
Allocation and Binding in Data Path Synthesis Using a Genetic
Algorithm Approach

C. A. Mandal P. P. Chakrabarti S. Ghose
Dept. of Comp. Sc. & Engg.
J adavpur University, Calcutta

Dept. of Gomp. Sc. & Engg.
Indian Institute of Technology, Kharagpur

WI B. 700 032,INDIA

Abstract
A technique for allocatzon and binding for data path

synthesis (DPS) using a Genetic Algorithm (GA) ap-
proach has been developed. The proposed genetic al-
gorithm uses a non-conventional crossover mechanism,
relying on a novel force directed data path binding com-
pletion algorithm. The proposed technique has a number
of features such as acceptance of some design pammet-
ers fnom the user, use of a bus based topology, use of
multi-port memories and provision for multi-cycling and
pipelining, among other features. The results obtained
on the standard examples are promising.

Keywords: Data Path Synthesis, Binding, Multi-port
Memory, Genetic Algorithm, VLSI.

1 Introduction
Data path synthesis involves first scheduling of oper-

ations, and then allocation and binding which consists
of several subtasks. These include determining the the
mix of functional units, grouping variables and assign-
ing these variable clusters to storage units, port assign-
ment when multi-port memories are used in the design,
mapping operations to the functional units and map-
ping transfers to buses, when buses are used. All are
NP-hard problems. Several researchers have worked on
DPS problems and many solutions have been proposed
[l, 2, 3, 4, 51. Some of the well known systems for DPS
are Facet, HAL [a], Splicer [6], STAR [7], SAM 151 and
Vital-NS [8, 91. Here we present a GA based technique
for allocation and binding for DPS. GAS are becom-
ing increasingly popular as a tool for EDA applications
and have been used for placement, routing and testing,
among others.

In our approach the construction of the data path
(DP) is guided by two design parameters, viz. the num-
ber of functional units and the total number of buses to
be used therein. The former indicates the total number
of sites where operations may be performed, while the
latter indicates the total number of paths for carrying
data transfers, in the context of allocation and binding.
Other information like the cost of primitive hardware
operators, etc. are also required. The output is the

1063-9667195 $04.00 0 1995 IEEE

_.

W. B. 721 302, INDIA

optimized RTL data path. Support for multi-cycle oper-
ations, use of memories and pipelined functional units in
the data path is available. The interconnection style is
bus based. The choice of a bus based scheme is motiv-
ated by the fact that in a data path comprising of com-
ponents requiring high interconnectivity the bus based
scheme is expected to require fewer number of active
interconnect elements -the switches-, than a point to
point scheme. Storage is implemented using multi-port
rnemoroes and regzster jiles in addition to individual re-
gisters. A memory is a regular structure. By placing
several variables in a single unit the number of independ-
ent sources and destinations of data is reduced. Pres-
ence of a common source of multiple data transfers is
identified. The multiple transfers originating from this
source may be routed through common buses to make
use of existing links and switches.

The techniques which have been proposed in this pa-
per have been tested on prevailing examples such as Fa-
cet, Differential equation solver and Elliptic wave filter.
For the last two examples arithmetic pipelining has also
been used. The results obtained have been encouraging.
The next section explains the bus based DP structure
after which our algorithm is described.

2 Data Path Structure
All the components are connected to one or more

buses over which the data transfers take place. Mul-
tiple sources driving any part of the circuit need to be
switched. The cost of the data path is the sum of the
cost of the individual components. The components are
broadly categorized in four groups, viz. functional units
(f.u.) , storage units, interconnection elements and in-
terface components (such as the interface ports). The
notion of a f.u. is similar to an arithmetic logic unit.
We do not consider the cost of physically routing the
wires.

The cost of a f.u. is taken as the sum of the costs
of the primitive hardware operators for the operations
that it implements. The cost of a memory is computed
with the knowledge of the number of ports that it has
and the number of memory cells that it houses. In or-
der to bound the access time of the memory, the max-

122
9th lnternutional Conference on VLSl Design - Junuary 1996

imum number of cells in a memory is restricted to soime
predefined "small" number. The cost is computed as
c m (n , p) = n(ap + p) + yp, where a , P and y are
constants, and c, is the cost of a memory with n cells
and p ports. ,l3 is the cost of each cell. a is the cost of
the access logic per port per cell. 7 is the cost of the
driver and other logic per port. A switch is required
whenever there are more than one sources driving any
input in the circuit. The cost of a switch, which is often
implemented using CMOS pass transistors is taken to
be a predefined constant.

