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GABIND: A GA Approach to Allocation and Binding for
the High-Level Synthesis of Data Paths

Chittaranjan Mandal, Partha Pratim Chakrabarti, and Sujoy Ghose

Abstract—We present here a technique for allocation and binding for
data path synthesis (DPS) using a Genetic Algorithm (GA) approach. This
GA uses an unconventional crossover mechanism relying on a force di-
rected data path binding completion algorithm. The data path is synthe-
sized using some supplied design parameters. A bus-based interconnection
scheme, use of multi-port memories, and provision for multicycling and
pipelining are the main features of this system. The method presented here
has been applied to standard benchmark examples and the results obtained
are promising.

Index Terms—Allocation, binding, data path synthesis.

I. INTRODUCTION

Data path synthesis (DPS) involves scheduling of operations
followed by allocation and binding. The latter step consists of several
sub-tasks which include determining the mix of functional units (FUs)
grouping variables and assigning these variable clusters to storage
units, memory port assignment when multi-port memories are used in
the design, mapping operations to the FUs, and mapping transfers to
buses, when buses are used. The present work is concerned with the
allocation and binding aspects of DPS. Earlier techniques attempted
to solve these sub-tasks independently. Contemporary techniques
attempt to handle the sub-tasks and other tasks such as scheduling in
larger groups to ensure better optimality of the final design. However,
all these sub-tasks are known to be NP-Complete and amalgamating
many of these as a single problem is computationally prohibitive. It
is therefore desirable to be able to solve the sub-tasks in overlapping
combinations and move from one set of sub-tasks to another with a
set of solutions rather than just a single solution. Multiple heuristics
and randomization schemes may be used to find multiple solutions
that are of the same cost or are nondominating. These concerns have
motivated us to develop a Genetic Algorithm (GA), called GABIND,
for synthesizing optimized data paths from a given scheduled data
flow graph. GABIND builds on previously developed successful
heuristics, such as force [1], by incorporating them into the GA.

Several researchers have worked on the DPS problems and several
systems such as HAL [1], SAST [2], Facet [3], STAR [4], SAM [5],
and Vital-NS [6] have been developed to solve the problem. While
all techniques attempt to optimize schedule time and cost of storage
and FUs, current techniques place an emphasis on interconnect opti-
mization. HAL, SAM, Vital-NS, and STAR are some of the systems
that perform interconnect optimization, in addition to the other DPS
related optimizations. HAL was the first to make use of the force-di-
rected algorithm to perform scheduling and data path optimizations.
SAM combines scheduling, allocation, and mapping in a single algo-
rithm. The algorithm uses the notion of force [1] to measure the ef-
fect that a tentative scheduling of an operation would have on the re-
source requirements. VITAL-NS performs scheduling, allocation and
binding sub-tasks of DPS. FU registers and buses are partially allocated
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during the scheduling stage and finally optimized data paths are pro-
duced using heuristic techniques. STAR treats three important aspects
of the binding task:

1) data transfer binding;
2) operation assignment; and
3) variable binding.

It solves the problem in three phases. First the data transfer bindings are
performed. Subsequently, register binding and operation binding may
be performed independently. In each case a restricted branch and bound
algorithm is used to obtain the assignments. A problem space genetic
algorithm (PSGA_Syn) has been proposed in [7] which does concur-
rent scheduling and allocation. Their method is presently oriented to-
ward a point to point architectural model and does not take into account
architectural constraints such as the number of FUs and buses. SAST
performs scheduling, allocation and binding, under strong architectural
constraints at the cost of foregoing multiplexer optimization.

GABIND performs the following tasks: formation of FUs, binding
operations to FUs, binding transfers to buses, allocating storage,
binding variables to storage units and allocating switches to intercon-
nect FUs and memory units to the interconnecting buses. An important
aim of developing GABIND was to be able to satisfy all transfers using
a given number of buses and not relying on an unpredictable number of
point-to-point interconnections. The output is an optimized data path
which correctly implements the computation given to GABIND in the
form of scheduled data flow graphs. The optimization is performed
to jointly minimize the cost of the FUs, the storage units and the
switches for interconnection used in the data path. Specifications for
subsequent synthesis of the controller are also generated.

