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Abstract 
A technique for allocatzon and binding for data path 

synthesis (DPS) using a Genetic Algorithm (GA)  ap- 
proach has been developed. The proposed genetic al- 
gorithm uses a non-conventional crossover mechanism, 
relying on a novel force directed data path binding com- 
pletion algorithm. The proposed technique has a number 
of features such as acceptance of some design pammet- 
ers fnom the user, use of a bus based topology, use of 
multi-port memories and provision for multi-cycling and 
pipelining, among other features. The results obtained 
on the standard examples are promising. 

Keywords: Data Path Synthesis, Binding, Multi-port 
Memory, Genetic Algorithm, VLSI. 

1 Introduction 
Data path synthesis involves first scheduling of oper- 

ations, and then allocation and binding which consists 
of several subtasks. These include determining the the 
mix of functional units, grouping variables and assign- 
ing these variable clusters to storage units, port assign- 
ment when multi-port memories are used in the design, 
mapping operations to the functional units and map- 
ping transfers to buses, when buses are used. All are 
NP-hard problems. Several researchers have worked on 
DPS problems and many solutions have been proposed 
[l, 2, 3, 4, 51. Some of the well known systems for DPS 
are Facet, HAL [a],  Splicer [6], STAR [7], SAM 151 and 
Vital-NS [8, 91. Here we present a GA based technique 
for allocation and binding for DPS. GAS are becom- 
ing increasingly popular as a tool for EDA applications 
and have been used for placement, routing and testing, 
among others. 

In our approach the construction of the data path 
(DP) is guided by two design parameters, viz. the num- 
ber of functional units and the total number of buses to 
be used therein. The former indicates the total number 
of sites where operations may be performed, while the 
latter indicates the total number of paths for carrying 
data transfers, in the context of allocation and binding. 
Other information like the cost of primitive hardware 
operators, etc. are also required. The output is the 
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optimized RTL data path. Support for multi-cycle oper- 
ations, use of memories and pipelined functional units in 
the data path is available. The interconnection style is 
bus based. The choice of a bus based scheme is motiv- 
ated by the fact that in a data path comprising of com- 
ponents requiring high interconnectivity the bus based 
scheme is expected to require fewer number of active 
interconnect elements -the switches-, than a point to 
point scheme. Storage is implemented using multi-port 
rnemoroes and regzster jiles in addition to individual re- 
gisters. A memory is a regular structure. By placing 
several variables in a single unit the number of independ- 
ent sources and destinations of data is reduced. Pres- 
ence of a common source of multiple data transfers is 
identified. The multiple transfers originating from this 
source may be routed through common buses to make 
use of existing links and switches. 

The techniques which have been proposed in this pa- 
per have been tested on prevailing examples such as Fa- 
cet, Differential equation solver and Elliptic wave filter. 
For the last two examples arithmetic pipelining has also 
been used. The results obtained have been encouraging. 
The next section explains the bus based DP structure 
after which our algorithm is described. 

2 Data Path Structure 
All the components are connected to one or more 

buses over which the data transfers take place. Mul- 
tiple sources driving any part of the circuit need to be 
switched. The cost of the data path is the sum of the 
cost of the individual components. The components are 
broadly categorized in four groups, viz. functional units 
(f.u.) , storage units, interconnection elements and in- 
terface components (such as the interface ports). The 
notion of a f.u. is similar to an arithmetic logic unit. 
We do not consider the cost of physically routing the 
wires. 

The cost of a f.u. is taken as the sum of the costs 
of the primitive hardware operators for the operations 
that it implements. The cost of a memory is computed 
with the knowledge of the number of ports that it has 
and the number of memory cells that it houses. In or- 
der to bound the access time of the memory, the max- 
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imum number of cells in a memory is restricted to soime 
predefined "small" number. The cost is computed as 
c m ( n , p )  = n(ap + p) + yp, where a , P  and y are 
constants, and c, is the cost of a memory with n cells 
and p ports. ,l3 is the cost of each cell. a is the cost of 
the access logic per port per cell. 7 is the cost of the 
driver and other logic per port. A switch is required 
whenever there are more than one sources driving any 
input in the circuit. The cost of a switch, which is often 
implemented using CMOS pass transistors is taken to 
be a predefined constant. 