3 Inputs for Allocation and Binding
The scheduled data flow graph (SDFG), the cost of

primitive operators, the design parameters and the basic
block decomposition [lo] of the operations and transfeirs
are the inputs which are required. The SDFG format
consists of two parts. Each part, viz. the operations
and the transfers, are listed time step by time step. An
operation is identified by its type, expressed as a non-
negative integer. The format is <op-type> <mc-j lag>.
A transfer is identified by its source and destination. A
source or destination may be either an znput/output of
an opemtaon, a behavioural variable or an znterface p o d .
The requirement of multi-cycling for both operations
and transfers is expressed through an associated flag;.
The format of a transfer is <source> <destznatzon>.
A source or destination is formatted as <sdm-type;p
<index-l> <andex-i?>. Index2 is used only to repres-
ent the input/output of an operation. Index-1 indicates
the particular operation itself. For variables and inter-
face port the identification is also through index-1 by the
index of the variable or the port.

A primitive operator, which may be fully combina-
tional or pipelined, is the physical implementation of ani
operation in the behavioural specification (like adder,
etc.). An operation is required to be mapped to one
primitive operator. It is assumed that module selection
from module library has been done. A pipelined oper-
ator also carries the information about the number of
single time step pipe stages that it has. This informa-
tion is necessary to avoid output conflict of operations
that may be mapped to the same f.u., in different time
steps. An operation and the corresponding operator are
identified by means of a unique operation id.

4
The steps followed in the GA for solving the problem

are as follows:
Initial population generation: A population of initial
data paths created by randomly generating feasible bind-
ings. Care is taken to ensure that a solution generated
is always a feasible one.
Replacement policy: The basic replacement policy is de-
signed to ensure that all solutions generated stay in the

GA for Allocation and Binding

population for at least one iteration. This is done by in-
troducing all the solutions generated through crossover
during one iteration of the GA into the population, re-
placing an equal number of existing solutions. The off-
springs are not immediately placed in the main popula-
tion, but are stored in an adjoint pool. The basic te-
placement policy is to displace the lowest cost solutions
with some additional considerations.

First we have made provision for the retention of a
minimum number of solutions having the kth best cost,
k > 1 for a fixed value of k . The second provision
is specifically aimed at maintaining a good diversity of
memory configurations in the population of solutions so
that some minimum number of distinct memory config-
urations in the population is eventually built up. Solu-
tions with the best memory configurations are kept track
of.
Parent selectzon: Each offspring is generated from two
parent solutions chosen from the population with a slight
bias towards coercing some crossovers between solutions
which are either genetically close or which are more fit to
keep a check on the amount of type I1 deceptability dur-
ing crossover, to some extent. To implement crossover
between better fit parents a list of solutions whose cost
is less than some threshold, determined on the basis of
the distribution of the solution costs in the population,
is maintained. Solutions can be picked up from this list
at random for crossover. Genetic closeness is difficult
to determine. Some amount of closeness is determined
by grouping solutions having the same memory config-
uration. Such solutions differ only with respect to the
operation and transfer bindings. Normally a solution is
selected only once during one generation.
f3"over : An algorithmic crossover has been used.
First an inheritance plan is created from which a a tent-
ative partial structure of the data path (TPDP) is first
constructed, which is used to evaluate the actual bind-
ings. The TPDP is updated with each actual binding.
The heart of the crossover is a completion algorithm
which takes the TPDP and other inputs to generate a
complete data path.
Deszgn representation: A record structure of three fields,
one for each class of binding decisions, is used. Each
field is a structured array. For each operation and each
transfer, the corresponding field indicates the f.u. index
or the bus index to which it is bound, respectively. The
binding of a variable indicates the memory index and the
number of ports that it has.
Stoppzng cri tenon: The GA is run for a certain min-
imum number of iterations. For every improvement it
is run for a fixed number of additional iterations till no
more improvement takes place.