The rest of the paper is organized as follows. The architectural con-
siderations used for the synthesis scheme are described in Section II.
The GA to solve the problem is described in Section III. GABIND em-
ploys an algorithmic crossover, which is described in Section IV. The
experimental results and conclusions are given in Sections V and VI,
respectively.

II. UNDERLYING ARCHITECTURAL CONSIDERATIONS

The optimization performed by GABIND is based on the architec-
tural considerations described in this section. GABIND takes as input
a scheduled data flow graph (SDFG) of the operations. Such schedules
may be obtained as output of a design-space exploration scheme that
gives a set of schedules [8] or any scheduling. It accepts thenumber
of FUsandbusesas user specified design parameters. The former in-
dicates the total number of sites where operations may be performed
while the latter indicates the total number of paths for carrying data
transfers. The minimum number of FU sites should equal the maximum
number of operations that are scheduled to execute concurrently in the
given SDFG. An additional FU site generally leads to an overhead in
the interconnection and the control logic. The capability of an FU is
determined by the set of operations of the SDFG that it needs to exe-
cute. Arithmetic pipelining, often used for multiplication, in an FU is
supported and has been used for some of the examples.

Storage is implemented usingmulti-port memories and register files
in addition to individual registers. By placing several variables in a
single unit the number of independent sources and sinks of data is
reduced. The cost of some memory units will be known in advance.
Cost of other memory units, havingp-ports andn cells, is computed
by GABIND using the formula:cm(n; p) = n(�p+�)+p, where�
is the cost of the access logic per port per cell,� is the cost of each cell,
and is the cost of the driver and other logic per port of the memory. In
order to achieve low access time for a memory, the maximum number
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of cells that a memory can have is restricted to some predefined “small”
number, input as a design parameter.

All components are connected to one or more buses. The connection
may be switched or un-switched, ie. physical. Interconnecting buses
are often major contributors to the routing area for data paths. The
number of buses serves as an effective handle to control their prolif-
eration. A sufficient number of buses need to be present to satisfy con-
current transfers between the FUs and the memories that are eventually
formed. Multiple data transfers arising from acommon sourceare iden-
tified for possible use in interconnect optimization. Such transfers may
be routed through a common bus making better use of existing connec-
tions.

III. T HE GA-BASED SOLUTION

GABIND employs a GA to perform optimizations and solve the
problem. Our technique makes use of the GA as an efficient random-
ized search scheme for finding good solutions. It also differs from the
usual GAs on several aspects, explained below. The motivating factor
for taking this approach was to have a GA to solve the problem in rea-
sonable time with a population of solutions of practical size. We found
it fit to incorporate known good heuristics such as force to speed up
the search process. Qualitative justifications for the design decisions
for several aspects of the GA are given at appropriate places. The main
features of the GA are as follows.

1) Design Representation:A structured solution representation has
been used. For each operation and each transfer there are fields indi-
cating the FU or the bus to which it is bound, respectively. The binding
of a variable indicates the memory and the number of ports that it has.
Individual binding decisions of operations, transfers and storage are
highly interdependent.

2) Crossover: This is the most important step in the GA. Applica-
tion of a traditional recombinant crossover often results in offsprings
that do not represent a feasible solution, thus wasting computation time.
A randomized heuristic algorithmic crossover has been used to ensure
that a crossover always results in a feasible solution. The role of the
heuristic is to avoid generating extremely poor solutions. The random-
ization ensures that the application of the heuristic does not seriously
arrest the search that takes place in course of the GA-based optimiza-
tion. This technique has been successfully applied in [2].