3 Inputs for Allocation and Binding 
The scheduled data flow graph (SDFG), the cost of 

primitive operators, the design parameters and the basic 
block decomposition [lo] of the operations and transfeirs 
are the inputs which are required. The SDFG format 
consists of two parts. Each part, viz. the operations 
and the transfers, are listed time step by time step. An 
operation is identified by its type, expressed as a non- 
negative integer. The format is <op-type> <mc-j lag>.  
A transfer is identified by its source and destination. A 
source or destination may be either an znput/output of  
an opemtaon, a behavioural variable or an znterface p o d .  
The requirement of multi-cycling for both operations 
and transfers is expressed through an associated flag;. 
The format of a transfer is <source> <destznatzon>. 
A source or destination is formatted as <sdm-type;p 
<index-l> <andex-i?>. Index2 is used only to repres- 
ent the input/output of an operation. Index-1 indicates 
the particular operation itself. For variables and inter- 
face port the identification is also through index-1 by the 
index of the variable or the port. 

A primitive operator, which may be fully combina- 
tional or pipelined, is the physical implementation of ani 
operation in the behavioural specification (like adder, 
etc.). An operation is required to be mapped to one 
primitive operator. It is assumed that module selection 
from module library has been done. A pipelined oper- 
ator also carries the information about the number of 
single time step pipe stages that it has. This informa- 
tion is necessary to avoid output conflict of operations 
that may be mapped to the same f.u., in different time 
steps. An operation and the corresponding operator are 
identified by means of a unique operation id. 

4 
The steps followed in the GA for solving the problem 

are as follows: 
Initial population generation: A population of initial 
data paths created by randomly generating feasible bind- 
ings. Care is taken to ensure that a solution generated 
is always a feasible one. 
Replacement policy: The basic replacement policy is de- 
signed to ensure that all solutions generated stay in the 

GA for Allocation and Binding 

population for at least one iteration. This is done by in- 
troducing all the solutions generated through crossover 
during one iteration of the GA into the population, re- 
placing an equal number of existing solutions. The off- 
springs are not immediately placed in the main popula- 
tion, but are stored in an adjoint pool. The basic te- 
placement policy is to displace the lowest cost solutions 
with some additional considerations. 

First we have made provision for the retention of a 
minimum number of solutions having the kth  best cost, 
k > 1 for a fixed value of k .  The second provision 
is specifically aimed at maintaining a good diversity of 
memory configurations in the population of solutions so 
that some minimum number of distinct memory config- 
urations in the population is eventually built up. Solu- 
tions with the best memory configurations are kept track 
of. 
Parent selectzon: Each offspring is generated from two 
parent solutions chosen from the population with a slight 
bias towards coercing some crossovers between solutions 
which are either genetically close or which are more fit to 
keep a check on the amount of type I1 deceptability dur- 
ing crossover, to some extent. To implement crossover 
between better fit parents a list of solutions whose cost 
is less than some threshold, determined on the basis of 
the distribution of the solution costs in the population, 
is maintained. Solutions can be picked up from this list 
at random for crossover. Genetic closeness is difficult 
to determine. Some amount of closeness is determined 
by grouping solutions having the same memory config- 
uration. Such solutions differ only with respect to the 
operation and transfer bindings. Normally a solution is 
selected only once during one generation. 
f3"over :  An algorithmic crossover has been used. 
First an inheritance plan is created from which a a tent- 
ative partial structure of the data path (TPDP) is first 
constructed, which is used to evaluate the actual bind- 
ings. The TPDP is updated with each actual binding. 
The heart of the crossover is a completion algorithm 
which takes the TPDP and other inputs to generate a 
complete data path. 
Deszgn representation: A record structure of three fields, 
one for each class of binding decisions, is used. Each 
field is a structured array. For each operation and each 
transfer, the corresponding field indicates the f.u. index 
or the bus index to which it is bound, respectively. The 
binding of a variable indicates the memory index and the 
number of ports that it has. 
Stoppzng cri tenon: The GA is run for a certain min- 
imum number of iterations. For every improvement it 
is run for a fixed number of additional iterations till no 
more improvement takes place. 