5 Details of Crossover

123

The basic steps for the crossover are as follows:
e Determining the specific bindings of each parent solu-
tion which should participate in the crossover. The idea
is to give preference to bindings which are likely to re-
duce interconnect overhead. We explain the gradation
of transfers, operations and variables are graded in a
similar manner. The sources or destinations that are
connected to a bus are grouped into two sets, source
and destination which are not disjoint, in general. The
access frequency of a member in either set is defined
as the number of transfers that use this member. A
member is considered to be extraneous if (access fre-
quency of member) < (1 - at) (average access fre-
quency) + at (minzmum access frequency), where at
is a constant. If at M 1 then the minimum access fre-
quency receives more weight and most of the members
qualify. If a M 0 then the condition becomes tighter and
few members qualify. The appropriateness of a transfer
is measured with respect to either its source or destina-
tion or both, in which case the source or the destination
or both should be should be non-extraneous.
e Obtaining a correspondence between the data path
structures of the two parent solutions. The represent-
ation of a solution is not unique. For example, if the
solution uses n f f.u.'s, nb buses and n, memory units
then the same solution can be expressed in nf!nb!n,!
ways. Therefore, before proceeding with the crossover, a
matching between the data path elements of the two solu-
tions is obtained through a matching. Affinity between
the DP elements is computed on the basis of the pre-
ferred bindings.
e The operations and transfers planned to be inherited
from the parent solutions are now determined time step
by time step. Only the operations and transfer marked
favourable earlier are considered.
0 The memories are formed partially by inheriting pre-
ferred variable bindings from the parents. After a
memory has been partially formed additional variables
are also packed in, if possible.
e Finally the offspring is generated using the inheritance
plan and the tentative partial structure, time step by
time step. At this stage the memory formation is com-
pleted. First the multi-cycle operations and transfers are
bound to satisfy binding decisions taken in earlier time
steps. Then operations and transfers in the inheritance
plan which can be feasibly inherited in the current time
step are processed. The remaining bindings are made
using a force directed completion algomthm which we
explain in the next section.

6 Force Directed Completion Algorithm
First the operations and then the transfers are bound.

In this process the actual data path structure is obtained
by augmenting and appropriately modifying the current

partial structure. Self and other forces are computed
for each candidate binding, the one with minimum force
is taken. For operation binding we compute i) forces
for mapping operations to f.u.)s and ii) lookahead forces
for transfer to bus bindings which may take place its
a result of a particular operation to operator binding.
We explain below the first category of forces only. The
following definitions will be useful in explaining the al-
gorithm.
DEF is used with an actual binding.
LKY is a constant used with a likely binding,
ULK is used with an unlikely binding and
Total unmapped opemtzons (Uo) is the number of opera-
tions in the current time step which are yet unmapped.
Total unmapped operations of type y (U:) is the number
of unmapped operations of type y.
Number of available f.u.'s (At) are those on which no
operation has yet been mapped onto these f.u.'s.
Cost of opemtion type y (C [y]) The cost of a f.u. will
increase by this amount to be able to implement an op-
eration of type y .
Dzstributzon gmph of operations (Do[u, y]) Distribution
graph of operations of type y on f.u. U .

if operation type y is present in f . u . U

then - -.C[y] U,Y I At

While considering an operation (in column r of the
specification) of type y to map on f.u. U two types of
forces are computed. These are the self force and other
forces. These force are exerted on f.u. U and other f.u.'s
1, l # U .

The forces on f.u. U are as follows:

self force :

The force due to other operations of type yo is as follows:

U p

4

if Y # Y o - - p O [U , Y O l

U!- 1 other force : F : ! = { else - - .Do[% Yl
The forces on f.u. 1 , l # U are as follows:

124

After operation binding is through, transfer bindings
are processed in a similar manner. Transfer forces are
computed to minimize the formation of new links and
switches. The computation of these forces is similar to
the computation indicated above. Instead of pending cop-
erations and available f.u.’s, pending transfers and avail-
able buses are considered, respectively.