Three steps are involved in the crossover. First, it is determined
which of all the attributes of both the parent solutions will be con-
sidered for inheritance. Then a tentative partial data path (TPDP) is
formed by inheriting some of these attributes. Finally, the complete
offspring solution is formed by completing the partial solution. Details
of the crossover are given in Section IV.

3) Population Control: It is important to ensure that diversity of
the population is sustained throughout the run of the GA. This has
been achieved as follows. First, a minimum number of solutions having
the kth, k > 1, best overall solution cost are retained. This policy
is implemented for up to a fixed value ofk. Second, the minimum
number of distinct memory configurations in the population is main-
tained above a certain minimum number. This condition may not be
satisfied at the beginning but once sufficient memory configurations
have been produced, a certain number of solution groups having the
same memory configuration are maintained. These memory configu-
rations are tracked according to the memory configuration cost only.
Third, a few solution groups with the same memory configuration as
lower cost solutions are also maintained. The conscious decision to en-
sure memory diversity has been taken in view of the vast number of
memory formations possible, as compared to FU formations.

4) Parent Selection:Crossover is performed between two solutions
taken from the population of solutions. A solution is selected only once

during one generation to ensure maximum participation of solutions in
the crossover. The selection policy gives preference to choosing parent
solutions which are more fit. To choose better fit parents, a list of
solutions whose cost is less than some threshold is maintained. The
threshold is determined according of the distribution of the solution
costs in the population. Solutions can be picked up from this list at
random.

Due to the strong interdependence between binding decisions, it is
likely that two good solutions will have highly incompatible solution
attributes. A crossover between such a pair of solutions is very likely
to produce an offspring of high cost or low fitness value. This was
experimentally observed during development. It has been suggested in
[9] that special precautions need to be taken to handle such a case, as
an excessive amount of type II deceptability could undermine the GA
for the particular problem. Therefore, a provision has been made, to
choose parents that are genetically less incompatible. Parents may be
chosen such that they have identical memory configurations. During
crossover the use of core attributes helps by reducing the incidence of
“noisy attributes.”

5) Other Aspects:First an initial population of feasible solutions
is created. Each solution is produced by randomly generating feasible
binding and allocation decisions. The cost of each solution is computed
and stored. The population control data structures are then created. Off-
spring solutions which are produced are integrated into the main popu-
lation of solutions only after the current generation is completed. They
replace an equal number of solutions from the current population. This
is a flexible compromise between replacing the entire population, and
replacing just one solution. The GA is started to run for a certain min-
imum number of generations. Every time there is an improvement it is
run for at least another fixed number of iterations in the hope of an-
other improvement. Finally, the data path corresponding to any one of
the best solutions obtained is output.

IV. DETAILS OF CROSSOVER

Crossover is performed in five phases, described below. Actual allo-
cations and bindings are made in the final phase.

1) Determining Prominent Solution Attributes:The cost of a so-
lution is sensitive to the bindings. An unfavorable binding could give
rise to additional data path elements. For this reason a 0/1 gradation
is performed for the operation and transfer bindings in the parent so-
lutions. The aim of transfer binding gradation is to consider only the
more frequently accessed component connections to each bus before
proceeding with the inheritance. Similarly, the aim of operation binding
gradation is to consider for inheritance only the more frequently used
functionality of each FU. In the implementation the better bindings are
markedcorewhile the inferior ones are markednoncore.

Variable to memory bindings are graded in a continuous scale. For a
particular memory the points accessing it are determined. The impor-
tance of each such point has been defined as the number of variables
of the memory that are accessed by that point. The importance of a
variable has been defined as the(importance of points that access
the variable). Thespreadof a memory has been defined as the total
number of points accessing the memory. The relative importance of a
variable has been defined as

(min: spread among all mems:)�

( imp: of var :)

�v(spread) � (max : imp: of var : in mem:)
; �v � 1:

The above scheme is intended to distill out only some of the binding
decisions which are likely to work together as good building blocks,
while filtering out the noisy building blocks. This GA will still benefit
from implicit parallelism, but less than the usual analytical value. We
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feel that for the usual analytic results to apply, the required population
size would be too large to be useful.

