program for register allocation,”
presented at the Proc. 24th Design Automation Conf., 1987.

[7] F.-S. Tsai and Y.-C. Hsu, “Star—An automatic data path allocator,”
IEEE Trans. Computer-Aided Design,vol. 11, pp. 1053–1064, Sept.
1992.

[8] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, “Optimal
scheduling strategies in a multiprocessor system,”IEEE Trans. Comput.,
vol. C-21, pp. 137–146, Feb. 1972.

[9] A. Kumar and M. Balakrishnan, “A novel integrated scheduling and
allocation algorithm for data path synthesis,” inProc. VLSI Design ’91,
New Delhi, India, pp. 212–218.

[10] P. G. Paulin and J. P. Knight, “Algorithms for high-level synthesis,”
IEEE Design & Test Mag.,vol. 6, pp. 18–31, Dec. 1989.

[11] C. J. Tseng and D. P. Siewiorek, “Automated synthesis of data paths
in digital systems,”IEEE Trans. Computer-Aided Design,vol. CAD-5,
pp. 379–395, July 1986.

[12] S. Y. Kung, H. J. Whitehouse, and T. Kailath,VLSI and Modern Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1984.



338 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 3, SEPTEMBER 1999

Chittaranjan A. Mandal received the B.Tech.,
M.Tech., and Ph.D. degrees from the Indian Institute
of Technology, Kharagpur, India, in 1987, 1990, and
1995, respectively.

He is currently a Reader in the Computer Science
and Engineering Department, Jadavpur University,
Calcutta, India, and a Visiting Researcher in the
Department of Information Systems and Comput-
ing, Brunel University, Uxbridge, U.K. His current
interests include computer-aided design (CAD) for
very large scale integration (VLSI), evolutionary

computing, and design of algorithms.
Dr. Mandal was the recipient of a 1995 Commonwealth Scholarship.

Partha Pratim Chakrabarti (M’90) received the
B.Tech. and Ph.D. degrees from the Indian Institute
of Technology, Kharagpur, India, in 1985 and 1989,
respectively.

He is currently a Professor in the Computer
Science and Engineering Department, Indian Insti-
tute of Technology. His current interests include
artificial intelligence, CAD for VLSI, and design
of algorithms.

Dr. Chakrabarti received the 1985 President of
India Gold Medal, the 1991 INSA Young Scientist

Medal, the 1995 Anil K. Bose Award from INSA, and the 1997 INAE Young
Engineer Medal. He was also the recipient of the 1997–1998 Swarnajayanti
Fellowship.

Sujoy Ghose(M’91) received the B.Tech. degree
in electronics and electrical communication engi-
neering from the Indian Institute of Technology,
Kharagpur, India, in 1976, the M.S. degree from
Rutgers University, Piscataway, NJ, in 1978, and the
Ph.D. degree in computer science and engineering
from the Indian Institute of Technology, in 1987.

He is currently a Professor in the Department of
Computer Science and Engineering, Indian Institute
of Technology. His research interests include design
of algorithms, artificial intelligence, and computer

networks.