5 Details of Crossover 
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The basic steps for the crossover are as follows: 
e Determining the specific bindings of each parent solu- 
tion which should participate in the crossover. The idea 
is to give preference to bindings which are likely to re- 
duce interconnect overhead. We explain the gradation 
of transfers, operations and variables are graded in a 
similar manner. The sources or destinations that are 
connected to a bus are grouped into two sets, source 
and destination which are not disjoint, in general. The 
access frequency of a member in either set is defined 
as the number of transfers that use this member. A 
member is considered to be extraneous if (access fre- 
quency of member) < (1 - at) (average access fre- 
quency) + at (minzmum access frequency), where at 
is a constant. If at M 1 then the minimum access fre- 
quency receives more weight and most of the members 
qualify. If a M 0 then the condition becomes tighter and 
few members qualify. The appropriateness of a transfer 
is measured with respect to either its source or destina- 
tion or both, in which case the source or the destination 
or both should be should be non-extraneous. 
e Obtaining a correspondence between the data path 
structures of the two parent solutions. The represent- 
ation of a solution is not unique. For example, if the 
solution uses n f  f.u.'s, nb buses and n, memory units 
then the same solution can be expressed in nf!nb!n,! 
ways. Therefore, before proceeding with the crossover, a 
matching between the data path elements of the two solu- 
tions is obtained through a matching. Affinity between 
the DP elements is computed on the basis of the pre- 
ferred bindings. 
e The operations and transfers planned to be inherited 
from the parent solutions are now determined time step 
by time step. Only the operations and transfer marked 
favourable earlier are considered. 
0 The memories are formed partially by inheriting pre- 
ferred variable bindings from the parents. After a 
memory has been partially formed additional variables 
are also packed in, if possible. 
e Finally the offspring is generated using the inheritance 
plan and the tentative partial structure, time step by 
time step. At this stage the memory formation is com- 
pleted. First the multi-cycle operations and transfers are 
bound to satisfy binding decisions taken in earlier time 
steps. Then operations and transfers in the inheritance 
plan which can be feasibly inherited in the current time 
step are processed. The remaining bindings are made 
using a force directed completion algomthm which we 
explain in the next section. 

6 Force Directed Completion Algorithm 
First the operations and then the transfers are bound. 

In this process the actual data path structure is obtained 
by augmenting and appropriately modifying the current 

partial structure. Self and other forces are computed 
for each candidate binding, the one with minimum force 
is taken. For operation binding we compute i) forces 
for mapping operations to f.u.)s and ii) lookahead forces 
for transfer to bus bindings which may take place its 
a result of a particular operation to operator binding. 
We explain below the first category of forces only. The 
following definitions will be useful in explaining the al- 
gorithm. 
DEF is used with an actual binding. 
LKY is a constant used with a likely binding, 
ULK is used with an unlikely binding and 
Total unmapped opemtzons (Uo) is the number of opera- 
tions in the current time step which are yet unmapped. 
Total unmapped operations of type y (U:) is the number 
of unmapped operations of type y. 
Number of available f.u.'s (At) are those on which no 
operation has yet been mapped onto these f.u.'s. 
Cost of opemtion type y ( C [ y ] )  The cost of a f.u. will 
increase by this amount to be able to implement an op- 
eration of type y .  
Dzstributzon gmph of operations (Do[u,  y ] )  Distribution 
graph of operations of type y on f.u. U .  

if operation type y is present in  f . u .  U 

then - -.C[y] U,Y I At 

While considering an operation (in column r of the 
specification) of type y to map on f.u. U two types of 
forces are computed. These are the self force and other 
forces. These force are exerted on f.u. U and other f.u.'s 
1, l  # U .  

The forces on f.u. U are as follows: 

self force : 

The force due to other operations of type yo is as follows: 

U p  

4 

if Y # Y o  - - p O [ U , Y O l  

U!- 1 other force : F : !  = { else - - .Do[% Yl 
The forces on f.u. 1 , l  # U are as follows: 
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After operation binding is through, transfer bindings 
are processed in a similar manner. Transfer forces are 
computed to minimize the formation of new links and 
switches. The computation of these forces is similar to 
the computation indicated above. Instead of pending cop- 
erations and available f.u.’s, pending transfers and avail- 
able buses are considered, respectively. 

7 Experimental Results 
The techniques described in this paper have been 

tested on some well known examples. The results have 
been tabulated along with results of some other well 
known systems available with us, which include Facet, 
Diffeq. and elliptic wave filter. In the tables the res- 
ult of our system have been labeled GABIND. Solutions 
labeled (1) and (2) use the standard schedule the third 
result is using another schedule. Name of the system, 
number of switches for multiplexing, number of linhs, 
number of storage cells and memory configuration are 
given column wise. Column four represents the nurn- 
ber of registers used; for our system it represents the 
number of distinct registers or memory cells, normal- 
ized for comparison with other systems, where constants 
and some some other storage elements are usually not 
included while counting the registers. 

8 Conclusions 
We have developed a technique for allocation and 

binding for data path synthesis using a GA approach. 
We believe there is some scope of improvement in the 
way the way GA has been used to solve the probl- 
lem of allocation and binding. The developed system 
has a number of features such as specification of some 
design parameters, use of a bus based topology, use of 
multi-port memories and provision for multi-cycling and 
pipelining, among other features. The results obtained 
on the standard examples have been promising. 
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