2) Correspondence Between Data Path Elements:A matching be-
tween the data path components of the two parent solutions is used
while performing inheritances. Affinity measures between components
are computed based on similarity of bindings of operations, transfers
and variables, with FUs, buses and memories, respectively. A greedy
algorithm driven by edge weights is then used to match these.

3) Operation and Transfer Binding Inheritance Plan:A tentative
plan of operation and transfer bindings to be inherited, time step by
time step, is constructed. In each time step, eithercoreoperation or core
transfer bindings are inherited first. The choice is made probabilisti-
cally. Next, associated core transfer or operation bindings, respectively,
are attempted to be inherited. This is done by inspecting the buses or
FUs one by one, respectively. If operation bindings are inherited first
in a time step then core transfers connected with these operations are
inherited provided the target bus is available. Similarly, the case of first
inheriting transfer bindings is handled. The tentative binding inheri-
tance plan implies a tentative allocation scheme for the data path to be
constructed. The actual allocation and binding is explained later in this
section.

4) Memory Formation: First, a blank memory configuration is
formed by inheritance. A variable inherits the memory binding with
a probability which is either theregister inheritance probability
parameter, or theimportanceof the variable in the memory, as defined
earlier in this section. After inheritance is completed, in general, there
will still be variables to be mapped to memories. These remaining
variables are packed into the memories already constructed during
inheritance. Those variables which could not be packed into these
memories are packed into new memories. The choice of memories to
be packed is governed by a simple heuristic. The heuristic is to choose
the variable for which the number of unmapped variables that can still
be packed into this memory without increasing the number of ports is
maximum.

5) Final Generation of Actual Allocations and Bindings:The ac-
tual operation and transfer bindings are now made, time step by time
step, in three phases: completing implied bindings, performing bind-
ings by inheritance and completion of pending bindings. This also com-
pletely determines allocation of all data path components.

The first phase is trivial involving only bookkeeping steps. For the
second phase, first the operations are processed and then the transfers
are handled. For each operation binding in the inheritance plan if the
corresponding FU is available, then the actual binding is set. If the FU
does not already implement that type of operation then possibility of
doing so is decreased. Similarly, transfer bindings are inherited but with
some additional processing. While making a transfer binding if the ex-
isting links between and FUs, system ports and the memories with the
buses suffice to support the transfer then the binding is directly made.
If new links need to be introduced at both the source and the destination
of the transfer then the inheritance is not made. If only one new link is
needed then the inheritance is done probabilistically. Whenever a new
link is introduced the data path is updated.

After the first two phases, in general, some operations and transfers
will still remain unmapped. The operation and then the transfer bind-
ings are made using a force directed completion algorithm, time step by
time step. The decisions are made in a best first approach selecting the
binding that leads to the least force. The force is computed in a way to
encourage utilization of existing data path components, and discourage
introduction of new components.

V. EXPERIMENTAL RESULTS

GABIND has been tested on a Silicon Graphics Indigo (IRIS) work-
station [R4000SC RISC CPU, 100 MHz (int.), 50 MHz (ext.)] with
the standard benchmark examples of Facet [3], differential equation

TABLE I
RESULTS OFRUNNING GABIND OF FACET, DIFFEQ, AND EWF

solver (Diffeq.) [1] and elliptic wave filter (EWF) [10]. The results have
been tabulated along with those of some other well-known systems in
Table I. The columns of the table indicate the technique, the number
of multiplexer channels (#M), the number of links (#L), the number of
storage cells (#C), the memory configuration, the FU configuration and
the run time. A memory configuration of the formhx; yi, indicatesy
memories each havingx ports. GABIND is able to synthesize the de-
signs using only single or double port memories. A double port memory
of one cell is equivalent to a register. The results indicate that the cost of
FUs and total number of multiplexer channels are consistently kept low.
Sometimes the storage requirements are marginally higher than com-
peting systems. It may be noted that because of the high level of design,
DPS techniques usually cannot be compared exactly. It was observed
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that the solution quality is not critically sensitive on the GA parame-
ters. In general, the time taken by the algorithm depends on the total
number of time steps used in the schedule and is proportional to it. A
larger population size is required for designs involving higher number
of FUs or time steps. The same GA parameters were used for all de-
signs, although the optimal result is obtained for the smaller examples
with a smaller population size.