7 Experimental Results
The techniques described in this paper have been

tested on some well known examples. The results have
been tabulated along with results of some other well
known systems available with us, which include Facet,
Diffeq. and elliptic wave filter. In the tables the res-
ult of our system have been labeled GABIND. Solutions
labeled (1) and (2) use the standard schedule the third
result is using another schedule. Name of the system,
number of switches for multiplexing, number of linhs,
number of storage cells and memory configuration are
given column wise. Column four represents the nurn-
ber of registers used; for our system it represents the
number of distinct registers or memory cells, normal-
ized for comparison with other systems, where constants
and some some other storage elements are usually not
included while counting the registers.

8 Conclusions
We have developed a technique for allocation and

binding for data path synthesis using a GA approach.
We believe there is some scope of improvement in the
way the way GA has been used to solve the probl-
lem of allocation and binding. The developed system
has a number of features such as specification of some
design parameters, use of a bus based topology, use of
multi-port memories and provision for multi-cycling and
pipelining, among other features. The results obtained
on the standard examples have been promising.

References

System

A. C. Parker, “Automated synthesis of digital systems,”
IEEE Design and Test, November 1984.

P. G. Paulin and J. P. Knight, “Algorithms for high-
level synthesis,” IEEE Design d Test, December 1989.

F. Brewer and D. D. Gajski, “Chippe: A system for
constraint driven behavioural synthesis,” IEEE Trans.
on CAD, pp. 681-695, July 1990.

S. Devadas and A. R. Newton, “Algorithms for hard-
ware allocation in data path synthesis,” IEEE Transac-
tions on Computer Aided Design, vol. 8, July 1989.

R. J. Cloutier and D. E. Thomas, “Thc combination
of scheduling, allocation and mapping in a single al-
gorithm,” in Proceedings of the 27th ACM/IEEE DAC,
pp. 71-76, June 1990.
B. M. Pangrle, ‘‘Splicer: A heuristic approach to con-
nectivity binding,” Proceedings of the 25th ACM/IEEE
Design Automation Conference, 1988.

num. num. num. mem. config.; < z , y , z >
mux. link cell + y z-port memories

U
Facet 11 - 8 -
Splicer 8 - 7 -
HAL 6 1 3 5 -
Vi tal-NS 6 1 2 5 -
GABINDIl) 8 10 5 < 2 . 3 . 3 > . < 1 . 1 . 2 >

I I I - , , -

” GABINDi2j i 7 11 / 6 ’ < 2 , 3 , 4 > , < 1 , 2 , 2 > -‘
GABIND 1 5 1 11 1 6 < 2 , 3 , 4 > , < 1 , 2 , 2 > .
Diffeq. using 2-cycle muitipliers and 5 f.u.’s,
(2*, +, -, <), 4 time steps.
Splicer 11 - 6 -
HAL I O 25 5 -
Vital-NS 12 22 5 -

:GABIND 1 8 I 18 (5 i < 2 , 5 , 7 > , < 1 , l , l >
Diffeq. (1 *(pipe) , 1 alu.), 8 time steps.
HAL 1 1 3 1 1 9 (5 I -
Vital-NS I 13 1 1 7 1 5 I -

.

Elliptic wave filter 17 time steps, (1 * (pipe), 2+) for
STAR and GABIND, others (2 * (pipe), 3+), as available.

HAL 34 - - 12
30 40 12 - SAM

Vital-NS 33 40 10 -
LI GABIND 31 35 11 < 2,6,11 >,< 1,1 ,1 >

F.3. Tsai and Y.-C. Hsu, “Star, an automatic data path
allocator,” IEEE Trans. on CAD, September 1992.

A. Kumar, A Versatile Data Path Synthesis Approach
Based on Heuristic Search. PhD thesis, I.I.T. Delhi,
January 1993.

A. Kumar, A. Kumar, and M. Balakrishnan, “Heur-
istic search based approach to scheduling, allocation and
binding in data path synthesis,” in Proceedings of VLSI
Design ’95, pp. 75-80, 1995.

A. V. Aho, R. Sethi, and J. D. Ullman, COMPILERS
Principles, Techniques and Tools. Addison-Wesley Pub-
lishing Company, June 1987.

125