VI. CONCLUSION

Given a schedule of operations, GABIND is able to synthesize glob-
ally optimized data paths in terms of the cost of the FUs, multiplexing
switches and storage elements. The synthesized data paths compare
well with those produced by other contemporary systems. Operation
pipelining and multicycling are supported. Storage implementation
can accommodate individual registers, single or multi-port memories.
GABIND relies on the GA to perform optimization. For this GA
we have developed a specific crossover based on a force directed
completion algorithm. We have shown experimentally that the GA
framework can be applied successfully for structured representations
suitable for DPS.
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Partitioning Algorithm to Enhance Pseudoexhaustive
Testing of Digital VLSI Circuits

Bassam Shaer, David Landis, and Sami A. Al-Arian

Abstract—This brief introduces a partitioning algorithm, which facili-
tates pseudoexhaustive testing, to detect and locate faults in digital VLSI
circuits. The algorithm is based on an analysis of circuit’s primary input
cones and fanout (PIFAN) values. An invasive approach is employed, which
creates logical and physical partitions by automatically inserting reconfig-
urable test cells and multiplexers. The test cells are used to control and ob-
serve multiple partitioning points, while the multiplexers expand the con-
trollability and observability provided by the test cells. The feasibility and
efficiency of our algorithm are evaluated by partitioning numerous ISCAS
1985 and 1989 benchmark circuits containing up to 5597 gates. Our results
show that the PIFAN algorithm offers significant reductions in overhead
and test time when compared to previous partitioning algorithms.

Index Terms—Digital VLSI circuits, partitioning, primary input cones
and fanout (PIFAN), pseudoexhaustive, testing.

I. INTRODUCTION

VLSI circuits contain large numbers of active devices and have lim-
ited input/output (I/O) access; these characteristics make them difficult
to test. The complexity of test generation and fault simulation grows
with the number of transistors, while the limited I/O access greatly de-
creases the controllability and observability of the internal circuitry.
Both of these factors limit the achievable test coverage using conven-
tional automatic test-pattern generation (ATPG). The fundamental ad-
vantage of exhaustive testing is that it can provide 100% coverage for
irredundant combinational digital circuits against any faults that do not
introduce memory. However, the length of an exhaustive test for a dig-
ital circuit with N inputs is 2N input test patterns. This limits the ap-
plicability of exhaustive testing because, as the primary input valueN

increases, test time becomes long or unfeasible.
Since true exhaustive testing is impractical for large VLSI circuits,

partitioning to allow exhaustive test of subcircuits offers an attractive
alternative. Goel [1] observed that with each doubling of the number of
gates in a circuit, the cost of testing increases as the square of the pre-
vious cost. McCluskey [2] proposed the method of pseudoexhaustive
testing. He partitions a circuit intop subcircuits such that each partition
has an upper bounds on the number of inputs, while the total number of
edges between the partitions is minimized. For efficient pseudoexhaus-
tive testing, a circuit must be partitioned into a number of subcircuits
with the following constraints: 1) the gates in each subcircuit must not
be functionally dependent on too many inputs of the subcircuit and 2)
the amount of control logic used to separate the subcircuits must be as
small as possible.

A wide variety of automated techniques for circuit partitioning and
testability enhancement are available [3]–[7], and their effects on the
circuit under test differ greatly. However, all available methods of gen-
eral partitioning and test vector generation for digital circuits require
that large amounts of design for testability hardware be inserted [8].
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